DRAFT STORMWATER REPORT STH 11 (DURAND AVENUE) AND CTH J (ENGLISH SETTLEMENT AVENUE) BURLINGTON, RACINE COUNTY

Project I.D. 1320-07-03

September 2021

Prepared by:

M Squared Engineering, LLC

N19 W6719 Commerce Ct. Cedarburg, Wisconsin 53012 **P:** (262) 376-4246

msquared@msquaredengineering.com

TABLE OF CONTENTS	
INTRODUCTION	3
METHODOLOGY	
HYDROLOGIC ANALYSIS	
HYDRAULIC ANALYSIS	
Existing Conditions	
Proposed Conditions	
Inlet Spread	
Additional Considerations	
WATER QUALITY TREATMENT ANALYSIS	
BUFFER AREAS	
CONCLUSIONS	
LIST OF FIGURES Figure 1 – Project Location Map	2
Figure 2 – Ponding and Overflow Location Map	9
LIST OF TABLES	
Table 1 – Rainfall Depths	5
Table 2 – Basin Areas	
Table 3 – Summary of Pre and Post Construction Flows	
Table 4 – Headwater Comparisons	
r	

LIST OF APPENDICES

- Appendix A WisDOT Stormwater Spreadsheets
- Appendix B Proposed Plans
- Appendix C Existing Drainage Area Maps
- Appendix D Proposed Drainage Area Maps
- Appendix E WinTR-55 Calculations
- Appendix F Existing Condition Storm and Sanitary Analysis Calculations
- Appendix G Proposed Condition Storm and Sanitary Analysis Calculations
- Appendix H Hydraflow Express Ditch and Gutter Pan Calculations
- Appendix I NRCS Web Soil Survey
- Appendix J Wisconsin DNR Surface Water Data Viewer Map
- Appendix K FEMA Floodplain Map

INTRODUCTION

M Squared Engineering LLC (M²) has been retained by WisDOT, as a subconsultant to Ayres and Associates, to develop a stormwater report and perform a storm sewer system analysis for the proposed roundabout construction at the intersection of STH-11 (Durand Avenue) and CTH J (English Settlement Avenue) just east of Burlington in Racine County (WisDOT Project No. 1320-07-03).

The project consists of the reconstruction of an existing stop-controlled intersection with a new roundabout to improve traffic operation and enhance safety. There is no change to the number of through travel lanes along either roadway. However, the lane widths will change slightly and the amount of impervious surface within the intersection will increase slightly. The reconstruction of the road includes minor changes to the roadway profile, minimizing any changes to existing drainage patterns along the corridor.

A site location map for the project is included in Figure 1 – Project Location Map. The purpose of this report is to provide stormwater management design calculations and drainage system analysis results along the project corridor for the proposed project. The existing and proposed drainage systems drain to the same individual outfall location in both the existing and proposed conditions, which ultimately drains south to the Hooser Creek Canal.

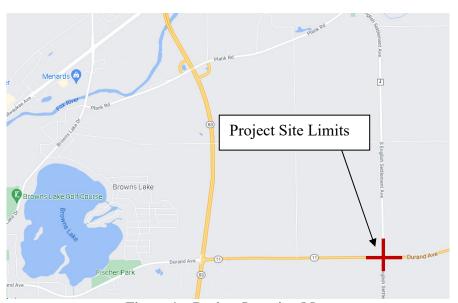


Figure 1 – Project Location Map

METHODOLOGY

The methodology used in developing this stormwater management plan is as follows:

- 1. Define existing outfall locations for the project corridor.
- 2. Delineate/confirm drainage and watershed boundaries.
- 3. Identify requirements to comply with TRANS 401.
- 4. Perform stormwater quantity/peak flow calculations (if necessary).
- 5. Perform drainage system analysis for inlet spread and pipe sizing.
- 6. Prepare WisDOT stormwater spreadsheets.
- 7. Summarize the calculations for approval from the WDNR and WisDOT.

Data utilized in this project are noted below.

- 1. Field survey data provided by various sources.
- 2. Racine County GIS Mapping / Contours.
- 3. NRCS Soil Survey for Racine County.
- 4. Aerial photographs of Racine County.
- 5. Regulatory FEMA Floodplain Maps.
- 6. AutoDesk Storm and Sanitary Analysis Software.

The hydrologic analysis was performed in AutoDesk Storm and Sanitary Analysis (SSA) 2020 software using the SCS TR-55 hydrologic method. This was done for each individual drainage basin within the project limits for both the existing and proposed conditions. This allows for the comparison of existing and proposed peak flows draining to each outfall to see where peak flows and headwater elevations are changing. This was also used to check the function of existing and proposed culverts, inlets and storm sewer pipes. In addition, the "hydrodynamic" modeling option was used for the link routing as it provides better modeling results for systems that contain storage nodes, ponding of water and overtopping weirs.

Time of Concentrations (Tc) were developed using the Kirpich Method, which is conservative and simplifies the Tc calculations. However, for several of the large drainage areas that encompass large tracts of farmland, the TR-55 method (using WinTR-55) was utilized to calculate the Tc to ensure the accuracy of the model. The minimum Tc used was 5 minutes. The rainfall utilized was obtained from the Racine County tables using SCS Type II 24-hour distributions in the design software. The hydrologic soil group is primary Type C throughout the project corridor based on the NRCS Web Soil Survey. The NRCS Web Soil Survey data can be found in **Appendix I**.

HYDROLOGIC ANALYSIS

The hydrologic analysis was performed using two individual SSA models. One model covered the existing conditions and one covered the proposed conditions. These models were developed to compare the drainage area, Tc, and runoff curve number changes for each subbasin and the overall outfall drainage area. These models were also used to compare the overall function of the two models, considering system configuration, ditch profiles and cross sections, storage nodes (for ponding of water in various locations) and overtopping weirs. Weirs were used to simulate overtopping of driveways, roads or other site features. This was done to determine how the proposed project affects the overall runoff from the project site.

The rainfall depths (See Table 1) found in the SSA software for Racine County, which come from the WisDOT Civil 3D 2020 resource file package, were used with the SCS Type II distribution for the modeling and are as follows:

Storm (24 Hour)	Rainfall Depth
2-Year	2.7"
10-Year	4"
25-Year	4.6"
100-Year	5.6"

Table 1 – Rainfall Depths

Subbasin drainage areas and the overall watershed drainage area to the outfall point were identified and mapped based on available survey data and Racine County GIS contours where necessary. The most hydraulically remote points were determined for each subbasin for use with the Tc calculations, and the flow paths from these locations were traced. Where TR-55 was utilized for the Tc calculations, stretches where the flow would go through sheet flow, shallow concentrated flow, and channelized flow were noted and accounted for. The slopes and manning's roughness for each stretch were determined, and the flow times for each stretch were computed and totaled together to get the total time of concentration for each flow path. Small drainage areas that primarily drain pavement did not have Tc developed as it was anticipated that these would just have a 5 minute time of concentration (the minimum Tc used). Minor changes to the Tc values can be seen due primarily to the proposed slope changes for ditches and pipe networks along the project corridor.

Table 2 shows the drainage areas and runoff coefficients for the overall site drainage area for existing and proposed conditions. Because of the large off-site areas that drain through the project limits, there is no ultimate change to the overall drainage area. However, there is a small change in the CN for the overall site due to the increase in impervious surface resulting from the proposed roundabout construction. In addition,

the Tc was broken down by subbasin and is not shown here. However, due to the site area and topography, the flow path that makes up the Tc for the overall watershed does not pass through the project site and is not impacted by the proposed project (there is no change to the Tc for the watershed).

Table 2 – Basin Areas

Basin	Area (ac)	CN							
Existing	201.84	84.78							
Proposed	201.84	88.44							
% Change	0.00%	4.32%							

The total drainage area flowing to the project outfall did not change between the existing and proposed conditions. In addition, the Tc for the major drainage subbasins did not change between the existing and proposed conditions, as the flow paths were based on off-site areas and were not impacted by the ditch modifications adjacent to the intersection.

The small change to the CN value for the watershed did result in a small increase in the overall flow produced by the watershed. However, this small increase was mitigated through the use of carefully designed culvert and storm sewer pipe sizes, and the use of wide flat bottom ditches to help slow the flow and detain the water prior to the discharge at the outfall point.

Appendix B contains the proposed roundabout plans. Drainage maps that show the Tc flow paths, the outfall point and the subbasin drainage boundaries can be found in **Appendix C** for the existing conditions and **Appendix D** for the proposed conditions.

Appendix E and **Appendix F** contains the SSA modeling results for the pre- and post-construction conditions.

Table 3 below shows the peak flows to the project outfall that were calculated for both the existing and proposed conditions, along with the percent change from existing to proposed.

Table 3 – Summary of Pre and Post Construction Flows

Storm	Existing Peak Flow	Proposed Peak Flow	Change in Peak Flow	% Change
2 Year	62.59	67.09	4.50	7.2%
10 Year	118.19	112.56	-5.63	-4.8%
25 Year	143.27	137.85	-5.42	-3.8%
100 Year	177.00	174.57	-2.43	-1.4%

The 10-year, 25-year and 100-year storms all see a reduction in peak flow. This is due to the widening of some of the ditches around the project site, along with changes to culvert pipe profiles. The 2-year storm does see a slight increase in the peak flow rate. This increase is also due to drainage system (ditch and pipe) changes within the intersection. However, this increase is small by comparison to the capacity of the receiving channel.

An evaluation will be made between the 60% plan submission and the 90% plan submission to determine if measures can be implemented into the project to reduce this overall peak flow rate increase for the 2-year storm. However, it is not believed at this time that this small increase will cause any adverse effects to the downstream receiving channel.

HYDRAULIC ANALYSIS

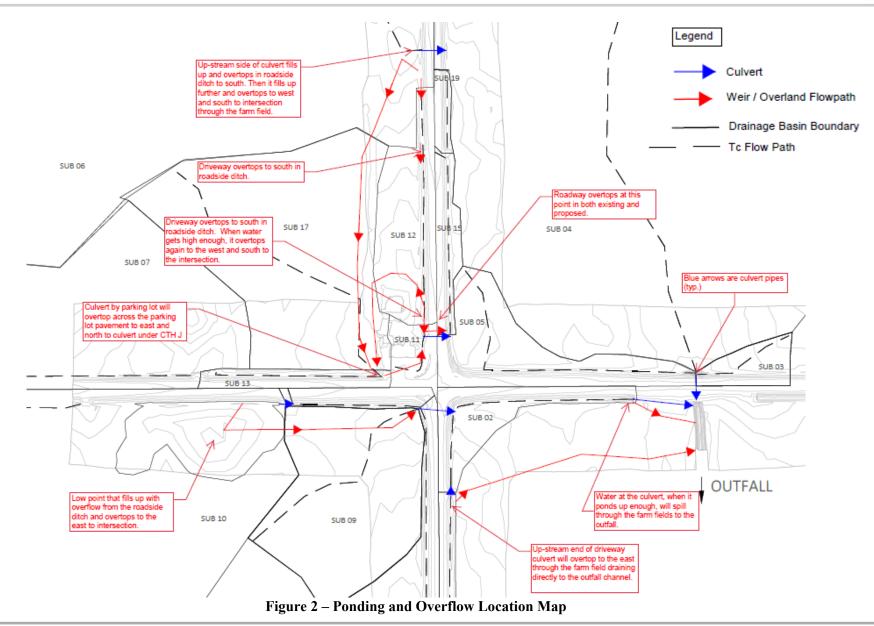
The hydraulic analysis was performed in SSA but was supplemented for various components by other programs such as Hydraflow Express and WinTR-55. An existing and proposed model were developed. Since there is only one outfall for the project, the model reflects this. The model was analyzed using the Hydrodynamic mode of the software because of the number of storage nodes, flat or back-pitched pipes in the existing condition and the number of overflow spillways that drain various low points in different direction. The tailwater boundary condition type of "normal" was used at the outfall in SSA to function as the assumed tailwater. This provides a reasonable analysis method for the systems. A detailed description of the existing conditions and how the proposed conditions varied from the existing is included in the following sections.

Existing Conditions

The existing conditions were carefully reviewed to ensure the modeling that was performed was as accurate as was practical. The project survey data, county GIS data, Google Earth / Street View and a project site visit were all used to help refine the models to ensure that the existing conditions were accurately modeled. Some of the unique aspects of the existing site conditions that bear particular impact on the modeling are described below.

Farmland and Drain Tiles

The overall drainage area to the outfall for the project includes a significant amount of farmland that drains toward the roads, along the ditches and through the culverts that are within the project limits or just outside the project limits. Based on input from local residents, some of this farmland does have drain tiles installed. The current modeling does <u>not</u> take into effect the impacts that these drain tiles would have on the overall site runoff. The effect of the drain tiles on the overall runoff volumes that drain into the


project site is currently being evaluated and the modeling will be updated in the future should it be determined that this would have a measurable effect on the overall hydraulics of the existing systems.

Ponding and Overflow Weirs

There are numerous locations adjacent to culverts and along the edges of the farm fields that have low points which will pond up with water during large storm events. The ponding is due to topography and undersized culverts under the roadways and driveways "throttling" the flow within the ditches. The modeling indicates that as these low points fill with water, many of them will start overtopping in different directions. Given the size of the drainage areas, large flows from the farm fields will drain towards the roadways, fill these low points, and spread out flooding sections of the farm fields, the roadside ditches and other off-site areas. These overflow locations were identified and carefully worked into the modeling based on the project design survey (supplemented with the County GIS where necessary) to ensure that the site conditions were accurately modeled.

A map showing these ponding areas and their overflow routes is included below.

CEDARBURG, WI CHICAGO, IL

The above graphic matches with reports that have been obtained from local residents about flooding in the area during large rain events. It also matches the sections of the farm fields that, based on aerial imagery, appear to be "wet" or have differing plant growth patterns in the farm fields likely due to prolonged inundation with water.

Roadway Overtopping

There is a low point along CTH J located just north of the intersection with STH 11. This roadway low point is at the same approximate location as an existing crossing culvert under CTH J. Based on the modeling, the roadway appears to overtop at this location in the 10-year storm and all larger storm events.

Capacity / Surcharge

The 25-year storm event was analyzed to check pipe and ditch flow capacities. During this event, the following was observed:

- There is one existing ditch located on the east leg of the intersection between the CTH J crossing culvert and the intersection that is flooded. This ditch is too shallow to convey the design flow and it overtops the ditch banks. Water then sheet flows across the fields towards the 60" pipe that passes under STH 11 to the east.
- There are five pipes that are over capacity. None of these pipes cause any significant headwater issues. They are merely over capacity due to the pipe flow going from gravity flow to pressure flow due to the headwater elevations on the upstream side.
- There are four pipes that are reported as being surcharged. Of these, one is the culvert under CTH J that results in the overtopping of CTH J because the flow to the intersection is greater than the flow capacity of the culvert. A second one is the driveway culvert immediately north of the CTH J crossing culvert, which overtops the driveway and CTH J. The other two pipes cause some additional headwater build-up at the up-stream ends of the pipes.

These are existing conditions and the intent of this description is to document them as such.

Summary

In summary, the existing condition modeling was performed to be as accurate as was practical. Given the existing site conditions and the limitations of the analysis which covers the intersection only, the results produced provide a good picture of the existing conditions. The ponding/flooding concerns in existing conditions that were raised by local residents were validated. Numerous local ponding locations will fill with water during storm events and drain to other low points until the system is balanced. During larger storm events, the ditches will overtop, the roadway will overtop and the area around the intersection will flood with water. The level of flooding at strategic points (outlined below) was documented to provide a comparison between the existing and proposed conditions.

Proposed Conditions

This project involves reconstructing the intersection of CTH J and STH 11 with a new roundabout. Given the type of project, it is not the intent of this project to solve any existing drainage issues in the area. The intent of this project is to make sure the proposed ditches, pipes and inlets meet the FDM requirements to the maximum extent practical and to ensure that any existing flooding, ponding or other issues are not made worse by the proposed project. The proposed analysis was performed with this in mind.

The proposed condition modeling used the existing condition analysis as a base and updated the elements within the intersection that will be modified by the construction of the proposed roundabout. This included modified drainage areas, CN's and Tc values only for the subbasins that were impacted by the proposed roundabout construction. New inlets were added in the intersection where needed and the culverts and pipe systems within the intersection that are impacted by construction are shown to be replaced. Minor size changes to some of the pipes was implemented to ensure the final condition did not make any of the existing flooding situations any worse. However, it was not the intent of the project to rectify the existing flooding issues and concerns or the roadway overtopping.

The ditches throughout the project limits were updated based on the latest proposed project grading to ensure the correct cross sections and slopes were used. The areas that pond water within the intersection were updated to ensure proper storage volumes were taken into consideration with the analysis. Only one of the overtopping weirs was impacted by the proposed construction and required an update; all others match the existing conditions. This is the overtopping elevation of CTH J at the low point in the roadway profile located just north of the intersection. In the proposed condition, the overtopping elevation of CH J was lowered by 0.12'. This will result in the roadway overtopping at a slightly lower elevation, causing it to occur more often than it did in the existing condition. However, this change is minor and the design team is currently evaluating ways to raise up the profile to prevent this and reduce the likelihood of overtopping. Any refinements that will improve this situation will be implemented in the modeling at a future time.

With all the proposed elements worked into the model, the analysis was performed for the various storm events to evaluate how the proposed conditions operated and how the existing headwater elevations and overtopping was impacted.

The table below compares the existing and proposed headwater elevation at several strategic points throughout the intersection. This comparison table was developed to see how the proposed project would impact the system hydraulics.

Table 4 – Headwater Comparisons

Table 1 Headwater Comparisons										
				Н	eadwater	Elevation	S			
		2-y	ear	10-	year	25-	/ear	100-year		
SSA Node	Location	Exist.	Prop.	Exist.	Prop.	Exist.	Prop.	Exist.	Prop.	
Jun-12	SW quadrant at intersection	794.44	794.10	795.26	795.28	795.75	795.75	796.32	796.28	
Jun-06	NW quadrant west of parking lot	797.11	797.09	797.68	797.63	797.93	797.81	798.03	798.00	
Jun-04	NW quadrant, north of lot, at crossing culvert	796.31	796.21	797.67	797.88	798.40	799.77	798.40	799.80	
Jun-05	NW quadrant, north of lot at driveway culvert	796.57	796.44	797.67	797.61	797.90	797.80	797.90	797.90	
Storage	North of intersection, west side of road	797.74	797.74	797.96	797.96	798.04	798.04	798.18	798.18	
Jun-01	E. of intersection, S. of STH 11 at pipe to stream	791.24	791.15	791.72	791.57	791.86	791.74	792.03	791.89	
Jun-02	North side of culvert under STH 11	788.60	788.70	789.71	789.72	790.32	790.31	791.27	791.27	

This analysis shows a total of four locations / storm combinations that reflect an increase in the headwater elevation from existing to proposed. These locations are marked in green in the above table. There are two additional locations, not marked in the above table, which do show an increase but the increase is less than a quarter of an inch and is not considered substantial enough to warrant a concern.

The increase in headwater for the 2-year storm for the upstream end of the culvert under STH 11 located just east of the project site is directly related to the slight increase in peak flow rate for that storm event. This increase stays entirely within the ditch banks and does not impact any adjacent properties. The other locations are adjacent to the low point in CTH J just north of the intersection. This location also sees surcharging in both the existing and proposed conditions.

The model starts to break down when there is significant surcharging in an area like this and it is not believed that the increase in headwater elevation is as significant as the modeling results show. While the model shows an increase here because the proposed roadway overtopping elevation was lowered, it is not believed that there is an increase in headwater elevation here. This is believed to be a breakdown in the hydraulic model in this location. The design team is currently evaluating ways to refine the modeling to improve the modeling reliability at this location and to improve the hydraulics in this area by adding some wider ditches or refined pipe sizes. These refinements will be made as the roundabout design progresses.

Capacity / Surcharge

The 25-year storm event was analyzed to check pipe and ditch flow capacities in the proposed condition also. During this event, the following was observed:

- There are two proposed ditches located on the east side of CTH J north of CTH 11 that are flooded. One is the same ditch as was flooded in the existing condition. The other is the ditch directly north of that one. Both these ditches are shallow and are overtaxed by the large amount of off-site drainage that flows into them from the surrounding farm fields. The small amount of increased impervious surface that does drain into these ditches does exacerbate the issue slightly. However, they will continue to operate similar in the proposed condition as they do in the existing condition, overtopping their banks and sheet flowing towards the STH 11 crossing culvert.
- There are six pipes that are over capacity in the proposed condition. They are the same pipes that were over capacity in the existing condition with one additional pipe being added because the pipe slope was reduced in the proposed conditions (the pipe size was increased to help offset this). None of these pipes cause any significant headwater issues. They are merely over capacity due to the pipe flow going from gravity flow to pressure flow due to the headwater elevation at the upstream side of the pipe.
- There are four pipes that are reported as being surcharged. These are the same four pipes that are surcharged in the proposed condition. Of these, one is the culvert under CTH J that results in the overtopping of CTH J because the flow to the intersection is greater than the flow capacity of the culvert. A second one is the driveway culvert immediately north of the CTH J crossing culvert, which overtops the driveway and CTH J. The other two pipes cause some additional headwater build-up at the upstream ends of the pipes, but the proposed condition is no worse than the existing condition indicating that the proposed project does not have any adverse effect on the existing site conditions.

In addition to these pipes, there are several nodes that do surcharge in the 25-year and 100-year storms. In the existing condition, the only node that surcharges is the one that causes the overtopping of CTH J. In the proposed condition, there are several others that do surcharge, primarily due to grading changes from the proposed intersection construction. Some of these surcharging issues are a result of model instability and some may be the result of the minor grading changes caused by our project. As the roadway design and ditch grading is finalized, this will be reevaluated to refine the modeling and determine if any of these issues can be resolved through refinements or improvements to the drainage system. Fully solving the surcharging issues or the overtopping of CTH J is out of the scope of this intersection improvement project.

<u>Summary</u>

The intent of this project is to minimize any adverse impacts to the existing conditions by the proposed project. Two ditches are shown as being flooded but this is due to the large off-site drainage areas that flow into the roadside ditches. The proposed condition is similar to the existing. The pipe surcharging and capacity deficiencies are no worse than the existing condition. The only adverse impact that this project appears to have is on the overtopping of CTH J, which is slightly worse in the proposed condition due in part to the increase in impervious surface and in part due to the lowering of the low point on CTH J. While the impacts are minor, this will be evaluated further in the coming design stages to determine if this can be remedied.

The proposed condition design and modeling will continue to be evaluated to refine the modeling and to see if there are ways that we can minimize the adverse impacts that the proposed condition appears to have on various components of the site. Should a reasonable method of estimating the drain tile flows and their impact on the surface drainage be determined, it is expected that the time of concentration and likely, the overall runoff from those drainage areas will be reduced. This, in turn, will result in lower flooding levels (both in existing and proposed conditions) and a model that operates better with less instability. However, estimating these flows and the impacts of drain tiles when no data about the drain tiles (location, size, slope, etc.) is available is a challenge. To the maximum extent practical, this will be worked into the model during future iterations.

Inlet Spread

The proposed roundabout project has two inlets located along the inside of the roundabout travel lane at a low point to drain the runoff from the center of the roundabout. These two inlets were analyzed to ensure that the proposed spread falls within the allowable half of the travel lane during the 10-year storm event. These two inlets were analyzed for spread with SSA and the results can be found in **Appendix G**. Both of these inlets fall within the allowable spread criteria.

In addition, there is curb and gutter around the exterior edges of the roundabout, which will drain away from the roundabout to flumes that will convey the runoff into the roadside ditch. Spread calculations at the end of each of these curb runs was calculated to ensure that the WisDOT spread criteria was met. The 10-year flow from the SSA models was used in Hydraflow Express to calculate the spread for each of these sections of curb and gutter. All of these sections were found to be in compliance with the WisDOT spreads requirements. The results of this analysis can be found in **Appendix H**.

Additional Considerations

There are several additional considerations that were reviewed and accounted for in some fashion. These considerations ultimately did not change or affect the analysis or stormwater report but should be noted as they do affect ultimate design decisions.

Future Development

Future development within the project site area was not taken into consideration with the proposed analysis. There are no signs of existing development extending to this location and there are no known future developments are within the project site area.

Floodplains

There are no known floodplains within the project limits. A FEMA FIRMette showing the floodplain boundaries and other pertinent data at this location is included in **Appendix K**.

Wetlands

There are some existing wetlands located within the project limits. These were delineated by the project team and can be seen on the plans and in **Appendix J**, which contains the Wisconsin DNR Surface Water Data Viewer map showing the mapped wetlands. Some minor impacts to some of the pocket wetlands is anticipated but the wetlands will not impact the proposed drainage or stormwater management design.

WATER QUALITY TREATMENT ANALYSIS

This project was carefully reviewed against the TRANS 401 requirements. Based on this review, it is believed that this project is exempt from TRANS 401 storm water quality requirements because it is defined as a minor reconstruction of a highway. Under TRANS 401(3)(f), post-construction performance standards under Trans 401.106 do not apply to a project with "...any length of highway that does not widen the roadbed by more than 100 feet, and for which the total length of relocated highway and any added through travel lane does not exceed 1.50 miles." This project does not meet these minimum widening or new travel lane length requirements.

As a result of this, no water quality requirements need to be met by this proposed project. However, it should be noted that several of the existing roadside ditches will be widened into flat bottom ditches, which will function as grass swales providing some water quality benefit to the watershed. Since water quality treatment is not required, calculations to document these benefits have not been performed.

BUFFER AREAS

TRANS 401 also states that "...if minor reconstruction causes a highway to lie within a buffer area, as defined in s. Trans 401.106(6)(a), or increases the area of the roadway that lies within a buffer area, the requirements under Trans 401.106(6) apply to that buffer area." This project does impact several buffer areas (consisting of existing

wetland pockets) and encroaches on some isolated wetlands in a few locations. These impacts/encroachments are primarily related to roadway fill being placed for improved foreslopes or for slightly realigned travel lanes entering or exiting the roundabout. As a result, it is the intent that this project will comply with Trans 401.106(6) for those areas that are in or immediately adjacent to the buffer areas. This will primarily consist of the establishment of a good standing of permanent vegetative cover upon completion of construction. In addition, the ditch foreslopes will function as vegetative buffer strips to help filter water and reduce pollutants from entering the adjacent wetlands.

CONCLUSIONS

This report presents the Stormwater Management Plan for the STH 11 and CTH J Roundabout project planned for Racine County. This report is prepared in accordance with local, state, and federal engineering guidelines.

There will be some refinements to the analysis and the proposed report as the roundabout design progresses.

This project meets or exceeds the requirements of the WisDOT and WDNR with respect to stormwater management and the WisDOT FDM requirements to the maximum extent practical.

Appendix A - WisDOT Stormwater Spreadsheets

	Basic Project Information Project ID: 1320-07-03	
3	Title: STH 11 and CTH J Roundabout	
	Designer/Checker: David Bachhuber DOT Region/Firm Name: M Squared Engineering LI	c
	Date: 9/24/2021	
	HIGHWAY:	STH 11 and CTH J
	LIMITS: COUNTY:	600' from intersection in each direction
	DESCRIPTION OF WORK:	Racine County Roundabout construction
	PROJECT MANAGER:	
	PS&E DATE:	November 1, 2023 ☐ Planning ☐ 30% ☑ 60%
13	DESIGN STAGE	Planning 30%
14	Drainage Summary	
15	IS THERE A SIGNIFICANT FLOW INCREASE OR DECREA AND WHY IT IS NECESSARY.	SE WITHIN ANY SUB BASIN OF THE PROJECT? IF YES, DESCRIBE THE CAUSE OF THE CHANGE
	There is no significant flow increase or decrease as a re	esult of this project.
16		
10		
17	IS THERE A SIGNIFICANT IMPERVIOUS AREA CHANGE WHY IT IS NECESSARY.	TO ANY SUB BASIN OF THE PROJECT? IF YES, DESCRIBE THE CAUSE OF THE CHANGE AND
		m the construction of the new roundabout to replace the existing stop controlled intersection.
18	The increase in impervious surface is less than 1 acre a As a result, there is no significant impervious area char	nd, by comparison to the entire drainage area, is only a small portion of the overall watershed.
	75 a result, there is no significant impervious area char	ige as a result of this project.
19	HAVE THE DRAINAGE SUB BASIN AREAS OR FLOW PA NECESSARY.	THS CHANGED SIGNIFICANTLY? IF YES, DESCRIBE THE CAUSE OF THE CHANGE AND WHY IT IS
	No.	
20		
20		
04	DESCRIBE THE PROPOSED DRAINAGE CONVEYANCE A	NAID CONTROL SYSTEMS FOR THE REGISCY
21		
		ong the roadside which drain to the east toward an existing outfall channel that flows south s through several culverts which convey the runoff under driveways and under the roadway to
22	the outfall channel.	,,,,
23	DESCRIBE THE AQUATIC ORGANISM PASSAGE ISSUES	FOR THE PROJECT, IF ANY.
	N/A	
24		
25	IF THE DESIGN DOES NOT MEET THE DOT FDM CHAPT	ER 13 DRAINAGE REQUIREMENTS, EXPLAIN HOW AND WHY.
		neet Chapter 13 requirements. The full stormwater report has a description of each. They are
	as follows: - The north leg of the proposed roundahout will overte	op during the 10-year storm and all larger storm events. This is an existing condition that will
		vertopping will be dictated by how much of the farm field watershed is drainage by drain tiles;
	this is still being evaluated.	This is done to the first of th
26	The state of the s	ing the 10-year storm event. This is due to the surrounding topography limiting the depth of the I into the roadside ditches. This is an existing condition that will be improved by this project but
20	not brought into compliance.	
	- There are several pipes and culverts that are over ca flow depths in the upstream and downstream ditches	pacity in the 25 year storm event. These should not be an issue as many are due to the ditch or tailwater conditions.
	As the roadway design is refined in the coming months Chapter 13 requirements are brought into compliance.	, the analysis will be updated and it is the hope that some of these items that do not meet the
27		
21	No WDNR coordination has take place to-date.	F WDNR CONTACT AND DATE, AND ATTACH ANY CORRESPONDENCE.
28	The Work Cool dination has take place to-date.	
	IE THE DRAINAGE DESIGN AAFFTS LOCAL AALVANGES	OD DECIONAL CHINELINES THAT EVEED FOM CHAPTER 42 DOALNAGE DECHINES ASSIST
29	IF THE DRAINAGE DESIGN MEETS LOCAL, MUNICIPAL EXPLAIN HOW AND WHY.	OR REGIONAL GUIDELINES THAT EXCEED FDM CHAPTER 13 DRAINAGE REQUIREMENTS,

IF A SIGNIFICANT IMPACT TO THE PROJECT OCCURS DUE TO DRAINAGE, PROJECT MANAGER CONCURRENCE IS REQUIRED. (PM SIGN AND DATE)

29

1 Drainage Data

2	Project ID: 20-730-184
3	Title: STH 11 and CTH J, City of Burlington
4	Designer/Checker: David Bachhuber
5	DOT Region/Firm Name:
6	Date: 9/24/2021

7	Section 1: OUTFALL INFORMATION (all projects)						
8	Outfall number	1	2	3	4	5	
9	Outfall discharges to:	Ditch					
10	Waterway crossing type	Culvert	DD Menu	DD Menu	DD Menu	DD Menu	
12	Previous flooding issues or flow restrictions?	Yes	DD Menu	DD Menu	DD Menu	DD Menu	
13	Is the drainageway a navigable waterway?	No	DD Menu	DD Menu	DD Menu	DD Menu	
14	Waterway designation, if any	N/A	DD Menu	DD Menu	DD Menu	DD Menu	

15	Section 2: BASIC SUB BASIN DRAINAGE INF	ORMATION (all projects)				
16	Outfall number	1	2	3	4	5
17	Outfall station	217+56' EB				
18	Flood design frequency (yrs)	25				
19	Check design frequency (yrs)	100				
20	Drainage area (acres)	201.84				
21	Hydrologic Method	TR-55				
22	Time of Concentration (min)	See Analysis				
23	C or CN	See Analysis				
24	Rainfall intensity (in/hr) (rational method only)	N/A				
25	Rainfall depth for design storm (in)	4.6				
26	Design peak flow rate (cfs)	143.27				
27	Check peak flow rate (cfs)	177				
28	Hydraulic Design software	Storm and Sanitary Analysis 2020				

29	Section 3: URBAN/TRANS 401 PROJECTS					
30	Outfall number	1	2	3	4	5
31	DOT right-of-way area (ac)	6.46				
32	DOT area/drainage area (%)	3.2%	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
33	DOT impervious areaexisting (ac)	1.85				
34	DOT impervious areaproposed (ac)	2.57				
35	Impervious area change (ac)	0.72	0	0	0	0
36	Impervious area change (%)	39%	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
37	Design peak flow rateproposed (cfs) pre-detention	137.85				
38	Peak flow rate change (cfs)	-5.42	0	0	0	0
39	Peak flow rate change (%)	-4%	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
40	Design peak flow rateproposed (cfs) post-detention	N/A				
41	2-yr peak flow rateexisting (cfs)	62.59				
42	2-yr peak flow rateproposed (cfs)	67.09				
43	2-yr peak flow ratepost-detention (cfs)	N/A				

44	Section 4: CULVERT DESIGN					
45	Existing Culvert					
46	Outfall number	1	2	3	4	5
47	Culvert present? (Yes or No)	No.	DD Menu	DD Menu	DD Menu	DD Menu
48	Shape	INO	DD Menu	DD Menu	DD Menu	DD Menu
49	Material		DD Menu	DD Menu	DD Menu	DD Menu
50	Diameter/span (ft)		DD Wellu	DD Wellu	DD Menu	DD Wellu
51	Number of barrels					
52	Manning's n		DD 14	DD 14	DD 14	DD 14
53	Inlet entrance type		DD Menu	DD Menu	DD Menu	DD Menu
54	Upstream invert (ft)					
55	Downstream invert (ft)					
56	Length (ft)	// // // // // // // // // // // // //		//= !! //a!	//= N //= 1	
57	Slope (%)	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
58	Computed Upstream Water Surface Elevation (ft)					
59	Tailwater elevation					
60	Outlet velocity (ft/s)					
61	Proposed Culvert Design					
62	Design ADT					
63	Shape			DD Menu		DD Menu
64	Material		DD Menu	DD Menu	DD Menu	DD Menu
65	Diameter/span (ft)					
66	Number of barrels					
67	Manning's n					
68	Inlet entrance type		DD Menu	DD Menu	DD Menu	DD Menu
69	Upstream invert (ft)					
70	Downstream invert (ft)					
71	Length (ft)	#01/1/01	#DIV//01	#511//61	#DI\ //OL	#51) ((6)
72	Slope (%)	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
73	Computed Upstream Water Surface Elevation (ft)					
74	Tailwater elevation					
75	Outlet velocity (ft/s)					
76	Change in Upstream Water Surface Elevation (ft)					
77	Riprap outfall (Size riprap or None)					
78	Maximum allowable headwater					
79	Maximum allowable headwater design criteria		DDMenu	DDMenu	DDMenu	DDMenu
80	Station of lowest subgrade shoulder point (0+00)		DIVIOI10	Dividitu	DIVICITO	DIVIOLIU
81	Elevation of lowest subgrade shoulder point (ft)					
82	Headwater to pipe diameter ratio					
83	Floodplain Management					
84	Mapped floodplain	No	DD Monu	DD Menu	DD Menu	DD Menu
85	Increase in headwater	INO I	DD Menu DD Menu	DD Menu DD Menu	DD Menu DD Menu	DD Menu DD Menu
86	Drainage District Issues		ואופווע טע ivieiiu	ואופווע טע ivieiiu	ואואו טט ואופווע	ואופוע פע ivieliu
87	Is culvert in a drainage district?	Yes	DD Menu	DD Menu	DD Menu	DD Menu
88	Drainage District Name	Hoosier Creek Drainage District	ואו טט ivienu	ואופחע ivienu	ואו טט ivienu	ואוenu טע
89	Increase in headwater	DD Menu	DD Menu	DD Menu	DD Menu	DD Menu
90	Drainage board approval?	DD Menu	DD Menu DD Menu			DD Menu DD Menu
90	Dramage board approvar:	ועט ivienu	ויטט wienu	ויטט wenu	ואו טע ivienu	ואו טע ivienu

91	Aquatic Organism Passage					
92	Is aquatic organism passage a concern?	No	DD Menu	DD Menu	DD Menu	DD Menu
93	Does WDNR concur with design?		DD Menu	DD Menu	DD Menu	DD Menu
94	Embedment depth (ft)					
95	Embedment material					

96	Section 5: CULVERT LINER DESIGN					
97	Existing Culvert					
98	Outfall number	1	2	3	4	5
99	Existing culvert size (ft)	N/A				
100	Pipe material					
101	Pipe condition					
102	Any collapse?		DD Menu	DD Menu	DD Menu	DD Menu
103	Any deflection?		DD Menu	DD Menu	DD Menu	DD Menu
104	Are ends crushed?		DD Menu	DD Menu	DD Menu	DD Menu
105	n value existing pipe					
106	Pipe geometry (i.e. circular)		DD Menu	DD Menu	DD Menu	DD Menu
107	Upstream invert (ft)					
108	Downstream invert (ft)					
109	Length (ft)					
110	Slope (%)	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
111	Depth of cover over culvert (ft)					
112	Is overtopping an issue?		DD Menu	DD Menu	DD Menu	DD Menu
113	Upstream flooding risk?		DD Menu	DD Menu	DD Menu	DD Menu
114	Existing Design highwater elevation (ft)					
115	Field verify dimension?		DD Menu	DD Menu	DD Menu	DD Menu
116	Liner Details					
117	Estimated Diameter (ft)					
118	Proposed Material					
119	Roughness, n					
120	Upstream invert (ft)					
121	Downstream invert (ft)					
122	Proposed Design highwater elevation (ft)					
123	Change in highwater elevation (ft)					
124	Floodplain Management					
125	Mapped floodplain	No	DD Menu	DD Menu	DD Menu	DD Menu
126	Increase in headwater		DD Menu	DD Menu	DD Menu	DD Menu
127	Drainage District Issues					
128	Is culvert in a drainage district?	Yes	DD Menu	DD Menu	DD Menu	DD Menu
129	Drainage District Name	Hoosier Creek Drainage District				
130	Has drainage board approved use of a liner?	3	DD Menu	DD Menu	DD Menu	DD Menu
131	Aquatic Organism Passage					
132	Is aquatic organism passage a concern?	No	DD Menu	DD Menu	DD Menu	DD Menu
	Does WDNR concur with design?		DD Menu			DD Menu
100	Does WEIT Concur With design:		ואופוומ חם iniciia	PD MEHR	ואופוומ מם ivieliu	ואופווע סק ivieliu

1 Project Summary

Project ID: 1320-07-03
Title: STH 11 and CTH J Roundabout

4 Designer/Checker: David Bachhuber

DOT Region/Firm Name: M Squared Engineering LLC

6 Date: 9/24/2021

7	HIGHWAY:	STH 11 and CTH J			
8	LIMITS:	600' from intersection in each direction			
9	COUNTY:	Racine County			
10	DESCRIPTION OF WORK:	Roundabout construction			
11	PROJECT MANAGER:	0			
12	PS&E DATE:	November 1, 2023			
13	DESIGN STAGE	60% Design Stage			

Water Quality Results Discussion

14	Water Quality Results Summary	Total Project Drainage Basin Area	Grass Swales	Filter Strips	Wet Detention Ponds	Catch- basins	Street Cleaning	Biofilters	Other Devices	Untreated Areas
15	Drainage Area (ac)	201.800			0.000	0.000				201.800
16	ROW Drainage Area (ac)	6.300			0.000	0.000				6.300
17	Percent TSS Reduction by Treatment Type	0.0%			0.0%	0.0%				0.0%

Project Water Quality Objectives

▼ THE PROJECT IS EXEMPT FROM TRANS 401 STORMWATER QUALITY REQUIREMENTS AND REQUIRES NO FURTHER WATER QUALITY INFORMATION. DESCRIBE BELOW WHY IT IS EXEMPT.

This project is exempt from TRANS 401 per 401.03 (3) (f). This project does not widen the roadbed by more than 100' and the total length of proposed roadway construction does not exceed 1.5 miles (the total length is under 1/2 mile). As a result, this project does not need to meet the post-construction performance standards. However, some of the existing ditches will be widened to serve as informal grass swales to provide some level of additional water quality in this area beyond the existing condition. Water quality calculations for these ditches was not developed as it is not required.

DESCRIBE THE STORMWATER QUA	ALITY MANAGEMENT REQUIREME	NTS PER TRANS 401 OR THE TMDL WASTELOAD AL	LOCATION.
☐ 40 % Reduction	☐ 80 % Reduction	Other Reduction	
This project is exempt.			
IF THE PROJECT REQUIRES STORM	WATER MANAGEMENT EXPLAIN F	HOW THE TRANS 401 2-YR PEAK DISCHARGE REQU	IREMENT WAS MET.
This project is exempt.			
HAS THE DEPARTMENT AGREED T	O MEET ANY LOCAL STORMWATER	R QUALITY ORDINANCES OR REQUIREMENTS FOR T	THIS PROJECT? IF SO, DESCRIBE.
No, not at this time.			
IF THE PROJECT REQUIRES STORM	WATER MANAGEMENT EXPLAIN	HOW THE TOTAL SUSPENDED SOLIDS REDUCTION	WAS MET. Refer to Water Quality
Results Summary above.			. ,
	videned roadside ditches will serve	e as grass swales providing some water quality bene	fit even though the project is
exempt.			
LIST THE POST CONSTRUCTION ST	ORMWATER QUALITY CONTROL T	REATMENT MEASURES FOR THE PROJECT.	
N/A			

REGIONAL STORMWATER ENGINEER CONCURRENCE (SIGN AND DATE)

Appendix B - Proposed Plans

FEDERAL PROJECT STATE PROJECT STATE OF WISCONSIN CONTRACT ORDER OF SHEETS 1320-07-03 Section No. **DEPARTMENT OF TRANSPORTATION** Section No. Typical Sections and Details Section No. Estimate of Quantities Section No. Miscellaneous Quantities PLAN OF PROPOSED IMPROVEMENT Right of Way Plat Section No. Section No. Plan and Profile Section No. Standard Detail Drawings **STH 11** Section No. Computer Earthwork Data **30% PLAN SUBMITTAL** CTH J Section No. **STH 11** TOTAL SHEETS = **RACINE COUNTY** STATE PROJECT NUMBER 1320-07-03 R-20-E R-19-E **BEGIN PROJECT** STA 205+36.91'EB' X=530321.886 Y=170366.230 Rochester **END PROJECT** STA 217+55.93'EB' X=531530.179 Y=170370.299 DESIGN DESIGNATION AADT 2017 = 6.800/1.300 Burlington RACINE COUNTY A.A.D.T. = 7,600/1,600 D.H.V. = 15.0 ORIGINAL PLANS PREPARED BY D.D. = 60/40 = 15.1% = 55 MPH (BOTH STH 11 AND CTH J) DESIGN SPEED = 394 (DESIGN LANE DAILY) **€** EL Kansasville Rock Is T-3-N RACINE COUNTY CONVENTIONAL SYMBOLS T-2-N KENOSHA COUNTY GRADE LINE CORPORATE LIMITS -BB ORIGINAL GROUND PROPERTY LINE BONG MARSH OR ROCK PROFILE (Professional Engineer Signature) LOTTINE (To be noted as such) RECREATION LIMITED HIGHWAY EASEMENT SPECIAL DITCH STATE OF WISCONSIN EXISTING RIGHT OF WAY GRADE ELEVATION ARÉA 🗘 PROPOSED OR NEW R/W LINE DEPARTMENT OF TRANSPORTATION SLOPE INTERCEPT CULVERT (Profile View) PREPARED BY UTILITIES AYRES ASSOCIATES REFERENCE LINE Vern Wolf Surveyor ELECTRIC T Designer EXISTING CULVERT FIBER OPTIC PROPOSED CULVERT (Box or Pipe) KENOSHA COUNTY RACINE COUNTY SANITARY SEWER COMBUSTIBLE FLUIDS LAYOUT STORM SEWER HORIZONTAL POSITIONS SHOWN ON THIS PLAN ARE WISCONSIN COUNTY COORDINATE SYSTEM (WCCS), RACINE COUNTY TELEPHONE SCALE I NAD83 (2011), IN U.S. SURVEY FEET. POSITIONS SHOWN ARE GRID PPROVED FOR THE DEPARTMENT MARSH AREA COORDINATES, GRID BEARINGS, AND GRID DISTANCES, GRID DISTANCES ARE THE SAME AS GROUND DISTANCES. UTILITY PEDESTAL TOTAL NET LENGTH OF CENTERLINE = POWER POLE ₫ ELEVATIONS ARE REFERENCED TO NAVD 88 (2012). Ø E WOODED OR SHRUB AREA TELEPHONE POLE

FILE NAME : E:\WORK FROM HOME\49072100 STH 11 & CTH J\C3D\SHEETSPLAN\010101-TI.DWG

6/30/2021 1:26 PM

MUENCH, DOUGLAS

PLOT NAME :

GENERAL NOTES

- 1. NO TREES OR SHRUBS SHALL BE REMOVED WITHOUT APPROVAL OF THE ENGINEER.
- THE LOCATIONS OF EXISTING AND PROPOSED UTILITY INSTALLATIONS AS SHOWN ON THE PLAN ARE APPROXIMATE. THERE MAY BE OTHER UTILITY INSTALLATIONS WITHIN THE PROJECT AREA THAT ARE NOT SHOWN.
- THE CONTRACTOR SHALL COORDINATE HIS CONSTRUCTION ACTIVITIES WITH A CALL TO DIGGERS HOTLINE AND/OR A DIRECT CALL TO THE UTILITIES THAT HAVE FACILITIES IN THE AREA. NOT ALL UTILITIES ARE MEMBERS OF DIGGERS HOTLINE.
- 4. A SAW JOINT IS REQUIRED WHERE NEW HMA PAVEMENT MEETS EXISTING HMA PAVEMENT.
- SAWCUT ASPHALT AT THE MATCHLINE AS SHOWN ON THE PLAN DETAILS OR AS DIRECTED BY THE ENGINEER.
- PRIOR TO ORDERING DRAINAGE PIPES AND STRUCTURES, VERIFY RELATED DRAINAGE INFORMATION IN THE PLAN AND PROVIDE DOCUMENTATION TO THE ENGINEER.
- WETLANDS, WATERWAYS, AND OTHER ENVIRONMENTALLY SENSITIVE AREAS SHALL BE PROTECTED AT ALL TIMES. DO NOT STORE EQUIPMENT OR MATERIAL NEAR THESE SITES UNLESS APPROVED BY THE ENGINEER.
- PLACE EROSION CONTROL DEVICES IN SEQUENCE WITH CONSTRUCTION OPERATIONS OR AS DETERMINED BY THE ENGINEER. EROSION CONTROL FEATURES ARE SHOWN AT APPROXIMATE LOCATIONS. WITH EXACT LOCATIONS TO BE DETERMINED BY THE ENGINEER. REMOVAL OF ITEMS ARE INCIDENTAL TO THE RESPECTIVE EROSION CONTROL BID ITEM COSTS.
- 9. DO NOT USE FERTILIZER WITHIN 20 FEET OF NAVIGABLE WATERWAYS OR WETLANDS.
- 10. PLACE SALVAGED TOPSOIL OR TOPSOIL IN ALL GRADED AREAS AS DESIGNATED BY THE ENGINEER IMMEDIATELY AFTER GRADING HAS BEEN COMPLETED. SEED, MULCH AND FERTILIZE ALL AREAS 5 DAYS AFTER PLACEMENT OF SALVAGED TOPSOIL OR TOPSOIL.
- 11. STATIONING, DISTANCES, AND OFFSETS FOR SIGNS AND TRAFFIC CONTROL DEVICES SHOWN IN THE PLANS ARE APPROXIMATE, EXACT LOCATIONS ARE DETERMINED BY THE ENGINEER
- 12. COVER ALL SIGNS IN CONFLICT WITH TRAFFIC CONTROL "IN USE" AS SHOWN IN THE PLANS OR AS DIRECTED BY THE ENGINEER
- 13. RESHAPING AND RESTORING OF ANY PREVIOUSLY GRASSED AREAS WHICH ARE DISTURBED BY OPERATIONS OUTSIDE OF THE ENGINEER DETERMINED CONSTRUCTION LIMITS ARE INCIDENTAL TO THE CONTRACT.
- 14. HMA PAVEMENTS:

7.75-INCH = ?.??" LOWER LAYER (? ?T 58-28 ?) ?.??" MIDDLE LAYER (? ?T 58-28 ?)

?.??" UPPER LAYER (? ?T 58-28 ?)

SHOULDERS.

FILE NAME :

3.5-INCH = SINGLE LAYER (? ?T 58-28 ?)

TEMPORARY PAVEMENT 3.75-INCH = ?.??" LOWER LAYER (? ?T 58-28 ?) ?.??" UPPER LAYER (4 ?T 58-28 ?)

STANDARD ABREVIATIONS

A.D.T. AVERAGE DAILY TRAFFIC

AECP APRON ENDWALL FOR CULVERT PIPE APRON ENDWALL FOR CULVERT PIPE REINFORCED CONCRETE **AECPRC**

APRON ENDWALL FOR CULVERT PIPE STEEL AFCPS APRON ENDWALL FOR CULVERT PIPE SALVAGED **AFCPSAL**

ARTERIAL TRAFFIC MANAGEMENT SYSTEM ATMS BM BENCHMARK

BOC BACK OF CURB CBTP

CONCRETE BARRIER TEMPORARY PRECAST CBSS CONCRETE BARRIER SINGLE SLOPE

CLASS

CL CONST CONSTRUCTION CONTROL POINT CP

CPCS **CULVERT PIPE CORRUGATED STEEL** CULVERT PIPE REINFORCED CONCRETE CPRC

D.D. DIRECTIONAL DISTRIBUTION D.H.V. **DESIGN HOURLY VOLUME**

EASTBOUND EB **EXIST EXISTING** HOT MIX ASPHALT HMA H.S. HIGH STRENGTH

ITS INTELLIGENT TRAFFIC SYSTEM

MAX MAXIMUM MIN MINIMUM NB NORTHBOUND NOR NORMAI

PC POINT OF CURVATURE PCC POINT OF COMMON CURVATURE POINT OF INTERSECTION РΙ PRC POINT OF REVERSE CURVATURE

PΤ POINT OF TANGENCY R/L REFERENCE LINE REQ'D REQUIRED SOUTHBOUND SB

STORM SEWER PIPE REINFORCED CONCRETE SSPRC

PERCENT TRUCKS TYP TYPICAL VAR VARIABLE WB WESTBOUND Wt WEIGHT

UTILITY CONTACTS

ANR PIPELINE - GAS/PETROLEUM

TODD BRISTER W3925 PIPELINE LANE

EDEN, WI 53019 PHONE: (920) 477-2235

EMAIL: TODD BRISTER@TRANSCANADA.COM

CHARTER COMMUNICATIONS - COMMUNICATION LINE

BEAU ABUYU

1320 N DR MARTIN LUTHER KING JR DR

MILWAUKEE, WI 53212 PHONE: (???) ???-????

EMAIL: ???.???@CHARTER.COM

PAETEC COMMUNICATIONS, LLC - COMMUNICATION LINE

314 N DANZ AVE

GREEN BAY, WI 54302-3562 PHONE: (???) ???-???? EMAIL: ???.???@???.COM

TDS METROCOM LLC - COMMUNICATION LINE

525 JUNCTION RD MADISON, WI 53717 PHONE: (???) ???-???? EMAIL: ???.???@???.COM

SOUTHEAST TELEPHONE COMPANY OF WISCONSIN, LLC DBA TDS TELECOM - COMMUNICATION LINE

525 JUNCTION RD MADISON, WI 53717 PHONE: (???) ???-???? EMAIL: ???..???@???..COM

WE ENERGIES UTILITY COORDINATOR - ELECTRICITY

KRISTEN RONGHOLT 500 S 116TH ST WEST ALLIS, WI 53214 PHONE: (???) ???-???? EMAIL: ???..???@???..COM

WE ENERGIES UTILITY COORDINATOR - GAS/PETROLEUM

KRISTEN RONGHOLT 500 S 116TH ST WEST ALLIS, WI 53214 PHONE: (???) ???-???? EMAIL: ???.???@???.COM * DENOTES NOT A MEMBER OF DIGGERS HOTLINE

NOTE: WIS. STATUTE 182.0175 (1974) REQUIRES MINIMUM OF 3 WORK DAYS NOTICE BEFORE YOU EXCAVATE.

ORDER OF SECTION 2 SHEETS

GENERAL NOTES AND CONTACTS PROJECT OVERVIEW TYPICAL SECTIONS

PROJECT CONTACTS

PHONE:

FMAII .

WisDOT PROJECT MANAGER

NGUYEN LY **ADDRESS**

WISCONSIN DEPARTMENT OF NATURAL RESOURCES 141 NW BARSTOW ST. #180 WAUKESHA WI 53188

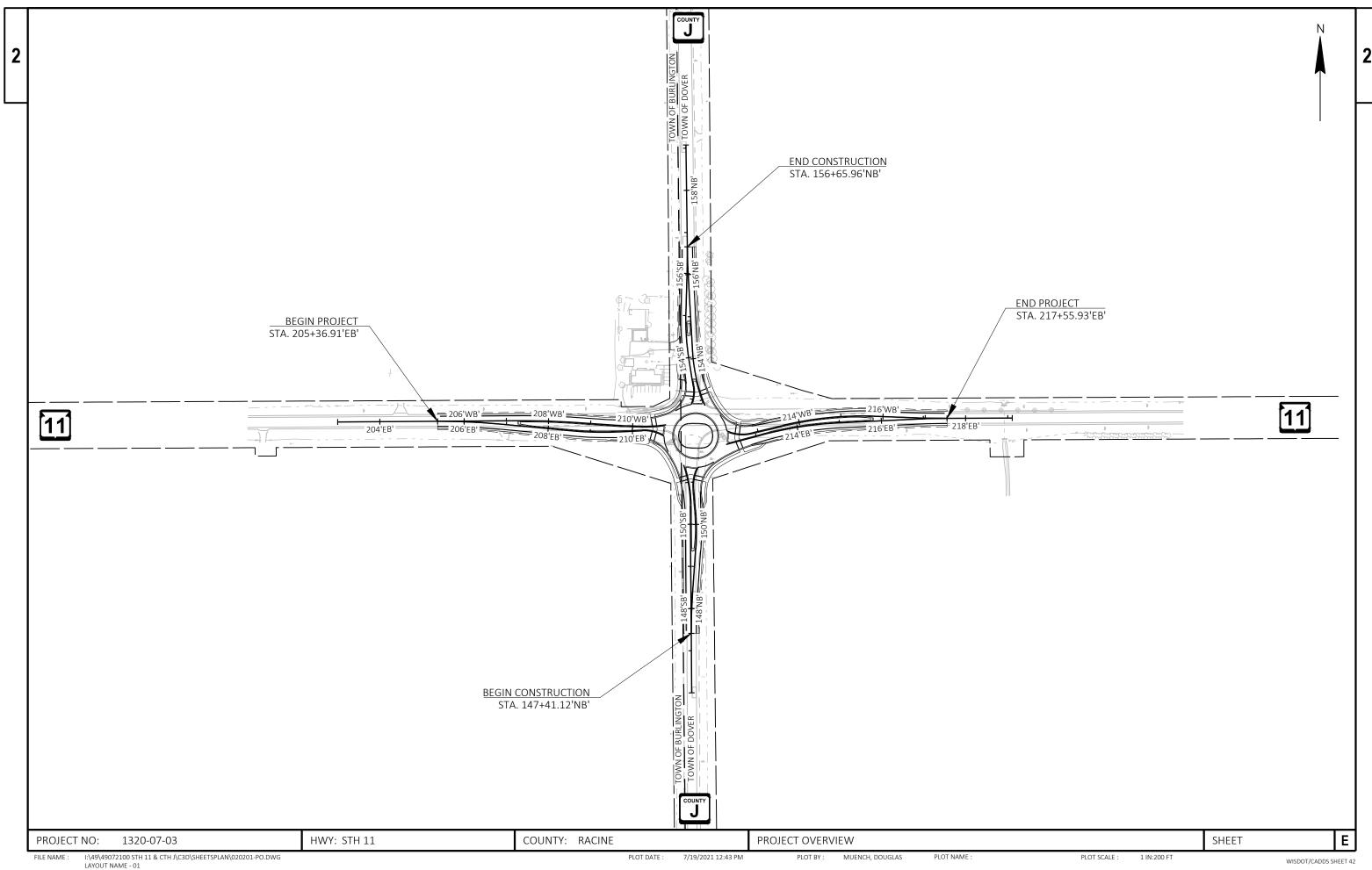
PHONE: (262) 623-0194 EMAIL: BENTON.STETZEL@WISCONSIN.GOV

DNR AREA LIASON

BENTON STETZEL

CONSULTANT DESIGN

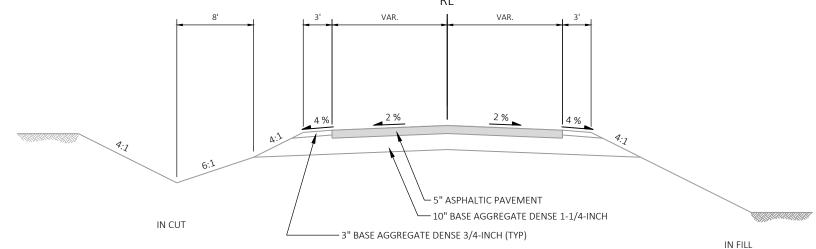
PHIL BAIN AYRES ASSOCIATES

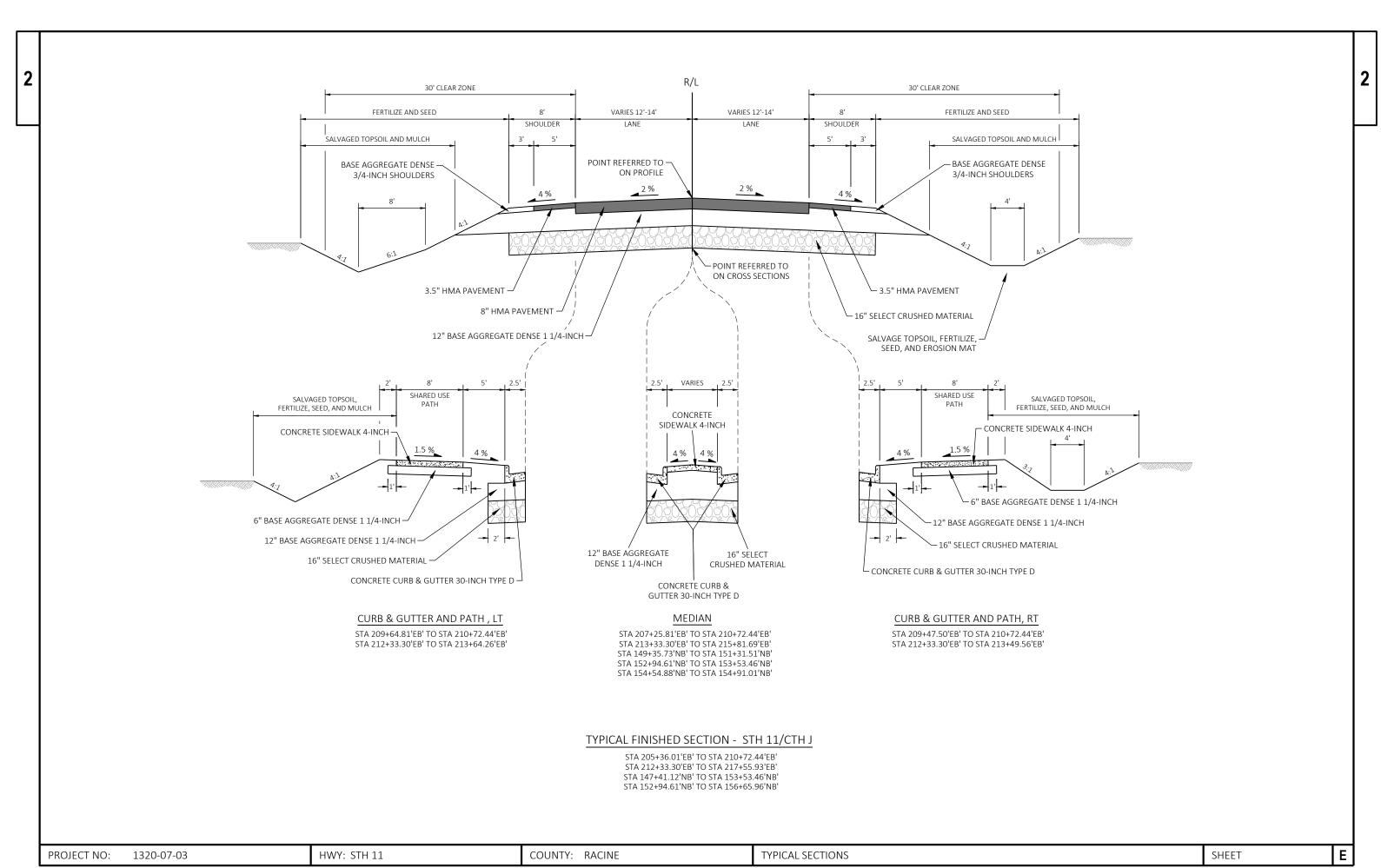

20975 SWENSON DRIVE, SUITE 200 WAUKESHA WI 53186

PHONE: (262) 523-4488

EMAIL: BAINP@AYRESASSOCIATES.COM

PROJECT NO: 1320-07-03 HWY: STH 11 COUNTY: RACINE **GENERAL NOTES AND CONTACTS SHEET**


E:\WORK FROM HOME\49072100 STH 11 & CTH J\C3D\SHEETSPLAN\020101-GN.DWG MUENCH, DOUGLAS PLOT NAME PLOT DATE: PLOT BY: PLOT SCALE : 1 IN:10 FT 7/1/2021 9:49 AM WISDOT/CADDS SHEET 42

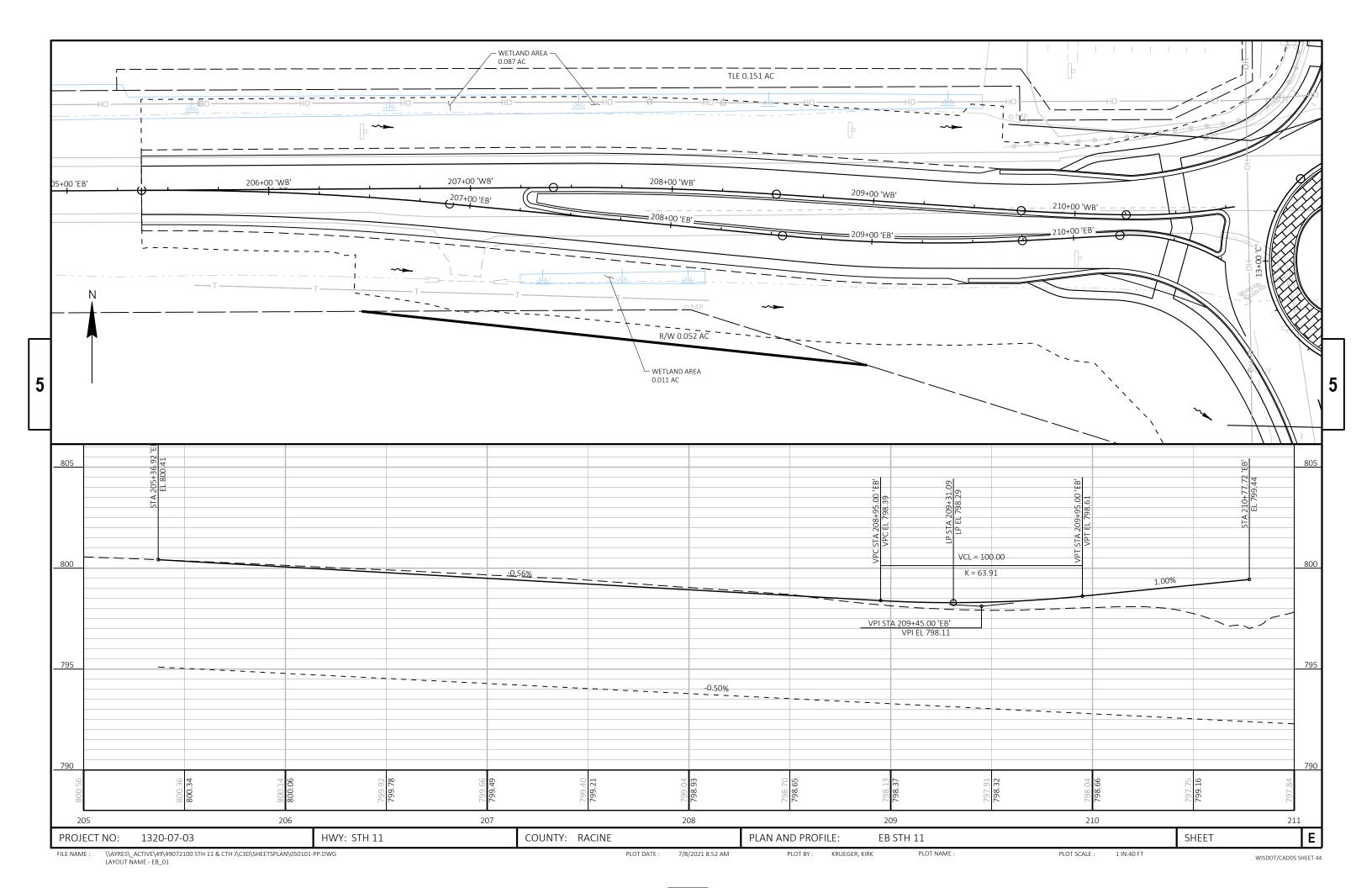


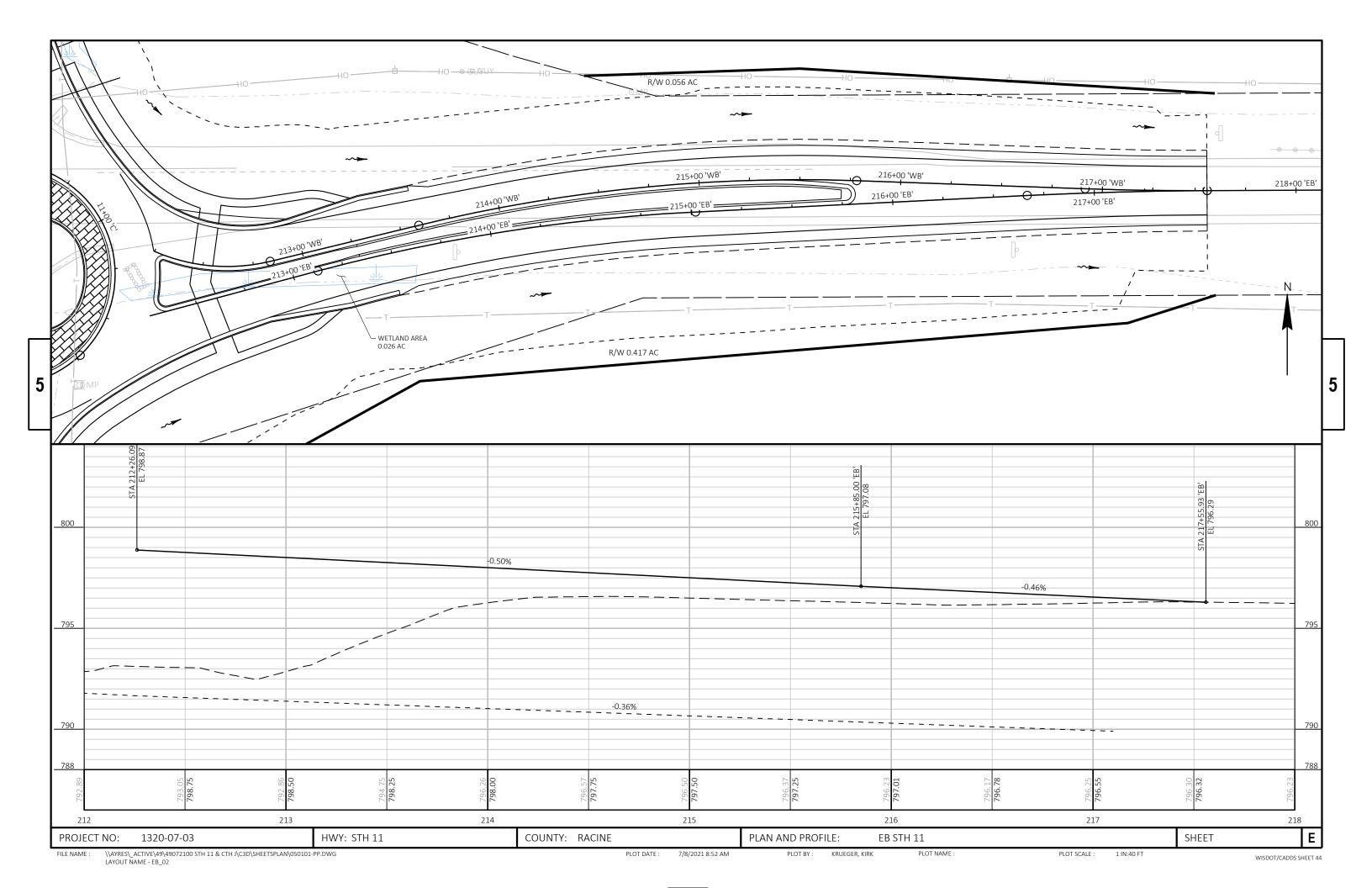
PLOT NAME :

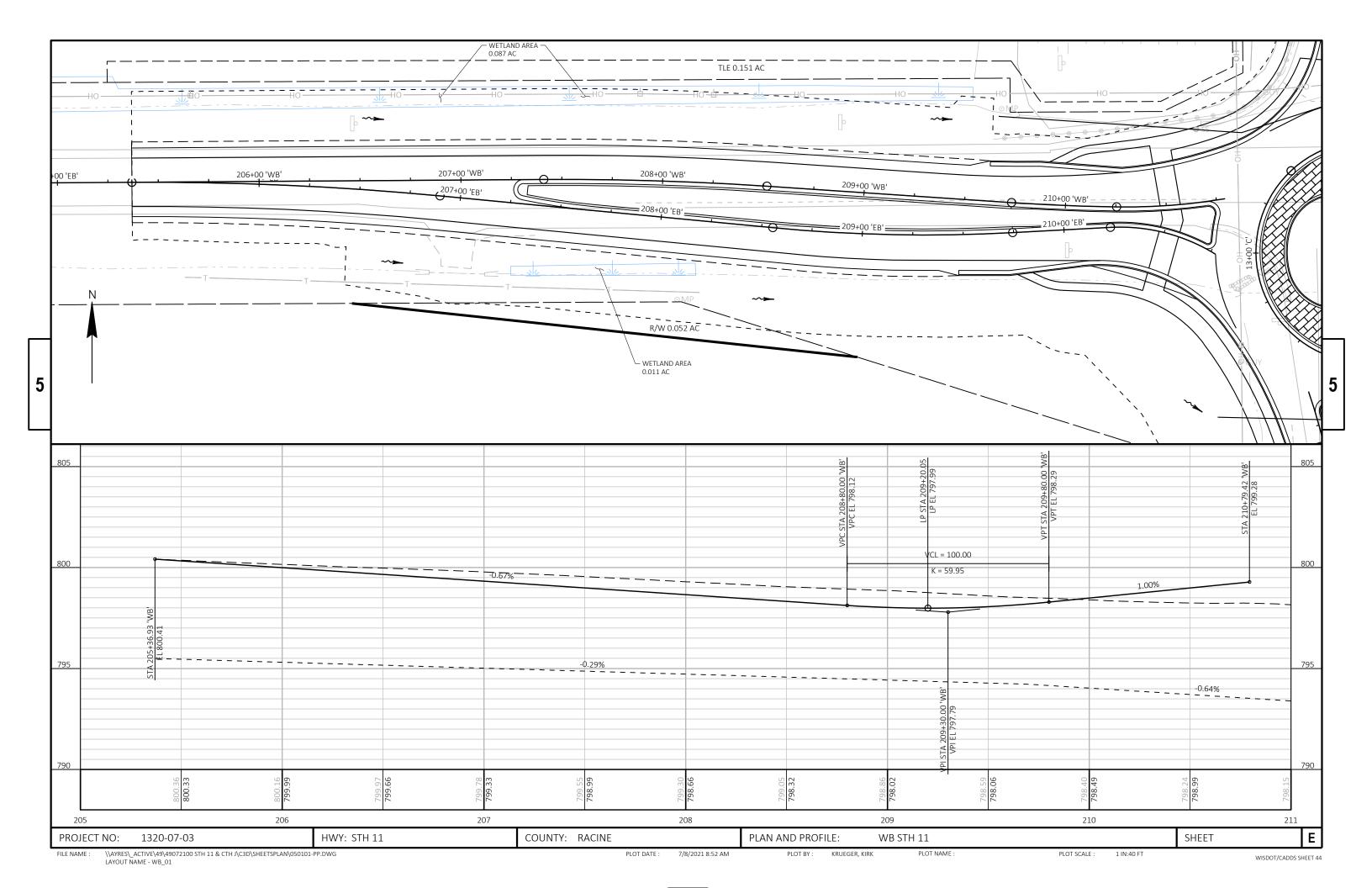
1 IN:200 FT

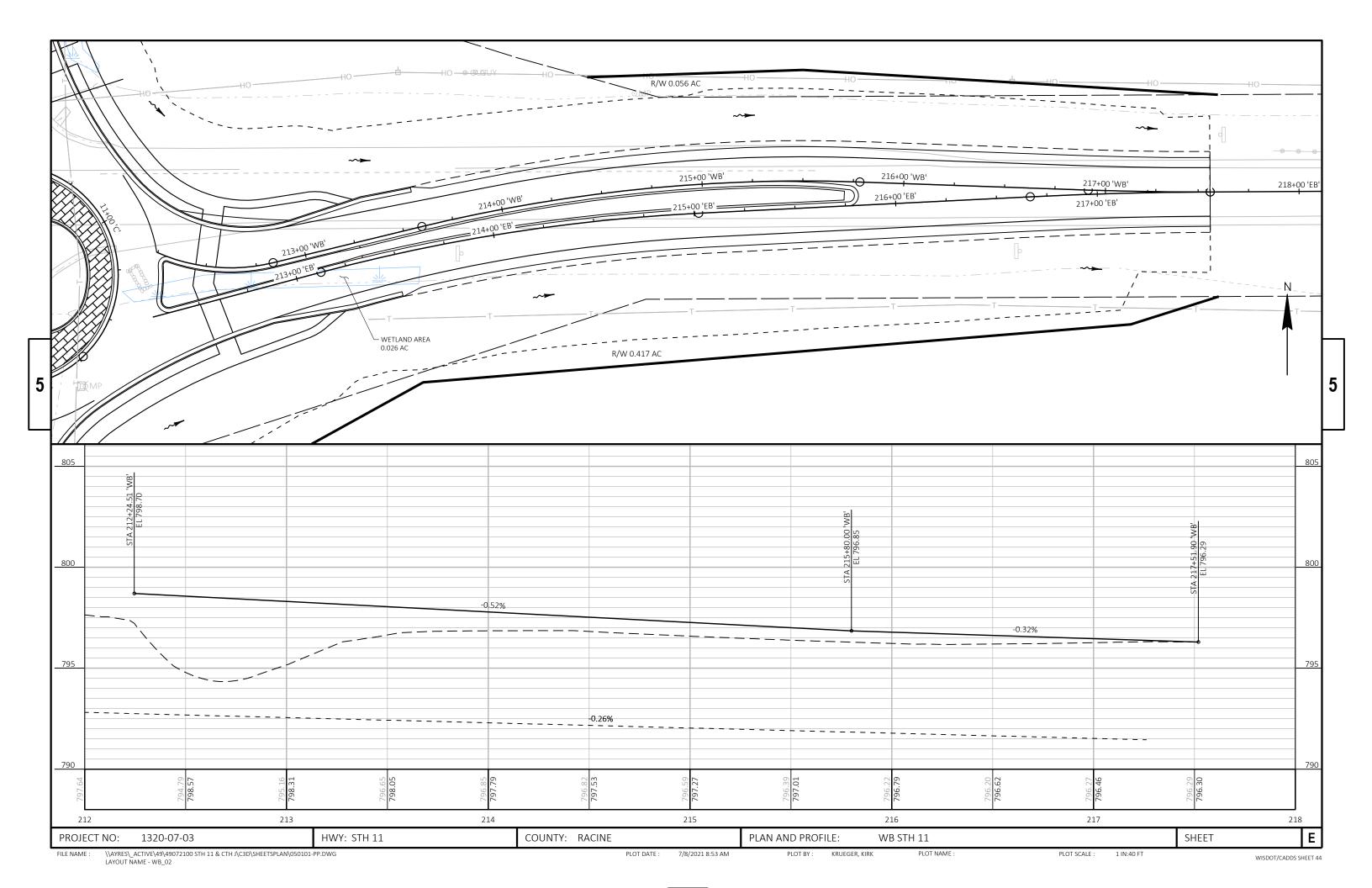
WISDOT/CADDS SHEET 42

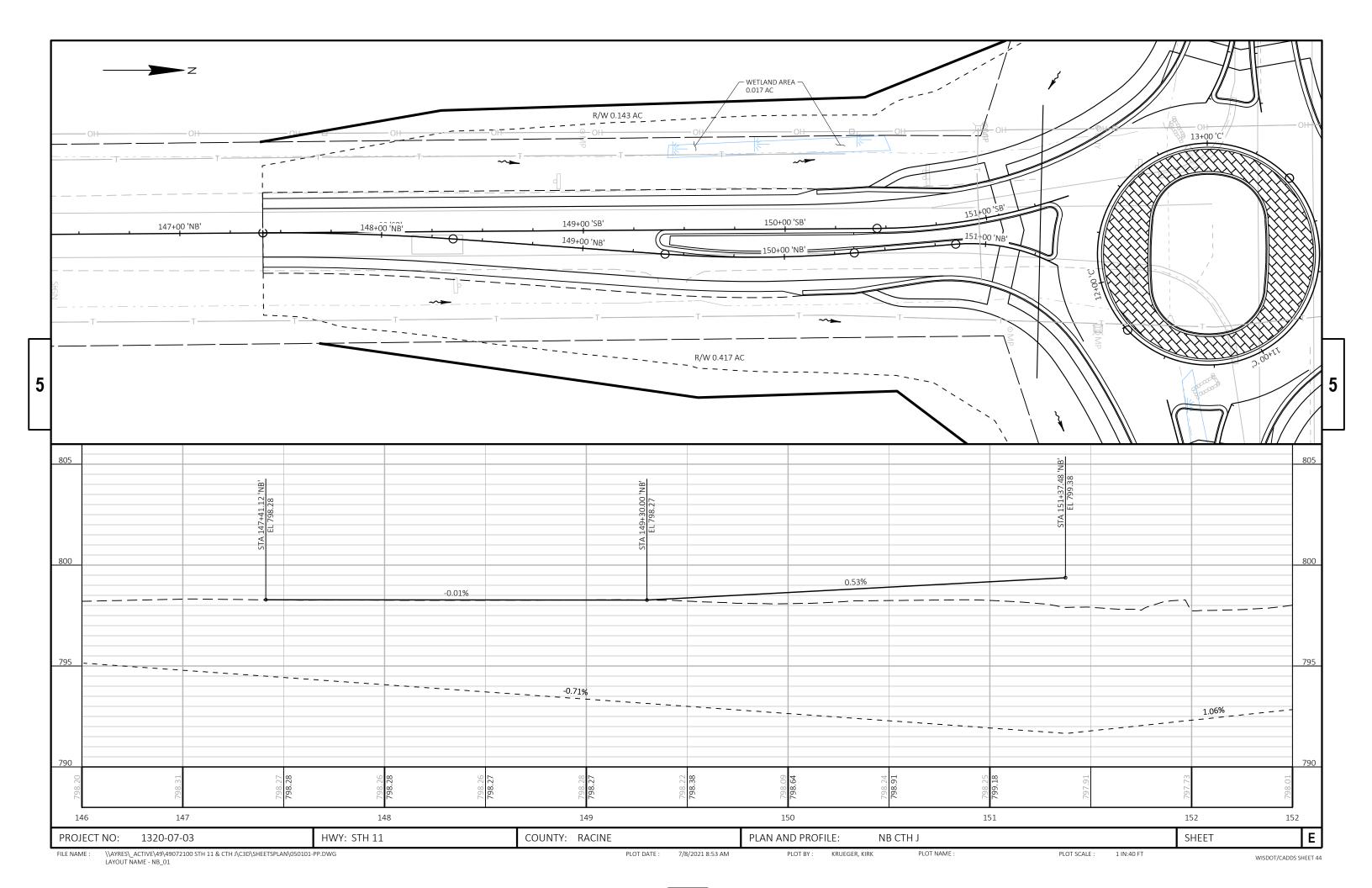
FILE NAME: I:\49\49072100 STH 11 & CTH J\C3D\SHEETSPLAN\020301-TS.DWG PLOT DATE: 7/19/2021 12:47 PM PLOT BY: MUENCH, DOUGLAS PLOT NAME: 1 IN:10 FT WISDOT/CADDS SHEET 42

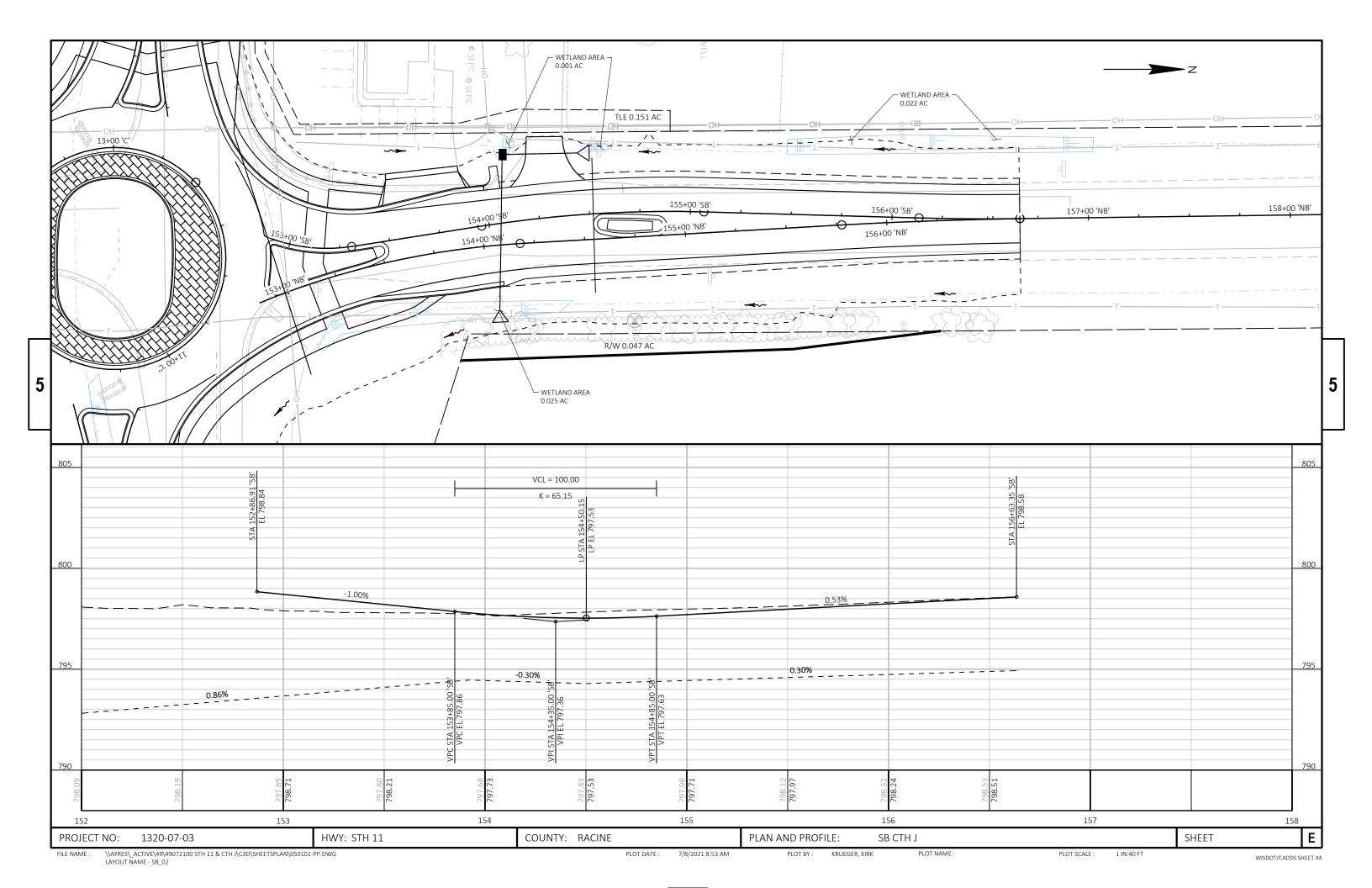


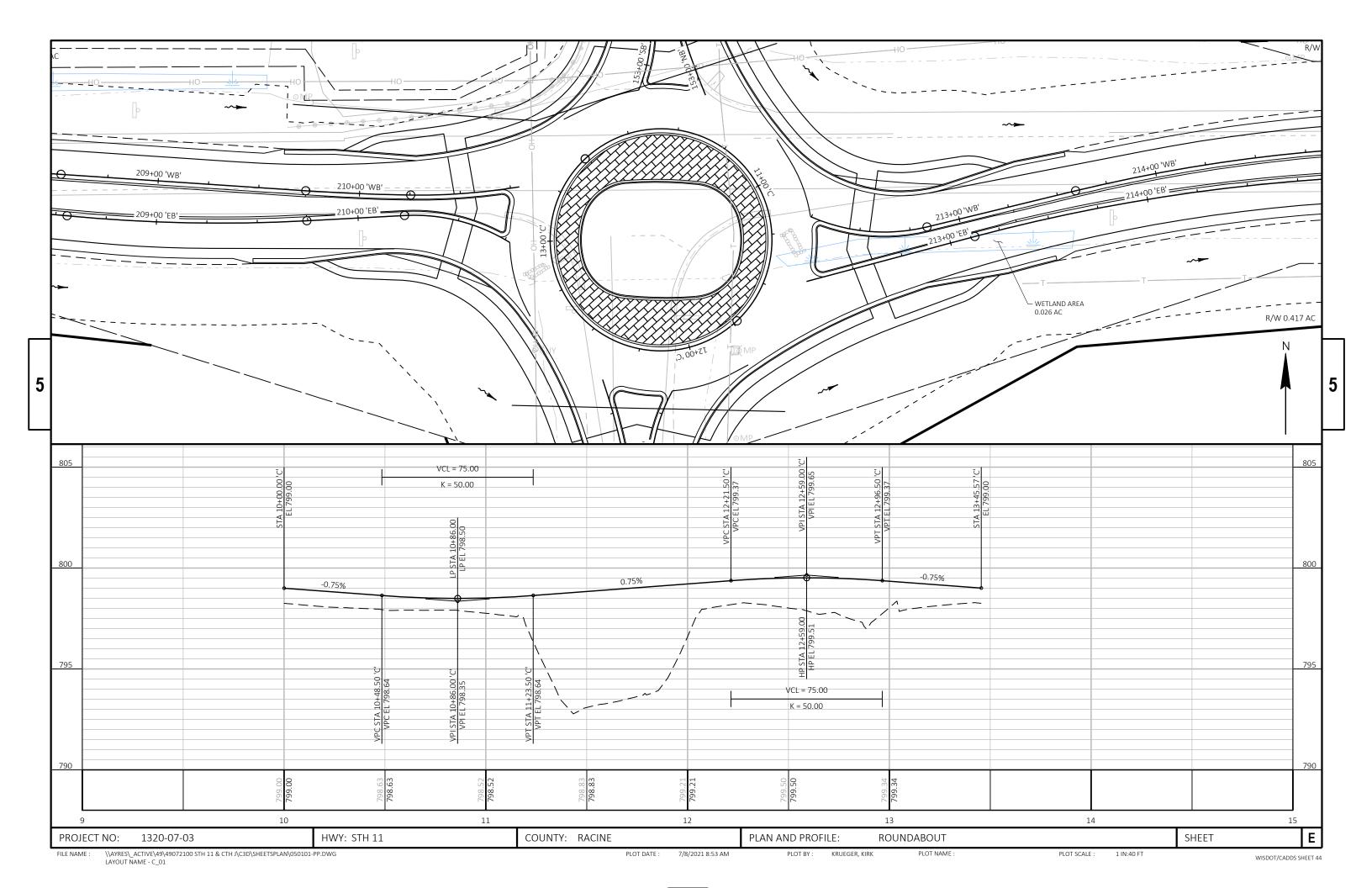

TYPICAL FINISHED HALF-SECTION - ROUNDABOUT

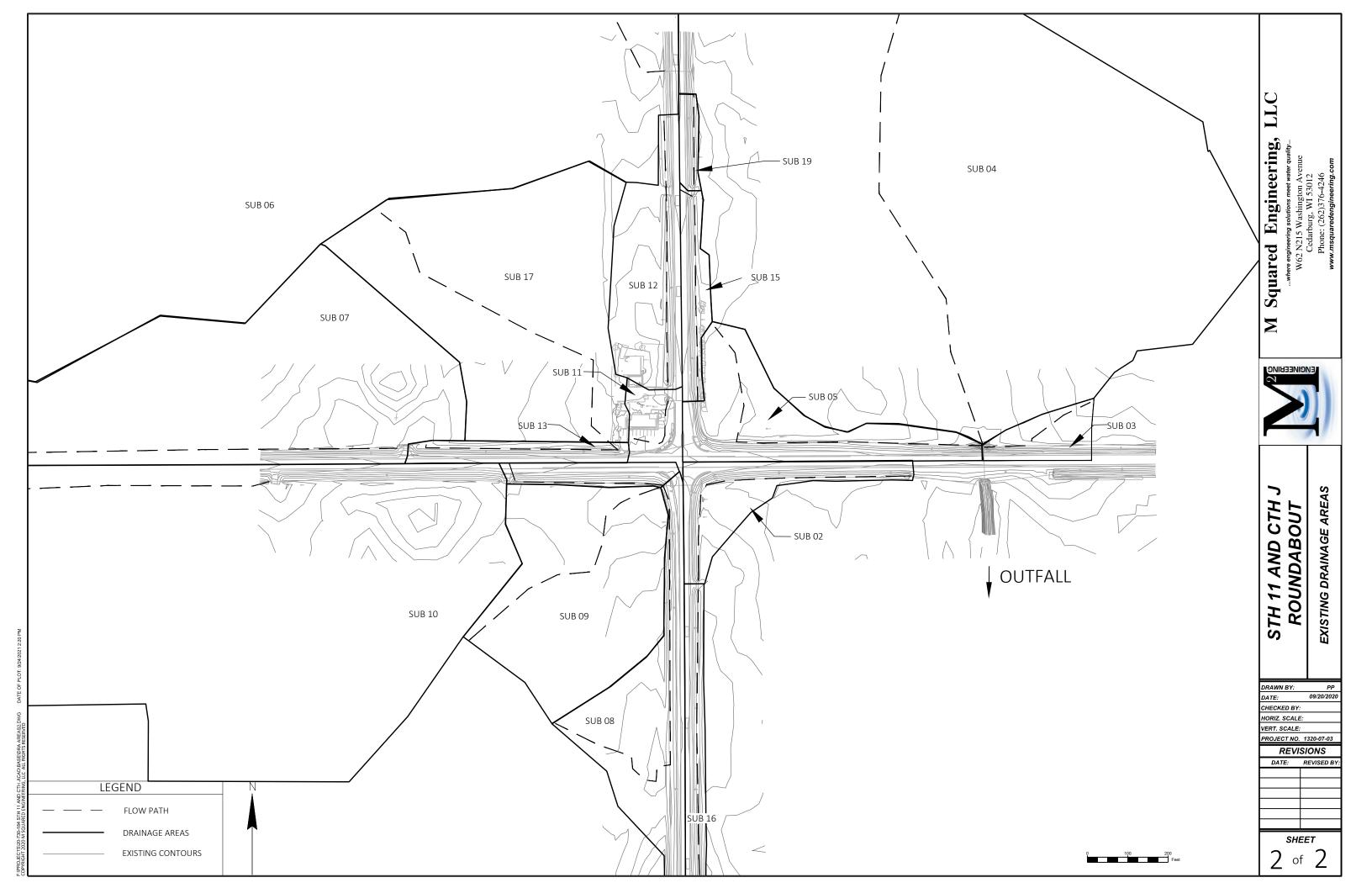

Ε PROJECT NO: 1320-07-03 HWY: STH 11 COUNTY: RACINE TYPICAL SECTIONS SHEET I:\49\49072100 STH 11 & CTH J\C3D\SHEETSPLAN\020301-TS.DWG PLOT DATE : FILE NAME : WISDOT/CADDS SHEET 42


LAYOUT NAME - FTYP_02


PLOT BY: MUENCH, DOUGLAS PLOT NAME : PLOT SCALE : 1 IN:10 FT 7/19/2021 12:47 PM

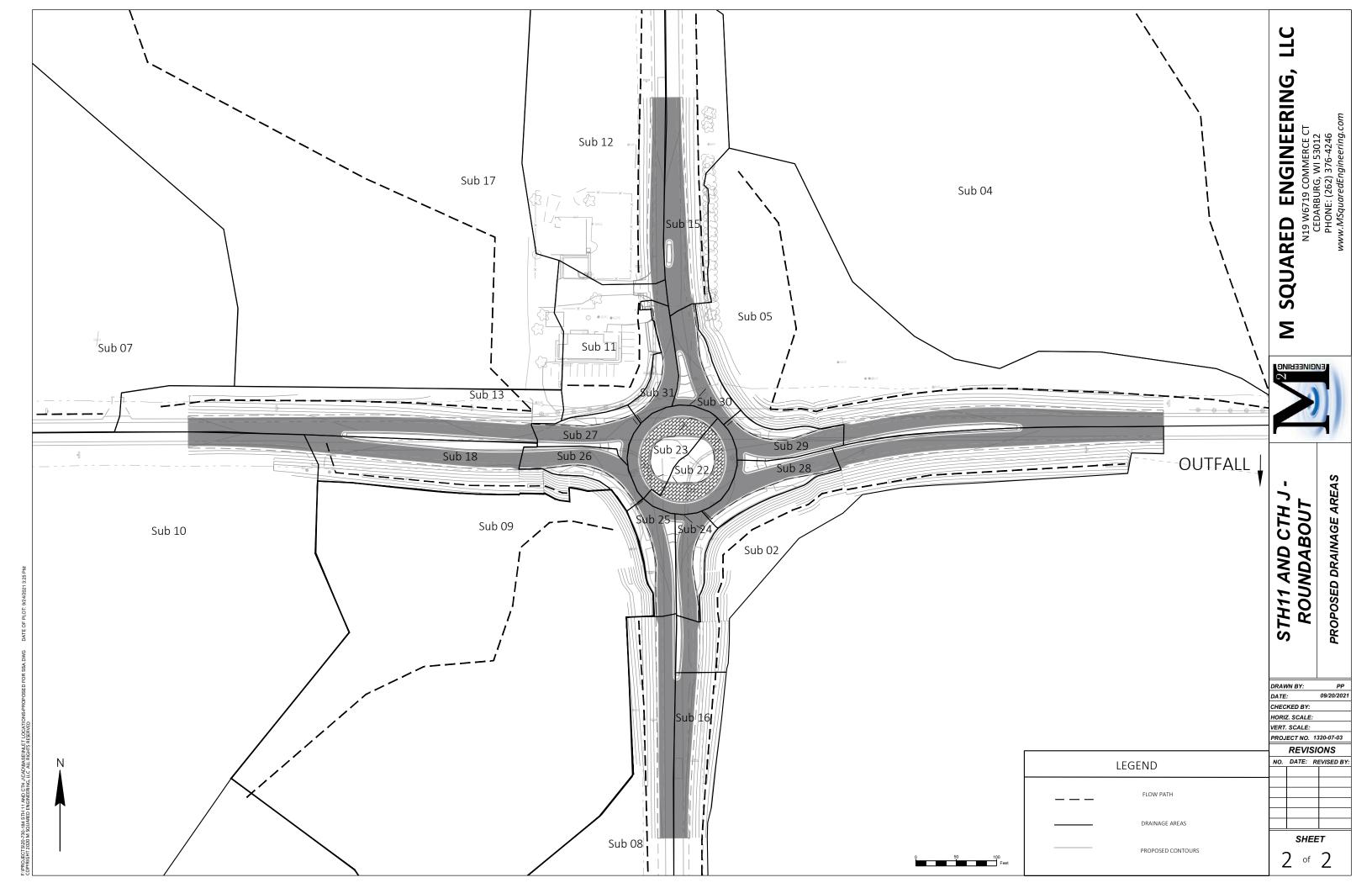






Appendix C – Existing Drainage Area Maps

Appendix D - Proposed Drainage Area Maps


PROPOSED DRAINAGE AREAS

PROJECT NO. 1320-07-03

REVISIONS

NO. DATE: REVISED BY:

SHEET

Appendix E – WinTR-55 Calculations

Racine MSE3 County, Wisconsin

Sub-Area Time of Concentration Details

	Flow Man ngth Slope (ft/ft)		ea Per		T Velocity hr)	ravel Time
East Drain SHEET SHALLOW CHANNEL	99 0.0038 1719 0.0027 148 0.0230	0.060 0.050 0.040	3.00	60.00	0.166 0.5 0.761	570 0.054
		Time o	of Conce	ntration ====	.79 ====	
North Drai SHEET SHALLOW CHANNEL	99 0.0200 2759 0.0044 29 0.0172	0.060 0.050 0.040	7.00	15.00	0.085 0.7 2.685	716 0.003
		Time o	of Conce	ntration =====	.804 ====	
West Drain SHEET SHALLOW CHANNEL	99 0.0101 1617 0.0093 1030 0.0080	0.060 0.050 0.040	1.77	11.40	0.112 0.2 0.963	289 0.297
		Time o	of Conce	ntration ====	.698 ====	
South West SHEET SHALLOW CHANNEL CHANNEL	99 0.0100 995 0.0120 1038 0.0069 550 0.0030	0.060 0.050 0.040 0.040	2.64 2.00	13.62 9.00	0.112 0.1 1.037 0.749	
		Time o	of Conce	ntration ====	.75 ====	

Appendix F – Existing Condition Storm and Sanitary Analysis Calculations

| Cfs | Cfs

****** Element Count

Number of rain gages 2 Number of subbasins 17 Number of nodes 22 Number of links 32

..... Raingage Summary

Data Type Gage ID Rain Gage-01 Rain Gage-02 CUMULATIVE CUMULATIVE

Subbasin Summary

Subbasin Total Area acres Raingage Length ft Slope % Factor

1.42 0.65 40.53 2.49 88.38 16.16 3.41 4.69 Rain Gage-02
Rain Gage-02 749.00 302.00 1968.00 913.00 2886.00 2738.00 1068.00 0.6100 2.8900 0.6700 1.0200 0.5300 0.8900 0.4300 Sub-02 Sub-03 Sub-04 Sub-05 Sub-06 Sub-07 Sub-08 484.00 484.00 484.00 484.00 484.00 484.00 484.00 484.00 484.00 484.00 484.00 484.00 484.00 484.00 484.00 484.00 484.00 Sub-09 658.00 0.8200 Sub-09 Sub-10 Sub-11 Sub-12 Sub-13 Sub-15 Sub-16 Sub-17 Sub-18 Sub-19 4.69 30.47 0.58 2.13 0.67 0.72 1.10 7.63 0.55 0.26 0.8200 0.9100 1.0000 0.4300 0.2500 1.1100 0.2000 0.8100 1.5400 1.8000 2139.00 184.60 184.60 647.00 485.00 543.00 763.00 915.00 414.00 259.00 Rain Gage-02 Rain Gage-02

Node Summary

Node ID	Element Type	Elevation	Elev.		External Inflow
Jun-03 Jun-04 Jun-10 Jun-11 Jun-21 Jun-24 Jun-25 Jun-28 Jun-30 Jun-32 Jun-32 Jun-35 Jun-40 Out-02 Jun-01 Jun-05 Jun-06 Jun-06 Jun-02 Jun-06 Jun-12 Jun-20 sto	JUNCTION STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE	793.44 793.58 794.49 794.31 795.45 792.86 795.95 784.12 795.40 792.10 795.39 795.42 793.57 783.38 789.89 793.61 794.56	798.26 798.40 795.80 795.90 798.85 794.36 799.32 791.83 796.90 793.10 796.64 797.90 789.38 797.90 797.90 797.90	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
Storage	STORAGE	795.63	799.00	0.00	

Link Summary

From Node To Node Link Element Length Slope % Manning's Link ID Link-01 Link-02 Link-03 Link-06 Link-10 Link-15 Link-15 Link-16 Link-18 Link-21 Link-23 Link-23 Type

CONDUIT
CHANNEL
CONDUIT
CONDUIT
CONDUIT
CONDUIT
CHANNEL Jun-05 Jun-24 Storage Jun-02 Jun-10 Jun-21 Jun-25 Jun-25 Jun-20 Jun-30 Jun-32 Jun-32 Jun-32 Roughness 0.0250 0.0320 0.0250 0.0250 0.0150 0.0250 0.0320 0.0250 0.0250 Jun-04 Jun-02 sto Jun-28 Jun-11 Jun-06 Jun-05 Jun-12 Jun-01 Jun-12 Jun-02 0.0576 1.0252 0.9863 0.7891 0.7841 4.4550 0.9786 0.0030 1.9389 38.2 691.6 65.0 78.7 23.3 20.0 27.6 33.2 237.3 561.9 267.3 CONDUIT CONDUIT CHANNEL CHANNEL 0.3541 2.3691 30.2 Link-26 Jun-35 Jun-34 CONDUIT 0.0894 0.0250 Link-26 Link-27 Link-36 Link-37 Link-38 Link-41 Link-44 Link-45 Weir-01 Weir-02 0.0894 0.3951 0.5941 0.4474 3.7577 0.7224 0.5499 0.9979 2.3817 Jun-35 Jun-03 Jun-40 CHANNEL CONDUIT 501.1 124.7 0.0320 Jun-35 Jun-06 Jun-04 Jun-12 Jun-40 Jun-03 Jun-01 Jun-28 Jun-06 Jun-20 sto 0.0150 Jun-03 Jun-01 Jun-24 Jun-24 Jun-28 Out-02 Jun-04 Jun-12 Jun-02 CONDUIT CONDUIT CONDUIT CHANNEL CONDUIT CHANNEL WEIR WEIR 0.0150 0.0150 0.0150 0.0250 0.0320 0.0150 0.0320

Weir-05 Weir-06 Weir-07 Weir-08 Weir-09 Weir-10 Weir-11 Weir-12 Weir-13	sto Storage Jun-05 Jun-01 Storage Jun-25 Jun-11 Jun-05 Jun-04	Jun-34 Jun-25 Jun-04 Jun-08 Jun-06 Jun-05 Jun-28 Jun-06 Jun-03	WEIR WEIR WEIR WEIR WEIR WEIR WEIR WEIR				
******	*****						
Cross Section ************************************	*****	Depth/	Width	No. of	Cross	Full Flow	Design
ID	-	Diameter		No. of Barrels	Sectional Area	Hydraulic Radius	Flow Capacity
Link-01	CIRCULAR	1.00	1.00	1	0.79	0.25	0.44
Link-02 Link-03	TRIANGULAR CIRCULAR	1.50 1.50	23.00 1.50	1	17.25 1.77	0.74 0.38	66.58 5.42
Link-06 Link-10 Link-12	CIRCULAR CIRCULAR TRIANGULAR	5.00 1.25 3.40	5.00 1.25	1 1	19.63 1.23 49.30	1.25 0.31	200.50 2.97 676.12
Link-15 Link-16	CIRCULAR CIRCULAR	1.25	1.25	1	1.23 3.14	0.31 0.50	3.32 0.65
Link-18 Link-21	TRIANGULAR TRAPEZOIDAL	0.50 1.50	16.00 18.75	1 1	4.00 18.56	0.25 0.97	10.25 50.28
Link-26 Link-27	CIRCULAR TRIANGULAR	1.25	1.25 16.50	1 1	1.23 8.25	0.31 0.50	1.00 15.10
Link-36 Link-37	CIRCULAR CIRCULAR	1.50	1.50	1 1	1.77	0.38	7.02 13.11
Link-38 Link-39 Link-41	CIRCULAR CIRCULAR TRAPEZOIDAL	1.50 1.30	1.50 18.30	1 1	3.14 1.77 11.96	0.38 0.65	4.64 30.81
Link-44 Link-45	CIRCULAR TRIANGULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR TRIANGULAR CIRCULAR TRIANGULAR TRIANGULAR TRIANGULAR TRIANGULAR TRIANGULAR TRIANGULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR TRIAPEZOIDAL	3.00 6.00	3.00	1	7.07 66.00	0.75 2.79	57.74 938.00
Runoff Quantit	y Continuity	acre-ft	inches				
Total Precipit Surface Runoff Continuity Err	ation or (%)	45.379 0.181 -0.000	2.698 0.011				
**************** Flow Routing C	ontinuity	Volume acre-ft	Volume Mgallons				
************** External Inflo	************	0.000	0.000				
External Outfl Initial Stored	ow	21.498	7.006				
Continuity Err	********** w ow Volume or (%)	0.000	0.057				
Composite Curv	*************** e Number Computa ************	tions Report					
Subbasin Sub-0							
Soil/Surface D	escription			Area (acres)			
Paved parking	aight row, Good			0.79 0.24 0.38 1.42	C C	74.00 85.00 98.00 82.33	
Subbasin Sub-0	3 			Area	Soil		
Soil/Surface D				Area (acres)	Soil Group	CN	
Row crops, str > 75% grass co Paved parking Composite Area	& roofs			0.34 0.21 0.10 0.65	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	85.00 74.00 98.00 83.57	
Subbasin Sub-0				Area	Soil		
Soil/Surface D				(acres)	Group		
> 75% grass co Paved parking				40.06 0.26 0.21 40.53	000	85.00 74.00 98.00 85.00	
Subbasin Sub-0	5			Area	Soil		
Soil/Surface D	escription aight row, Good			Area (acres)		CN 	
> 75% grass co Paved parking	ver, Good			0.88 0.46 2.50	c c	74.00 98.00 83.54	
Subbasin Sub-0				Area	Soil		
Soil/Surface D				(acres)	Group	CN 	
Woods, Good Row crops, str	aight row, Good			4.42 78.44	C	70.00 85.00	
> 75% grass co Paved parking	ver, Good			0.30 0.27 88.39	00000	74.00 98.00 83.92	
Subbasin Sub-0	7				0-13		
Soil/Surface D				Area (acres)		CN	
> 75% grass co Paved parking Row crops, str				1.90 2.24 7.30	c c	74.00 98.00 85.00	

1/4 acre lots, 38% impervious Composite Area & Weighted CN	4.72 16.16	С	83.00 84.92
Subbasin Sub-08			
Soil/Surface Description	Area (acres)	Soil Group	CN
Row crops, straight row, Good	1.99	C	85.00
Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN	0.58 0.84 3.41	C C	98.00 74.00 84.48
Subbasin Sub-09			
Soil/Surface Description	Area (acres)	Soil Group	CN
Row crops, straight row, Good Composite Area & Weighted CN	4.69 4.69	c	85.00 85.00
Subbasin Sub-10			
Soil/Surface Description	Area (acres)	Soil Group	CN
Row crops, straight row, Good			
1/4 acre lots, 38% impervious > 75% grass cover, Good	2.02 1.55	c c c	83.00 74.00
Paved parking & roofs Composite Area & Weighted CN	1.10 30.47	С	98.00 84.78
Subbasin Sub-11	_		
Soil/Surface Description	Area (acres)	Soil Group	CN
> 75% grass cover, Good	0.11 0.47	C C	74.00 98.00
Paved parking & roofs Composite Area & Weighted CN	0.47	C	93.50
Subbasin Sub-12			
Soil/Surface Description	Area (acres)	Soil Group	
Row crops, straight row, Good	1.00	c c c	85.00
> 75% grass cover, Good Paved parking & roofs	0.38	C	98.00
1/4 acre lots, 38% impervious Composite Area & Weighted CN	0.33 2.13	C	84.84
Subbasin Sub-13			
Soil/Surface Description	Area (acres)		CN
Paved parking & roofs	0.23	C C	98.00
> 75% grass cover, Good Composite Area & Weighted CN	0.43	С	74.00 82.38
Subbasin Sub-15			
Soil/Surface Description	Area (acres)	Soil Group	CN
Paved parking & roofs	0.25	c c	98.00
> 75% grass cover, Good Composite Area & Weighted CN	0.72	C	82.34
Subbasin Sub-16			
Soil/Surface Description	Area (acres)	Soil Group	CN
> 75% grass cover, Good			
Paved parking & roofs Composite Area & Weighted CN	0.48 1.10	С	98.00 84.49
Subbasin Sub-17			
Soil/Surface Description	Area (acres)	Soil Group	CN
Row crops, straight row, Good Composite Area & Weighted CN	7.63 7.63	С	85.00 85.00
Subbasin Sub-18			
Soil/Surface Description	Area (acres)	Soil Group	CN
Paved parking & roofs	0.28	C C	98.00
> 75% grass cover, Good Composite Area & Weighted CN	0.27 0.55	C	74.00 86.06
Subbasin Sub-19	_		
Soil/Surface Description	Area (acres)	Soil Group	CN
Paved parking & roofs	0.12	D	98.00 74.00
> 75% grass cover, Good Composite Area & Weighted CN	0.14 0.26	С	85.09

********** Kirpich Time of Concentration Computations Report

Tc = (0.0078 * (L^0.77) * (S^-0.385))

 $\begin{array}{ll} {\rm Tc} \, = \, {\rm Time} \, \, {\rm of} \, \, {\rm Concentration} \, \, \, ({\rm min}) \\ {\rm L} \, & = \, {\rm Flow} \, \, {\rm length} \, \, \, ({\rm ft}) \\ {\rm S} \, & = \, {\rm Slope} \, \, \, ({\rm ft/ft}) \\ \end{array}$

Subbasin Sub-02					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		749.00 0.61 9.08	
Subbasin Sub-03					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		302.00 2.89 2.48	
Subbasin Sub-04					
User-De	fined	TOC override	(minutes)	:	47.40
Subbasin Sub-05					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		913.00 1.02 8.68	
Subbasin Sub-06					
User-De	fined	TOC override	(minutes)	:	48.24
Subbasin Sub-07					
		TOC override	(minutes)	:	41.88
Subbasin Sub-08					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):	1	068.00 0.43 13.65	
Subbasin Sub-09					
Flow le Slope (Compute	ngth %): d TOC	<pre>(ft): (minutes):</pre>		658.00 0.82 7.33	
Subbasin Sub-10					
		TOC override	(minutes)	:	45.00
Subbasin Sub-11					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		184.60 1.00 2.55	
Subbasin Sub-12					
Flow le Slope (Compute	%):	(ft): (minutes):		647.00 0.43 9.28	
Subbasin Sub-13					
Flow le Slope (Compute	2).	(ft): (minutes):		485.00 0.25 9.16	
Subbasin Sub-15					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		543.00 1.11 5.63	
Subbasin Sub-16					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		763.00 0.20 14.15	
Subbasin Sub-17					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		915.00 0.81 9.50	
Subbasin Sub-18					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		414.00 1.54 4.03	
Subbasin Sub-19					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		259.00 1.80 2.64	
compute					

Subbasin Runoff Summary

Subbasin ID	Total Precip in	Total Runoff in	Peak Runoff cfs	Weighted Curve Number	Conc days	Time of entration hh:mm:ss
Sub-02 Sub-03 Sub-04 Sub-05 Sub-05 Sub-07 Sub-09 Sub-10 Sub-11 Sub-12 Sub-12 Sub-13 Sub-13	2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70	1.17 1.25 1.34 1.24 1.27 1.33 1.30 1.34 1.32 2.01 1.33 1.17	2.35 1.29 35.18 4.40 71.39 15.27 5.70 9.30 27.08 1.78 3.99 1.09	82.330 83.570 85.000 83.540 83.920 84.920 84.480 85.000 93.500 84.780 93.500 84.840 82.380	000000000000000000000000000000000000000	00:09:04 00:05:00 00:47:24 00:08:40 00:48:14 00:41:52 00:13:39 00:07:19 00:45:00 00:05:00 00:09:16 00:09:09 00:05:37
Sub-16 Sub-17 Sub-18 Sub-19	2.70 2.70 2.70 2.70 2.70	1.30 1.34 1.41 1.34	1.82 14.32 1.24 0.56	84.490 85.000 86.060 85.090	0 0 0	00:14:09 00:09:30 00:05:00 00:05:00

Node	Average	Maximum	Maximum		of Max	Total	Total	Retention
ID	Depth	Depth	HGL	Occi	ırrence	Flooded	Time	Time
	Attained	Attained	Attained			Volume	Flooded	
	ft	ft	ft	days	hh:mm	acre-in	minutes	hh:mm:ss
Jun-02	0.79	2.83	788.60	0	12:29	0	0	0:00:00
Jun-03	0.25	1.13	794.57	0	13:32	0	0	0:00:00
Jun-04	0.48	2.73	796.31	0	13:31	0	0	0:00:00
Jun-10	0.05	0.26	794.75	0	12:05	0	0	0:00:00
Jun-11	0.20	1.05	795.36	0	12:04	0	0	0:00:00
Jun-21	0.39	1.70	797.16	0	13:10	0	0	0:00:00
Jun-24	0.32	1.07	793.93	0	13:34	0	0	0:00:00
Jun-25	0.32	1.78	797.73	0	12:44	0	0	0:00:00
Jun-28	0.59	2.12	786.24	0	12:50	0	0	0:00:00
Jun-30	0.04	0.47	795.87	0	12:06	0	0	0:00:00
Jun-32	0.04	0.28	792.39	0	11:58	0	0	0:00:00
Jun-34	0.08	0.35	795.74	0	11:58	0	0	0:00:00
Jun-35	0.04	0.17	795.59	0	12:04	0	0	0:00:00
Jun-40	0.76	2.52	796.09	0	13:10	0	0	0:00:00
Out-02	0.00	0.00	783.38	0	00:00	0	0	0:00:00
Jun-01	0.30	1.35	791.24	0	12:06	0	0	0:00:00
Jun-05	0.72	2.96	796.57	0	13:31	0	0	0:00:00
Jun-06	0.68	2.55	797.11	0	13:16	0	0	0:00:00
Jun-12	0.24	1.03	794.44	0	12:05	0	0	0:00:00
Jun-20	0.51	1.52	796.06	0	12:51	0	0	0:00:00
sto	0.33	0.60	795.58	0	12:44	0	0	0:00:00
Storage	0.64	2.12	797.74	0	12:44	0	0	0:00:00

Node	Element	Maximum	Peak	T	ime of	Maximum	Time of	Peak
ID	Type	Lateral		Peak	Inflow	Flooding	Flo	oding
		Inflow		0ccu	rrence	Overflow	Occur	rence
		cfs	cfs	days	hh:mm	cfs	days	hh:mm
Jun-02	JUNCTION	35.82	53.10	0	12:24	0.00		
Jun-03	JUNCTION	1.31	19.95	0	13:31	0.00		
Jun-04	JUNCTION	1.74	19.85	0	13:31	0.00		
Jun-10	JUNCTION		1.82	0	12:04	0.00		
	JUNCTION		1.82	0	12:04	0.00		
Jun-21	JUNCTION	15.24	19.58	0	12:36	0.00		
Jun-24	JUNCTION	0.00	27.18	0	13:32	0.00		
Jun-25	JUNCTION	0.00	12.29	0	12:43	0.00		
	JUNCTION		63.55	0	12:50			
Jun-30	JUNCTION	5.69	5.69	0	12:04	0.00		
Jun-32	JUNCTION			0	11:57			
Jun-34	JUNCTION	0.56	0.56	0	11:57	0.00		
Jun-35	JUNCTION		0.18	0	11:58	0.00		
Jun-40	JUNCTION		7.25	0	13:21			
Out-02	OUTFALL	0.00	62.59	0	12:15	0.00		
Jun-01	STORAGE		19.86	0	12:04	0.00		
Jun-05	STORAGE	3.96	21.97	0	13:16	0.00		
Jun-06	STORAGE	15.34	61.45	0	12:36	0.00		
	STORAGE	10.37	16.84	0	12:02			
Jun-20	STORAGE	27.08	27.08	0	12:22	0.00		
sto	STORAGE	0.00	7.50	0	12:44	0.00		
Storage	STORAGE	71.21	71.21	0	12:24	0.00		

Storage Node ID	Maximum Ponded Volume 1000 ft ³	Maximum Ponded Volume (%)		of Max Ponded Volume hh:mm	Average Ponded Volume 1000 ft ³	Average Ponded Volume (%)	Maximum Storage Node Outflow cfs	Maximum Exfiltration Rate cfm	Time of Max. Exfiltration Rate hh:mm:ss	Total Exfiltrated Volume 1000 ft ³
Jun-01	0.056	1	0	12:06	0.005	0	19.58	0.00	0:00:00	0.000
Jun-05	18.691	26	0	13:31	2.035	3	19.78	0.00	0:00:00	0.000
Jun-06	104.118	20	0	13:16	13.958	3	24.07	0.00	0:00:00	0.000
Jun-12	0.478	0	0	12:05	0.029	0	15.96	0.00	0:00:00	0.000
Jun-20	44.503	38	0	12:51	5.581	5	12.69	0.00	0:00:00	0.000
sto	0.186	60	0	12:44	0.090	29	7.50	0.00	0:00:00	0.000
Storage	92.620	17	0	12:44	10.638	2	54.53	0.00	0:00:00	0.000

Outfall Node ID	Flow Frequency (%)	Average Flow cfs	Peak Inflow cfs
Out-02	68.11	16.03	62.59
System	68.11	16.03	62.59

Link ID	Element Type	Ti Peak Occur	me of Flow rence	Maximum Velocity Attained	Length Factor	Peak Flow during Analysis cfs	Design Flow Capacity cfs	Ratio of Maximum /Design Flow	Ratio of Maximum Flow Depth	Total Time Surcharged minutes	Reported Condition
Link-01	CONDUIT	0	16:04	4.25	1.00	3.32	0.44	7.46	1.00	187	SURCHARGED
Link-02				2.14	1.00	2/.1/	66.58	0.41	0.86	U	
Link-03	CONDUIT	0	12:44	5.69	1.00	7.50	5.42	1.38		0	
		0			1.00	51.73			0.46	0	
Link-10				2.22	1.00	1.82	2.97	0.61	0.63	0	Calculated
		0			1.06	28.17			0.62	0	Calculated
	CONDUIT	0	12:44	4.70	1.00	5.36	3.32			0	
Link-16		0		3.47	1.00	7.03				0	> CAPACITY
		0		0.78	1.00	1.79		0.17		0	
Link-21		0		0.80	1.00	5.41		0.11	0.50	0	Calculated
Link-23	CHANNEL	0	11:58	0.80	1.00	1.24	9.18	0.14	0.74	0	Calculated
Link-26	CONDUIT	0	11:58	1.01	1.00	0.18	1.00		0.20	0	Calculated
Link-27	CHANNEL	0	12:04	0.11	1.00		15.10		0.56	0	Calculated
Link-36	CONDUIT	0	13:21	4.10	1.00	7.25	7.02	1.03			SURCHARGED
	CONDUIT	0	13:31	7.53	1.00	19.85	13.11	1.51		0	> CAPACITY
Link-38	CONDUIT	0	12:05	8.53	1.00	15.96	38.01	0.42	0.59	0	Calculated
Link-39	CONDUIT	0	13:22	4.75	1.00	7.25	4.64	1.56	0.86	0	> CAPACITY
Link-41	CHANNEL	0	13:32	2.32	1.00	19.94	30.81	0.65	0.85	0	Calculated
Link-44	CONDUIT	0	12:06	6.82	1.00	19.58	57.74	0.34	0.43	0	Calculated
Link-45	CHANNEL	0	12:15		1.00		938.00	0.07	0.33	0	Calculated
Weir-01	WEIR		00:00			0.00			0.00		
Weir-02	WEIR	0	12:51			5.66			0.29		
Weir-04	WEIR	0	12:44			7.50			0.51		
Weir-05	WEIR	0	11:58			0.37			0.47		
Weir-06	WEIR	0	12:43			12.29			0.52		
Weir-07	WEIR	0	13:31			18.40			0.35		
Weir-08	WEIR	0	00:00			0.00			0.00		
Weir-09	WEIR	0 0 0 0 0 0	12:44			62.59 0.00 5.66 7.50 0.37 12.29 18.40 0.00 34.75 0.00 0.00 16.60 0.00			0.25		
Weir-10	WEIR WEIR WEIR WEIR	0	00:00			0.00			0.00		
Weir-11	WEIR	0	00:00			0.00			0.00		
Weir-12	WEIR	0	13:16			16.60			0.34		
Weir-13	WEIR	0	00:00			0.00			0.00		

Highest Flow Instability Indexes
Link Weir-06 (16)
Link Link-15 (15)
Link Link-06 (6)
Link Link-05 (5)
Link Link-12 (4)

WARNING 116 : Conduit inlet invert elevation defined for Conduit Link-12 is below upstream node invert elevation.
Assumed conduit inlet invert elevation equal to upstream node invert elevation.
WARNING 117 : Conduit outlet invert elevation defined for Conduit Link-12 is below downstream node invert elevation.
WARNING 014 : Minimum elevation drop used for Conduit Link-16 is below downstream node invert elevation.
WARNING 117 : Conduit outlet invert elevation equal to downstream node invert elevation.
WARNING 118 : Conduit invert elevation defined for Conduit Link-21 is below downstream node invert elevation.
WARNING 119 : Conduit invert elevation defined for Conduit Link-23 is below downstream node invert elevation.
WARNING 116 : Conduit inlet invert elevation degual to upstream node invert elevation.
WARNING 116 : Conduit inlet invert elevation defined for Conduit Link-36 is below upstream node invert elevation.
WARNING 116 : Conduit inlet invert elevation degual to upstream node invert elevation.
WARNING 116 : Conduit inlet invert elevation degual to upstream node invert elevation.
WARNING 116 : Conduit inlet invert elevation equal to upstream node invert elevation.
WARNING 117 : Conduit unlet invert elevation degual to upstream node invert elevation.
WARNING 118 : Conduit unlet invert elevation degual to upstream node invert elevation.
WARNING 119 : Conduit unlet invert elevation degual to upstream node invert elevation.
WARNING 119 : Conduit unlet invert elevation degual to upstream node invert elevation.
WARNING 119 : Wax/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-03.
WARNING 002 : Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-03.
WARNING 002 : Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-04.
WARNING 003 : Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-04.
WARNING 003 : Max/rim elevation (dep

****** Element Count

Number of rain gages 2 Number of subbasins 17 Number of nodes 22 Number of links 32

..... Raingage Summary

Data Type Gage ID min Rain Gage-01 Rain Gage-02 CUMULATIVE CUMULATIVE

Subbasin Summary

Subbasin

Total Area acres Raingage Length ft Slope % Factor 1.42 0.65 40.53 2.49 88.38 16.16 3.41 4.69 Rain Gage-02
Rain Gage-02 749.00 302.00 1968.00 913.00 2886.00 2738.00 1068.00 0.6100 2.8900 0.6700 1.0200 0.5300 0.8900 0.4300 Sub-02 Sub-03 Sub-04 Sub-05 Sub-06 Sub-07 Sub-08 484.00 484.00 484.00 484.00 484.00 484.00 484.00 484.00 484.00 484.00 484.00 484.00 484.00 484.00 484.00 484.00 484.00 Sub-09 658.00 0.8200 Sub-09 Sub-10 Sub-11 Sub-12 Sub-13 Sub-15 Sub-16 Sub-17 Sub-18 Sub-19 4.69 30.47 0.58 2.13 0.67 0.72 1.10 7.63 0.55 0.26 0.8200 0.9100 1.0000 0.4300 0.2500 1.1100 0.2000 0.8100 1.5400 1.8000 2139.00 184.60 184.60 647.00 485.00 543.00 763.00 915.00 414.00 259.00 Rain Gage-02 Rain Gage-02

Node Summary

Node ID	Element Type		Elev. ft	Area ft²	
Jun-02	JUNCTION	785.77		0.00	
Jun-03		793.44			
Jun-04		793.58		0.00	
Jun-10	JUNCTION	794.49			
Jun-11	JUNCTION	794.31	795.90	0.00	
Jun-21	JUNCTION	795.45	798.85	0.00	
Jun-24	JUNCTION	792.86	794.36	0.00	
Jun-25	JUNCTION	795.95	799.32	0.00	
Jun-28	JUNCTION	784.12	791.83	0.00	
Jun-30	JUNCTION	795.40	796.90	0.00	
Jun-32	JUNCTION	792.10	793.10	0.00	
Jun-34	JUNCTION	795.39	796.64	0.00	
Jun-35	JUNCTION	795.42	796.67	0.00	
Jun-40	JUNCTION	793.57	797.90	0.00	
Out-02	OUTFALL	783.38	789.38	0.00	
Jun-01	STORAGE	789.89	793.40	0.00	
Jun-05	STORAGE	793.61	797.90	0.00	
Jun-06	STORAGE	794.56		0.00	
Jun-12	STORAGE	793.41	797.00	0.00	
Jun-20	STORAGE	794.54		0.00	
sto	STORAGE	794.99		0.00	
Storage	STORAGE	795 63	799 00	0.00	

Link Summary

From Node To Node Link Element Length Slope % Manning's Link ID Link-01 Link-02 Link-03 Link-06 Link-10 Link-15 Link-15 Link-16 Link-18 Link-21 Link-23 Link-23 Element
Type

CONDUIT
CHANNEL
CONDUIT
CONDUIT
CONDUIT
CHANNEL
CONDUIT
CHANNEL
CONDUIT
CHANNEL Jun-05 Jun-24 Storage Jun-02 Jun-10 Jun-21 Jun-25 Jun-20 Jun-10 Jun-30 Jun-32 Jun-32 Jun-35 Roughness 0.0250 0.0320 0.0250 0.0250 0.0150 0.0250 0.0320 0.0250 0.0250 Jun-04 Jun-02 sto Jun-28 Jun-11 Jun-06 Jun-05 Jun-12 Jun-01 Jun-12 Jun-02 0.0576 1.0252 0.9863 0.7891 0.7841 4.4550 0.9786 0.0030 1.9389 38.2 691.6 65.0 78.7 23.3 20.0 27.6 33.2 237.3 561.9 267.3 CHANNEL 0.3541 2.3691 30.2 Link-26 Jun-35 Jun-34 CONDUIT 0.0894 0.0250 Link-26 Link-27 Link-36 Link-37 Link-38 Link-41 Link-44 Link-45 Weir-01 Weir-02 0.0894 0.3951 0.5941 0.4474 3.7577 0.7224 0.5499 0.9979 2.3817 Jun-35 Jun-03 Jun-40 CHANNEL CONDUIT 501.1 124.7 0.0320 Jun-35 Jun-06 Jun-04 Jun-12 Jun-40 Jun-03 Jun-01 Jun-28 Jun-06 Jun-20 sto 0.0150 Jun-03 Jun-01 Jun-24 Jun-24 Jun-28 Out-02 Jun-04 Jun-12 Jun-02 CONDUIT CONDUIT CONDUIT CHANNEL CONDUIT CHANNEL WEIR WEIR 0.0150 0.0150 0.0150 0.0250 0.0320 0.0150 0.0320

Weir-05 Weir-06 Weir-07 Weir-08 Weir-09 Weir-10 Weir-11 Weir-12	sto Storage Jun-05 Jun-01 Storage Jun-25 Jun-11 Jun-05 Jun-04	Jun-34 Jun-25 Jun-04 Jun-28 Jun-06 Jun-05 Jun-28 Jun-06 Jun-03	WEIR WEIR WEIR WEIR WEIR WEIR WEIR WEIR				
******	*****						
Cross Section	*****	Denth/	Width	No of	Cross	Full Flow	Design
ID	Shape	Diameter	WIGGI	No. of Barrels	Sectional Area	Hydraulic Radius	Flow Capacity
Tink 01	CIDCULAD	ft 1 00	ft 1 00		ft²	ft 0.25	cfs
Link-01 Link-02 Link-03	CIRCULAR TRIANGULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR TRIANGULAR TRIANGULAR TRIANGULAR TRIANGULAR TRIANGULAR TRIANGULAR TRIANGULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR TRAPEZOIDAL	1.50 1.50	23.00	1 1	17.25 1.77	0.25 0.74 0.38 1.25 0.31 1.66 0.31 0.50 0.25 0.97 0.30 0.31 0.50 0.31 0.50 0.31 0.50 0.31	66.58 5.42
Link-06 Link-10	CIRCULAR CIRCULAR	5.00 1.25	5.00 1.25	1	19.63 1.23	1.25 0.31	200.50
Link-12 Link-15	TRIANGULAR CIRCULAR	3.40 1.25	29.00 1.25	1 1	49.30 1.23	1.66 0.31	676.12 3.32
Link-18 Link-21	TRIANGULAR TRAPEZOIDAL	0.50 1.50	16.00 18.75	1	4.00 18.56	0.25 0.97	10.25 50.28
Link-23 Link-26	TRIANGULAR CIRCULAR	0.60 1.25	9.60 1.25	1	2.88 1.23	0.30 0.31	9.18
Link-27 Link-36	TRIANGULAR CIRCULAR	1.00	16.50	1	8.25 1.77	0.50	7.02
Link-38 Link-39	CIRCULAR CIRCULAR	2.00 1.50	2.00 1.50	1 1	3.14 1.77	0.50 0.38	38.01 4.64
Link-41 Link-44	TRAPEZOIDAL CIRCULAR	1.30	18.30 3.00	1	11.96 7.07	0.65 0.75	30.81 57.74
Link-45	TRAPEZOIDAL	6.00	20.00	1	66.00	2.79	938.00
Runoff Quant	tty Continuity	Volume acre-ft	Depth inches				
Total Precip	**************************************	67.228	3.997 0.020				
Surface Runc Continuity E	rror (%)	-0.000	0.020				
	**************** Continuity	Volume acre-ft	Volume Mgallons				
External Inf	10w	Volume acre-ft 0.000	0.000				
External Out Initial Stor	tow	39.891 0.000	12.999				
Continuity E	Grror (%)	-0.001	0.030				
Composite Cu	**************************************	tions Report					
Subbasin Sub							
	Description			Area (acres)	Soil Group	CN	
Row crops, s Paved parkin	cover, Good straight row, Good ag & roofs rea & Weighted CN			0.79 0.24 0.38 1.42	c c	74.00 85.00 98.00 82.33	
Subbasin Sub	b-03						
	Description			Area (acres)	Soil Group	CN	
Row crops, s > 75% grass	traight row, Good cover, Good			0.34 0.21	c c	85.00 74.00	
Paved parkin Composite Ar	ng & roofs rea & Weighted CN			0.10 0.65	С	98.00 83.57	
Subbasin Sub				Area	Soil		
Soil/Surface	Description			(acres)	Group		
> 75% grass				40.06 0.26	c c	85.00 74.00	
Paved parkin Composite Ar	ea & Weighted CN			0.21 40.53	C	85.00	
Subbasin Sub				Area	Soil		
	Description			Area (acres)	Group	CN	
> 75% grass Paved parkin				1.16 0.88 0.46 2.50	с с с	74.00 98.00 83.54	
Subbasin Sub							
	Description			Area (acres)		CN	
1 acre lots, Woods, Good	20% impervious			4.96 4.42	00000	79.00 70.00	
> 75% grass				78.44 0.30	c c	85.00 74.00	
Paved parkin Composite Ar	ea & Weighted CN			88.39	C	83.92	
Subbasin Sub	-07						
	Description			Area (acres)		CN	
> 75% grass Paved parkin Row crops. s				1.90 2.24 7.30	c c	74.00 98.00 85.00	
oropo, s	,,,,				-		

1/4 acre lots, 38% impervious Composite Area & Weighted CN	4.72 16.16	С	83.00 84.92
Subbasin Sub-08			
Soil/Surface Description	Area (acres)	Soil Group	CN
Row crops, straight row, Good	1.99	C	85.00
Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN	0.58 0.84 3.41	C C	98.00 74.00 84.48
Subbasin Sub-09			
Soil/Surface Description	Area (acres)	Soil Group	CN
Row crops, straight row, Good Composite Area & Weighted CN	4.69 4.69	c	85.00 85.00
Subbasin Sub-10			
Soil/Surface Description	Area (acres)	Soil Group	CN
Row crops, straight row, Good			
1/4 acre lots, 38% impervious > 75% grass cover, Good	2.02 1.55	c c c	83.00 74.00
Paved parking & roofs Composite Area & Weighted CN	1.10 30.47	С	98.00 84.78
Subbasin Sub-11	_		
Soil/Surface Description	Area (acres)	Soil Group	CN
> 75% grass cover, Good	0.11 0.47	C C	74.00 98.00
Paved parking & roofs Composite Area & Weighted CN	0.47	C	93.50
Subbasin Sub-12			
Soil/Surface Description	Area (acres)	Soil Group	
Row crops, straight row, Good	1.00	c c c	85.00
> 75% grass cover, Good Paved parking & roofs	0.38	C	98.00
1/4 acre lots, 38% impervious Composite Area & Weighted CN	0.33 2.13	C	84.84
Subbasin Sub-13			
Soil/Surface Description	Area (acres)		CN
Paved parking & roofs	0.23	C C	98.00
> 75% grass cover, Good Composite Area & Weighted CN	0.43	С	74.00 82.38
Subbasin Sub-15			
Soil/Surface Description	Area (acres)	Soil Group	CN
Paved parking & roofs	0.25	c c	98.00
> 75% grass cover, Good Composite Area & Weighted CN	0.72	C	82.34
Subbasin Sub-16			
Soil/Surface Description	Area (acres)	Soil Group	CN
> 75% grass cover, Good			
Paved parking & roofs Composite Area & Weighted CN	0.48 1.10	С	98.00 84.49
Subbasin Sub-17			
Soil/Surface Description	Area (acres)	Soil Group	CN
Row crops, straight row, Good Composite Area & Weighted CN	7.63 7.63	С	85.00 85.00
Subbasin Sub-18			
Soil/Surface Description	Area (acres)	Soil Group	CN
Paved parking & roofs	0.28	C C	98.00
> 75% grass cover, Good Composite Area & Weighted CN	0.27 0.55	C	74.00 86.06
Subbasin Sub-19	_		
Soil/Surface Description	Area (acres)	Soil Group	CN
Paved parking & roofs	0.12	D	98.00 74.00
> 75% grass cover, Good Composite Area & Weighted CN	0.14 0.26	С	85.09

********** Kirpich Time of Concentration Computations Report

Tc = (0.0078 * (L^0.77) * (S^-0.385))

 $\begin{array}{ll} {\rm Tc} \, = \, {\rm Time} \, \, {\rm of} \, \, {\rm Concentration} \, \, \, ({\rm min}) \\ {\rm L} \, & = \, {\rm Flow} \, \, {\rm length} \, \, \, ({\rm ft}) \\ {\rm S} \, & = \, {\rm Slope} \, \, \, ({\rm ft/ft}) \\ \end{array}$

Subbasin Sub-02					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		749.00 0.61 9.08	
Subbasin Sub-03					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		302.00 2.89 2.48	
Subbasin Sub-04					
User-De	fined	TOC override	(minutes)	:	47.40
Subbasin Sub-05					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		913.00 1.02 8.68	
Subbasin Sub-06					
User-De	fined	TOC override	(minutes)	:	48.24
Subbasin Sub-07					
		TOC override	(minutes)	:	41.88
Subbasin Sub-08					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):	1	068.00 0.43 13.65	
Subbasin Sub-09					
Flow le Slope (Compute	ngth %): d TOC	<pre>(ft): (minutes):</pre>		658.00 0.82 7.33	
Subbasin Sub-10					
		TOC override	(minutes)	:	45.00
Subbasin Sub-11					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		184.60 1.00 2.55	
Subbasin Sub-12					
Flow le Slope (Compute	%):	(ft): (minutes):		647.00 0.43 9.28	
Subbasin Sub-13					
Flow le Slope (Compute	2).	(ft): (minutes):		485.00 0.25 9.16	
Subbasin Sub-15					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		543.00 1.11 5.63	
Subbasin Sub-16					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		763.00 0.20 14.15	
Subbasin Sub-17					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		915.00 0.81 9.50	
Subbasin Sub-18					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		414.00 1.54 4.03	
Subbasin Sub-19					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		259.00 1.80 2.64	
compute					

Subbasin Runoff Summary

Subbasin ID	Total Precip	Total Runoff	Peak Runoff	Weighted Curve	Cono	Time of
10	in	in	cfs	Number	days	
Sub-02	4.00	2.23	4.50	82.330	0	00:09:04
Sub-03	4.00	2.33	2.42	83.570	0	00:05:00
Sub-04	4.00	2.46	65.27	85.000	0	00:47:24
Sub-05	4.00	2.33	8.26	83.540	0	00:08:40
Sub-06	4.00	2.36	135.38	83.920	0	00:48:14
Sub-07	4.00	2.45	28.29	84.920	0	00:41:52
Sub-08	4.00	2.41	10.48	84.480	0	00:13:39
Sub-09	4.00	2.46	17.00	85.000	0	00:07:19
Sub-10	4.00	2.44	50.41	84.780	0	00:45:00
Sub-11	4.00	3.27	2.81	93.500	0	00:05:00
Sub-12	4.00	2.44	7.30	84.840	0	00:09:16
Sub-13	4.00	2.23	2.10	82.380	0	00:09:09
Sub-15	4.00	2.23	2.52	82.340	0	00:05:37
Sub-16	4.00	2.41	3.35	84.490	0	00:14:09
Sub-17	4.00	2.46	26.13	85.000	0	00:09:30
Sub-18	4.00	2.55	2.21	86.060	0	00:05:00
Sub-19	4.00	2.46	1.02	85.090	0	00:05:00

Node ID	Average Depth	Maximum Depth	Maximum HGL		of Max rrence	Total Flooded	Total Time	Retentior Time
	Attained ft	Attained ft	Attained ft	days	hh:mm	Volume acre-in	Flooded minutes	hh:mm:ss
Jun-02	1.16	3.94	789.71	0	12:35	0	0	0:00:00
Jun-03	0.45	1.99	795.43	0	13:26	0	0	0:00:00
Jun-04	0.98	4.09	797.67	0	13:07	0	0	0:00:00
Jun-10	0.06	0.33	794.81	0	12:04	0	0	0:00:00
Jun-11	0.26	1.42	795.73	0	12:04	0	0	0:00:00
Jun-21	0.62	2.23	797.68	0	13:24	0	0	0:00:00
Jun-24	0.47	1.30	794.16	0	14:03	0	0	0:00:00
Jun-25	0.54	2.28	798.23	0	12:39	0	0	0:00:0
Jun-28	0.87	2.88	787.00	0	12:37	0	0	0:00:0
Jun-30	0.07	0.66	796.06	0	12:05	0	0	0:00:0
Jun-32	0.06	0.36	792.46	0	11:58	0	0	0:00:0
Jun-34	0.11	0.41	795.80	0	11:58	0	0	0:00:0
Jun-35	0.06	0.20	795.62	0	12:04	0	0	0:00:0
Jun-40	1.06	2.86	796.43	0	13:22	0	0	0:00:0
Out-02	0.00	0.00	783.38	0	00:00	0	0	0:00:0
Jun-01	0.44	1.83	791.72	0	12:06	0	0	0:00:0
Jun-05	1.22	4.07	797.67	0	13:25	0	0	0:00:0
Jun-06	1.01	3.12	797.68	0	13:24	0	0	0:00:0
Jun-12	0.36	1.85	795.26	0	12:55	0	0	0:00:0
Jun-20	0.66	1.78	796.32	0	12:38	0	0	0:00:0
sto	0.39	0.60	795.59	0	12:40	0	0	0:00:0
Storage	0.86	2.33	797.96	0	12:41	0	0	0:00:0

Node	Element	Maximum	Peak	T	ime of	Maximum	Time of Peak
ID	Type	Lateral	Inflow	Peak	Inflow	Flooding	Flooding
		Inflow		Occu	rrence	Overflow	Occurrence
		cfs	cfs	days	hh:mm	cfs	days hh:mm
Jun-02	JUNCTION	66.49	89.87	0	12:34		
	JUNCTION			0	13:15	0.00	
Jun-04	JUNCTION	2.76	124.04	0	13:14	0.00	
Jun-10	JUNCTION		3.18	0	12:04	0.00	
	JUNCTION		3.35	0	12:04	0.00	
Jun-21	JUNCTION			0	12:20		
Jun-24	JUNCTION	0.00	48.98	0	13:26	0.00	
Jun-25	JUNCTION	0.00	33.40	0	12:43	0.00	
Jun-28	JUNCTION		118.19	0	12:37		
Jun-30	JUNCTION	10.45	10.45	0	12:03	0.00	
Jun-32	JUNCTION	2.38	2.38	0	11:57	0.00	
Jun-34	JUNCTION	1.01	1.01	0	11:57	0.00	
Jun-35	JUNCTION	0.00	0.26	0	11:58	0.00	
Jun-40	JUNCTION		8.00	0	13:24		
Out-02	OUTFALL		118.19	0	12:38		
Jun-01	STORAGE		31.80	0	12:04	0.00	
Jun-05	STORAGE		105.99	0	13:15		
Jun-06	STORAGE	28.17	109.74	0	12:26		
Jun-12	STORAGE	19.02	38.58	0	12:37	0.00	
Jun-20	STORAGE	50.39	50.39	0	12:21	0.00	
sto	STORAGE	0.00	7.89	0	12:40	0.00	
Storage	STORAGE	135.22	146.80	0	12:26	0.00	

Storage Node ID	Maximum Ponded Volume 1000 ft ³	Maximum Ponded Volume (%)		of Max Ponded Volume hh:mm	Average Ponded Volume 1000 ft ³	Average Ponded Volume (%)	Maximum Storage Node Outflow cfs	Maximum Exfiltration Rate cfm	Time of Max. Exfiltration Rate hh:mm:ss	Total Exfiltrated Volume 1000 ft ³
Jun-01	0.171	2	0	12:06	0.014	0	31.53	0.00	0:00:00	0.000
Jun-05	61.278	86	0	13:25	9.120	13	123.91	0.00	0:00:00	0.000
Jun-06	220.597	42	0	13:24	35.537	7	65.10	0.00	0:00:00	0.000
Jun-12	12.098	8	0	12:55	0.426	0	30.51	0.00	0:00:00	0.000
Jun-20	66.923	58	0	12:38	9.402	8	35.52	0.00	0:00:00	0.000
sto	0.189	62	0	12:40	0.108	35	7.89	0.00	0:00:00	0.000
Storage	156.292	29	0	12:41	20.694	4	125.35	0.00	0:00:00	0.000

Outfall Node ID	Flow Frequency (%)	Average Flow cfs	Peak Inflow cfs
Out-02	75.76	27.66	118.19
System	75.76	27.66	118.19

***** Link Flow Summary

Link ID Link-01 Link-02	Element	T	ime of	Maximum	Length Factor	Peak Flow	Design	Ratio of	Ratio of	Total	Reported
Link-01	CONDUIT	0	18:02	4.25	1.00	3.32	0.44	7.46	1.00	346	SURCHARGED
Link-02	CHANNEL	0	13:58	3.03	1.00	45.47	66.58	0.68	0.93	0	Calculated
Link-U3	CONDUIT	U	12:41	5.96	1.00	7.88	5.42	1.45	0.70	U	> CAPACITY
Link-06	CONDUIT	0	12:35	6.88	1.00	89.38	200.50	0.45	0.63	0	
	CONDUIT	0	12:04	3.07	1.00	3.18	2.97	1.07	0.79	0	
	CHANNEL	0	12:23	2.97	1.06	43.42	676.12	0.06	0.79	0	Calculated
	CONDUIT	0	12:34		1.00	5.91				188	SURCHARGED
	CONDUIT	0	12:38	3.85	1.00	9.29				0	
Link-18	CHANNEL	0	12:04	1.17	1.00	3.16	10.25	0.31	0.82	0	
	CHANNEL	0	12:05	0.90	1.00	10.06	50.28	0.20	0.71	0	Calculated
Link-23	CHANNEL	0	11:58	1.27	1.00	2.35	9.18	0.26	0.80	0	Calculated
Link-26	CONDUIT	0	11:58	1.17	1.00	0.26	1.00	0.26	0.24	0	Calculated
Link-27	CHANNEL	0	12:04	0.10	1.00	0.20	15.10	0.01	0.58	0	Calculated
Link-36	CONDUIT	0	13:24	4.53	1.00	8.00	7.02	1.14	1.00	487	SURCHARGED
Link-37	CONDUIT	0	13:07	9.60	1.00	26.46	13.11	2.02	1.00	0	> CAPACITY
Link-38	CONDUIT	0	12:55	10.12	1.00	30.51	38.01	0.80	0.92	0	Calculated
Link-39	CONDUIT	0	13:24	4.76	1.00	8.00	4.64	1.72	0.93	0	> CAPACITY
Link-41	CHANNEL	0	13:40	4.76 3.43	1.00	40.99	30.81	1.33	1.00	7	FLOODED
Link-44	CONDUIT	0	12:06	7.60	1.00	31.53	57.74	0.55	0.57	0	Calculated
Link-45	CHANNEL	0	12:38	7.38	1.00	31.53 118.19	938.00	0.13	0.44	0	Calculated
Weir-01	WEIR	0	13:15			4.05			0.15		
Weir-02	WEIR	0	12:38			26.24			0.55		
Weir-04	WEIR	0	12:40			7.89			0.52		
Weir-05	WEIR	0	11:58			0.75			0.66		
Weir-06	WEIR	0	12:43			33.40			0.71		
Weir-07	WEIR	0	13:13			122.84			0.96		
Weir-08	WEIR	0	00:00			0.00			0.00		
Weir-09	CHANNEL CONDUIT CHANNEL WEIR WEIR WEIR WEIR WEIR WEIR WEIR WEIR	0	12:40			118.19 4.05 26.24 7.89 0.75 33.40 122.84 0.00 84.75 0.48 0.17 57.48 29.84			0.38		
Weir-10	WEIR	0	12:39			0.48			0.00		
Weir-11	WEIR	0	12:04			0.17			0.43		
Weir-12	WEIR	0	12:41			57.48			0.82		
Weir-13	WEIR	0	13:15			29.84			0.23		

Highest Flow Instability Indexes ******************
Link Weir-06 (25)
Link Link-15 (24)
Link Weir-07 (18)
Link Link-01 (17)
Link Link-37 (16)

WARNING 116: Conduit inlet invert elevation defined for Conduit Link-12 is below upstream node invert elevation.

WARNING 117: Conduit outlet invert elevation equal to upstream node invert elevation.

WARNING 117: Conduit outlet invert elevation defined for Conduit Link-12 is below downstream node invert elevation.

WARNING 108: Assumed conduit outlet invert elevation equal to downstream node invert elevation.

WARNING 109: Conduit outlet invert elevation defined for Conduit Link-16.

WARNING 117: Conduit outlet invert elevation defined for Conduit Link-16.

WARNING 118: Conduit inlet invert elevation equal to downstream node invert elevation.

Assumed conduit outlet invert elevation equal to upstream node invert elevation.

WARNING 116: Conduit inlet invert elevation equal to upstream node invert elevation.

WARNING 116: Conduit inlet invert elevation defined for Conduit Link-36 is below upstream node invert elevation.

WARNING 116: Conduit inlet invert elevation degual to upstream node invert elevation.

WARNING 116: Conduit inlet invert elevation degual to upstream node invert elevation.

WARNING 117: Conduit inlet invert elevation degual to upstream node invert elevation.

WARNING 118: Conduit inlet invert elevation degual to upstream node invert elevation.

WARNING 119: Conduit outlet invert elevation equal to upstream node invert elevation.

WARNING 119: Conduit outlet invert elevation equal to upstream node invert elevation.

WARNING 119: Wax/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-02.

WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-03.

WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-04.

WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-04.

WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun

Analysis began on: Thu Sep 16 21:37:35 2021 Analysis ended on: Thu Sep 16 21:37:47 2021 Total elapsed time: 00:00:12

| Cfs | Cfs

****** Element Count

Number of rain gages 2 Number of subbasins 17 Number of nodes 22 Number of links 32

****** Raingage Summary

Gage ID min Rain Gage-01 Rain Gage-02 CUMULATIVE

Subbasin Summary

Subbasin	Total Area	Flow Length	Average Slope	Peak Rate Factor	Raingage
ID	acres	ft	8	140001	
Sub-02	1.42	749.00	0.6100	484.00	Rain Gage-02
Sub-03	0.65	302.00	2.8900	484.00	Rain Gage-02
Sub-04	40.53	1968.00	0.6700	484.00	Rain Gage-02
Sub-05	2.49	913.00	1.0200	484.00	Rain Gage-02
Sub-06	88.38	2886.00	0.5300	484.00	Rain Gage-02
Sub-07	16.16	2738.00	0.8900	484.00	Rain Gage-02
Sub-08	3.41	1068.00	0.4300	484.00	Rain Gage-02
Sub-09	4.69	658.00	0.8200	484.00	Rain Gage-02
Sub-10	30.47	2139.00	0.9100	484.00	Rain Gage-02
Sub-11	0.58	184.60	1.0000	484.00	Rain Gage-02
Sub-12	2.13	647.00	0.4300	484.00	Rain Gage-02
Sub-13	0.67	485.00	0.2500	484.00	Rain Gage-02
Sub-15	0.72	543.00	1.1100	484.00	Rain Gage-02
Sub-16	1.10	763.00	0.2000	484.00	Rain Gage-02
Sub-17	7.63	915.00	0.8100	484.00	Rain Gage-02
Sub-18	0.55	414.00	1.5400	484.00	Rain Gage-02
Sub-19	0.26	259.00	1.8000	484.00	Rain Gage-02

Node Summary

Node ID		Invert Elevation ft		Area	
Jun-02 Jun-03 Jun-04 Jun-10 Jun-11 Jun-21 Jun-24 Jun-25 Jun-30 Jun-32 Jun-32 Jun-35 Jun-40 Out-02 Jun-01 Jun-05 Jun-05 Jun-05 Jun-12 Jun-12 Jun-20 sto	JUNCTION OUTFALL STORAGE STORAGE STORAGE STORAGE STORAGE	785.77 793.44 793.58 794.49 794.31 795.45 795.96 795.99 784.12 795.40 795.10 795.92 793.57 793.61 794.56 793.41 794.56 793.41	798.26 798.40 795.80 795.90 798.85 794.36 799.32 791.83 796.90 793.10 796.64 797.90 789.38 797.90 797.90 797.90	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
Storage	SIGNAGE	753.63	, , , , , , , , , , , , , , , , , , , ,	0.00	

Link Summary

From Node To Node Element Length
ft
-----38.2
691.6
65.0
78.7
23.3
20.0
27.6
33.2
237.3
561.9
267.3
30.2 Slope % Link Manning's Manning's Roughness
0.0250
0.0320
0.0250
0.0150
0.0250
0.0250
0.0250
0.0250
0.0320
0.0250
0.0320
0.0320
0.0320
0.0320
0.0320 Link ID Link-01 Link-02 Link-06 Link-10 Link-15 Link-15 Link-15 Link-21 Link-21 Link-21 Element
Type

CONDUIT
CHANNEL
CONDUIT
CONDUIT
CONDUIT
CONDUIT
CONDUIT
CHANNEL
CONDUIT
CHANNEL Jun-05
Jun-24
Storage
Jun-02
Jun-10
Jun-21
Jun-25
Jun-20
Jun-10
Jun-30
Jun-32
Jun-35 Jun-04 Jun-02 sto Jun-28 Jun-11 Jun-06 Jun-05 Jun-12 Jun-01 Jun-12 Jun-02 0.0576 1.0252 0.9863 0.7891 0.7841 4.4550 0.9786 0.0030 1.9389 0.3541 2.3691 CHANNEL CHANNEL
CONDUIT
CHANNEL
CONDUIT
CONDUIT
CONDUIT
CONDUIT
CONDUIT
CHANNEL
CONDUIT
CHANNEL
WEIR
WEIR
WEIR Jun-34 Jun-03 Jun-40 Jun-03 Jun-01 Jun-24 Jun-28 Out-02 Jun-04 Jun-04 Jun-12 Jun-02 0.0894 Link-26 Jun-35 0.0250 Link-26 Link-27 Link-36 Link-37 Link-38 Link-41 Link-44 Link-45 Weir-01 Weir-02 Jun-35 Jun-35 Jun-06 Jun-04 Jun-12 Jun-40 Jun-03 Jun-01 Jun-28 Jun-06 Jun-20 sto 30.2 501.1 124.7 73.8 93.7 98.3 105.5 185.4 31.1 0.0894 0.3951 0.5941 0.4474 3.7577 0.7224 0.5499 0.9979 2.3817 0.0250 0.0320 0.0150 0.0150 0.0250 0.0320 0.0150 0.0320

Weir-05 Weir-06 Weir-07 Weir-08 Weir-09 Weir-10 Weir-11 Weir-12 Weir-13	sto Storage Jun-05 Jun-01 Storage Jun-25 Jun-11 Jun-05 Jun-04	Jun-34 Jun-25 Jun-04 Jun-28 Jun-06 Jun-05 Jun-28 Jun-06 Jun-03	WEIR WEIR WEIR WEIR WEIR WEIR WEIR WEIR				
******	*****						
Cross Section ************************************	*****	Depth/	Width	No. of	Cross	Full Flow	Design
ID	-	Diameter		No. of Barrels	Sectional Area	Hydraulic Radius	Flow Capacity
Link-01	CIRCULAR	1.00	1.00	1	0.79	0.25	0.44
Link-02 Link-03	TRIANGULAR CIRCULAR	1.50 1.50	23.00 1.50	1	17.25 1.77	0.74	66.58 5.42
Link-06 Link-10 Link-12	CIRCULAR CIRCULAR TRIANGULAR	5.00 1.25 3.40	5.00 1.25 29.00	1 1	19.63 1.23 49.30	1.25 0.31 1.66	200.50 2.97 676.12
Link-15 Link-16	CIRCULAR CIRCULAR	1.25	1.25	1 1	1.23 3.14	0.31 0.50	3.32 0.65
Link-18 Link-21 Link-23	TRIANGULAR TRAPEZOIDAL TRIANGULAR	0.50 1.50	16.00 18.75 9.60	1 1	4.00 18.56 2.88	0.25 0.97	10.25 50.28 9.18
Link-26 Link-27	CIRCULAR TRIANGULAR	1.25 1.00	1.25 16.50	1 1	1.23 8.25	0.31 0.50	1.00 15.10
Link-36 Link-37	CIRCULAR CIRCULAR	1.50 2.00	1.50 2.00	1	1.77 3.14	0.38 0.50	7.02 13.11
Link-39 Link-41	CIRCULAR TRAPEZOIDAL	1.50 1.30	1.50 18.30	1 1	1.77 11.96	0.38 0.65	4.64 30.81
Link-44 Link-45	CIRCULAR TRIANGULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR TRIANGULAR CIRCULAR TRIANGULAR TRIANGULAR TRIANGULAR TRIANGULAR TRIANGULAR TRIANGULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR TRIAPEZOIDAL	3.00 6.00	3.00 20.00	1	7.07 66.00	0.75 2.79	57.74 938.00
Runoff Quantit	y Continuity	acre-ft	inches				
Surface Runoff Continuity Err	ation or (%)	0.410 -0.000	4.597 0.024				
**************** Flow Routing C	*************	Volume acre-ft	Volume Mgallons				
++++++++++++	*********** W	0.000	0.000				
External Outil Initial Stored Final Stored V	ow	0.000 11.734	23.961 0.000 3.824				
Continuity Err	or (%)	-0.847					
Composite Curv	**************** e Number Computa	tions Report					
Subbasin Sub-0							
Soil/Surface D	escription			Area (acres)			
Paved parking	aight row, Good			0.79 0.24 0.38 1.42	0 0 0	74.00 85.00 98.00 82.33	
Subbasin Sub-0	3			Area	Soil		
Soil/Surface D				Area (acres)	Soil Group	CN	
Row crops, str > 75% grass co Paved parking Composite Area	& roofs			0.34 0.21 0.10 0.65	c c	85.00 74.00 98.00 83.57	
Subbasin Sub-0				Area	Soil		
Soil/Surface D				(acres)	Group		
> 75% grass co Paved parking				40.06 0.26 0.21 40.53	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	85.00 74.00 98.00 85.00	
Subbasin Sub-0				Area	Soil		
Soil/Surface D	escription aight row, Good			(acres)	Group	CN	
> 75% grass co Paved parking	ver, Good			0.88 0.46 2.50	000	74.00 98.00 83.54	
Subbasin Sub-0	 6 			Area	Soil		
Soil/Surface D				(acres)	Group	CN	
Woods, Good Row crops, str	0% impervious aight row, Good			4.96 4.42 78.44	c c	79.00 70.00 85.00	
> 75% grass co Paved parking	ver, Good			0.30 0.27 88.39	0000	74.00 98.00 83.92	
Subbasin Sub-0	7			3.00-	0.13		
Soil/Surface D				Area (acres)		CN	
> 75% grass co Paved parking Row crops, str				1.90 2.24 7.30	c c	74.00 98.00 85.00	

1/4 acre lots, 38% impervious Composite Area & Weighted CN	4.72 16.16	С	83.00 84.92
Subbasin Sub-08			
Soil/Surface Description	Area (acres)	Soil Group	CN
Row crops, straight row, Good	1.99	C	85.00
Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN	0.58 0.84 3.41	C C	98.00 74.00 84.48
Subbasin Sub-09			
Soil/Surface Description	Area (acres)	Soil Group	CN
Row crops, straight row, Good Composite Area & Weighted CN	4.69 4.69	c	85.00 85.00
Subbasin Sub-10			
Soil/Surface Description	Area (acres)	Soil Group	CN
Row crops, straight row, Good			
1/4 acre lots, 38% impervious > 75% grass cover, Good	2.02 1.55	c c c	83.00 74.00
Paved parking & roofs Composite Area & Weighted CN	1.10 30.47	С	98.00 84.78
Subbasin Sub-11	_		
Soil/Surface Description	Area (acres)	Soil Group	CN
> 75% grass cover, Good	0.11 0.47	C C	74.00 98.00
Paved parking & roofs Composite Area & Weighted CN	0.47	C	93.50
Subbasin Sub-12			
Soil/Surface Description	Area (acres)	Soil Group	
Row crops, straight row, Good	1.00	c c c	85.00
> 75% grass cover, Good Paved parking & roofs	0.38	C	98.00
1/4 acre lots, 38% impervious Composite Area & Weighted CN	0.33 2.13	C	84.84
Subbasin Sub-13			
Soil/Surface Description	Area (acres)		CN
Paved parking & roofs	0.23	C C	98.00
> 75% grass cover, Good Composite Area & Weighted CN	0.43	С	74.00 82.38
Subbasin Sub-15			
Soil/Surface Description	Area (acres)	Soil Group	CN
Paved parking & roofs	0.25	c c	98.00
> 75% grass cover, Good Composite Area & Weighted CN	0.72	C	82.34
Subbasin Sub-16			
Soil/Surface Description	Area (acres)	Soil Group	CN
> 75% grass cover, Good			
Paved parking & roofs Composite Area & Weighted CN	0.48 1.10	С	98.00 84.49
Subbasin Sub-17			
Soil/Surface Description	Area (acres)	Soil Group	CN
Row crops, straight row, Good Composite Area & Weighted CN	7.63 7.63	С	85.00 85.00
Subbasin Sub-18			
Soil/Surface Description	Area (acres)	Soil Group	CN
Paved parking & roofs	0.28	C C	98.00
> 75% grass cover, Good Composite Area & Weighted CN	0.27 0.55	C	74.00 86.06
Subbasin Sub-19	_		
Soil/Surface Description	Area (acres)	Soil Group	CN
Paved parking & roofs	0.12	D	98.00 74.00
> 75% grass cover, Good Composite Area & Weighted CN	0.14 0.26	С	85.09

********** Kirpich Time of Concentration Computations Report

Tc = (0.0078 * (L^0.77) * (S^-0.385))

 $\begin{array}{ll} {\rm Tc} \, = \, {\rm Time} \, \, {\rm of} \, \, {\rm Concentration} \, \, \, ({\rm min}) \\ {\rm L} \, & = \, {\rm Flow} \, \, {\rm length} \, \, \, ({\rm ft}) \\ {\rm S} \, & = \, {\rm Slope} \, \, \, ({\rm ft/ft}) \\ \end{array}$

Subbasin Sub-02					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		749.00 0.61 9.08	
Subbasin Sub-03					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		302.00 2.89 2.48	
Subbasin Sub-04					
User-De	fined	TOC override	(minutes)	:	47.40
Subbasin Sub-05					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		913.00 1.02 8.68	
Subbasin Sub-06					
User-De	fined	TOC override	(minutes)	:	48.24
Subbasin Sub-07					
		TOC override	(minutes)	:	41.88
Subbasin Sub-08					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):	1	068.00 0.43 13.65	
Subbasin Sub-09					
Flow le Slope (Compute	ngth %): d TOC	<pre>(ft): (minutes):</pre>		658.00 0.82 7.33	
Subbasin Sub-10					
		TOC override	(minutes)	:	45.00
Subbasin Sub-11					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		184.60 1.00 2.55	
Subbasin Sub-12					
Flow le Slope (Compute	%):	(ft): (minutes):		647.00 0.43 9.28	
Subbasin Sub-13					
Flow le Slope (Compute	2).	(ft): (minutes):		485.00 0.25 9.16	
Subbasin Sub-15					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		543.00 1.11 5.63	
Subbasin Sub-16					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		763.00 0.20 14.15	
Subbasin Sub-17					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		915.00 0.81 9.50	
Subbasin Sub-18					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		414.00 1.54 4.03	
Subbasin Sub-19					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		259.00 1.80 2.64	
compute					

Subbasin Runoff Summary

Subbasin ID	Total Precip	Total Runoff	Peak Runoff	Weighted Curve	Conc	Time of entration
	in	in	cfs	Number	days	hh:mm:ss
Sub-02	4.60	2.75	5.54	82.330	0	00:09:04
Sub-03	4.60	2.87	2.95	83.570	0	00:05:00
Sub-04	4.60	3.00	79.91	85.000	0	00:47:24
Sub-05	4.60	2.86	10.10	83.540	0	00:08:40
Sub-06	4.60	2.90	165.89	83.920	0	00:48:14
Sub-07	4.60	2.99	34.48	84.920	0	00:41:52
Sub-08	4.60	2.95	12.76	84.480	0	00:13:39
Sub-09	4.60	3.00	20.66	85.000	0	00:07:19
Sub-10	4.60	2.98	61.77	84.780	0	00:45:00
Sub-11	4.60	3.86	3.29	93.500	0	00:05:00
Sub-12	4.60	2.98	8.87	84.840	0	00:09:16
Sub-13	4.60	2.76	2.58	82.380	0	00:09:09
Sub-15	4.60	2.75	3.10	82.340	0	00:05:37
Sub-16	4.60	2.95	4.08	84.490	0	00:14:09
Sub-17	4.60	3.00	31.72	85.000	0	00:09:30
Sub-18	4.60	3.10	2.67	86.060	0	00:05:00
Sub-19	4.60	3.01	1.24	85.090	0	00:05:00

Node ID	Average Depth Attained ft	Maximum Depth Attained ft	Maximum HGL Attained ft		of Max irrence hh:mm	Total Flooded Volume acre-in	Total Time Flooded minutes	Retention Time hh:mm:ss
Jun-02	1.74	4.55	790.32	0	12:31	0	0	0:00:00
Jun-03	0.87	3.87	797.31	0	12:57	0	0	0:00:00
Jun-04	0.24	4.82	798.40	0	12:57	0	0	0:00:00
Jun-10	0.07	0.34	794.82	0	12:04	0	0	0:00:00
Jun-11	0.27	1.51	795.82	0	12:04	0	0	0:00:00
Jun-21	1.26	2.48	797.93	0	13:17	0	0	0:00:00
Jun-24	0.72	1.30	794.16	0	12:56	0	0	0:00:00
Jun-25	1.06	2.70	798.65	0	12:43	0	0	0:00:00
Jun-28	1.25	3.16	787.28	0	12:31	0	0	0:00:00
Jun-30	0.08	0.74	796.14	0	12:05	0	0	0:00:00
Jun-32	0.07	0.39	792.49	0	11:58	0	0	0:00:00
Jun-34	0.12	0.49	795.88	0	13:03	0	0	0:00:00
Jun-35	0.07	0.84	796.26	0	13:03	0	0	0:00:00
Jun-40	1.61	3.02	796.59	0	13:14	0	0	0:00:00
Out-02	0.00	0.00	783.38	0	00:00	0	0	0:00:00
Jun-01	0.48	1.97	791.86	0	12:06	0	0	0:00:00
Jun-05	2.26	4.29	797.90	0	13:05	115.46	545	0:00:00
Jun-06	1.75	3.37	797.93	0	13:17	0	0	0:00:00
Jun-12	0.42	2.34	795.75	0	13:01	0	0	0:00:00
Jun-20	0.70	1.87	796.41	0	12:35	0	0	0:00:00
sto	0.41	0.62	795.60	0	13:03	0	0	0:00:00
Storage	1.29	2.42	798.04	0	12:41	0	0	0:00:00

Node ID	Element Type	Lateral	Inflow	Peak	Inflow	Maximum Flooding Overflow	F1	ooding
		cfs				cfs		
Jun-02	JUNCTION							
Jun-03	JUNCTION	3.09	180.88	Ö	12:56	0.00		
Jun-04	JUNCTION	3.22	173.06	0	12:55	0.00		
Jun-10	JUNCTION	0.00	3.47	0	12:04	0.00		
Jun-11	JUNCTION	4.07	4.07	0	12:04	0.00		
Jun-21	JUNCTION	34.40	34.40	0	12:20	0.00		
Jun-24	JUNCTION	0.00	48.68	0	12:50	0.00		
Jun-25	JUNCTION	0.00	52.08	0	12:39	0.00		
Jun-28	JUNCTION	0.00	143.27	0	12:31	0.00		
Jun-30	JUNCTION	12.72	12.72	0	12:04	0.00		
Jun-32	JUNCTION	2.91	2.91	0	11:57	0.00		
Jun-34	JUNCTION	1.22	1.60	0	13:03	0.00		
Jun-35	JUNCTION		5.66	0	12:59	0.00		
	JUNCTION		8.27			0.00		
Out-02	OUTFALL			0	12:31	0.00		
Jun-01	STORAGE	5.54	35.22	0	12:04	0.00		
Jun-05	STORAGE	8.87	114.16	0	12:51	54.55	0	13:17
Jun-06	STORAGE	34.26	134.10	0	12:34	0.00		
Jun-12			51.45			0.00		
Jun-20		61.71				0.00		
sto	STORAGE	0.00	9.54	0	13:03	0.00		
Storage	STORAGE	165.73	199.22	0	12:31	0.00		

Storage Node ID	Maximum Ponded Volume 1000 ft ³	Maximum Ponded Volume (%)	,	of Max Ponded Volume hh:mm	Average Ponded Volume 1000 ft ³	Average Ponded Volume (%)	Maximum Storage Node Outflow cfs	Maximum Exfiltration Rate cfm	Time of Max. Exfiltration Rate hh:mm:ss	Total Exfiltrated Volume 1000 ft ³
Jun-01	0.236	2	0	12:06	0.020	0	34.95	0.00	0:00:00	0.000
Jun-05	71.371	100	0	13:05	34.238	48	172.53	0.00	0:00:00	0.000
Jun-06	294.969	56	0	13:17	137.126	26	93.04	0.00	0:00:00	0.000
Jun-12	34.084	23	0	13:01	1.581	1	31.62	0.00	0:00:00	0.000
Jun-20	75.054	65	0	12:35	10.539	9	47.48	0.00	0:00:00	0.000
sto	0.203	66	0	13:03	0.122	40	9.54	0.00	0:00:00	0.000
Storage	186.634	34	0	12:41	70.398	13	167.42	0.00	0:00:00	0.000

Outfall	Node	ID	Flow Frequency (%)	Average Flow cfs	Peak Inflow cfs
Out-02			77.69	47.79	143.27
System			77.69	47.79	143.27

***** Link Flow Summary

Link ID Link-01 Link-02	Element	T	ime of	Maximum	Length	Peak Flow	Design	Ratio of	Ratio of	Total	Reported
Link-01	CONDUIT	0	13:51	5.34	1.00	3.84	0.44	8.64	1.00	71	SURCHARGED
Link-02	CHANNEL	0	13:43	3.03	1.00	45.46	66.58	0.68	0.93	0	Calculated
Link-03	CONDUIT	0	12:41	6.06	1.00	8.02	5.42	1.48	0./1	U	> CAPACITY
Link-06	CONDUIT	0	12:31	7.35	1.00	111.39	200.50	0.56	0.72	0	
Link-10	CONDUIT	0	12:04	3.30	1.00	3.47	2.97	1.17	0.80	0	
Link-12	CHANNEL	0	12:20	2.96	1.06	49.62	676.12	0.07	0.86	0	Calculated
	CONDUIT	0	12:29	5.17	1.00	6.01				689	
Link-16	CONDUIT	0	12:35	3.97	1.00	10.04			0.75	0	> CAPACITY
Link-18	CHANNEL	0	12:04	1.25	1.00	3.46	10.25	0.34	0.83	0	
	CHANNEL	0	12:05	1.02	1.00	12.29	50.28	0.24	0.75	0	Calculated
Link-23	CHANNEL.	0	11:58	1.47	1.00	2.88	9.18	0.31	0.82	0	Calculated
Link-26	CONDUIT	0	13:03	2.31	1.00	1.53	1.00	1.52	0.53	0	> CAPACITY
Link-27	CHANNEL.	0	12:59	1.22	1.00	5.66	15.10	0.37	0.92	0	Calculated
Link-36	CONDUIT	0	13:15 12:46	4.68	1.00	8.27	7.02	1.18	1.00	728	SURCHARGED
Link-37	CONDUIT	0	12:46	9.63	1.00	26.53	13.11	2.02	1.00	5	SURCHARGED
Link-38	CONDUIT	0	13:01	10.18	1.00	31.62	38.01	0.83	0.97	0	Calculated
Link-39	CONDUIT	0	13:15	4.82	1.00	8.27	4.64	1.78	0.93	0	> CAPACITY
Link-41	CHANNEL	0	12:50	4.82 3.40	1.00	40.63	30.81	1.32	1.00	13	FLOODED
Link-44	CONDUIT	0	12:06	7.77	1.00	34.95	57.74	0.61	0.61	0	Calculated
Link-45	CHANNEL	0	13:01 13:15 12:50 12:06 12:31	7.70	1.00	34.95 143.27	938.00	0.15	0.49	0	Calculated
Weir-01	WEIR	0	12:57			22.21			0.88		
Weir-02	WEIR	0	12:35			37.44			0.64		
Weir-04	WEIR	0	13:03			9.54			0.57		
Weir-05	WEIR	0	13:03			1.60			0.94		
Weir-06	WEIR	0	12:39			52.08			0.81		
Weir-07	WEIR	0	12:55			171.21			1.00		
Weir-08	WEIR	0	00:00			0.00			0.00		
Weir-09	CHANNEL CONDUIT CHANNEL WEIR WEIR WEIR WEIR WEIR WEIR WEIR WEIR	0	12:38			143.27 22.21 37.44 9.54 1.60 52.08 171.21 0.00 107.58 4.76 0.60 84.94 171.65			0.42		
Weir-10	WEIR	0	12:43			4.76			0.29		
Weir-11	WEIR	0	12:04			0.60			0.72		
Weir-12	WEIR	0	12:57			84.94			1.00		
Weir-13	WEIR	0	12:57			171.65			1.00		

Highest Flow Instability Indexes *******************
Link Link-36 (41)
Link Link-39 (39)
Link Weir-09 (28)
Link Weir-12 (27)
Link Weir-06 (5)

WARNING 116: Conduit inlet invert elevation defined for Conduit Link-12 is below upstream node invert elevation.

WARNING 117: Conduit outlet invert elevation equal to upstream node invert elevation.

WARNING 117: Conduit outlet invert elevation defined for Conduit Link-12 is below downstream node invert elevation.

WARNING 108: Assumed conduit outlet invert elevation equal to downstream node invert elevation.

WARNING 109: Conduit outlet invert elevation defined for Conduit Link-16.

WARNING 117: Conduit outlet invert elevation defined for Conduit Link-16.

WARNING 118: Conduit inlet invert elevation equal to downstream node invert elevation.

Assumed conduit outlet invert elevation equal to upstream node invert elevation.

WARNING 116: Conduit inlet invert elevation equal to upstream node invert elevation.

WARNING 116: Conduit inlet invert elevation defined for Conduit Link-36 is below upstream node invert elevation.

WARNING 116: Conduit inlet invert elevation degual to upstream node invert elevation.

WARNING 116: Conduit inlet invert elevation degual to upstream node invert elevation.

WARNING 117: Conduit outlet invert elevation degual to upstream node invert elevation.

WARNING 118: Conduit outlet invert elevation equal to upstream node invert elevation.

WARNING 119: Conduit outlet invert elevation equal to upstream node invert elevation.

WARNING 119: Wax/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-02.

WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-03.

WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-04.

WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-04.

WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-04.

WARNING 002: Max/rim elevation (depth) increased to account for connecting condu

Analysis began on: Thu Sep 16 21:41:37 2021 Analysis ended on: Thu Sep 16 21:41:51 2021 Total elapsed time: 00:00:14

Analysis Options

| Cfs | Cfs

****** Element Count

Number of rain gages 2 Number of subbasins 17 Number of nodes 22 Number of links 32

..... Raingage Summary

Data Type Gage ID Rain Gage-01 Rain Gage-02 2-year 100-year CUMULATIVE

Subbasin Summary

Subbasin Raingage Length ft Area Slope % Factor 1.42 0.65 40.53 2.49 88.38 16.16 3.41 4.69 Rain Gage-02
Rain Gage-02 749.00 302.00 1968.00 913.00 2886.00 2738.00 1068.00 0.6100 2.8900 0.6700 1.0200 0.5300 0.8900 0.4300 Sub-02 Sub-03 Sub-04 Sub-05 Sub-06 Sub-07 Sub-08 484.00 484.00 484.00 484.00 484.00 484.00 484.00 484.00 484.00 484.00 484.00 484.00 484.00 484.00 484.00 484.00 484.00 Sub-09 658.00 0.8200 Sub-09 Sub-10 Sub-11 Sub-12 Sub-13 Sub-15 Sub-16 Sub-17 Sub-18 Sub-19 4.69 30.47 0.58 2.13 0.67 0.72 1.10 7.63 0.55 0.26 0.8200 0.9100 1.0000 0.4300 0.2500 1.1100 0.2000 0.8100 1.5400 1.8000 2139.00 184.60 184.60 647.00 485.00 543.00 763.00 915.00 414.00 259.00 Rain Gage-02 Rain Gage-02

CUMULATIVE

Node Summary

Node ID	Element Type		Elev. ft	Area ft²	
Jun-02	JUNCTION	785.77		0.00	
Jun-03		793.44			
Jun-04		793.58		0.00	
Jun-10	JUNCTION	794.49			
Jun-11	JUNCTION	794.31	795.90	0.00	
Jun-21	JUNCTION	795.45	798.85	0.00	
Jun-24	JUNCTION	792.86	794.36	0.00	
Jun-25	JUNCTION	795.95	799.32	0.00	
Jun-28	JUNCTION	784.12	791.83	0.00	
Jun-30	JUNCTION	795.40	796.90	0.00	
Jun-32	JUNCTION	792.10	793.10	0.00	
Jun-34	JUNCTION	795.39	796.64	0.00	
Jun-35	JUNCTION	795.42	796.67	0.00	
Jun-40	JUNCTION	793.57	797.90	0.00	
Out-02	OUTFALL	783.38	789.38	0.00	
Jun-01	STORAGE	789.89	793.40	0.00	
Jun-05	STORAGE	793.61	797.90	0.00	
Jun-06	STORAGE	794.56		0.00	
Jun-12	STORAGE	793.41	797.00	0.00	
Jun-20	STORAGE	794.54		0.00	
sto	STORAGE	794.99		0.00	
Storage	STORAGE	795 63	799 00	0.00	

Link Summary

From Node To Node Link Element Length Slope % Manning's Link ID Link-01 Link-02 Link-03 Link-06 Link-10 Link-15 Link-15 Link-16 Link-18 Link-21 Link-23 Link-23 Element
Type

CONDUIT
CHANNEL
CONDUIT
CONDUIT
CONDUIT
CHANNEL
CONDUIT
CHANNEL
CONDUIT
CHANNEL Jun-05 Jun-24 Storage Jun-02 Jun-10 Jun-21 Jun-25 Jun-20 Jun-10 Jun-30 Jun-32 Jun-32 Jun-35 Roughness 0.0250 0.0320 0.0250 0.0250 0.0150 0.0250 0.0320 0.0250 0.0250 Jun-04 Jun-02 sto Jun-28 Jun-11 Jun-06 Jun-05 Jun-12 Jun-01 Jun-12 Jun-02 0.0576 1.0252 0.9863 0.7891 0.7841 4.4550 0.9786 0.0030 1.9389 38.2 691.6 65.0 78.7 23.3 20.0 27.6 33.2 237.3 561.9 267.3 CHANNEL 0.3541 2.3691 30.2 Link-26 Jun-35 Jun-34 CONDUIT 0.0894 0.0250 Link-26 Link-27 Link-36 Link-37 Link-38 Link-41 Link-44 Link-45 Weir-01 Weir-02 0.0894 0.3951 0.5941 0.4474 3.7577 0.7224 0.5499 0.9979 2.3817 Jun-35 Jun-03 Jun-40 CHANNEL CONDUIT 501.1 124.7 0.0320 Jun-35 Jun-06 Jun-04 Jun-12 Jun-40 Jun-03 Jun-01 Jun-28 Jun-06 Jun-20 sto 0.0150 Jun-03 Jun-01 Jun-24 Jun-24 Jun-28 Out-02 Jun-04 Jun-12 Jun-02 CONDUIT CONDUIT CONDUIT CHANNEL CONDUIT CHANNEL WEIR WEIR 0.0150 0.0150 0.0150 0.0250 0.0320 0.0150 0.0320

Weir-05 Weir-06 Weir-07 Weir-08 Weir-09 Weir-10 Weir-11 Weir-12	sto Storage Jun-05 Jun-01 Storage Jun-25 Jun-11 Jun-05 Jun-04	Jun-34 Jun-25 Jun-04 Jun-28 Jun-06 Jun-05 Jun-28 Jun-06 Jun-03	WEIR WEIR WEIR WEIR WEIR WEIR WEIR WEIR				
*******	*****						
Cross Section	******	Denth/	Width	No of	Cross	Full Flow	Design
ID	Snape	Diameter	WIGGI	No. of Barrels	Sectional Area	Hydraulic Radius	Flow Capacity
* i = h 01	OTDOW AD	ft	ft		ft²	ft 	cfs
Link-01 Link-02 Link-03	TRIANGULAR CIRCULAR	1.50 1.50	23.00 1.50	1	17.25 1.77	0.74 0.38	66.58 5.42
Link-06 Link-10	CIRCULAR CIRCULAR	5.00 1.25	5.00 1.25	1	19.63 1.23	1.25 0.31	200.50 2.97
Link-12 Link-15	TRIANGULAR CIRCULAR	3.40 1.25	29.00 1.25	1 1	49.30 1.23	1.66 0.31	676.12 3.32
Link-18 Link-21	TRIANGULAR TRAPEZOIDAL	0.50 1.50	16.00 18.75	1	4.00 18.56	0.25 0.97	10.25 50.28
Link-23 Link-26	TRIANGULAR CIRCULAR	0.60 1.25	9.60 1.25	1	2.88 1.23	0.30 0.31	9.18 1.00
Link-27 Link-36 Link-37	CIRCULAR CIRCULAR	1.50	1.50	1	1.77 3.14	0.38 0.50	7.02 13.11
Link-38 Link-39	CIRCULAR CIRCULAR	2.00 1.50	2.00 1.50	1	3.14 1.77	0.50 0.38	38.01 4.64
Link-41 Link-44	CIRCULAR TRIANGULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR TRIANGULAR TRIANGULAR TRIANGULAR TRIANGULAR TRIANGULAR TRIANGULAR TRIANGULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR TRAPEZOIDAL	1.30	18.30	1	11.96 7.07	0.25 0.74 0.38 1.25 0.31 1.66 0.31 0.50 0.25 0.97 0.30 0.31 0.50 0.31 0.50 0.31 0.50	30.81 57.74
Link-45	TRAPEZOIDAL	6.00	20.00	1	66.00	2.79	938.00
Runoff Quant	**************************************	Volume acre-ft	Depth inches				
Total Precip	**************************************	94.119	5.596 0.032				
Continuity E	rror (%)	-0.000	0.032				
	**************************************	Volume acre-ft	Volume Mgallons				
************ External Inf	**************************************	Volume acre-ft 0.000	0.000				
External Out Initial Stor	************ low	81.358 0.000	26.512 0.000				
Continuity E	rror (%)	-0.655	3.841				
Composite Cu	**************************************	tions Report					
Subbasin Sub							
	Description			Area (acres)	Soil Group	CN	
Row crops, s Paved parkin	cover, Good traight row, Good g & roofs ea & Weighted CN			0.79 0.24 0.38 1.42	c c	74.00 85.00 98.00 82.33	
Subbasin Sub	-03						
	Description			Area (acres)	Soil Group	CN	
	traight row, Good			0.34	c c	85.00 74.00	
Paved parkin				0.10 0.65	Ċ	98.00 83.57	
Subbasin Sub							
Soil/Surface	Description			Area (acres)			
> 75% grass				40.06 0.26	c c	85.00 74.00	
	ea & Weighted CN			0.21 40.53	С	98.00 85.00	
Subbasin Sub							
Soil/Surface	Description			Area (acres)	Soil Group	CN	
> 75% grass Paved parkin				1.16 0.88 0.46 2.50	C C C	85.00 74.00 98.00 83.54	
Subbasin Sub	 i-06 						
	Description			Area (acres)		CN	
Woods, Good				4.96 4.42	C C	79.00 70.00	
> 75% grass Paved parkin	g & roofs			78.44 0.30 0.27 88.39	00000	85.00 74.00 98.00 83.92	
Composite Ar				00.39		03.32	
				Area (acres)	Soil Group	CN	
> 75% grass	cover, Good			1.90			
Paved parkin Row crops, s	g & roofs traight row, Good			2.24 7.30	c c	98.00 85.00	

1/4 acre lots, 38% impervious Composite Area & Weighted CN	4.72 16.16	С	83.00 84.92
Subbasin Sub-08			
Soil/Surface Description	Area (acres)	Soil Group	CN
Row crops, straight row, Good	1.99	C	85.00
Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN	0.58 0.84 3.41	C C	98.00 74.00 84.48
Subbasin Sub-09			
Soil/Surface Description	Area (acres)	Soil Group	CN
Row crops, straight row, Good Composite Area & Weighted CN	4.69 4.69	c	85.00 85.00
Subbasin Sub-10			
Soil/Surface Description	Area (acres)	Soil Group	CN
Row crops, straight row, Good			
1/4 acre lots, 38% impervious > 75% grass cover, Good	2.02 1.55	c c c	83.00 74.00
Paved parking & roofs Composite Area & Weighted CN	1.10 30.47	С	98.00 84.78
Subbasin Sub-11	_		
Soil/Surface Description	Area (acres)	Soil Group	CN
> 75% grass cover, Good	0.11 0.47	C C	74.00 98.00
Paved parking & roofs Composite Area & Weighted CN	0.47	C	93.50
Subbasin Sub-12			
Soil/Surface Description	Area (acres)	Soil Group	
Row crops, straight row, Good	1.00	c c c	85.00
> 75% grass cover, Good Paved parking & roofs	0.38	C	98.00
1/4 acre lots, 38% impervious Composite Area & Weighted CN	0.33 2.13	C	84.84
Subbasin Sub-13			
Soil/Surface Description	Area (acres)		CN
Paved parking & roofs	0.23	C C	98.00
> 75% grass cover, Good Composite Area & Weighted CN	0.43	С	74.00 82.38
Subbasin Sub-15			
Soil/Surface Description	Area (acres)	Soil Group	CN
Paved parking & roofs	0.25	c c	98.00
> 75% grass cover, Good Composite Area & Weighted CN	0.72	C	82.34
Subbasin Sub-16			
Soil/Surface Description	Area (acres)	Soil Group	CN
> 75% grass cover, Good			
Paved parking & roofs Composite Area & Weighted CN	0.48 1.10	С	98.00 84.49
Subbasin Sub-17			
Soil/Surface Description	Area (acres)	Soil Group	CN
Row crops, straight row, Good Composite Area & Weighted CN	7.63 7.63	С	85.00 85.00
Subbasin Sub-18			
Soil/Surface Description	Area (acres)	Soil Group	CN
Paved parking & roofs	0.28	C C	98.00
> 75% grass cover, Good Composite Area & Weighted CN	0.27 0.55	C	74.00 86.06
Subbasin Sub-19	_		
Soil/Surface Description	Area (acres)	Soil Group	CN
Paved parking & roofs	0.12	D	98.00 74.00
> 75% grass cover, Good Composite Area & Weighted CN	0.14 0.26	С	85.09

********** Kirpich Time of Concentration Computations Report

Tc = (0.0078 * (L^0.77) * (S^-0.385))

 $\begin{array}{ll} {\rm Tc} \, = \, {\rm Time} \, \, {\rm of} \, \, {\rm Concentration} \, \, \, ({\rm min}) \\ {\rm L} \, & = \, {\rm Flow} \, \, {\rm length} \, \, \, ({\rm ft}) \\ {\rm S} \, & = \, {\rm Slope} \, \, \, ({\rm ft/ft}) \\ \end{array}$

Subbasin Sub-02					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		749.00 0.61 9.08	
Subbasin Sub-03					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		302.00 2.89 2.48	
Subbasin Sub-04					
User-De	fined	TOC override	(minutes)	:	47.40
Subbasin Sub-05					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		913.00 1.02 8.68	
Subbasin Sub-06					
User-De	fined	TOC override	(minutes)	:	48.24
Subbasin Sub-07					
		TOC override	(minutes)	:	41.88
Subbasin Sub-08					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):	1	068.00 0.43 13.65	
Subbasin Sub-09					
Flow le Slope (Compute	ngth %): d TOC	<pre>(ft): (minutes):</pre>		658.00 0.82 7.33	
Subbasin Sub-10					
		TOC override	(minutes)	:	45.00
Subbasin Sub-11					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		184.60 1.00 2.55	
Subbasin Sub-12					
Flow le Slope (Compute	%):	(ft): (minutes):		647.00 0.43 9.28	
Subbasin Sub-13					
Flow le Slope (Compute	2).	(ft): (minutes):		485.00 0.25 9.16	
Subbasin Sub-15					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		543.00 1.11 5.63	
Subbasin Sub-16					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		763.00 0.20 14.15	
Subbasin Sub-17					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		915.00 0.81 9.50	
Subbasin Sub-18					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		414.00 1.54 4.03	
Subbasin Sub-19					
Flow le Slope (Compute	ngth %): d TOC	(ft): (minutes):		259.00 1.80 2.64	
compute					

Subbasin Runoff Summary

Subbasin ID	Total Precip in	Total Runoff in	Peak Runoff cfs	Weighted Curve Number		Time of entration hh:mm:ss
Sub-02	5.60	3.65	7.31	82.330	0	00:09:04
Sub-03	5.60	3.78	3.86	83.570	0	00:05:00
Sub-04	5.60	3.93	103.94	85.000	0	00:47:24
Sub-05	5.60	3.78	13.22	83.540	0	00:08:40
Sub-06	5.60	3.81	217.82	83.920	0	00:48:14
Sub-07	5.60	3.92	44.96	84.920	0	00:41:52
Sub-08	5.60	3.87	16.57	84.480	0	00:13:39
Sub-09	5.60	3.93	26.78	85.000	0	00:07:19
Sub-10	5.60	3.90	80.60	84.780	0	00:45:00
Sub-11	5.60	4.84	4.07	93.500	0	00:05:00
Sub-12	5.60	3.91	11.52	84.840	0	00:09:16
Sub-13	5.60	3.66	3.40	82.380	0	00:09:09
Sub-15	5.60	3.65	4.08	82.340	0	00:05:37
Sub-16	5.60	3.87	5.30	84.490	0	00:14:09
Sub-17	5.60	3.93	41.16	85.000	0	00:09:30
Sub-18	5.60	4.04	3.44	86.060	0	00:05:00
Sub-19	5.60	3.94	1.60	85.090	0	00:05:00

| Node | Average | Maximum | Depth | Attained | Attaine

Node	Element						Time of Peak		
ID	Type		Inflow				Flooding Flo		
		Inflow	-						
		CIS				cfs			
Jun-02	JUNCTION					0.00			
Jun-03	JUNCTION	4.06	229.29	0	13:10	0.00			
Jun-04	JUNCTION	3.99	235.44	0	13:12	0.00			
Jun-10	JUNCTION	0.00	3.84	0	12:04	0.00			
Jun-11	JUNCTION	5.29	5.29	0	12:04	0.00			
Jun-21	JUNCTION	44.96	44.96	0	12:20	0.00			
Jun-24	JUNCTION	0.00	47.63	0	13:12	0.00			
Jun-25	JUNCTION		63.51	0	13:00	0.00			
Jun-28	JUNCTION			0	12:24				
Jun-30	JUNCTION			0	12:04	0.00			
Jun-32	JUNCTION		3.80	0	11:58	0.00			
Jun-34	JUNCTION			0	11:58				
Jun-35	JUNCTION		3.92	0	12:40	0.00			
Jun-40	JUNCTION		8.38	0	12:59				
Out-02	OUTFALL			0	12:24				
Jun-01	STORAGE	7.30	39.53	0	12:04	0.00			
Jun-05	STORAGE		174.20	0	13:12		0	13:00	
Jun-06	STORAGE	44.52	196.31	0	12:37	0.00			
Jun-12	STORAGE		69.85	0	12:33				
Jun-20	STORAGE	80.29		0	12:22	0.00			
sto	STORAGE	0.00	9.49	0	12:46	0.00			
Storage	STORAGE	217.22	268.03	0	12:25	0.00			

Storage Node ID	Maximum Ponded Volume 1000 ft ³	Maximum Ponded Volume (%)		of Max Ponded Volume hh:mm	Average Ponded Volume 1000 ft ³	Average Ponded Volume (%)	Maximum Storage Node Outflow cfs	Maximum Exfiltration Rate cfm	Time of Max. Exfiltration Rate hh:mm:ss	Total Exfiltrated Volume 1000 ft ³
Jun-01	0.342	3	0	12:05	0.031	0	39.16	0.00	0:00:00	0.000
Jun-05	71.371	100	0	12:41	34.862	49	221.36	0.00	0:00:00	0.000
Jun-06	330.079	63	0	12:58	140.669	27	132.56	0.00	0:00:00	0.000
Jun-12	77.348	52	0	13:02	5.391	4	33.79	0.00	0:00:00	0.000
Jun-20	86.812	7.5	0	12:33	13.809	12	66.62	0.00	0:00:00	0.000
sto	0.203	66	0	12:46	0.129	42	9.49	0.00	0:00:00	0.000
Storage	238.832	44	0	12:43	74.606	14	200.70	0.00	0:00:00	0.000

(Outfall	Node	ID	Flow Frequency (%)	Average Flow cfs	Peak Inflow cfs
-	Out-02			80.67	50.93	177.00
	System			80.67	50.93	177.00

***** Link Flow Summary

Link ID	Element Type CONDUIT	Peal Occur days	ime of k Flow rrence hh:mm	Maximum Velocity Attained ft/sec	Length Factor	Peak Flow during Analysis cfs	Design Flow Capacity cfs	Ratio of Maximum /Design Flow	Ratio of Maximum Flow Depth	Total Time Surcharged minutes	Reported Condition
Link-01	CONDUIT	0	13:09	5.34	1.00	4.06	0.44	9.13	1.00	58	SURCHARGED
Link-02	CHANNEL	0	13:59	3.02	1.00	45.42	66.58	0.68	0.94	0	Calculated
Link-03	CONDUIT	0	12:45	6.22	1.00	8.26	5.42	1.52	0.71	0	> CAPACITY
Link-06	CONDUIT	0	12:24	8.39	1.00	143.39	200.50	0.72	0.81	0	Calculated
Link-10	CONDUIT	0	12:04	3.58	1.00	3.84	2.97	1.29	0.82	0	> CAPACITY
Link-12	CHANNEL	0	12:15	3.01	1.06	55.37	676.12	0.08	0.88	0 698	Calculated
Link-15	CONDUIT	0	12:20	5.16	1.00	6.17	3.32	1.86	1.00	698	SURCHARGED
	CONDUIT	0	12:25	4.08	1.00	10.76	0.65	16.65	0.92	0	> CAPACITY
	CHANNEL	0	12:04	1.34	1.00	3.82	10.25	0.37	0.85	0	Calculated
Link-21	CHANNEL	0	12:05	1.25	1.00	16.07	50.28	0.32	0.81	0	Calculated
	CHANNEL	0	11:58	1.78	1.00	3.77			0.86	0	Calculated
Link-26	CONDUIT	0	12:46	1.97	1.00	1.13	1.00	1.12	0.47	0	> CAPACITY
Link-27	CHANNEL	0	12:40	1.00	1.00	3.92	15.10	0.26	0.86	0	Calculated
Link-36	CONDUIT	0	12:59	4.74	1.00	8.38	7.02	1.19	1.00	732	SURCHARGED
	CONDUIT	0	12:32	9.64	1.00	26.46	13.11	2.02	1.00	3	SURCHARGED
Link-38	CONDUIT	0	13:03	10.79	1.00	33.79	38.01	0.89	0.99	0	Calculated
Link-39	CONDUIT	0	12:58	4.88	1.00	8.38	4.64	1.81	0.94	0	> CAPACITY
Link-41	CHANNEL	0	13:12	3.28	1.00	39.28	30.81	1.27	1.00	33	FLOODED
T.ink-44	CONDUTT	0	12:05	7.94	1.00	39.16	57.74	0.68	0.66	0	Calculated
Link-45	CHANNEL WEIR WEIR WEIR	Ö	12:24	8.07	1.00	39.16 177.00	938.00	0.19	0.54	0	Calculated
Weir-01	WEIR	0	12:37			21.68			1.00		
Weir-02	WEIR	0	12:31			56.09			0.76		
Weir-04	WEIR	0	12:46			9.49			0.57		
Weir-05	WEIR	0	12:46			1.23			0.83		
Weir-06	WEIR	0	13:00			63.51			0.93		
Weir-07	WEIR	0	13:00			217.30			1.00		
Weir-08	WEIR	0	00:00			0.00			0.00		
Weir-09	WEIR WEIR WEIR	0	12:34			177.00 21.68 56.09 9.49 1.23 63.51 217.30 0.00 143.45 13.26 1.45 116.83 214.76			0.51		
Weir-10	WEIR WEIR WEIR WEIR	0	13:00			13.26			0.73		
Weir-11	WEIR	Ö	12:04			1.45			1.00		
Weir-12	WEIR	0	13:00			116.83			1.00		
Weir-13	WEIR	0	13:11			214.76			1.00		

Highest Flow Instability Indexes *******************
Link Link-36 (40)
Link Link-39 (39)
Link Weir-09 (22)
Link Weir-12 (21)
Link Weir-06 (8)

WARNING 116: Conduit inlet invert elevation defined for Conduit Link-12 is below upstream node invert elevation.

WARNING 117: Conduit outlet invert elevation equal to upstream node invert elevation.

WARNING 117: Conduit outlet invert elevation defined for Conduit Link-12 is below downstream node invert elevation.

WARNING 108: Assumed conduit outlet invert elevation equal to downstream node invert elevation.

WARNING 109: Conduit outlet invert elevation defined for Conduit Link-16.

WARNING 117: Conduit outlet invert elevation defined for Conduit Link-16.

WARNING 118: Conduit inlet invert elevation equal to downstream node invert elevation.

Assumed conduit outlet invert elevation equal to upstream node invert elevation.

WARNING 116: Conduit inlet invert elevation equal to upstream node invert elevation.

WARNING 116: Conduit inlet invert elevation defined for Conduit Link-36 is below upstream node invert elevation.

WARNING 116: Conduit inlet invert elevation degual to upstream node invert elevation.

WARNING 116: Conduit inlet invert elevation degual to upstream node invert elevation.

WARNING 117: Conduit outlet invert elevation degual to upstream node invert elevation.

WARNING 118: Conduit outlet invert elevation equal to upstream node invert elevation.

WARNING 119: Conduit outlet invert elevation equal to upstream node invert elevation.

WARNING 119: Wax/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-02.

WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-03.

WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-04.

WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-04.

WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-04.

WARNING 002: Max/rim elevation (depth) increased to account for connecting condu

Analysis began on: Thu Sep 16 21:46:22 2021 Analysis ended on: Thu Sep 16 21:46:35 2021 Total elapsed time: 00:00:13

Appendix G - Proposed Condition Storm and Sanitary Analysis Calculations

******* Project Description

File Name Proposed Conditions R2.SPF

Analysis Options

***** Element Count

Number of rain gages 1
Number of subbasins 27
Number of nodes 26
Number of links 37

Raingage Summary

Gage ID Rain Gage-02 2-year CUMULATIVE 6.00

Subbasin Summary

Subbasin ID	Total Area acres	Flow Length ft	Average Slope %	Peak Rate Factor	Raingage
Sub-02	1.01	680.27	0.4700	484.00	Rain Gage-02
Sub-03	0.64	302.00	2.8900	484.00	Rain Gage-02
Sub-04	40.54	1968.00	0.6700	484.00	Rain Gage-02
Sub-05	2.33	944.03	0.8700	484.00	Rain Gage-02
Sub-06	88.19	2886.00	0.5300	484.00	Rain Gage-02
Sub-07	16.21	2738.00	0.8900	484.00	Rain Gage-02
Sub-08	3.24	908.73	0.5100	484.00	Rain Gage-02
Sub-09	4.53	633.32	0.8900	484.00	Rain Gage-02
Sub-10	30.47	2139.00	0.9100	484.00	Rain Gage-02
Sub-11	0.43	184.60	1.0000	484.00	Rain Gage-02
Sub-12	2.09	647.00	0.4300	484.00	Rain Gage-02
Sub-13	0.74	485.00	0.2500	484.00	Rain Gage-02
Sub-15	0.74	543.00	1.1100	484.00	Rain Gage-02
Sub-16	1.04	777.36	0.3700	484.00	Rain Gage-02
Sub-17	7.63	915.00	0.8100	484.00	Rain Gage-02
Sub-18	0.43	326.96	2.0400	484.00	Rain Gage-02
Sub-19	0.26	259.00	1.8000	484.00	Rain Gage-02
Sub-22	0.16	120.60	1.5800	484.00	Rain Gage-02
Sub-23	0.17	133.76	1.4300	484.00	Rain Gage-02
Sub-24	0.11	144.70	0.4700	484.00	Rain Gage-02
Sub-25	0.13	149.80	4.4300	484.00	Rain Gage-02
Sub-26	0.13	172.20	1.0400	484.00	Rain Gage-02
Sub-27	0.11	103.90	0.7220	484.00	Rain Gage-02
Sub-28	0.15	184.80	0.8400	484.00	Rain Gage-02
Sub-29	0.12	155.80	0.7200	484.00	Rain Gage-02
Sub-30	0.14	137.70	1.3000	484.00	Rain Gage-02
Sub-31	0.10	174.20	2.7000	484.00	Rain Gage-02

Node Summary

Node ID	Element Type	Elevation		Area	Inflow
Jun-02 Jun-03 Jun-04	JUNCTION	785.77 793.64 794.00	798.04	0.00	
Jun-10 Jun-11	JUNCTION JUNCTION	792.95 793.13	795.80 795.90	0.00	
Jun-21 Jun-24 Jun-25	JUNCTION	795.45 793.25 795.95	794.75	0.00	
Jun-28 Jun-30	JUNCTION JUNCTION	784.12 795.40	791.83 797.15	0.00	
Jun-34	JUNCTION JUNCTION JUNCTION	792.10 795.39 795.42	796.64	0.00	
Jun-40 Jun-46	JUNCTION JUNCTION	793.80 792.00	799.47 794.50	0.00	
Jun-47 Out-02 Jun-01	OUTFALL	792.99 783.38 789.90	789.38	0.00	
Jun-05 Jun-06	STORAGE STORAGE	794.29 794.26	797.90 798.60	0.00	
Jun-20	STORAGE	792.37 794.40 794.99	796.80	0.00	
Storage	STORAGE	795.63	799.00	0.00	

******* Inlet Summary

Number Catchbasin of Invert Inlets Elevation Initial Water Elevation Inlet Rim Elevation Grate Clogging Factor Inlet ID Inlet Manufacturer Manufacturer Inlet Location Ponded Area ft2 ft Inlet-01 Inlet-02 FHWA HEC-22 GENERIC FHWA HEC-22 GENERIC 10.00 On Sag On Grade 793.60 794.00 798.43 798.45 793.60 794.00 N/A N/A

....... Roadway and Gutter Summary

Roadway
Longitudinal
Slope Roadway Cross Slope Roadway Manning's Roughness Gutter Cross Slope Gutter Gutter Width Depression Inlet ID

		ft/:	ft ft/ft		ft/ft	:	ft	in	
Inlet-01 Inlet-02		0.02	- 0.0150 50 0.0150	0.0160 0.0160	0.0400	2.	.50 .50	0.00	
************ Link Summar ********* Link ID	y *	vode	To Node	Element Type		Length ft	Slope %	Manning's Roughness	
Link-01 Link-02 Link-03 Link-03 Link-06 Link-10 Link-16 Link-15 Link-16 Link-16 Link-21 Link-26 Link-27 Link-36 Link-37 Link-36 Link-37 Link-39 Link-39 Link-41 Link-44 Link-45 Link-45 Link-46 Link-47 Link-48 Link-49 Link-49 Link-50 Weir-07 Weir-08 Weir-07 Weir-08 Weir-07 Weir-08 Weir-07 Weir-08 Weir-09 Weir-09 Weir-09 Weir-09 Weir-09 Weir-11 Weir-12 Weir-13	Jun-0: Jun-2: Storac Jun-0: Jun-1: Jun-2: Jun-2: Jun-1: Jun-3: Jun-3: Jun-3: Jun-0: Ju	5 4 4 2 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Jun-04 Jun-47 sto Jun-28 Jun-10 Jun-06 Jun-06 Jun-06 Jun-12 Jun-01 Jun-02 Jun-12 Jun-03 Jun-04 Jun-03 Jun-46 Jun-24 Jun-24 Jun-24 Jun-24 Jun-24 Jun-24 Jun-25 Jun-10 Jun-07 Jun-07 Jun-07 Jun-07 Jun-07 Jun-08 Jun-0	Element Type CONDUIT CHANNEL CONDUIT CONDUIT CONDUIT CONDUIT CHANNEL CONDUIT CHANNEL CHANNEL CONDUIT CHANNEL WEIR WEIR WEIR WEIR WEIR WEIR WEIR WEIR		34.4 44.0 65.0 65.0 78.7 24.6 20.0 27.6 28.0 172.4 92.4 92.4 92.6 130.2 121.6 80.3 121.6 80.3 131.6 97.7 182	0.8440 0.5912 0.9963 0.7891 0.7308 5.9600 0.9786 0.7143 0.5509 0.5392 2.3691 0.0894 0.3615 0.3782 0.486 0.2380 0.3933 1.0180 0.3933 1.0180 0.394 0.3953 1.0180 0.3953 0.39	0.0150 0.0320 0.0250 0.0150 0.0250 0.0250 0.0250 0.0320 0.0320 0.0320 0.0320 0.0320 0.0320 0.0320 0.0150 0.0150 0.0150 0.0320 0.0320 0.0320	
Cross Secti *********** Link ID	on Summary	è	Depth/ Diameter	Width	No. Barr	of els	Cross Sectional	Full Flow Hydraulic	Design Flow Capacity
Link-01 Link-02 Link-02 Link-06 Link-10 Link-16 Link-15 Link-15 Link-21 Link-23 Link-23 Link-27 Link-37 Link-37 Link-39 Link-41 Link-45 Link-45 Link-44 Link-45 Link-46 Link-47 Link-46 Link-47 Link-48 Link-48 Link-49 Link-50 Link-40 Link-5	CIRCL TRAPH CIRCL	JUAR ZZOTDAL JUAR JUAR JUAR JUAR JUAR JUAR JUAR JUAR	ft 1.25 1.50 1.50 1.50 1.25 3.40 1.25 2.00 1.75 0.60 1.25 1.00 1.50 1.50 1.50 1.50 1.50 1.50 1.5	ft 1.25 19.00 1.50 2.00 1.25 2.00 20.00 1.25 16.50 1.25 2.00 20.00 16.25 16.50 1.50 2.00 20.00 19.00 19.00 11.00 11.00 14.00			ft² 1.23 17.25 1.77 19.63 49.30 49.30 1.23 3.144 24.00 17.72 2.88 1.23 8.25 1.77 3.14 4.91 1.77 15.40 7.07 66.00 17.25 0.79 0.79 0.79	Radius ft	5.14 57.13 5.42 200.50 2.80 782.03 3.33 9.94 91.91 62.73 9.18 1.00 14.44 5.60 13.13 17.34 5.73 9.80 10.00 14.84 5.73 17.34 5.74 5.74 5.74 5.74 5.74 5.74 5.74 5.7
*********** Transect Su	mmary								
Transect XS Area:	0.0003 0.0091 0.0307 0.0688 0.1320	0.0794 0.1477 0.2415	0.0023 0.0162 0.0431 0.0910 0.1644 0.2634 0.3877 0.5376 0.7129	0.1037 0.1822 0.2862	0.0063 0.0254 0.0592 0.1173 0.2010 0.3100 0.4446 0.6047 0.7902 1.0000				
Hrad:	0.0213 0.1275 0.2338	0.0425 0.1488 0.2551	0.0638 0.1701	0.0850 0.1913 0.2681	0.1063 0.2126 0.2788 0.3558 0.4492 0.5489 0.6516 0.7559 0.8613 1.0000				
Width:	0.0117 0.0704 0.1292 0.2338 0.3517 0.4697 0.5876	0.0235 0.0822 0.1409 0.2574 0.3753 0.4932 0.6112 0.7291	0.0352 0.0939 0.1630 0.2810 0.3989 0.5168 0.6348	0.0470 0.1057 0.1866 0.3046 0.4225 0.5404 0.6583 0.7763					
*********** Runoff Quan *******	tity Contin	nuity	Volume acre-ft	Depth inches					

Total Precipitation Surface Runoff Continuity Error (%)	45.410 0.183 -0.000	2.700 0.011			
**************************************	Volume acre-ft	Volume Mgallons			
External Inflow	0.000	0.000			
Initial Stored Volume Final Stored Volume Continuity Error (%)	0.000 21.971 0.000 0.003	0.000			
Continuity Error (%)	0.001	0.001			
**************************************	ions Report				
Subbasin Sub-02			Area	Soil	
Soil/Surface Description		(Soil Group	
Paved parking & roofs > 75% grass cover, Good			0.27 0.50	c c	98.00 74.00
Row crops, straight row, Good Composite Area & Weighted CN			0.24 1.01	С	85.00 83.04
Subbasin Sub-03					
			Area	Soil Group	
Soil/Surface Description Row crops, straight row, Good					
> 75% grass cover, Good Paved parking & roofs			0.21	c c	74.00
Composite Area & Weighted CN			0.65	Ü	83.57
Subbasin Sub-04					
Soil/Surface Description		(Area acres)	Soil Group C C C	CN
Row crops, straight row, Good > 75% grass cover, Good			40.06	C C	85.00 74.00
Paved parking & roofs Composite Area & Weighted CN			0.21 40.53	Ċ	98.00 85.00
Subbasin Sub-05					
Soil/Surface Description			Area acres)	Soil Group	CN
Row crops, straight row, Good			1.16		85.00
> 75% grass cover, Good Paved roads with curbs & sewers Composite Area & Weighted CN	ŧ		0.88 0.28 2.32	C C C	74.00 98.00 82.40
Subbasin Sub-06					
Soil/Surface Description		(Area acres)	Soil Group	CN
Soil/Surface Description 1 acre lots, 20% impervious			4.96	Soil Group	79.00
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good			4.96 4.42 78.44	Soil Group C C	79.00 70.00 85.00 74.00
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs			4.96 4.42		CN 79.00 70.00 85.00 74.00 98.00 83.92
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN			4.96 4.42 78.44 0.30 0.27	Soil Group C C C C	79.00 70.00 85.00 74.00 98.00 83.92
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Now crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN			4.96 4.42 78.44 0.30 0.27 88.39	c c c	79.00 70.00 85.00 74.00 98.00 83.92
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Now crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN			4.96 4.42 78.44 0.30 0.27 88.39	C C C C C Soil Group	79.00 70.00 85.00 74.00 98.00 83.92
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN			4.96 4.42 78.44 0.30 0.27 88.39 Area acres) 1.90 2.24 7.30	C C C C C C C C C C C C C C C C C C C	79.00 70.00 85.00 74.00 98.00 83.92 CN 74.00 98.00 98.00
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Now crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN			4.96 4.42 78.44 0.30 0.27 88.39 Area acres)	C C C C C Soil Group	79.00 70.00 85.00 74.00 98.00 83.92 CN 74.00 98.00 98.00
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN Subbasin Sub-07 Soil/Surface Description > 75% grass cover, Good Paved parking & roofs Row crops, straight row, Good 1/4 acre lots, 38% impervious			4.96 4.42 78.44 0.30 0.27 88.39 Area acres) 1.90 2.24 7.30 4.72	C C C C C C C C C C C C C C C C C C C	79.00 70.00 85.00 74.00 98.00 83.92 CN
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN Subbasin Sub-07 Soil/Surface Description > 75% grass cover, Good Paved parking & roofs Row crops, straight row, Good 1/4 acre lots, 38% impervious Composite Area & Weighted CN		(4.96 4.42 78.44 0.30 0.27 88.39 Area acres) 1.90 2.24 7.30 4.72	Soil Group C C	79.00 70.00 85.00 74.00 98.00 83.92 CN 74.00 98.00 98.00 98.00 98.00 98.00 98.00
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN Subbasin Sub-07 Soil/Surface Description > 75% grass cover, Good Paved parking & roofs Row crops, straight row, Good 1/4 acre lots, 38% impervious Composite Area & Weighted CN Subbasin Sub-08 Soil/Surface Description Row crops, straight row, Good		(4.96 4.42 78.44 0.30 0.27 88.39 Area acres) 1.90 2.24 7.30 4.72 16.16	Soil Group	79.00 70.00 85.00 74.00 98.00 83.92 CN 74.00 98.00 85.00 85.00 84.92
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN Subbasin Sub-07 Soil/Surface Description > 75% grass cover, Good Paved parking & roofs Row crops, straight row, Good 1/4 acre lots, 38% impervious Composite Area & Weighted CN Subbasin Sub-08 Soil/Surface Description Row crops, straight row, Good Paved parking & roofs Row crops, straight row, Good Paved parking & roofs Row crops, straight row, Good Paved parking & roofs > 75% grass cover, Good		(4.96 4.42 78.44 0.30 0.27 88.39 Area acres) 1.90 4.72 16.16 Area acres) 1.99 0.36 0.89	Soil Group C C	79.00 70.00 85.00 74.00 98.00 83.92 CN 74.00 98.00 85.00 85.00 85.00 84.92
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN Subbasin Sub-07		(4.96 4.42 78.44 0.30 0.27 88.39 Area acres) 1.90 2.24 7.30 4.72 16.16 Area acres)	Soil Group	79.00 70.00 85.00 74.00 98.00 83.92 CN 74.00 98.00 85.00 85.00 84.92
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN Subbasin Sub-07 Soil/Surface Description > 75% grass cover, Good Paved parking & roofs Row crops, straight row, Good 1/4 acre lots, 38% impervious Composite Area & Weighted CN Subbasin Sub-08 Soil/Surface Description Row crops, straight row, Good Paved parking & roofs Row crops, straight row, Good Paved parking & roofs Row crops, straight row, Good Paved parking & roofs > 75% grass cover, Good			4.96 4.42 78.44 0.30 0.27 88.39 Area acres) 1.90 2.24 7.30 4.72 16.16 Area acres) 1.99 0.36 0.89 3.24	Soil Group C C C C C C C C C C C C C C C C C C C	79.00 70.00 85.00 74.00 98.00 83.92 CN 74.00 85.00 84.92 CN CN CN CN 3.00 84.92
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN Subbasin Sub-07			4.96 4.42 78.44 0.30 0.27 88.39 Area acres) 1.90 2.24 7.30 4.72 16.16 Area acres 1.99 0.36 0.89 3.24	Soil Group C C C C C C C C C C C C C C C C C C	79.00 70.00 74.00 85.00 74.00 83.92 CN 74.00 83.92 CN 74.00 85.00 84.92 CN 85.00 84.92
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN Subbasin Sub-07 Soil/Surface Description > 75% grass cover, Good Paved parking & roofs Row crops, straight row, Good 1/4 acre lots, 38% impervious Composite Area & Weighted CN Subbasin Sub-08 Soil/Surface Description Row crops, straight row, Good Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN Subbasin Sub-09 Subbasin Sub-09 Subbasin Sub-09 Subbasin Sub-09			4.96 4.42 78.44 0.30 0.27 88.39 Area acres) 1.90 2.24 7.30 4.72 16.16 Area acres 1.99 0.36 0.89 3.24	Soil Group C C C C C C C C C C C C C C C C C C C	79.00 70.00 74.00 85.00 74.00 83.92 CN 74.00 83.92 CN 74.00 85.00 84.92 CN 85.00 84.92
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN Subbasin Sub-07 Soil/Surface Description > 75% grass cover, Good Paved parking & roofs Row crops, straight row, Good 1/4 acre lots, 38% impervious Composite Area & Weighted CN Subbasin Sub-08 Soil/Surface Description Row crops, straight row, Good Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN Subbasin Sub-08 Soil/Surface Description Row crops, straight row, Good Composite Area & Weighted CN Subbasin Sub-09 Soil/Surface Description Row crops, straight row, Good > 75% grass cover, Good Row crops, straight row, Good > 75% grass cover, Good			4.96 4.42 78.44 0.30 0.27 88.39 Area acres)	Soil Group C C C C C C C C C C C C C C C C C C	79.00 70.00 74.00 85.00 74.00 83.92 CN 74.00 85.00 84.92 CN 85.00 84.92 CN 85.00 84.92
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN		(4.96 4.42 78.44 0.30 0.27 88.39 Area acres)	Soil Group C C C C C C C C C C C C C C C C C C	79.00 70.00 70.00 85.00 74.00 98.00 83.92 CN 74.00 85.00 84.92 CN CN 85.00 74.00 83.44
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN			4.96 4.496 4.42 78.44 0.30 0.27 88.39 Area acres) 1.90 2.24 7.30 4.72 16.16 Area acres) 3.24 Area acres) 4.53 0.09 4.62	Soil Group C C C C C C C C C C C C C C C C C C	79.00 70.00 70.00 85.00 74.00 98.00 83.92 CN 74.00 98.00 85.00 84.92 CN CN CN CN 85.00 84.92
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN			4.96 4.496 4.42 78.44 0.30 0.27 88.39 Area acres) 1.90 2.24 7.30 4.72 16.16 Area acres) 3.24 Area acres) 4.53 0.09 4.62	Soil Group C C C C C C C C C C C C C C C C C C	79.00 70.00 70.00 85.00 74.00 98.00 83.92 CN 74.00 98.00 85.00 84.92 CN CN CN CN 85.00 84.92
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN Subbasin Sub-07 Soil/Surface Description > 75% grass cover, Good Paved parking & roofs Row crops, straight row, Good 1/4 acre lots, 38% impervious Composite Area & Weighted CN Subbasin Sub-08 Soil/Surface Description Row crops, straight row, Good Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN Subbasin Sub-09 Soil/Surface Description Row crops, straight row, Good > 75% grass cover, Good Composite Area & Weighted CN Subbasin Sub-09 Soil/Surface Description Row crops, straight row, Good > 75% grass cover, Good Composite Area & Weighted CN Subbasin Sub-10 Soil/Surface Description Row crops, straight row, Good 1/4 acre lots, 38% impervious > 75% grass cover, Good Raved parking & roofs Composite Area & Weighted CN			4.96 4.496 4.42 78.44 0.30 0.27 88.39 Area acres) 1.90 2.24 7.30 4.72 16.16 Area acres) 3.24 Area acres) 4.53 0.09 4.62	Soil Group C C C C C C C C C C C C C C C C C C	79.00 70.00 70.00 85.00 74.00 98.00 83.92 CN 74.00 98.00 85.00 84.92 CN CN CN CN 85.00 84.92
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN Subbasin Sub-07 Soil/Surface Description > 75% grass cover, Good Paved parking & roofs Row crops, straight row, Good 1/4 acre lots, 38% impervious Composite Area & Weighted CN Subbasin Sub-08 Soil/Surface Description Row crops, straight row, Good Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN Subbasin Sub-09 Soil/Surface Description Row crops, straight row, Good Composite Area & Weighted CN Subbasin Sub-09 Soil/Surface Description Row crops, straight row, Good Composite Area & Weighted CN Subbasin Sub-09 Soil/Surface Description Row crops, straight row, Good Composite Area & Weighted CN Subbasin Sub-10 Soil/Surface Description Row crops, straight row, Good 1/4 acre lots, 38% impervious > 75% grass cover, Good Raved parking & roofs			4.96 4.496 4.42 78.44 0.30 0.27 88.39 Area acres) 1.90 2.24 7.30 2.24 4.72 16.16 Area acres) 1.99 0.36 0.89 3.24 Area acres) 2.80 2.90 4.62	Soil Group C C C C C C C C C C C C C C C C C C	79.00 70.00 74.00 85.00 74.00 83.92 CN 74.00 85.00 85.00 84.92 CN CN 85.00 84.92 CN CN 85.00 84.92 CN CN CN CN CN 85.00 84.92
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN Subbasin Sub-07 Soil/Surface Description > 75% grass cover, Good Paved parking & roofs Row crops, straight row, Good 1/4 acre lots, 38% impervious Composite Area & Weighted CN Subbasin Sub-08 Soil/Surface Description Row crops, straight row, Good Paved parking & roofs Composite Area & Weighted CN Subbasin Sub-08 Soil/Surface Description Row crops, straight row, Good Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN Subbasin Sub-09 Soil/Surface Description Row crops, straight row, Good > 75% grass cover, Good Composite Area & Weighted CN Subbasin Sub-10 Soil/Surface Description Row crops, straight row, Good > 75% grass cover, Good Composite Area & Weighted CN Subbasin Sub-10 Soil/Surface Description Row crops, straight row, Good 1/4 acre lots, 38% impervious > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN			A.96 4.96 4.42 78.44 0.30 0.27 88.39 Area acres) 1.90 2.24 7.30 4.72 16.16 Area acres) 4.53 0.09 4.62 Area acres) 2.5.80 2.02 1.55 1.10 30.47	Soil Group C C C C C C C C C C C C C C C C C C	79.00 70.00 70.00 85.00 74.00 98.00 83.92 CN 74.00 85.00 84.92 CN 85.00 74.00 84.80 CN 85.00 74.00 84.80
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN Subbasin Sub-07 Soil/Surface Description > 75% grass cover, Good Paved parking & roofs Row crops, straight row, Good 1/4 acre lots, 38% impervious Composite Area & Weighted CN Subbasin Sub-08 Soil/Surface Description Row crops, straight row, Good Paved parking & roofs Soil/Surface Description Row crops, straight row, Good Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN Subbasin Sub-09 Soil/Surface Description Row crops, straight row, Good > 75% grass cover, Good Composite Area & Weighted CN Subbasin Sub-10 Soil/Surface Description Row crops, straight row, Good 1/4 acre lots, 38% impervious > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN Subbasin Sub-10			4.96 4.496 4.42 78.44 0.30 0.27 88.39 Area acres) 1.90 2.24 7.30 4.72 16.16 Area acres) 4.73 0.39 3.24 Area acres) 4.53 0.09 4.62 Area acres) 4.53 0.09 4.62	Soil Group C C C C C C C C C C C C C C C C C C C	79.00 70.00 70.00 85.00 74.00 98.00 83.92 CN 74.00 98.00 85.00 74.00 85.00 74.00 98.00 84.92

Composite Area & Weighted CN	0.43		91.26
Subbasin Sub-12			
Soil/Surface Description	Area (acres)	Soil Group	CN
Row crops, straight row, Good > 75% grass cover, Good	1.00	c c	85.00 74.00
Paved parking & roofs 1/4 acre lots, 38% impervious	0.41	C C	83.00
Composite Area & Weighted CN	2.02		85.79
Subbasin Sub-13	Area	Soil	
Soil/Surface Description	(acres)	Group	CN
Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN	0.31 0.43 0.74	c c	98.00 74.00 84.10
Subbasin Sub-15			
Soil/Surface Description	Area (acres)	Soil Group	CN
Paved parking & roofs > 75% grass cover, Good	0.30 0.44	c	98.00 74.00
Composite Area & Weighted CN	0.74	Ü	83.69
Subbasin Sub-16			
Soil/Surface Description	Area (acres)	Soil Group	CN
> 75% grass cover, Good Paved parking & roofs	0.51 0.53	C C	74.00 98.00
Composite Area & Weighted CN	1.04		86.24
Subbasin Sub-17			
Soil/Surface Description	Area (acres)	Soil Group	CN
Row crops, straight row, Good Composite Area & Weighted CN	7.63 7.63	С	85.00 85.00
Subbasin Sub-18			
Soil/Surface Description	Area (acres)	Soil Group	CN
Paved parking & roofs	0.18	 C C	98.00 74.00
> 75% grass cover, Good Composite Area & Weighted CN	0.24 0.42	С	74.00 84.45
Subbasin Sub-19	Area	Soil	
Soil/Surface Description	(acres)	Group	CN
Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN	0.12 0.14 0.26	D C	98.00 74.00 85.09
Subbasin Sub-22			
Soil/Surface Description	Area (acres)	Soil Group	CN
Paved parking & roofs > 75% grass cover, Good	0.12 0.04	c c	98.00 74.00
Composite Area & Weighted CN	0.16		91.51
Subbasin Sub-23	Area	Soil	
Soil/Surface Description	(acres)	Group	CN
Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN	0.12 0.04 0.17	c	98.00 74.00 91.69
Subbasin Sub-24			
Soil/Surface Description	Area (acres)	Soil Group	CN
Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN	0.10 0.01 0.11	c c	98.00 74.00 95.28
Subbasin Sub-25			
Soil/Surface Description	Area (acres)	Soil Group	CN
Paved parking & roofs > 75% grass cover, Good	0.11 0.01	c c	98.00
Composite Area & Weighted CN	0.13		95.46
Subbasin Sub-26	Area	Soil	
Soil/Surface Description	(acres) 	Group C	CN 98.00
> 75% grass cover, Good Composite Area & Weighted CN	0.02 0.13	c c	98.00 74.00 94.95
Subbasin Sub-27			
Soil/Surface Description	Area (acres)	Soil Group	CN

Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN		0.10 0.01 0.11	C C	98.00 74.00 95.66
Subbasin Sub-28				
Soil/Surface Description		Area (acres)	Soil Group	CN
Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN		0.13 0.02 0.15	cc	98.00 74.00 95.47
Subbasin Sub-29				
Soil/Surface Description		Area (acres)		CN
Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN		0.11 0.01 0.12	c c	98.00 74.00 95.25
Subbasin Sub-30				
Soil/Surface Description		Area (acres)	Soil Group	CN
Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN			c c	
Subbasin Sub-31				
Soil/Surface Description		Area (acres)	Soil Group	CN
Paved parking & roofs		0.09		98.00 74.00
> 75% grass cover, Good Composite Area & Weighted CN		0.01	С	74.00 95.59
Kirpich Time of Concentration Computa	tions Report			
Tc = (0.0078 * (L^0.77) * (S^-) Where:	-0.385))			
Tc = Time of Concentration (m: L = Flow length (ft) S = Slope (ft/ft)	in)			
Subbasin Sub-02				
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	680.27 0.47 9.32			
Subbasin Sub-03				
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	302.00 2.89 2.48			
Subbasin Sub-04				
User-Defined TOC override (min	nutes): 47.4	10		
Subbasin Sub-05				
Flow length (ft): Slope (%):	944.03 0.87			
Computed TOC (minutes):	9.46			
Subbasin Sub-06				
User-Defined TOC override (min	nutes): 48.2	2.4		
Subbasin Sub-07				
User-Defined TOC override (min	nutes): 41.8	88		
Subbasin Sub-08				
Flow length (ft): Slope (%): Computed TOC (minutes):	908.73 0.51 11.29			
Subbasin Sub-09				
Flow length (ft): Slope (%): Computed TOC (minutes):	633.32 0.89 6.90			
Subbasin Sub-10				
User-Defined TOC override (min	nutes): 45.0	00		
Subbasin Sub-11				
Flow length (ft): Slope (%): Computed TOC (minutes):	184.60 1.00 2.55			

Subbasin Sub-12	
Flow length (ft): Slope (%): Computed TOC (minutes):	647.00 0.43 9.28
Subbasin Sub-13	
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	485.00 0.25 9.16
Subbasin Sub-15	
Flow length (ft): Slope (%): Computed TOC (minutes):	543.00 1.11 5.63
Subbasin Sub-16	
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	777.36 0.37 11.33
Subbasin Sub-17	
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	915.00 0.81 9.50
Subbasin Sub-18	
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	326.96 2.04 3.01
Subbasin Sub-19	
Flow length (ft): Slope (%): Computed TOC (minutes):	259.00 1.80 2.64
Subbasin Sub-22	
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	120.60 1.58 1.54
Subbasin Sub-23	
Flow length (ft): Slope (%): Computed TOC (minutes):	133.76 1.43 1.74
Subbasin Sub-24	
Flow length (ft): Slope (%): Computed TOC (minutes):	144.70 0.47 2.83
Subbasin Sub-25	
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	149.80 4.43 1.23
Subbasin Sub-26	
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	172.20 1.04 2.38
Subbasin Sub-27	
Flow length (ft): Slope (%): Computed TOC (minutes):	103.90 0.72 1.86
Subbasin Sub-28	
Flow length (ft): Slope (%): Computed TOC (minutes):	184.80 0.84 2.73
Subbasin Sub-29	
Flow length (ft): Slope (%): Computed TOC (minutes):	155.80 0.72 2.54
Subbasin Sub-30	
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	137.70 1.30 1.84

Flow length (ft): Slope (%): Computed TOC (minutes):

Subbasin	Total	Total	Peak	Weighted		Time of
ID	Precip	Runoff	Runoff	Curve	Conc	entration
	in	in	cfs	Number	days	hh:mm:ss
Sub-02	2.70	1.21	1.72	83.040	0	00:09:19
Sub-03	2.70	1.25	1.26	83.570	0	00:05:00
Sub-04	2.70	1.34	35.20	85.000	0	00:47:24
Sub-05	2.70	1.17	3.81	82.400	0	00:09:27
Sub-06	2.70	1.27	71.24	83.920	0	00:48:14
Sub-07	2.70	1.33	15.31	84.920	0	00:41:52
Sub-08	2.70	1.24	5.40	83.440	0	00:11:17
Sub-09	2.70	1.33	8.99	84.800	0	00:06:54
Sub-10	2.70	1.32	27.08	84.780	0	00:45:00
Sub-11	2.70	1.81	1.22	91.260	0	00:05:00
Sub-12	2.70	1.39	4.10	85.790	0	00:09:16
Sub-13	2.70	1.28	1.33	84.100	0	00:09:09
Sub-15	2.70	1.25	1.45	83.690	0	00:05:37
Sub-16	2.70	1.43	1.99	86.240	0	00:11:19
Sub-17	2.70	1.34	14.32	85.000	0	00:09:30
Sub-18	2.70	1.30	0.87	84.450	0	00:05:00
Sub-19	2.70	1.34	0.55	85.090	0	00:05:00
Sub-22	2.70	1.83	0.48	91.510	0	00:05:00
Sub-23	2.70	1.85	0.48	91.690	0	00:05:00
Sub-24	2.70	2.18	0.36	95.280	0	00:05:00
Sub-25	2.70	2.20	0.42	95.460	0	00:05:00
Sub-26	2.70	2.15	0.42	94.950	0	00:05:00
Sub-27	2.70	2.22	0.38	95.660	0	00:05:00
Sub-28	2.70	2.20	0.51	95.470	0	00:05:00
Sub-29	2.70	2.18	0.40	95.250	0	00:05:00
Sub-30	2.70	2.23	0.47	95.730	0	00:05:00
Sub-31	2.70	2.21	0.34	95.590	0	00:05:00

Node	Average	Maximum	Maximum	Time	of Max	Total	Total	Retention
ID	Depth	Depth	HGL	Occu	irrence	Flooded	Time	Time
	Attained	Attained	Attained			Volume	Flooded	
	ft	ft	ft	days	hh:mm	acre-in	minutes	hh:mm:ss
Jun-02	0.42	2.93	788.70	0	12:28	0	0	0:00:00
Jun-03	0.09	0.98	794.62	0	13:35	0	0	0:00:00
Jun=04	0.16	2.21	796.21	0	13:33	0	0	0:00:00
Jun-10	0.16	0.29	793.24	0	12:03	0	0	0:00:00
Jun-11	0.01	0.23	793.24	0	12:03	0	0	0:00:00
Jun-21	0.05	1.75	797.21	0	12:02	0	0	0:00:00
Jun-24	0.14	1.02	794.27	0	13:35	0	0	0:00:00
				-		-	-	
Jun-25	0.16	1.78	797.73	0	12:44	0	0	0:00:00
Jun-28	0.31	2.19	786.31	0	12:27	0	-	0:00:00
Jun-30	0.02	0.50	795.90	0	12:04	0	0	0:00:00
Jun-32	0.02	0.28	792.38	0	11:58	0	0	0:00:00
Jun-34	0.06	0.35	795.74	0	11:58	0	0	0:00:00
Jun-35	0.03	0.18	795.60	0	12:04	0	0	0:00:00
Jun-40	0.31	2.09	795.89	0	13:17	0	0	0:00:00
Jun-46	0.15	1.06	793.06	0	12:06	0	0	0:00:00
Jun-47	0.12	0.90	793.89	0	13:36	0	0	0:00:00
Out-02	0.00	0.00	783.38	0	00:00	0	0	0:00:00
Jun-01	0.16	1.25	791.15	0	12:09	0	0	0:00:00
Jun-05	0.18	2.15	796.44	0	13:33	0	0	0:00:00
Jun-06	0.38	2.83	797.09	0	13:18	0	0	0:00:00
Jun-12	0.24	1.73	794.10	0	12:07	0	0	0:00:00
Jun-20	0.22	1.59	795.99	0	12:51	0	0	0:00:00
sto	0.39	0.60	795.58	0	12:44	0	0	0:00:00
Storage	0.34	2.12	797.74	0	12:44	0	0	0:00:00

Node	Element						
ID	Type	Lateral	Inflow	Peak	Inflow	Flooding	Flooding
							Occurrence
		cfs	cfs	days	hh:mm	cfs	days hh:mm
	JUNCTION						
Jun-03	JUNCTION	1.90	17.90	0	13:33	0.00	
Jun-04	JUNCTION	1.53	17.78	0	13:33	0.00	
Jun-10	JUNCTION	0.00	1.99	0	12:02	0.00	
Jun-11	JUNCTION	1.99	1.99	0	12:02	0.00	
Jun-21	JUNCTION	15.28	29.65	0	12:42	0.00	
Jun-24	JUNCTION	0.00	25.76	0	13:34	0.00	
Jun-25	JUNCTION	0.00	13.64	0	12:32	0.00	
	JUNCTION	0.00	67.09	0	12:27	0.00	
Jun-30	JUNCTION	5.38	5.38	0	12:02	0.00	
Jun-32	JUNCTION	1.25	1.25	0	11:57	0.00	
	JUNCTION				11:57	0.00	
Jun-35	JUNCTION	0.00	0.18	0		0.00	
Jun-40	JUNCTION	0.00	7.90	0	13:21	0.00	
	JUNCTION						
Jun-47	JUNCTION	0.39	25.82	0	13:35	0.00	
Out-02	OUTFALL	0.00	67.09	0	12:27	0.00	
Jun-01	STORAGE				12:06		
Jun-05	STORAGE						
	STORAGE						
	STORAGE						
	STORAGE						
	STORAGE						
Storage	STORAGE	71.05	71.05	0	12:24	0.00	

Inlet Depth Summary

Inlet Max Gutter Max Gutter Max Gutter Time of ID Spread Water Elev Water Depth Maximum during during Peak Flow Peak Flow Peak Flow Peak Flow Occurrence ft ft ft days hh:mm

798.49 798.57 Inlet-01 Inlet-02 3.17 0.06 0 11:56 0 11:58

Inlet Flow Summary

Inlet ID	Peak Flow cfs	Peak Lateral Flow cfs	Peak Flow Intercepted by Inlet cfs	Peak Flow Bypassing Inlet cfs	Inlet Efficiency during Peak Flow %	Total Flooding acre-in	Total Time Flooded minutes
Inlet-01 Inlet-02	0.48 0.47	0.47	0.46	0.01	98.36	0.000	0

****** Storage Node Summary

Maximum Ponded Volume 1000 ft³ 1.628 14.407 106.558 4.015 38.873 0.186 92.459 Total
Exfiltrated
Volume
1000 ft³ Storage Node ID Maximum Ponded Volume Time of Max Ponded Volume Average Ponded Volume 1000 ft³ Average Maximum Maximum Time of Max.
Ponded Storage Node Exfiltration Exfiltration
Volume Outflow Rate Rate
(%) cfs cfm hh:mm:ss (%) days hh:mm 12:09 13:33 13:18 12:07 12:51 12:44 12:44 0.085 17.46 17.72 29.23 14.56 12.49 7.50 54.39 Jun-01 Jun-05 Jun-06 Jun-12 Jun-20 0.00 0.00 0.00 0.00 0.00 0.00 11 20 20 0 0 0 0 0 0 0.085 0.559 7.046 0.219 1.630 0.091 5.350 0.000 0.000 0.000 0.000 0.000 sto Storage

****** Outfall Loading Summary

Average Flow cfs Peak Inflow cfs Outfall Node ID Flow Flow Frequency (%) Out-02 System 61.11 9.11 67.09

Link Flow Summary

Link ID	Element Type	Time of	Maximum	Length	Peak Flow	Design	Ratio of	Ratio of	Total	Reported
Link-01	CONDUIT	0 12:59 0 13:35	5.32	1.00	6.47	5.14	1.26	1.00	83	SURCHARGED
Link-02	CHANNEL	0 13:35	3.07	1.00	25.76	57.13	0.45	0.64	0	Calculated
	CONDUIT	0 12:44	5.69	1.00	7.50	5.42	1.38	0.70	0	> CAPACITY
Link-06	CONDUIT	0 12:28 0 12:02 0 12:42	6.36	1.00	7.50 54.72 1.99 34.73 5.36	200.50	0.27	0.47	0	Calculated
T.ink-10	CONDUIT	0 12:02	4.32	1.00	1.99	2.87	0.69	0.40	0	Calculated
Link-12	CHANNEL	0 12:42	2.49	1.16	34.73	782.03	0.04	0.67	0	Calculated
Link-15		0 12:44	4.70	1.00	5.36	3.32	1.61	0.88	0	> CAPACITY
Link-16	CONDUIT	0 12:51 0 12:03	4.27 0.45	1.00	9.59	9.94	0.96	0.67	0	Calculated
Link-18	CONDUIT CONDUIT CHANNEL CHANNEL	0 12:03	0.45	1.00	9.59 1.97 5.15	91.91	0.96 0.02 0.08	0.34	0	Calculated
Link-21		0 12:04	0.60	1.00	5.15	62.73	0.08	0.64	0	Calculated
Link-23	CHANNEL	0 11:58	0.78	1.00	1.22	9.18	0.13	0.73	0	Calculated
Link-26	CONDUIT	0 11:58 0 12:04	1.00	1.00	0.18	1.00	0.18	0.21	0	Calculated
Link-27	CHANNEL	0 12:04	0.26	1.00	0.14	14.44	0.01	0.54	0	Calculated
Link-36		0 13:21		1.00	7.90	5.60	1.41	1.00	0 0 321	SURCHARGED
Link-37	CONDUIT	0 13:33	7.08	1.00	17.78	13.13	1.35	0.75	0	> CAPACITY
Link-38	CONDUIT	0 12:08	5 40	1.00	17.78 14.56 7.90	17.34	0.84	0.56	0 0	Calculated
Link-39	CONDUIT CONDUIT	0 13:20	5.49	1.00	7.90	5.71	1.38	0.84	0	> CAPACITY
Link-41	CHANNEL	0 13:35	1.99	1.00	17.89	40.30	0 44	0.71	0	Calculated
Link-44	CONDUIT	0 12:09 0 12:27	6.69	1.00	17.46 67.09 17.85	58.32	0.30	0.40	0	Calculated
Link-45	CHANNEL	0 12:27	6.53	1.00	67.09	938.00	0.07	0.34	0	Calculated
Link-46	CHANNEL	0 12:06	2.75	1.00	17.85	43.81	0.41	0.58	0	Calculated
Link-47	CHANNEL	0 13:36	2.16	1.00	25.81 0.46 0.94 0.01	78.40	0.33	0.80	Λ	Calculated
Link-48	CONDUIT CONDUIT	0 11:58 0 11:58	2.19	1.47	0.46	6.37	0.07	0.31	0	Calculated
Link-49	CONDUIT	0 11:58	2.82	1.00	0.94	2.70	0.35	0.54	0	Calculated
Link-50	CHANNEL	0 11:58	0.18	1.00	0.01	0.97	0.01	0.24	0	Calculated
Weir-01	WEIR	0 00:00			0.00			0.00		
Weir-02	WEIR	0 12:51			2.90			0.22		
Weir-04	WEIR	0 12:44			7.50			0.51		
Weir-05	WEIR WEIR WEIR	0 11:58			0.36			0.46		
Weir-06	WEIR	0 12:32			13.64			0.52		
	WEIR	0 13:33			14.42			0.29		
Weir-08	WEIR	0 13:33 0 00:00			0.00 2.90 7.50 0.36 13.64 14.42			0.00		
	WEIR	0 12:44			34.63			0.25		
Weir-10	WEIR WEIR WEIR	0 00:00 0 00:00 0 13:18			0.00 0.00 14.48 0.00			0.00		
Weir-11	WEIR	0 00:00			0.00			0.00		
Weir-12	WEIR	0 13:18			14.48			0.32		
Weir-13	WEIR	0 00:00			0.00			0.00		

Highest Flow Instability Indexes
Link Weir-06 (9)
Link Link-15 (8)
Link Link-06 (4)
Link Link-45 (3)
Link Link-12 (2)

WARNING 116 : Conduit inlet invert elevation defined for Conduit Link-12 is below upstream node invert elevation.

Assumed conduit inlet invert elevation equal to upstream node invert elevation.

Conduit inlet invert elevation defined for Conduit Link-23 is below upstream node invert elevation.

Assumed conduit inlet invert elevation equal to upstream node invert elevation.

WARNING 002 : Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-02.

WARNING 002 : Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-03.

WARNING 002 : Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-04.

```
WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-11.
WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-24.
WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-24.
WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-24.
WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-30.
WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-34.
WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-35.
WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-36.
WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-36.
```

Analysis began on: Thu Sep 16 21:48:51 2021 Analysis ended on: Thu Sep 16 21:49:12 2021 Total elapsed time: 00:00:21

************ Project Description

File Name Proposed Conditions R2.SPF

Analysis Options

Cfs
Subbasin Hydrograph Method. SCS TR-55
Time of Concentration. Kirpich
Link Routing Method ... Hydrodynamic
Storage Node Exfiltration. None
Starting Date ... JUL-26-2021 00:00:00
Report Time Step ... 00:02:00

Element Count

 Number of rain gages
 1

 Number of subbasins
 27

 Number of nodes
 26

 Number of links
 37

Raingage Summary

Gage ID Rain Gage-02 10-year CUMULATIVE 6.00

Subbasin Summary

Subbasin ID	Total Area acres	Flow Length ft	Average Slope %	Peak Rate Factor	Raingage
Sub-02	1.01	680.27	0.4700	484.00	Rain Gage-02
Sub-03	0.64	302.00	2.8900	484.00	Rain Gage-02
Sub-04	40.54	1968.00	0.6700	484.00	Rain Gage-02
Sub-05	2.33	944.03	0.8700	484.00	Rain Gage-02
Sub-06	88.19	2886.00	0.5300	484.00	Rain Gage-02
Sub-07	16.21	2738.00	0.8900	484.00	Rain Gage-02
Sub-08	3.24	908.73	0.5100	484.00	Rain Gage-02
Sub-09	4.53	633.32	0.8900	484.00	Rain Gage-02
Sub-10	30.47	2139.00	0.9100	484.00	Rain Gage-02
Sub-11	0.43	184.60	1.0000	484.00	Rain Gage-02
Sub-12	2.09	647.00	0.4300	484.00	Rain Gage-02
Sub-13	0.74	485.00	0.2500	484.00	Rain Gage-02
Sub-15	0.74	543.00	1.1100	484.00	Rain Gage-02
Sub-16	1.04	777.36	0.3700	484.00	Rain Gage-02
Sub-17	7.63	915.00	0.8100	484.00	Rain Gage-02
Sub-18	0.43	326.96	2.0400	484.00	Rain Gage-02
Sub-19	0.26	259.00	1.8000	484.00	Rain Gage-02
Sub-22	0.16	120.60	1.5800	484.00	Rain Gage-02
Sub-23	0.17	133.76	1.4300	484.00	Rain Gage-02
Sub-24	0.11	144.70	0.4700	484.00	Rain Gage-02
Sub-25	0.13	149.80	4.4300	484.00	Rain Gage-02
Sub-26	0.13	172.20	1.0400	484.00	Rain Gage-02
Sub-27	0.11	103.90	0.7220	484.00	Rain Gage-02
Sub-28	0.15	184.80	0.8400	484.00	Rain Gage-02
Sub-29	0.12	155.80	0.7200	484.00	Rain Gage-02
Sub-30	0.14	137.70	1.3000	484.00	Rain Gage-02
Sub-31	0.10	174.20	2.7000	484.00	Rain Gage-02

Node Summary

Node ID	Element Type		Elev. ft	Area ft²	Inflow
Jun=02	JUNCTION	785.77			
Jun-03		793.64	798.04	0.00	
		794.00		0.00	
Jun-10		792.95			
Jun-11	JUNCTION	793.13			
Jun-21		795.45		0.00	
Jun-24	JUNCTION	793.25		0.00	
Jun-25	JUNCTION	795.95			
Jun-28	JUNCTION	784.12		0.00	
Jun-30	JUNCTION	795.40	797.15	0.00	
Jun-32	JUNCTION	792.10	793.10	0.00	
Jun-34	JUNCTION	795.39	796.64	0.00	
Jun-35	JUNCTION	795.42	796.67	0.00	
Jun-40	JUNCTION	793.80	799.47	0.00	
Jun-46	JUNCTION	792.00	794.50	0.00	
Jun-47	JUNCTION	792.99	798.40	0.00	
Out-02	OUTFALL	783.38	789.38	0.00	
Jun-01	STORAGE	789.90	793.00	0.00	
Jun-05	STORAGE	794.29		0.00	
Jun-06	STORAGE	794.26	798.60	0.00	
Jun-12	STORAGE	792.37	797.00	0.00	
Jun-20	STORAGE	794.40	796.80	0.00	
sto	STORAGE	794.99	795.71	0.00	
Storage		795.63	799.00	0.00	

ID	Manufacturer	Part Number	Location	of Inlets	Invert Elevation ft	Rim Elevation ft	Area ft²	Water Elevation ft	Clogging Factor
Inlet-01 Inlet-02	FHWA HEC-22 GENERIC FHWA HEC-22 GENERIC	N/A N/A	On Sag On Grade	1	793.60 794.00	798.43 798.45	10.00	793.60 794.00	0.00

......

Roadway and Gutter Summary

Roadway Longitudinal Slope Roadway Cross Slope Roadway Manning's Roughness Gutter Gutter Gutter Cross Width Depression Slope Inlet ID

		ft/:	ft ft/ft		ft/ft	:	ft	in	
Inlet-01 Inlet-02		0.02	- 0.0150 50 0.0150	0.0160 0.0160	0.0400	2.	.50 .50	0.00	
************ Link Summar ********* Link ID	y *	vode	To Node	Element Type		Length ft	Slope %	Manning's Roughness	
Link-01 Link-02 Link-03 Link-03 Link-06 Link-10 Link-16 Link-15 Link-16 Link-16 Link-21 Link-26 Link-27 Link-36 Link-37 Link-36 Link-37 Link-39 Link-39 Link-41 Link-44 Link-45 Link-45 Link-46 Link-47 Link-48 Link-49 Link-49 Link-50 Weir-07 Weir-08 Weir-07 Weir-08 Weir-07 Weir-08 Weir-07 Weir-08 Weir-09 Weir-09 Weir-09 Weir-09 Weir-09 Weir-11 Weir-12 Weir-13	Jun-0: Jun-2: Storac Jun-0: Jun-1: Jun-2: Jun-2: Jun-1: Jun-3: Jun-3: Jun-3: Jun-0: Ju	5 4 4 2 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Jun-04 Jun-47 sto Jun-28 Jun-10 Jun-06 Jun-06 Jun-06 Jun-12 Jun-01 Jun-02 Jun-12 Jun-03 Jun-04 Jun-03 Jun-46 Jun-24 Jun-24 Jun-24 Jun-24 Jun-24 Jun-24 Jun-25 Jun-10 Jun-07 Jun-07 Jun-07 Jun-07 Jun-07 Jun-08 Jun-0	Element Type CONDUIT CHANNEL CONDUIT CONDUIT CONDUIT CONDUIT CHANNEL CONDUIT CHANNEL CHANNEL CONDUIT CHANNEL WEIR WEIR WEIR WEIR WEIR WEIR WEIR WEIR		34.4 44.0 65.0 65.0 78.7 24.6 20.0 27.6 28.0 172.4 92.4 92.4 92.6 130.2 121.6 80.3 121.6 80.3 131.6 97.7 182	0.8440 0.5912 0.9963 0.7891 0.7308 5.9600 0.9786 0.7143 0.5509 0.5392 2.3691 0.0894 0.3615 0.3782 0.486 0.2380 0.3933 1.0180 0.3933 1.0180 0.394 0.3953 1.0180 0.3953 0.39	0.0150 0.0320 0.0250 0.0150 0.0250 0.0250 0.0250 0.0320 0.0320 0.0320 0.0320 0.0320 0.0320 0.0320 0.0150 0.0150 0.0150 0.0320 0.0320 0.0320	
Cross Secti *********** Link ID	on Summary	è	Depth/ Diameter	Width	No. Barr	of els	Cross Sectional	Full Flow Hydraulic	Design Flow Capacity
Link-01 Link-02 Link-02 Link-06 Link-10 Link-10 Link-11 Link-15 Link-21 Link-23 Link-23 Link-27 Link-36 Link-37 Link-39 Link-39 Link-41 Link-45 Link-46 Link-47 Link-46 Link-47 Link-46 Link-47 Link-48 Link-48 Link-48 Link-49 Link-50 Link-40 Link-40 Link-50 Link-40 Link-5	CIRCL TRAPH CIRCL	JUAR ZZOTDAL JUAR JUAR JUAR JUAR JUAR JUAR JUAR JUAR	ft 1.25 1.50 1.50 1.50 1.25 3.40 1.25 2.00 1.75 0.60 1.25 1.00 1.50 1.50 1.50 1.50 1.50 1.50 1.5	ft 1.25 19.00 1.50 2.00 1.25 2.00 20.00 1.25 16.50 1.25 2.00 20.00 16.25 16.50 1.50 2.00 20.00 19.00 19.00 11.00 11.00 14.00			ft² 1.23 17.25 1.77 19.63 49.30 49.30 1.23 3.144 24.00 17.72 2.88 1.23 8.25 1.77 3.14 4.91 1.77 15.40 7.07 66.00 17.25 0.79 0.79 0.79	Radius ft	5.14 57.13 5.42 200.50 2.80 782.03 3.33 9.94 91.91 62.73 9.18 1.00 14.44 5.60 13.13 17.34 5.73 9.80 10.00 14.84 5.73 17.34 5.74 5.74 5.74 5.74 5.74 5.74 5.74 5.7
*********** Transect Su	mmary								
Transect XS Area:	0.0003 0.0091 0.0307 0.0688 0.1320	0.0794 0.1477 0.2415	0.0023 0.0162 0.0431 0.0910 0.1644 0.2634 0.3877 0.5376 0.7129	0.1037 0.1822 0.2862	0.0063 0.0254 0.0592 0.1173 0.2010 0.3100 0.4446 0.6047 0.7902 1.0000				
Hrad:	0.0213 0.1275 0.2338	0.0425 0.1488 0.2551	0.0638 0.1701	0.0850 0.1913 0.2681	0.1063 0.2126 0.2788 0.3558 0.4492 0.5489 0.6516 0.7559 0.8613 1.0000				
Width:	0.0117 0.0704 0.1292 0.2338 0.3517 0.4697 0.5876	0.0235 0.0822 0.1409 0.2574 0.3753 0.4932 0.6112 0.7291	0.0352 0.0939 0.1630 0.2810 0.3989 0.5168 0.6348	0.0470 0.1057 0.1866 0.3046 0.4225 0.5404 0.6583 0.7763					
*********** Runoff Quan *******	tity Contin	nuity	Volume acre-ft	Depth inches					

Total Precipitation Surface Runoff Continuity Error (%)	67.274 0.338 -0.000	4.000 0.020			
**************************************	Volume acre-ft	Volume Mgallons			
External Inflow External Outflow Initial Stored Volume Final Stored Volume Continuity Error (%)	0.000 40.641 0.000 0.003 -0.001	0.000 13.244 0.000 0.001			
**************************************	ions Report				
Subbasin Sub-02				0-11	
Soil/Surface Description			Area (acres)	Soil Group	CN
Paved parking & roofs > 75% grass cover, Good Row crops, straight row, Good Composite Area & Weighted CN			0.27 0.50 0.24 1.01	c c	98.00 74.00 85.00 83.04
Subbasin Sub-03			Area	Soil Group	
Soil/Surface Description					
Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN			0.34 0.21 0.10 0.65	c c	85.00 74.00 98.00 83.57
Subbasin Sub-04			Area	Soil	
Soil/Surface Description			(acres)	Soil Group	CN
Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN			0.26 0.21 40.53	Soil Group C C C	74.00 98.00 85.00
Subbasin Sub-05			Area	Coil	
Soil/Surface Description			(acres)	Soil Group	CN
Row crops, straight row, Good > 75% grass cover, Good Paved roads with curbs & sewers Composite Area & Weighted CN			1.16 0.88 0.28 2.32	c c	85.00 74.00 98.00 82.40
Subbasin Sub-06				- 1-	
Soil/Surface Description			Area (acres)	Soil Group	CN
1 acre lots, 20% impervious Woods, Good			4.96 4.42	c c	79.00 70.00
Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs			78.44 0.30 0.27	C C C C	74.00 98.00
Composite Area & Weighted CN			88.39		83.92
Subbasin Sub-07			Area	Soil	
Soil/Surface Description > 75% grass cover, Good			(acres)	Soil Group	CN
Paved parking & roofs Row crops, straight row, Good			2.24 7.30	0 0 0	98.00 85.00
1/4 acre lots, 38% impervious Composite Area & Weighted CN			4.72 16.16	С	83.00 84.92
Subbasin Sub-08			3 mag	Soil	
Soil/Surface Description			(acres)	Group	
Row crops, straight row, Good Paved parking & roofs			1.99 0.36 0.89	c c	85.00 98.00
> 75% grass cover, Good Composite Area & Weighted CN			3.24	C	83.44
Subbasin Sub-09				0-11	
Soil/Surface Description			Area (acres)	Soil Group	CN
Row crops, straight row, Good > 75% grass cover, Good Composite Area & Weighted CN			4.53 0.09 4.62	c c	85.00 74.00 84.80
Subbasin Sub-10				- 1-	
Soil/Surface Description			Area (acres)		CN
Row crops, straight row, Good 1/4 acre lots, 38% impervious			25.80	c c c	85.00 83.00
> 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN			1.55 1.10 30.47	c	74.00 98.00 84.78
Subbasin Sub-11					
Soil/Surface Description			Area (acres)	Soil Group	CN
> 75% grass cover, Good Paved parking & roofs			0.12 0.31	c c	74.00 98.00

Composite Area & Weighted CN	0.43		91.26
Subbasin Sub-12			
Soil/Surface Description	Area (acres)	Soil Group	CN
Row crops, straight row, Good > 75% grass cover, Good	1.00	c c	85.00 74.00
Paved parking & roofs 1/4 acre lots, 38% impervious	0.41	C C	83.00
Composite Area & Weighted CN	2.02		85.79
Subbasin Sub-13	Area	Soil	
Soil/Surface Description	(acres)	Group	CN
Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN	0.31 0.43 0.74	c c	98.00 74.00 84.10
Subbasin Sub-15			
Soil/Surface Description	Area (acres)	Soil Group	CN
Paved parking & roofs > 75% grass cover, Good	0.30 0.44	c	98.00 74.00
Composite Area & Weighted CN	0.74	Ü	83.69
Subbasin Sub-16			
Soil/Surface Description	Area (acres)	Soil Group	CN
> 75% grass cover, Good Paved parking & roofs	0.51 0.53	C C	74.00 98.00
Composite Area & Weighted CN	1.04		86.24
Subbasin Sub-17			
Soil/Surface Description	Area (acres)	Soil Group	CN
Row crops, straight row, Good Composite Area & Weighted CN	7.63 7.63	С	85.00 85.00
Subbasin Sub-18			
Soil/Surface Description	Area (acres)	Soil Group	CN
Paved parking & roofs	0.18	 C C	98.00 74.00
> 75% grass cover, Good Composite Area & Weighted CN	0.24 0.42	С	74.00 84.45
Subbasin Sub-19	Area	Soil	
Soil/Surface Description	(acres)	Group	CN
Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN	0.12 0.14 0.26	D C	98.00 74.00 85.09
Subbasin Sub-22			
Soil/Surface Description	Area (acres)	Soil Group	CN
Paved parking & roofs > 75% grass cover, Good	0.12 0.04	c c	98.00 74.00
Composite Area & Weighted CN	0.16		91.51
Subbasin Sub-23	Area	Soil	
Soil/Surface Description	(acres)	Group	CN
Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN	0.12 0.04 0.17	c	98.00 74.00 91.69
Subbasin Sub-24			
Soil/Surface Description	Area (acres)	Soil Group	CN
Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN	0.10 0.01 0.11	c c	98.00 74.00 95.28
Subbasin Sub-25			
Soil/Surface Description	Area (acres)	Soil Group	CN
Paved parking & roofs > 75% grass cover, Good	0.11 0.01	c c	98.00
Composite Area & Weighted CN	0.13		95.46
Subbasin Sub-26	Area	Soil	
Soil/Surface Description	(acres) 	Group C	CN 98.00
> 75% grass cover, Good Composite Area & Weighted CN	0.02 0.13	c c	98.00 74.00 94.95
Subbasin Sub-27			
Soil/Surface Description	Area (acres)	Soil Group	CN

Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN		0.10 0.01 0.11	C C	98.00 74.00 95.66
Subbasin Sub-28				
Soil/Surface Description		Area (acres)	Soil Group	CN
Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN		0.13 0.02 0.15	c c	98.00 74.00 95.47
Subbasin Sub-29				
Soil/Surface Description		Area (acres)		CN
Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN		0.11 0.01 0.12	c c	98.00 74.00 95.25
Subbasin Sub-30				
Soil/Surface Description		Area (acres)	Soil Group	CN
Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN			c c	
Subbasin Sub-31				
Soil/Surface Description		Area (acres)	Soil Group	CN
Paved parking & roofs		0.09		98.00 74.00
> 75% grass cover, Good Composite Area & Weighted CN		0.01	С	74.00 95.59
Kirpich Time of Concentration Computa	tions Report			
Tc = (0.0078 * (L^0.77) * (S^-) Where:	-0.385))			
Tc = Time of Concentration (m: L = Flow length (ft) S = Slope (ft/ft)	in)			
Subbasin Sub-02				
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	680.27 0.47 9.32			
Subbasin Sub-03				
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	302.00 2.89 2.48			
Subbasin Sub-04				
User-Defined TOC override (min	nutes): 47.4	10		
Subbasin Sub-05				
Flow length (ft): Slope (%):	944.03 0.87			
Computed TOC (minutes):	9.46			
Subbasin Sub-06				
User-Defined TOC override (min	nutes): 48.2	2.4		
Subbasin Sub-07				
User-Defined TOC override (min	nutes): 41.8	88		
Subbasin Sub-08				
Flow length (ft): Slope (%): Computed TOC (minutes):	908.73 0.51 11.29			
Subbasin Sub-09				
Flow length (ft): Slope (%): Computed TOC (minutes):	633.32 0.89 6.90			
Subbasin Sub-10				
User-Defined TOC override (min	nutes): 45.0	00		
Subbasin Sub-11				
Flow length (ft): Slope (%): Computed TOC (minutes):	184.60 1.00 2.55			

Subbasin Sub-12	
Flow length (ft): Slope (%): Computed TOC (minutes):	647.00 0.43 9.28
Subbasin Sub-13	
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	485.00 0.25 9.16
Subbasin Sub-15	
Flow length (ft): Slope (%): Computed TOC (minutes):	543.00 1.11 5.63
Subbasin Sub-16	
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	777.36 0.37 11.33
Subbasin Sub-17	
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	915.00 0.81 9.50
Subbasin Sub-18	
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	326.96 2.04 3.01
Subbasin Sub-19	
Flow length (ft): Slope (%): Computed TOC (minutes):	259.00 1.80 2.64
Subbasin Sub-22	
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	120.60 1.58 1.54
Subbasin Sub-23	
Flow length (ft): Slope (%): Computed TOC (minutes):	133.76 1.43 1.74
Subbasin Sub-24	
Flow length (ft): Slope (%): Computed TOC (minutes):	144.70 0.47 2.83
Subbasin Sub-25	
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	149.80 4.43 1.23
Subbasin Sub-26	
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	172.20 1.04 2.38
Subbasin Sub-27	
Flow length (ft): Slope (%): Computed TOC (minutes):	103.90 0.72 1.86
Subbasin Sub-28	
Flow length (ft): Slope (%): Computed TOC (minutes):	184.80 0.84 2.73
Subbasin Sub-29	
Flow length (ft): Slope (%): Computed TOC (minutes):	155.80 0.72 2.54
Subbasin Sub-30	
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	137.70 1.30 1.84

Flow length (ft): Slope (%): Computed TOC (minutes):

174.20 2.70 1.67

Subbasin	Total	Total	Peak	Weighted		Time of
ID	Precip	Runoff	Runoff	Curve		centration
	in	in	cfs	Number	days	hh:mm:ss
Sub-02	4.00	2.29	3.25	83.040	0	00:09:19
Sub-03	4.00	2.33	2.37	83.570	0	00:05:00
Sub-04	4.00	2.46	65.30	85.000	0	00:47:24
Sub-05	4.00	2.24	7.30	82.400	0	00:09:27
Sub-06	4.00	2.36	135.09	83.920	0	00:48:14
Sub-07	4.00	2.45	28.37	84.920	0	00:41:52
Sub-08	4.00	2.32	10.12	83.440	0	00:11:17
Sub-09	4.00	2.44	16.50	84.800	0	00:06:54
Sub-10	4.00	2.44	50.41	84.780	0	00:45:00
Sub-11	4.00	3.04	1.99	91.260	0	00:05:00
Sub-12	4.00	2.53	7.37	85.790	0	00:09:16
Sub-13	4.00	2.38	2.47	84.100	0	00:09:09
Sub-15	4.00	2.34	2.71	83.690	0	00:05:37
Sub-16	4.00	2.57	3.55	86.240	0	00:11:19
Sub-17	4.00	2.46	26.13	85.000	0	00:09:30
Sub-18	4.00	2.41	1.61	84.450	0	00:05:00
Sub-19	4.00	2.46	1.00	85.090	0	00:05:00
Sub-22	4.00	3.07	0.78	91.510	0	00:05:00
Sub-23	4.00	3.08	0.78	91.690	0	00:05:00
Sub-24	4.00	3.46	0.55	95.280	0	00:05:00
Sub-25	4.00	3.48	0.65	95.460	0	00:05:00
Sub-26	4.00	3.42	0.64	94.950	0	00:05:00
Sub-27	4.00	3.50	0.59	95.660	0	00:05:00
Sub-28	4.00	3.48	0.78	95.470	0	00:05:00
Sub-29	4.00	3.45	0.61	95.250	0	00:05:00
Sub-30	4.00	3.51	0.72	95.730	0	00:05:00
Sub-31	4.00	3.49	0.52	95.590	0	00:05:00

Node	Average	Maximum	Maximum	Time	of Max	Total	Total	Retention
ID	Depth	Depth	HGL	Occu	irrence	Flooded	Time	Time
	Attained	Attained	Attained			Volume	Flooded	
	ft	ft	ft	days	hh:mm	acre-in	minutes	hh:mm:ss
Jun-02	0.62	3.95	789.72	0	12:27	0	0	0:00:00
Jun-03	0.18	2.00	795.64	o.	13:12	ō	ō	0:00:00
Jun-04	0.38	3.88	797.88	o.	13:10	0	n n	0:00:00
Jun-10	0.03	0.40	793.35	ō	12:02	ō	ō	0:00:00
Jun-11	0.06	1.00	794.13	0	12:02	0	0	0:00:00
Jun-21	0.29	2.30	797.75	Ö	12:33	0	0	0:00:00
Jun-24	0.21	1.40	794.65	0	13:50	0	0	0:00:00
Jun-25	0.27	2.31	798.26	0	12:44	0	0	0:00:00
Jun-28	0.46	2.81	786.93	0	12:34	0	0	0:00:00
Jun-30	0.04	0.71	796.11	0	12:04	0	0	0:00:00
Jun-32	0.03	0.36	792.46	0	11:58	0	0	0:00:00
Jun-34	0.07	0.40	795.80	0	11:58	0	0	0:00:00
Jun-35	0.04	0.23	795.65	0	13:18	0	0	0:00:00
Jun-40	0.43	2.40	796.20	0	13:17	0	0	0:00:00
Jun-46	0.21	1.29	793.29	0	12:05	0	0	0:00:00
Jun-47	0.18	1.28	794.27	0	13:13	0	0	0:00:00
Out-02	0.00	0.00	783.38	0	00:00	0	0	0:00:00
Jun-01	0.23	1.67	791.57	0	13:04	0	0	0:00:00
Jun-05	0.38	3.32	797.61	0	13:20	0	0	0:00:00
Jun-06	0.55	3.37	797.63	0	13:18	0	0	0:00:00
Jun-12	0.35	2.91	795.28	0	13:00	0	0	0:00:00
Jun-20	0.29	1.88	796.28	0	12:39	0	0	0:00:00
sto	0.42	0.60	795.59	0	12:40	0	0	0:00:00
Storage	0.45	2.33	797.96	0	12:41	0	0	0:00:00

Node	Element						
ID	Type	Lateral	Inflow	Peak	Inflow	Flooding	Flooding
							Occurrence
		cfs	cfs	days	hh:mm	cfs	days hh:mm
	JUNCTION						
Jun-03	JUNCTION	3.40	114.80	0	13:10	0.00	
Jun-04	JUNCTION	2.46	152.35	0	13:10	0.00	
Jun-10	JUNCTION	0.00	3.55	0	12:02	0.00	
Jun-11	JUNCTION	3.55	3.55	0	12:02	0.00	
Jun-21	JUNCTION JUNCTION	28.33	53.35	0	12:31	0.00	
Jun-24	JUNCTION	0.00	56.05	0	13:50	0.00	
Jun-25	JUNCTION	0.00	33.09	0	12:45	0.00	
	JUNCTION						
	JUNCTION						
Jun-32	JUNCTION	2.34	2.34	0	11:58	0.00	
Jun-34	JUNCTION						
Jun-35	JUNCTION	0.00	0.61	0	13:13	0.00	
	JUNCTION						
Jun-46	JUNCTION						
Jun-47	JUNCTION	0.60	53.89	0	13:06	0.00	
Out-02	OUTFALL			0		0.00	
Jun-01	STORAGE	0.00	28.02	0	12:05	0.00	
	STORAGE						
	STORAGE				12:31	0.00	
	STORAGE					0.00	
	STORAGE					0.00	
sto	STORAGE	0.00	7.89	0	12:40	0.00	
Storage	STORAGE	134.93	146.51	0	12:26	0.00	

Inlet ID	Max Gutter Spread during Peak Flow ft	Max Gutter Water Elev during Peak Flow ft	Max Gutter Water Depth during Peak Flow ft	Time of Maximum Depth Occurrence days hh:mm

Inlet-01 Inlet-02 6.57 5.15 798.54 798.59 0.11 0 13:12 0 13:14

****** Inlet Flow Summary

Inlet ID	Peak Flow cfs	Peak Lateral Flow cfs	Peak Flow Intercepted by Inlet cfs	Peak Flow Bypassing Inlet cfs	Inlet Efficiency during Peak Flow	Total Flooding acre-in	Total Time Flooded minutes
Inlet-01	0.83	0.76	- - 0.71	0.06	92 23	0.000	0

***** Storage Node Summary

Storage Node ID	Maximum Ponded Volume 1000 ft ³	Maximum Ponded Volume (%)		of Max Ponded Volume hh:mm	Average Ponded Volume 1000 ft ³	Average Ponded Volume (%)	Maximum Storage Node Outflow cfs	Maximum Exfiltration Rate cfm	Time of Max. Exfiltration Rate hh:mm:ss	Total Exfiltrated Volume 1000 ft3
Jun-01	3.260	21	0	13:04	0.202	1	27.60	0.00	0:00:00	0.000
Jun-05	57.596	82	0	13:20	3.672	5	152.23	0.00	0:00:00	0.000
Jun-06	212.282	40	Ö	13:18	16.419	3	79.59	0.00	0:00:00	0.000
Jun-12	21.975	15	0	13:00	0.797	1	27.10	0.00	0:00:00	0.000
Jun-20	63.180	54	0	12:39	3.031	3	33.85	0.00	0:00:00	0.000
sto	0.189	62	0	12:40	0.101	33	7.89	0.00	0:00:00	0.000
Storage	155.920	28	0	12:41	10.117	2	124.29	0.00	0:00:00	0.000

Outfall Loading Summary

Outfall Node ID	Flow Frequency (%)	Average Flow cfs	Peak Inflow cfs
Out-02	64.74	16.47	112.56
System	64.74	16.47	112.56

****** Link Flow Summary

Link ID Element Time of Maximum Velocity Attained ft/sec 5.32 3.87 5.96 6.89 5.00 3.25 5.12 4.61 0.57 0.96 Maximum Length Peak Flow Design Ratio of Flow Maximum Ratio of Total Reported Condition Peak Flow Type Factor Maximum Flow Time Analysis cfs Occurrence days hh:mm Surcharged Capacity cfs /Design Flow Depth minutes 5.14 57.13 5.42 200.50 2.87 782.03 3.32 9.94 91.91 62.73 232 SURCHARGED
0 Calculated
0 > CAPACITY
0 Calculated
0 > CAPACITY
0 Calculated
170 SURCHARGED
0 > CAPACITY
0 Calculated
170 CAPACITY
0 Calculated
0 Calculated
0 Calculated Link-01 Link-02 Link-03 Link-06 Link-10 Link-15 Link-15 Link-16 Link-18 Link-21 CONDUIT CHANNEL CONDUIT CONDUIT CHANNEL CONDUIT CHANNEL CHANNEL CHANNEL CHANNEL 1.00 0.90 0.70 0.63 0.56 0.82 1.00 0.78 0.42 0.70 6.46 53.79 7.88 89.70 3.55 68.55 5.94 12.17 3.52 9.79 13:06 12:41 12:27 12:02 12:31 12:38 12:39 12:02 12:04 O Calculated
O Capacity
O > CAPACITY
O > CAPACITY
O > CAICULATED
Calculated
O Calculated
O Calculated
O Calculated
Calculated
Calculated
Calculated
Calculated
Calculated 9.18 0.25 0.26 0.04 Link-23 CHANNEL 11:58 1.26 1.00 2.30 0.80 Link-26 Link-37 Link-36 Link-37 Link-38 Link-39 Link-41 Link-44 Link-45 Link-45 Link-45 Link-46 Link-47 Link-48 0.26 0.57 8.68 24.76 27.10 8.68 47.52 27.60 112.56 28.02 53.06 0.69 1.53 0.07 CONDUIT CHANNEL 11:58 13:13 1.16 1.00 0.24 0.61 1.00 0.76 0.97 1.00 0.52 0.43 0.72 0.93 0.48 0.84 0.44 CHANNEL
CONDUIT
CONDUIT
CONDUIT
CHANNEL
CONDUIT
CHANNEL
CHANNEL
CHANNEL
CONDUIT
CONDUIT
CONDUIT
CONDUIT
CHANNEL
CHANNEL 4.91 9.20 6.80 5.42 3.09 7.43 7.30 3.13 3.51 2.28 3.08 0.23 5.60 13.13 17.34 5.71 40.30 58.32 938.00 43.81 78.40 6.37 2.70 0.97 1.55 1.89 1.56 1.52 1.18 0.47 0.12 0.64 0.68 0.11 0.57 0.07 13:00 13:02 13:50 13:04 12:34 12:05 13:55 11:58 11:58 11:58 10.83 Weir-01 WEIR 13:10 Weir-01 Weir-02 Weir-04 Weir-05 Weir-06 Weir-07 Weir-08 Weir-09 Weir-11 Weir-11 Weir-12 10.83 21.68 7.89 0.72 33.09 150.39 0.00 84.61 0.51 0.00 57.91 91.23 WEIR 12:39 12:40 0.51 WEIR WEIR WEIR WEIR WEIR WEIR WEIR WEIR 11:58 12:45 13:10 00:00 12:40 12:41 00:00 0.65 0.72 1.00 0.00 0.38 0.00 0.00 0.77

Highest Flow Instability Indexes
Link Weir-06 (12)
Link Link-15 (11)
Link Weir-07 (9)
Link Link-01 (8)
Link Weir-12 (7)

WARNING 116 : Conduit inlet invert elevation defined for Conduit Link-12 is below upstream node invert elevation.

Assumed conduit inlet invert elevation equal to upstream node invert elevation.

Conduit inlet invert elevation defined for Conduit Link-23 is below upstream node invert elevation.

Assumed conduit inlet invert elevation equal to upstream node invert elevation.

WARNING 002 : Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-03.

WARNING 002 : Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-04.

WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-11.
WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-24.
WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-24.
WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-24.
WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-30.
WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-34.
WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-35.
WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-36.
WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-36.

Analysis began on: Thu Sep 16 21:52:39 2021 Analysis ended on: Thu Sep 16 21:53:00 2021 Total elapsed time: 00:00:21

************ Project Description

File Name Proposed Conditions R2.SPF

Analysis Options

Cfs
Subbasin Hydrograph Method. SCS TR-55
Time of Concentration. Kirpich
Link Routing Method ... Hydrodynamic
Storage Node Exfiltration. None
Starting Date ... JUL-26-2021 00:00:00
Report Time Step ... 00:02:00

****** Element Count

****** Raingage Summary

Gage ID

Rain Gage-02 25-year CUMULATIVE 6.00

Subbasin Summary

Subbasin	Total		Average	Peak Rate	Raingage
	Area	Length	Slope	Factor	
ID	acres	ft	%		
Sub-02	1.01	680.27	0.4700	484.00	Rain Gage-02
Sub-03	0.64	302.00	2.8900	484.00	Rain Gage-02
Sub-04	40.54	1968.00	0.6700	484.00	Rain Gage-02
Sub-05	2.33	944.03	0.8700	484.00	Rain Gage-02
Sub-06	88.19	2886.00	0.5300	484.00	Rain Gage-02
Sub-07	16.21	2738.00	0.8900	484.00	Rain Gage-02
Sub-08	3.24	908.73	0.5100	484.00	Rain Gage-02
Sub-09	4.53	633.32	0.8900	484.00	Rain Gage-02
Sub-10	30.47	2139.00	0.9100	484.00	Rain Gage-02
Sub-11		184.60	1.0000	484.00	Rain Gage-02
Sub-12	2.09	647.00	0.4300	484.00	Rain Gage-02
Sub-13	0.74	485.00	0.2500	484.00	Rain Gage-02
Sub-15	0.74	543.00	1.1100	484.00	Rain Gage-02
Sub-16	1.04	777.36	0.3700	484.00	Rain Gage-02
Sub-17	7.63	915.00	0.8100	484.00	Rain Gage-02
Sub-18	0.43	326.96	2.0400	484.00	Rain Gage-02
Sub-19	0.26	259.00	1.8000	484.00	Rain Gage-02
Sub-22	0.16	120.60	1.5800	484.00	Rain Gage-02
Sub-23	0.17	133.76	1.4300	484.00	Rain Gage-02
Sub-24	0.11	144.70	0.4700	484.00	Rain Gage-02
Sub-25	0.13	149.80	4.4300	484.00	Rain Gage-02
Sub-26	0.13	172.20	1.0400	484.00	Rain Gage-02
Sub-27	0.11	103.90	0.7220	484.00	Rain Gage-02
Sub-28	0.15	184.80	0.8400	484.00	Rain Gage-02
Sub-29	0.12	155.80	0.7200	484.00	Rain Gage-02
Sub-30	0.14	137.70	1.3000	484.00	Rain Gage-02
Sub-31	0.10	174.20	2.7000	484.00	Rain Gage-02

Node ID		Invert Elevation ft	Elev.	Area ft 2	Inflow
Jun-02 Jun-03 Jun-03 Jun-04 Jun-10 Jun-11 Jun-11 Jun-21 Jun-25 Jun-28 Jun-28 Jun-32 Jun-32 Jun-33 Jun-40 Jun-47 Out-02 Jun-01 Jun-05 Jun-05 Jun-05 Jun-06 Jun-12 Jun-20 Jun-20 Sto	JUNCTION JUN	785.77 793.64 794.00 792.95 793.13 795.85 795.95 795.97 795.90 792.10 795.39 795.39 795.92 793.80 792.99 793.38 789.90 794.29 794.26 792.37	790.77 798.04 798.40 795.80 795.90 785.90 786.85 794.75 791.83 797.15 796.64 796.67 799.47 794.50 788.40 789.38 793.00 796.80 797.90 796.80	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
Storage	STORAGE	795.63	, , , , , , , , , , , , , , , , , , , ,	0.00	

***** Inlet Summary

**************************************	Inlet Manufacturer	Manufacturer Part Number	Inlet Location	Number of Inlets	Catchbasin Invert Elevation ft	Inlet Rim Elevation ft	Ponded Area ft ²	Initial Water Elevation ft	Grate Clogging Factor %
Inlet-01 Inlet-02	FHWA HEC-22 GENERIC FHWA HEC-22 GENERIC	N/A N/A	On Sag On Grade	1	793.60 794.00	798.43 798.45	10.00	793.60 794.00	0.00

...... Roadway and Gutter Summary

Roadway
Longitudinal
Slope Roadway Cross Slope Roadway Manning's Roughness Gutter Cross Slope Gutter Gutter Width Depression

		ft/:	ft ft/ft		ft/ft	:	ft	in	
Inlet-01 Inlet-02		0.02	- 0.0150 50 0.0150	0.0160 0.0160	0.0400	2.	.50 .50	0.00	
************ Link Summar ********* Link ID	y *	vode	To Node	Element Type		Length ft	Slope %	Manning's Roughness	
Link-01 Link-02 Link-03 Link-03 Link-06 Link-10 Link-16 Link-15 Link-16 Link-16 Link-21 Link-26 Link-27 Link-36 Link-37 Link-36 Link-37 Link-39 Link-39 Link-41 Link-44 Link-45 Link-45 Link-46 Link-47 Link-48 Link-49 Link-49 Link-50 Weir-07 Weir-08 Weir-07 Weir-08 Weir-07 Weir-08 Weir-07 Weir-08 Weir-09 Weir-09 Weir-09 Weir-09 Weir-09 Weir-11 Weir-12 Weir-13	Jun-0: Jun-2: Storac Jun-0: Jun-1: Jun-2: Jun-2: Jun-1: Jun-3: Jun-3: Jun-3: Jun-0: Ju	5 4 4 2 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Jun-04 Jun-47 sto Jun-28 Jun-10 Jun-06 Jun-06 Jun-06 Jun-12 Jun-01 Jun-02 Jun-12 Jun-03 Jun-04 Jun-03 Jun-46 Jun-24 Jun-24 Jun-24 Jun-24 Jun-24 Jun-24 Jun-25 Jun-10 Jun-07 Jun-07 Jun-07 Jun-07 Jun-07 Jun-08 Jun-0	Element Type CONDUIT CHANNEL CONDUIT CONDUIT CONDUIT CONDUIT CHANNEL CONDUIT CHANNEL CHANNEL CONDUIT CHANNEL WEIR WEIR WEIR WEIR WEIR WEIR WEIR WEIR		34.4 44.0 65.0 65.0 78.7 24.6 20.0 27.6 28.0 172.4 92.4 92.4 92.6 130.2 121.6 80.3 121.6 80.3 131.6 97.7 182	0.8440 0.5912 0.9963 0.7891 0.7308 5.9600 0.9786 0.7143 0.5509 0.5392 2.3691 0.0894 0.3615 0.3782 0.486 0.2380 0.3933 1.0180 0.3933 1.0180 0.394 0.3953 1.0180 0.3953 0.39	0.0150 0.0320 0.0250 0.0150 0.0250 0.0250 0.0250 0.0320 0.0320 0.0320 0.0320 0.0320 0.0320 0.0320 0.0150 0.0150 0.0150 0.0320 0.0320 0.0320	
Cross Secti *********** Link ID	on Summary	è	Depth/ Diameter	Width	No. Barr	of els	Cross Sectional	Full Flow Hydraulic	Design Flow Capacity
Link-01 Link-02 Link-02 Link-06 Link-10 Link-10 Link-11 Link-15 Link-21 Link-23 Link-23 Link-27 Link-36 Link-37 Link-39 Link-39 Link-41 Link-45 Link-46 Link-47 Link-46 Link-47 Link-46 Link-47 Link-48 Link-48 Link-48 Link-49 Link-50 Link-40 Link-40 Link-50 Link-40 Link-5	CIRCL TRAPH CIRCL	JUAR ZZOTDAL JUAR JUAR JUAR JUAR JUAR JUAR JUAR JUAR	ft 1.25 1.50 1.50 1.50 1.25 3.40 1.25 2.00 1.75 0.60 1.25 1.00 1.50 1.50 1.50 1.50 1.50 1.50 1.5	ft 1.25 19.00 1.50 2.00 1.25 2.00 20.00 1.25 16.50 1.25 2.00 20.00 16.25 16.50 1.50 2.00 20.00 19.00 19.00 11.00 11.00 14.00			ft² 1.23 17.25 1.77 19.63 49.30 49.30 1.23 3.144 24.00 17.72 2.88 1.23 8.25 1.77 3.14 4.91 1.77 15.40 7.07 66.00 17.25 0.79 0.79 0.79	Radius ft	5.14 57.13 5.42 200.50 2.80 782.03 3.33 9.94 91.91 62.73 9.18 1.00 14.44 5.60 13.13 17.34 5.73 9.80 10.00 14.84 5.73 17.34 5.74 5.74 5.74 5.74 5.74 5.74 5.74 5.7
*********** Transect Su	mmary								
Transect XS Area:	0.0003 0.0091 0.0307 0.0688 0.1320	0.0794 0.1477 0.2415	0.0023 0.0162 0.0431 0.0910 0.1644 0.2634 0.3877 0.5376 0.7129	0.1037 0.1822 0.2862	0.0063 0.0254 0.0592 0.1173 0.2010 0.3100 0.4446 0.6047 0.7902 1.0000				
Hrad:	0.0213 0.1275 0.2338	0.0425 0.1488 0.2551	0.0638 0.1701	0.0850 0.1913 0.2681	0.1063 0.2126 0.2788 0.3558 0.4492 0.5489 0.6516 0.7559 0.8613 1.0000				
Width:	0.0117 0.0704 0.1292 0.2338 0.3517 0.4697 0.5876	0.0235 0.0822 0.1409 0.2574 0.3753 0.4932 0.6112 0.7291	0.0352 0.0939 0.1630 0.2810 0.3989 0.5168 0.6348	0.0470 0.1057 0.1866 0.3046 0.4225 0.5404 0.6583 0.7763					
*********** Runoff Quan *******	tity Contin	nuity	Volume acre-ft	Depth inches					

Total Precipitation Surface Runoff Continuity Error (%)	77.365 0.414 -0.000	4.600 0.025			
**************************************	Volume acre-ft	Volume Mgallons			
**************************************	0.000	0.000			
External Outflow	49.858	16.247			
Initial Stored Volume Final Stored Volume Continuity Error (%)	0.000 49.858 0.000 0.003	0.000 0.001			
Continuity Error (%)	-0.005				
**************************************	ions Report				
Subbasin Sub-02			Area	Soil	
Soil/Surface Description			(acres)	Soil Group	CN
Paved parking & roofs > 75% grass cover, Good			0.27	c c	98.00
Row crops, straight row, Good			0.24	c	85.00
Composite Area & Weighted CN			1.01		83.04
Subbasin Sub-03					
Soil/Surface Description			Area	Soil Group	CN
Row crops, straight row, Good					
> 75% grass cover, Good			0.21	C C	74.00
Paved parking & roofs Composite Area & Weighted CN			0.65	C	83.57
Subbasin Sub-04			Area	Soil	
Soil/Surface Description			(acres)	Soil Group C C C	CN
Row crops, straight row, Good			40.06	C	85.00
> 75% grass cover, Good Paved parking & roofs			0.26	c	98.00
Composite Area & Weighted CN			40.53		85.00
Subbasin Sub-05			Area	Soil	
Soil/Surface Description			(acres)	Soil Group	CN
Row crops, straight row, Good > 75% grass cover, Good			1.16	c c	85.00 74.00
Paved roads with curbs & sewer: Composite Area & Weighted CN	3		0.28	c c c	98.00 82.40
Subbasin Sub-06			Area	Soil	
Subbasin Sub-06 			Area (acres)	Soil Group	CN
Soil/Surface Description 1 acre lots, 20% impervious			4.96	Soil Group C	CN 79.00 70.00
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good			4.96 4.42 78.44	Soil Group C C	79.00 70.00 85.00
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs			4.96 4.42 78.44 0.30 0.27	Soil Group C C C C	79.00 70.00 85.00 74.00 98.00
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good			4.96 4.42 78.44 0.30		79.00 70.00 85.00 74.00 98.00 83.92
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs			4.96 4.42 78.44 0.30 0.27 88.39	0000	79.00 70.00 85.00 74.00 98.00 83.92
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN			4.96 4.42 78.44 0.30 0.27 88.39	C C C C C Soil Group	79.00 70.00 85.00 74.00 98.00 83.92
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN			4.96 4.42 78.44 0.30 0.27 88.39 Area (acres)	C C C C C Soil Group	79.00 70.00 85.00 74.00 98.00 83.92
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN			4.96 4.42 78.44 0.30 0.27 88.39 Area (acres) 1.90 2.24 7.30	C C C C C C C C C C C C C C C C C C C	79.00 70.00 85.00 74.00 98.00 83.92 CN 74.00 98.00 85.00
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Now crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN			4.96 4.42 78.44 0.30 0.27 88.39 Area (acres)	C C C C C Soil Group	79.00 70.00 85.00 74.00 98.00 83.92 CN 74.00 98.00 85.00
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Now crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN Subbasin Sub-07 Soil/Surface Description > 75% grass cover, Good Paved parking & roofs Row crops, straight row, Good 1/4 acre lots, 38% impervious			4.96 4.42 78.44 0.30 0.27 88.39 Area (acres) 1.90 2.24 7.30 4.72	C C C C C C C C C C C C C C C C C C C	79.00 70.00 85.00 74.00 98.00 83.92 CN 74.00 98.00 85.00 85.00
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN Subbasin Sub-07			4.96 4.42 78.44 0.30 0.27 88.39 Area (acres) 1.90 2.24 7.30 4.72 16.16	C C C C C C C C C C C C C C C C C C C	79.00 70.00 85.00 74.00 98.00 83.92 CN 74.00 98.00 95.00 83.92
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Now crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN Subbasin Sub-07			4.96 4.42 78.44 0.30 0.27 88.39 Area (acres) 1.90 2.24 7.30 4.72 16.16 Area (acres)	Soil Group	79.00 70.00 85.00 74.00 98.00 83.92 CN 74.00 98.00 85.00 84.92
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN Subbasin Sub-07 Soil/Surface Description > 75% grass cover, Good Paved parking & roofs Row crops, straight row, Good 1/4 acre lots, 38% impervious Composite Area & Weighted CN Subbasin Sub-08 Soil/Surface Description Soil/Surface Description Row crops, straight row, Good Row crops, straight row, Good Row crops, straight row, Good			4.96 4.42 78.44 0.30 0.27 88.39 Area (acres) 1.90 2.24 7.30 4.72 16.16 Area (acres)	Soil Group	79.00 70.00 85.00 74.00 98.00 83.92 CN 74.00 98.00 85.00 84.92
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN Subbasin Sub-07 Soil/Surface Description > 75% grass cover, Good Paved parking & roofs Row crops, straight row, Good 1/4 acre lots, 38% impervious Composite Area & Weighted CN Subbasin Sub-08 Soil/Surface Description Row crops, straight row, Good Row crops, straight row, Good			4.96 4.42 78.44 0.30 0.27 88.39 Area (acres) 1.90 4.72 16.16 Area (acres)	C C C C C C C C C C C C C C C C C C C	79.00 70.00 85.00 74.00 98.00 83.92 CN 74.00 98.00 85.00 84.92
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN Subbasin Sub-07 Soil/Surface Description > 75% grass cover, Good Paved parking & roofs Row crops, straight row, Good 1/4 acre lots, 38% impervious Composite Area & Weighted CN Subbasin Sub-08 Soil/Surface Description Soil/Surface Description Row crops, straight row, Good Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN			4.96 4.42 78.44 0.30 0.27 88.39 Area (acres) 1.90 2.24 7.30 4.72 16.16 Area (acres)	Soil Group	79.00 70.00 85.00 74.00 98.00 83.92 CN 74.00 98.00 83.00 84.92
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN Subbasin Sub-07 Soil/Surface Description > 75% grass cover, Good Paved parking & roofs Row crops, straight row, Good 1/4 acre lots, 38% impervious Composite Area & Weighted CN Subbasin Sub-08 Soil/Surface Description Row crops, straight row, Good Paved parking & roofs Row crops, straight row, Good Paved parking & roofs > 75% grass cover, Good			A.96 4.42 78.44 0.30 0.27 88.39 Area (acres) 1.90 2.24 7.30 4.72 16.16 Area (acres) 1.99 0.36 0.89 3.24	Soil Group C C C C C C C C C C C C C C C C C C C	79.00 70.00 85.00 74.00 98.00 83.92 CN 74.00 83.00 84.92 CN CN CN 85.00 84.92
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good paved parking & roofs Composite Area & Weighted CN Subbasin Sub-07 Soil/Surface Description > 75% grass cover, Good Paved parking & roofs Row crops, straight row, Good 1/4 acre lots, 38% impervious Composite Area & Weighted CN Subbasin Sub-08 Soil/Surface Description Row crops, straight row, Good Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN Subbasin Sub-08 Subbasin Sub-09 Subbasin Sub-09 Soil/Surface Description			4.96 4.42 78.44 0.30 0.27 88.39 Area (acres) 1.90 2.24 7.30 4.72 16.16 Area (acres)	Soil Group C C C C C C C C C C C C C C C C C C C	79.00 70.00 85.00 74.00 98.00 83.92 CN 74.00 83.00 84.92 CN CN CN 85.00 84.92
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN Subbasin Sub-07 Soil/Surface Description > 75% grass cover, Good Paved parking & roofs Row crops, straight row, Good 1/4 acre lots, 38% impervious Composite Area & Weighted CN Subbasin Sub-08 Soil/Surface Description Row crops, straight row, Good Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN Subbasin Sub-09 Subbasin Sub-09 Soil/Surface Description Row crops, straight row, Good Row crops, straight row, Good Composite Area & Weighted CN Subbasin Sub-09 Soil/Surface Description Row crops, straight row, Good			4.96 4.42 78.44 0.30 0.27 88.39 Area (acres) Area (acres) Area (acres) Area (acres)	Soil Group C C C C C C C C C C C C C C C C C C	79.00 70.00 85.00 74.00 98.00 83.92 CN 74.00 83.00 84.92 CN 65.00 98.00 84.92
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN Subbasin Sub-07 Soil/Surface Description > 75% grass cover, Good Paved parking & roofs Row crops, straight row, Good 1/4 acre lots, 38% impervious Composite Area & Weighted CN Subbasin Sub-08 Soil/Surface Description Row crops, straight row, Good Paved parking & roofs Subbasin Sub-08 Soil/Surface Description Row crops, straight row, Good Composite Area & Weighted CN Subbasin Sub-09 Subbasin Sub-09 Subbasin Sub-09			4.96 4.42 78.44 0.30 0.27 88.39 Area (acres) Area (acres) Area (acres) Area (acres)	Soil Group C C C C C C C C C C C C C C C C C C C	79.00 70.00 85.00 74.00 98.00 83.92 CN 74.00 83.00 84.92 CN 65.00 98.00 84.92
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN Subbasin Sub-07 Soil/Surface Description > 75% grass cover, Good Paved parking & roofs Row crops, straight row, Good 1/4 acre lots, 38% impervious Composite Area & Weighted CN Subbasin Sub-08 Soil/Surface Description Row crops, straight row, Good Paved parking & roofs Subbasin Sub-08 Soil/Surface Description Row crops, straight row, Good Composite Area & Weighted CN Subbasin Sub-09 Soil/Surface Description Row crops, straight row, Good Subbasin Sub-09 Soil/Surface Description Row crops, straight row, Good Subbasin Sub-09			A.96 4.42 78.44 0.30 0.27 88.39 Area (acres) 1.90 2.24 7.30 4.72 16.16 Area (acres) 1.99 0.36 0.89 3.24 Area (acres)	Soil Group C C C C C C C C C C C C C C C C C C C	79.00 70.00 85.00 74.00 98.00 83.92 CN 74.00 85.00 74.00 85.00 74.00 85.00 74.00 85.00 74.00 83.44
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN			A.96 4.42 78.44 0.30 0.27 88.39 Area (acres) 1.90 2.24 7.30 4.72 16.16 Area (acres) 1.99 0.36 0.89 3.24 Area (acres)	Soil Group C C C C C C C C C C C C C C C C C C C	79.00 70.00 85.00 74.00 98.00 83.92 CN 74.00 85.00 74.00 85.00 74.00 85.00 74.00 85.00 74.00 83.44
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN			A.96 4.42 78.44 0.30 0.27 88.39 Area (acres) 1.90 2.24 7.30 4.72 16.16 Area (acres) 0.36 0.89 3.24 Area (acres)	Soil Group C C C C C C C C C C C C C C C C C C	79.00 70.00 85.00 74.00 98.00 83.92 CN 74.00 85.00 84.92 CN 85.00 74.00 83.44
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN			A.96 4.42 78.44 0.30 0.27 88.39 Area (acres) 1.90 2.24 7.30 4.72 16.16 Area (acres) 0.36 0.89 3.24 Area (acres)	Soil Group C C C C C C C C C C C C C C C C C C	79.00 70.00 85.00 74.00 98.00 83.92 CN 74.00 85.00 84.92 CN 85.00 74.00 83.44
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN Subbasin Sub-07 Soil/Surface Description > 75% grass cover, Good Paved parking & roofs Row crops, straight row, Good 1/4 acre lots, 38% impervious Composite Area & Weighted CN Subbasin Sub-08 Soil/Surface Description Row crops, straight row, Good Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN Subbasin Sub-08 Soil/Surface Description Row crops, straight row, Good Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN Subbasin Sub-09 Soil/Surface Description Row crops, straight row, Good > 75% grass cover, Good Composite Area & Weighted CN Subbasin Sub-10 Subbasin Sub-10 Soil/Surface Description Row crops, straight row, Good // Surface Description Row crops, straight row, Good // Surface Description Row crops, straight row, Good // Surface Description Row crops, straight row, Good			A.96 4.42 78.44 0.30 0.27 88.39 Area (acres) 1.90 2.24 7.30 4.72 16.16 Area (acres) 0.36 0.89 3.24 Area (acres)	Soil Group C C C C C C C C C C C C C C C C C C C	79.00 70.00 85.00 74.00 98.00 83.92 CN 74.00 85.00 84.92 CN 85.00 74.00 83.44
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN Subbasin Sub-07 Soil/Surface Description > 75% grass cover, Good Paved parking & roofs Row crops, straight row, Good 1/4 acre lots, 38% impervious Composite Area & Weighted CN Soil/Surface Description Row crops, straight row, Good Paved parking & roofs Row crops, straight row, Good Paved parking & roofs Soil/Surface Description Row crops, straight row, Good Composite Area & Weighted CN Subbasin Sub-09 Soil/Surface Description Row crops, straight row, Good > 75% grass cover, Good Composite Area & Weighted CN Subbasin Sub-10 Soil/Surface Description Row crops, straight row, Good > 75% grass cover, Good Composite Area & Weighted CN Subbasin Sub-10 Soil/Surface Description Row crops, straight row, Good > 75% grass cover, Good Composite Area & Weighted CN Subbasin Sub-10			Area (acres)	Soil Group C C C C C C C C C C C C C C C C C C	79.00 70.00 85.00 74.00 98.00 83.92 CN 74.00 85.00 98.00 85.00 98.00 85.00 98.00 84.92 CN
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN Subbasin Sub-07 Soil/Surface Description > 75% grass cover, Good Paved parking & roofs Row crops, straight row, Good 1/4 acre lots, 38% impervious Composite Area & Weighted CN Subbasin Sub-08 Soil/Surface Description Row crops, straight row, Good Paved parking & roofs Soil/Surface Description Row crops, straight row, Good Composite Area & Weighted CN Subbasin Sub-09 Soil/Surface Description Row crops, straight row, Good Composite Area & Weighted CN Subbasin Sub-09 Soil/Surface Description Row crops, straight row, Good Composite Area & Weighted CN Subbasin Sub-10 Soil/Surface Description Row crops, straight row, Good 1/4 acre lots, 38% impervious > 75% grass cover, Good Raved parking & roofs Composite Area & Weighted CN			A.96 4.42 78.44 0.30 0.27 88.39 Area (acres) 1.90 2.24 7.30 4.72 16.16 Area (acres) 4.53 0.09 4.62 Area (acres) 4.53 0.09 4.62 Area (acres) 25.80 2.02 1.55 1.10 30.47	Soil Group C C C C C C C C C C C C C C C C C C C	79.00 70.00 70.00 85.00 74.00 98.00 83.92 CN 74.00 98.00 85.00 84.92 CN 85.00 74.00 98.00 74.00 98.00 74.00 98.00 74.00 98.00 74.00 98.00 74.00 83.44
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN Subbasin Sub-07 Soil/Surface Description > 75% grass cover, Good Paved parking & roofs Row crops, straight row, Good 1/4 acre lots, 38% impervious Composite Area & Weighted CN Soil/Surface Description Row crops, straight row, Good Paved parking & roofs Row crops, straight row, Good Paved parking & roofs Soil/Surface Description Row crops, straight row, Good Composite Area & Weighted CN Subbasin Sub-09 Soil/Surface Description Row crops, straight row, Good > 75% grass cover, Good Composite Area & Weighted CN Subbasin Sub-10 Soil/Surface Description Row crops, straight row, Good > 75% grass cover, Good Composite Area & Weighted CN Subbasin Sub-10 Soil/Surface Description Row crops, straight row, Good > 75% grass cover, Good Composite Area & Weighted CN Subbasin Sub-10			A.96 4.42 78.44 0.30 0.27 88.39 Area (acres) 1.90 2.24 7.30 4.72 16.16 Area (acres) 4.53 0.09 4.62 Area (acres) 4.53 0.09 4.62 Area (acres) 25.80 2.02 1.55 1.10 30.47	Soil Group C C C C C C C C C C C C C C C C C C	79.00 70.00 70.00 85.00 74.00 98.00 83.92 CN 74.00 98.00 85.00 84.92 CN 85.00 74.00 98.00 74.00 98.00 74.00 98.00 74.00 98.00 74.00 98.00 74.00 83.44
Soil/Surface Description 1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN Subbasin Sub-07 Soil/Surface Description > 75% grass cover, Good Paved parking & roofs Row crops, straight row, Good 1/4 acre lots, 38% impervious Composite Area & Weighted CN Subbasin Sub-08 Soil/Surface Description Row crops, straight row, Good Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN Subbasin Sub-09 Soil/Surface Description Row crops, straight row, Good > 75% grass cover, Good Composite Area & Weighted CN Subbasin Sub-09 Soil/Surface Description Row crops, straight row, Good > 75% grass cover, Good Composite Area & Weighted CN Subbasin Sub-10 Soil/Surface Description Row crops, straight row, Good 1/4 acre lots, 38% impervious > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN Subbasin Sub-11			Area (acres) Area (acres) Area (acres) 1.90 2.24 7.30 4.72 16.16 Area (acres) Area (acres)	Soil Group C C C C C C C C C C C C C C C C C C C	79.00 70.00 85.00 74.00 98.00 83.92 CN 74.00 85.00 84.92 CN 85.00 74.00 84.80 CN 85.00 74.00 84.80 CN

Composite Area & Weighted CN	0.43		91.26
Subbasin Sub-12			
Soil/Surface Description	Area (acres)	Soil Group	CN
Row crops, straight row, Good > 75% grass cover, Good	1.00	c c	85.00 74.00
Paved parking & roofs 1/4 acre lots, 38% impervious	0.41	C C	83.00
Composite Area & Weighted CN	2.02		85.79
Subbasin Sub-13	Area	Soil	
Soil/Surface Description	(acres)	Group	CN
Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN	0.31 0.43 0.74	c c	98.00 74.00 84.10
Subbasin Sub-15			
Soil/Surface Description	Area (acres)	Soil Group	CN
Paved parking & roofs > 75% grass cover, Good	0.30 0.44	c	98.00 74.00
Composite Area & Weighted CN	0.74	Ü	83.69
Subbasin Sub-16			
Soil/Surface Description	Area (acres)	Soil Group	CN
> 75% grass cover, Good Paved parking & roofs	0.51 0.53	C C	74.00 98.00
Composite Area & Weighted CN	1.04		86.24
Subbasin Sub-17			
Soil/Surface Description	Area (acres)	Soil Group	CN
Row crops, straight row, Good Composite Area & Weighted CN	7.63 7.63	С	85.00 85.00
Subbasin Sub-18			
Soil/Surface Description	Area (acres)	Soil Group	CN
Paved parking & roofs	0.18	 C C	98.00 74.00
> 75% grass cover, Good Composite Area & Weighted CN	0.24 0.42	С	74.00 84.45
Subbasin Sub-19	Area	Soil	
Soil/Surface Description	(acres)	Group	CN
Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN	0.12 0.14 0.26	D C	98.00 74.00 85.09
Subbasin Sub-22			
Soil/Surface Description	Area (acres)	Soil Group	CN
Paved parking & roofs > 75% grass cover, Good	0.12 0.04	c c	98.00 74.00
Composite Area & Weighted CN	0.16		91.51
Subbasin Sub-23	Area	Soil	
Soil/Surface Description	(acres)	Group	CN
Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN	0.12 0.04 0.17	c	98.00 74.00 91.69
Subbasin Sub-24			
Soil/Surface Description	Area (acres)	Soil Group	CN
Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN	0.10 0.01 0.11	c c	98.00 74.00 95.28
Subbasin Sub-25			
Soil/Surface Description	Area (acres)	Soil Group	CN
Paved parking & roofs > 75% grass cover, Good	0.11 0.01	c c	98.00
Composite Area & Weighted CN	0.13		95.46
Subbasin Sub-26	Area	Soil	
Soil/Surface Description	(acres) 	Group C	CN 98.00
> 75% grass cover, Good Composite Area & Weighted CN	0.02 0.13	c c	98.00 74.00 94.95
Subbasin Sub-27			
Soil/Surface Description	Area (acres)	Soil Group	CN

Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN		0.10 0.01 0.11	C C	98.00 74.00 95.66
Subbasin Sub-28				
Soil/Surface Description		Area (acres)	Soil Group	CN
Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN		0.13 0.02 0.15	c c	98.00 74.00 95.47
Subbasin Sub-29				
Soil/Surface Description		Area (acres)		CN
Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN		0.11 0.01 0.12	c c	98.00 74.00 95.25
Subbasin Sub-30				
Soil/Surface Description		Area (acres)	Soil Group	CN
Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN			c c	
Subbasin Sub-31				
Soil/Surface Description		Area (acres)	Soil Group	CN
Paved parking & roofs		0.09		98.00 74.00
> 75% grass cover, Good Composite Area & Weighted CN		0.01	С	74.00 95.59
Kirpich Time of Concentration Computa	tions Report			
Tc = (0.0078 * (L^0.77) * (S^-) Where:	-0.385))			
Tc = Time of Concentration (m: L = Flow length (ft) S = Slope (ft/ft)	in)			
Subbasin Sub-02				
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	680.27 0.47 9.32			
Subbasin Sub-03				
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	302.00 2.89 2.48			
Subbasin Sub-04				
User-Defined TOC override (min	nutes): 47.4	10		
Subbasin Sub-05				
Flow length (ft): Slope (%):	944.03 0.87			
Computed TOC (minutes):	9.46			
Subbasin Sub-06				
User-Defined TOC override (min	nutes): 48.2	2.4		
Subbasin Sub-07				
User-Defined TOC override (min	nutes): 41.8	88		
Subbasin Sub-08				
Flow length (ft): Slope (%): Computed TOC (minutes):	908.73 0.51 11.29			
Subbasin Sub-09				
Flow length (ft): Slope (%): Computed TOC (minutes):	633.32 0.89 6.90			
Subbasin Sub-10				
User-Defined TOC override (min	nutes): 45.0	00		
Subbasin Sub-11				
Flow length (ft): Slope (%): Computed TOC (minutes):	184.60 1.00 2.55			

Subbasin Sub-12	
Flow length (ft): Slope (%): Computed TOC (minutes):	647.00 0.43 9.28
Subbasin Sub-13	
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	485.00 0.25 9.16
Subbasin Sub-15	
Flow length (ft): Slope (%): Computed TOC (minutes):	543.00 1.11 5.63
Subbasin Sub-16	
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	777.36 0.37 11.33
Subbasin Sub-17	
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	915.00 0.81 9.50
Subbasin Sub-18	
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	326.96 2.04 3.01
Subbasin Sub-19	
Flow length (ft): Slope (%): Computed TOC (minutes):	259.00 1.80 2.64
Subbasin Sub-22	
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	120.60 1.58 1.54
Subbasin Sub-23	
Flow length (ft): Slope (%): Computed TOC (minutes):	133.76 1.43 1.74
Subbasin Sub-24	
Flow length (ft): Slope (%): Computed TOC (minutes):	144.70 0.47 2.83
Subbasin Sub-25	
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	149.80 4.43 1.23
Subbasin Sub-26	
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	172.20 1.04 2.38
Subbasin Sub-27	
Flow length (ft): Slope (%): Computed TOC (minutes):	103.90 0.72 1.86
Subbasin Sub-28	
Flow length (ft): Slope (%): Computed TOC (minutes):	184.80 0.84 2.73
Subbasin Sub-29	
Flow length (ft): Slope (%): Computed TOC (minutes):	155.80 0.72 2.54
Subbasin Sub-30	
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	137.70 1.30 1.84

Flow length (ft): Slope (%): Computed TOC (minutes):

174.20 2.70 1.67

Subbasin	Total	Total	Peak	Weighted		Time of
ID	Precip	Runoff	Runoff	Curve		entration
	in	in	cfs	Number	days	hh:mm:ss
Sub-02	4.60	2.82	3.99	83.040	0	00:09:19
Sub-03	4.60	2.87	2.90	83.570	0	00:05:00
Sub-04	4.60	3.00	79.94	85.000	0	00:47:24
Sub-05	4.60	2.76	8.98	82.400	0	00:09:27
Sub-06	4.60	2.90	165.53	83.920	0	00:48:14
Sub-07	4.60	2.99	34.58	84.920	0	00:41:52
Sub-08	4.60	2.85	12.38	83.440	0	00:11:17
Sub-09	4.60	2.98	20.06	84.800	0	00:06:54
Sub-10	4.60	2.98	61.77	84.780	0	00:45:00
Sub-11	4.60	3.62	2.35	91.260	0	00:05:00
Sub-12	4.60	3.08	8.91	85.790	0	00:09:16
Sub-13	4.60	2.92	3.01	84.100	0	00:09:09
Sub-15	4.60	2.88	3.31	83.690	0	00:05:37
Sub-16	4.60	3.12	4.28	86.240	0	00:11:19
Sub-17	4.60	3.00	31.72	85.000	0	00:09:30
Sub-18	4.60	2.95	1.96	84.450	0	00:05:00
Sub-19	4.60	3.01	1.21	85.090	0	00:05:00
Sub-22	4.60	3.65	0.92	91.510	0	00:05:00
Sub-23	4.60	3.66	0.92	91.690	0	00:05:00
Sub-24	4.60	4.05	0.64	95.280	0	00:05:00
Sub-25	4.60	4.07	0.75	95.460	0	00:05:00
Sub-26	4.60	4.01	0.75	94.950	0	00:05:00
Sub-27	4.60	4.09	0.68	95.660	0	00:05:00
Sub-28	4.60	4.07	0.90	95.470	0	00:05:00
Sub-29	4.60	4.05	0.71	95.250	0	00:05:00
Sub-30	4.60	4.10	0.83	95.730	0	00:05:00
Sub-31	4.60	4.08	0.60	95.590	0	00:05:00

Node	Average	Maximum	Maximum	Time	of Max	Total	Total	Retention
ID	Depth	Depth	HGL	Occu	irrence	Flooded	Time	Time
	Attained	Attained	Attained			Volume	Flooded	
	ft	ft	ft	days	hh:mm	acre-in	minutes	hh:mm:ss
Jun-02	0.69	4.54	790.31	0	12:29	0	0	0:00:00
Jun-03	0.28	4.00	797.64	0	13:48	Ö	Ö	0:00:00
Jun-04	0.44	5.77	799.77	0	13:58	0	0	0:00:00
Jun-10	0.03	0.45	793.40	0	12:04	0	0	0:00:00
Jun-11	0.07	1.16	794.29	o.	12:02	0	0	0:00:00
Jun-21	0.33	2.45	797.90	ō	12:30	ō	ō	0:00:00
Jun-24	0.24	1.40	794.65	0	13:49	0	0	0:00:00
Jun-25	0.31	2.69	798.64	0	12:41	0	0	0:00:00
Jun-28	0.51	3.10	787.22	Ö	12:31	0	0	0:00:00
Jun-30	0.04	0.78	796.18	0	12:04	0	0	0:00:00
Jun-32	0.04	0.39	792.49	0	11:58	0	0	0:00:00
Jun-34	0.11	1.23	796.62	0	14:15	0	0	0:00:00
Jun-35	0.09	1.85	797.27	0	13:05	1.10	55	0:00:00
Jun-40	0.47	2.51	796.31	0	13:24	0	0	0:00:00
Jun-46	0.23	1.37	793.37	0	13:01	0	0	0:00:00
Jun-47	0.21	1.32	794.31	0	12:53	0	0	0:00:00
Out-02	0.00	0.00	783.38	0	00:00	0	0	0:00:00
Jun-01	0.26	1.84	791.74	0	13:05	0	0	0:00:00
Jun-05	0.45	3.51	797.80	0	13:21	0	0	0:00:00
Jun-06	0.61	3.55	797.81	0	13:20	0	0	0:00:00
Jun-12	0.40	3.38	795.75	0	13:01	0	0	0:00:00
Jun-20	0.32	1.97	796.37	0	12:36	0	0	0:00:00
sto	0.43	0.64	795.63	0	13:07	0	0	0:00:00
Storage	0.50	2.41	798.04	0	12:40	0	0	0:00:00

Node	Element	Maximum	Peak	T	ime of	Maximum	Time c	f Peak
ID	Type	Lateral	Inflow	Peak	Inflow	Flooding	F1	ooding
		Inflow		Occu	rrence	Overflow	Occu	rrence
		cfs				cfs	days	
Jun-02	JUNCTION				12:27			
Jun-03	JUNCTION	4.11	255.61	0	13:09	0.00		
Jun-04	JUNCTION	2.89	274.11	0	13:09	0.00		
	JUNCTION				12:02			
Jun-11	JUNCTION	4.28	4.28	0	12:02	0.00		
	JUNCTION				12:29			
	JUNCTION				13:25			
	JUNCTION		51.98	0	12:41			
	JUNCTION		137.85	0	12:31			
	JUNCTION			0	12:02			
	JUNCTION				11:57			
	JUNCTION				13:06			
	JUNCTION		8.01	0	13:01		0	14:14
	JUNCTION			0	13:23			
	JUNCTION				13:00			
	JUNCTION				12:47			
	OUTFALL		137.85	0	12:31			
	STORAGE		31.94	0	13:01			
	STORAGE			0	13:09			
Jun-06	STORAGE				12:29	0.00		
Jun-12	STORAGE	23.41	48.96	0	12:36	0.00		
Jun-20	STORAGE	61.71	61.71	0	12:21	0.00		
sto	STORAGE	0.00	12.32	0	13:06	0.00		
Storage	STORAGE	165.37	195.86	0	12:31	0.00		

Inlet	Max Gutter	Max Gutter	Max Gutter	Time of
ID	Spread	Water Elev	Water Depth	Maximum
	during	during	during	Depth
	Peak Flow	Peak Flow	Peak Flow	Occurrence
	ft	ft	ft	days hh:mm

Inlet-01 Inlet-02 7.52 5.66 798.56 798.60 0.13 0 12:52 0 12:53

****** Inlet Flow Summary

Inlet ID	Peak Flow	Peak Lateral Flow	Peak Flow Intercepted by Inlet	Peak Flow Bypassing Inlet	Inlet Efficiency during Peak Flow	Total Flooding	Total Time Flooded
	cfs	cfs	cfs	cfs	8	acre-in	minutes
Inlet-01	1.00	0.90		0.10	89 41	0.000	0

***** Storage Node Summary

Storage Node ID	Maximum Ponded Volume 1000 ft ³	Maximum Ponded Volume (%)	V	of Max Ponded Volume hh:mm	Average Ponded Volume 1000 ft ³	Average Ponded Volume (%)	Maximum Storage Node Outflow cfs	Maximum Exfiltration Rate cfm	Time of Max. Exfiltration Rate hh:mm:ss	Total Exfiltrated Volume 1000 ft ³
Jun-01	4.145	27	0	13:05	0.261	2	31.89	0.00	0:00:00	0.000
Jun-05	66.075	94	0	13:21	4.781	7	270.70	0.00	0:00:00	0.000
Jun-06	263.133	49	0	13:20	20.940	4	97.13	0.00	0:00:00	0.000
Jun-12	41.778	28	0	13:01	1.480	1	31.30	0.00	0:00:00	0.000
Jun-20	71.748	62	0	12:36	3.519	3	45.50	0.00	0:00:00	0.000
sto	0.225	73	0	13:07	0.105	34	12.31	0.00	0:00:00	0.000
Storage	185.966	34	0	12:40	12.707	2	167.01	0.00	0:00:00	0.000

Outfall Loading Summary

Outfall Node	ID Flow Frequency (%)	Average Flow cfs	Peak Inflow cfs
Out-02	65.71	19.64	137.85
System	65.71	19.64	137.85

****** Link Flow Summary

Link ID Element Time of Maximum Length Peak Flow Design Ratio of Flow Maximum Ratio of Total Reported Condition Peak Flow Type Velocity Attained Factor Maximum Flow Time Analysis Occurrence days hh:mm Surcharged Capacity cfs /Design Flow cfs Depth minutes Link-01 Link-02 Link-03 Link-06 Link-10 Link-15 Link-15 Link-16 Link-18 Link-21 5.14 57.13 5.42 200.50 2.87 782.03 3.32 9.94 91.91 62.73 295 SURCHARGED
0 Calculated
0 > CAPACITY
0 Calculated
0 > CAPACITY
0 Calculated
17 SURCHARGED
0 > CAPACITY
0 Calculated
217 SURCHARGED
0 > CAPACITY
0 Calculated
0 Calculated
0 Calculated CONDUIT CHANNEL CONDUIT CONDUIT CHANNEL CONDUIT CHANNEL CHANNEL CHANNEL CHANNEL 6.46 53.89 8.01 111.08 4.28 80.70 6.17 12.92 4.16 12.03 16:59 12:47 12:41 12:29 12:02 12:29 12:31 12:36 1.26 0.94 1.48 0.55 1.49 0.10 1.86 1.30 0.05 0.19 1.00 0.91 0.71 0.72 0.64 0.86 1.00 0.86 0.45 0.72 12:01 12:04 O Calculated
O Calculated
O Calculated
S CAFACITY
S FLOODED
O CAFACITY
O CAFACITY
CAFACITY
O CAFACITY
CAFACITY
CAFACITY
CAFACITY
CAFACITY
CAFACITY
CAFACITY
CALCULATED
CALCULATED 2.82 4.78 8.01 9.18 Link-23 CHANNEL 11:58 1.45 1.00 0.31 0.82 Link-26 Link-37 Link-36 Link-37 Link-38 Link-39 Link-41 Link-44 Link-45 Link-45 Link-45 Link-46 Link-47 Link-48 CONDUIT CHANNEL 14:15 13:01 4.04 1.23 1.00 0.99 1.00 1.00 0.77 0.97 1.00 0.57 0.48 0.76 0.94 0.52 0.86 0.52 CHANNEL CONDUIT CONDUIT CONDUIT CHANNEL CONDUIT CHANNEL CHANNEL CONDUIT CONDUIT CHANNEL WEIR 8.91 24.65 31.30 8.91 50.74 31.89 137.85 31.94 53.15 0.80 0.10 36.82 13:23 12:43 13:01 13:22 13:25 13:05 12:31 13:01 14:45 11:57 11:58 11:57 5.04 9.22 7.68 5.40 3.29 7.67 7.64 3.24 3.52 2.27 3.24 0.23 5.60 13.13 17.34 5.71 40.30 58.32 938.00 43.81 78.40 6.37 2.70 0.97 1.81 1.56 1.26 0.55 0.15 0.68 0.13 0.66 0.11 13:09 12:36 13:07 Weir-01 WEIR Weir-01 Weir-02 Weir-04 Weir-05 Weir-06 Weir-07 Weir-08 Weir-09 Weir-11 Weir-11 Weir-12 WEIR 32.58 12.31 0.60 WEIR 12.31 4.41 51.98 267.48 0.00 107.57 4.64 0.00 85.78 WEIR WEIR WEIR WEIR WEIR WEIR WEIR 13:07 14:15 12:41 13:09 00:00 12:38 12:41 00:00 1.00 0.81 1.00 0.00 0.42 0.28 0.00 0.93

Highest Flow Instability Indexes
Link Weir-06 (14)
Link Link-15 (13)
Link Weir-07 (10)
Link Link-01 (10)
Link Weir-12 (9)

WARNING 116 : Conduit inlet invert elevation defined for Conduit Link-12 is below upstream node invert elevation.

Assumed conduit inlet invert elevation equal to upstream node invert elevation.

Conduit inlet invert elevation defined for Conduit Link-23 is below upstream node invert elevation.

Assumed conduit inlet invert elevation equal to upstream node invert elevation.

WARNING 002 : Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-03.

WARNING 002 : Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-04.

WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-11.
WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-24.
WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-24.
WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-24.
WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-30.
WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-34.
WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-35.
WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-36.
WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-36.

Analysis began on: Thu Sep 16 21:56:15 2021 Analysis ended on: Thu Sep 16 21:56:37 2021 Total elapsed time: 00:00:22 ************ Project Description

File Name Proposed Conditions R2.SPF

Analysis Options

***** Element Count

Number of rain gages 1
Number of subbasins 27
Number of nodes 26
Number of links 37

****** Raingage Summary

Gage ID

Rain Gage-02 100-year CUMULATIVE 6.00

Subbasin Summary

Subbasin	Total		Average	Peak Rate	Raingage
			Slope	Factor	
ID	acres	ft	8		
Sub-02	1.01	680.27	0.4700	484.00	Rain Gage-02
Sub-03	0.64	302.00	2.8900	484.00	Rain Gage-02
Sub-04	40.54	1968.00	0.6700	484.00	Rain Gage-02
Sub-05	2.33	944.03	0.8700	484.00	Rain Gage-02
Sub-06	88.19	2886.00	0.5300	484.00	Rain Gage-02
Sub-07	16.21	2738.00	0.8900	484.00	Rain Gage-02
Sub-08	3.24	908.73	0.5100	484.00	Rain Gage-02
Sub-09	4.53	633.32	0.8900	484.00	Rain Gage-02
Sub-10	30.47	2139.00	0.9100	484.00	Rain Gage-02
Sub-11		184.60	1.0000	484.00	Rain Gage-02
Sub-12	2.09	647.00	0.4300	484.00	Rain Gage-02
Sub-13	0.74	485.00	0.2500	484.00	Rain Gage-02
Sub-15	0.74	543.00	1.1100	484.00	Rain Gage-02
Sub-16	1.04	777.36	0.3700	484.00	Rain Gage-02
Sub-17	7.63	915.00	0.8100	484.00	Rain Gage-02
Sub-18	0.43	326.96	2.0400	484.00	Rain Gage-02
Sub-19		259.00	1.8000	484.00	Rain Gage-02
Sub-22	0.16	120.60	1.5800	484.00	Rain Gage-02
Sub-23	0.17	133.76	1.4300	484.00	Rain Gage-02
Sub-24	0.11	144.70	0.4700	484.00	Rain Gage-02
Sub-25	0.13	149.80	4.4300	484.00	Rain Gage-02
Sub-26	0.13	172.20	1.0400	484.00	Rain Gage-02
Sub-27	0.11	103.90	0.7220	484.00	Rain Gage-02
Sub-28	0.15	184.80	0.8400	484.00	Rain Gage-02
Sub-29	0.12	155.80	0.7200		Rain Gage-02
Sub-30	0.14	137.70	1.3000	484.00	Rain Gage-02
Sub-31	0.10	174.20	2.7000	484.00	Rain Gage-02

****** Node Summary

Node ID	44 .		Elev. ft	Area ft²	Inflow
Jun=02	JUNCTION		790.77		
Jun-03		793.64			
Jun-04		794.00			
Jun-10	JUNCTION		795.80		
Jun-11	JUNCTION	793.13			
Jun-21	JUNCTION		798.85		
Jun-24	JUNCTION	793.25	794.75	0.00	
Jun-25	JUNCTION	795.95			
Jun-28	JUNCTION		791.83		
Jun-30	JUNCTION	795.40	797.15	0.00	
Jun-32	JUNCTION	792.10		0.00	
Jun-34	JUNCTION		796.64		
Jun-35	JUNCTION	795.42	796.67	0.00	
Jun-40	JUNCTION	793.80	799.47	0.00	
Jun-46	JUNCTION	792.00	794.50	0.00	
Jun-47	JUNCTION	792.99	798.40	0.00	
Out-02	OUTFALL	783.38	789.38	0.00	
Jun-01	STORAGE	789.90	793.00	0.00	
Jun-05	STORAGE	794.29	797.90	0.00	
Jun-06	STORAGE	794.26	798.60	0.00	
Jun-12	STORAGE	792.37	797.00	0.00	
Jun-20	STORAGE	794.40	796.80	0.00	
sto	STORAGE	794.99	795.71	0.00	
Storage	STORAGE	795.63	799.00	0.00	

******* Inlet Summary

Initial Water Elevation Grate Clogging Factor Inlet ID Inlet Manufacturer Manufacturer Inlet Location Number Catchbasin Inlet Ponded of Inlets Invert Elevation Rim Elevation Area ft2 ft ft Inlet-01 Inlet-02 FHWA HEC-22 GENERIC FHWA HEC-22 GENERIC 10.00 On Sag On Grade 793.60 794.00 798.43 798.45 793.60 794.00 N/A N/A

....... Roadway and Gutter Summary

Roadway
Longitudinal
Slope Roadway Cross Slope Roadway Manning's Roughness Gutter Cross Slope Gutter Gutter Width Depression Inlet ID

		ft/:	ft ft/ft		ft/ft	:	ft	in	
Inlet-01 Inlet-02		0.02	- 0.0150 50 0.0150	0.0160 0.0160	0.0400	2.	.50 .50	0.00	
************ Link Summar ********* Link ID	y *	vode	To Node	Element Type		Length ft	Slope %	Manning's Roughness	
Link-01 Link-02 Link-03 Link-03 Link-06 Link-10 Link-16 Link-15 Link-16 Link-16 Link-21 Link-26 Link-27 Link-36 Link-37 Link-36 Link-37 Link-39 Link-39 Link-41 Link-44 Link-45 Link-45 Link-46 Link-47 Link-48 Link-49 Link-49 Link-50 Weir-07 Weir-08 Weir-07 Weir-08 Weir-07 Weir-08 Weir-07 Weir-08 Weir-09 Weir-09 Weir-09 Weir-09 Weir-09 Weir-11 Weir-12 Weir-13	Jun-0: Jun-2: Storac Jun-0: Jun-1: Jun-2: Jun-2: Jun-1: Jun-3: Jun-3: Jun-3: Jun-0: Ju	5 4 4 2 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Jun-04 Jun-47 sto Jun-28 Jun-10 Jun-06 Jun-06 Jun-06 Jun-12 Jun-01 Jun-02 Jun-12 Jun-03 Jun-04 Jun-03 Jun-46 Jun-24 Jun-24 Jun-24 Jun-24 Jun-24 Jun-24 Jun-25 Jun-10 Jun-07 Jun-07 Jun-07 Jun-07 Jun-07 Jun-08 Jun-0	Element Type CONDUIT CHANNEL CONDUIT CONDUIT CONDUIT CONDUIT CHANNEL CONDUIT CHANNEL CHANNEL CONDUIT CHANNEL WEIR WEIR WEIR WEIR WEIR WEIR WEIR WEIR		34.4 44.0 65.0 65.0 78.7 24.6 20.0 27.6 28.0 172.4 92.4 92.4 92.6 130.2 121.6 80.3 121.6 80.3 131.6 97.7 182	0.8440 0.5912 0.9963 0.7891 0.7308 5.9600 0.9786 0.7143 0.5509 0.5392 2.3691 0.0894 0.3615 0.3782 0.486 0.2380 0.3933 1.0180 0.3933 1.0180 0.394 0.3953 1.0180 0.3953 0.39	0.0150 0.0320 0.0250 0.0150 0.0250 0.0250 0.0250 0.0320 0.0320 0.0320 0.0320 0.0320 0.0320 0.0320 0.0150 0.0150 0.0150 0.0320 0.0320 0.0320	
Cross Secti *********** Link ID	on Summary	è	Depth/ Diameter	Width	No. Barr	of els	Cross Sectional	Full Flow Hydraulic	Design Flow Capacity
Link-01 Link-02 Link-02 Link-06 Link-10 Link-10 Link-11 Link-15 Link-21 Link-23 Link-23 Link-27 Link-36 Link-37 Link-39 Link-39 Link-41 Link-45 Link-46 Link-47 Link-46 Link-47 Link-46 Link-47 Link-48 Link-48 Link-48 Link-49 Link-50 Link-40 Link-40 Link-50 Link-40 Link-5	CIRCL TRAPH CIRCL	JUAR ZZOTDAL JUAR JUAR JUAR JUAR JUAR JUAR JUAR JUAR	ft 1.25 1.50 1.50 1.50 1.25 3.40 1.25 2.00 1.75 0.60 1.25 1.00 1.50 1.50 1.50 1.50 1.50 1.50 1.5	ft 1.25 19.00 1.50 2.00 1.25 2.00 20.00 1.25 16.50 1.25 2.00 20.00 16.25 16.50 1.50 2.00 20.00 19.00 19.00 11.00 11.00 14.00			ft² 1.23 17.25 1.77 19.63 49.30 49.30 1.23 3.144 24.00 17.72 2.88 1.23 8.25 1.77 3.14 4.91 1.77 15.40 7.07 66.00 17.25 0.79 0.79 0.79	Radius ft	5.14 57.13 5.42 200.50 2.80 782.03 3.33 9.94 91.91 62.73 9.18 1.00 14.44 5.60 13.13 17.34 5.73 9.80 10.00 14.84 5.73 17.34 5.74 5.74 5.74 5.74 5.74 5.74 5.74 5.7
*********** Transect Su	mmary								
Transect XS Area:	0.0003 0.0091 0.0307 0.0688 0.1320	0.0794 0.1477 0.2415	0.0023 0.0162 0.0431 0.0910 0.1644 0.2634 0.3877 0.5376 0.7129	0.1037 0.1822 0.2862	0.0063 0.0254 0.0592 0.1173 0.2010 0.3100 0.4446 0.6047 0.7902 1.0000				
Hrad:	0.0213 0.1275 0.2338	0.0425 0.1488 0.2551	0.0638 0.1701	0.0850 0.1913 0.2681	0.1063 0.2126 0.2788 0.3558 0.4492 0.5489 0.6516 0.7559 0.8613 1.0000				
Width:	0.0117 0.0704 0.1292 0.2338 0.3517 0.4697 0.5876	0.0235 0.0822 0.1409 0.2574 0.3753 0.4932 0.6112 0.7291	0.0352 0.0939 0.1630 0.2810 0.3989 0.5168 0.6348	0.0470 0.1057 0.1866 0.3046 0.4225 0.5404 0.6583 0.7763					
*********** Runoff Quan *******	tity Contin	nuity	Volume acre-ft	Depth inches					

Total Precipitation Surface Runoff Continuity Error (%)	94.183 0.543	5.600 0.032			
**************************************	Volume	Volume Mgallons			
Flow Routing Continuity ***********************************	0.000 63.128 0.000	0.000 20.571 0.000 0.001			
**************************************	tions Report				
Subbasin Sub-02					
Soil/Surface Description			Area (acres)	Soil Group	CN
Paved parking & roofs > 75% grass cover, Good Row crops, straight row, Good Composite Area & Weighted CN			0.27 0.50 0.24 1.01	Soil Group C C	98.00 74.00 85.00 83.04
Subbasin Sub-03			Area	Soil Group	
Soil/Surface Description					
Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN			0.34 0.21 0.10 0.65	c c	74.00 98.00 83.57
Subbasin Sub-04			Area	Soil Group	
Soil/Surface Description					
> 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN			0.26 0.21 40.53	c c	74.00 98.00 85.00
Subbasin Sub-05			Area	Soil Group	
Soil/Surface Description Row crops, straight row, Good			(acres)	Group	CN
> 75% grass cover, Good Paved roads with curbs & sewer Composite Area & Weighted CN			0.88 0.28 2.32	Group C C C	74.00 98.00 82.40
Subbasin Sub-06			Area	Soil	
Soil/Surface Description			(acres)	Soil Group	CN
1 acre lots, 20% impervious Woods, Good Row crops, straight row, Good > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN			4.96 4.42 78.44 0.30 0.27 88.39	C C C C	79.00 70.00 85.00 74.00 98.00 83.92
Subbasin Sub-07					
Soil/Surface Description			Area (acres)	Soil Group	CN
> 75% grass cover, Good Paved parking & roofs Row crops, straight row, Good 1/4 acre lots, 38% impervious Composite Area & Weighted CN			1.90 2.24 7.30 4.72 16.16	0000	74.00 98.00 85.00 83.00 84.92
Subbasin Sub-08			Area	Soil	
Soil/Surface Description			(acres)	Group	CN
Row crops, straight row, Good Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN			1.99 0.36 0.89 3.24	c c	85.00 98.00 74.00 83.44
Subbasin Sub-09			Area	Soil	
Soil/Surface Description			(acres)	Group	
Row crops, straight row, Good > 75% grass cover, Good Composite Area & Weighted CN			4.53 0.09 4.62	c	85.00 74.00 84.80
Subbasin Sub-10			Area	Soil	
Soil/Surface Description Row crops, straight row, Good			(acres)		
ROW Crops, straight row, Good 1/4 acre lots, 38% impervious > 75% grass cover, Good Paved parking & roofs Composite Area & Weighted CN			2.02 1.55 1.10 30.47	000	85.00 83.00 74.00 98.00 84.78
Subbasin Sub-11			Area	Soil	
Soil/Surface Description				Group	
> 75% grass cover, Good Paved parking & roofs			0.12	c	98.00

Composite Area & Weighted CN	0.43		91.26
Subbasin Sub-12			
Soil/Surface Description	Area (acres)	Soil Group	CN
Row crops, straight row, Good > 75% grass cover, Good	1.00	c c	85.00 74.00
Paved parking & roofs 1/4 acre lots, 38% impervious	0.41	C C	83.00
Composite Area & Weighted CN	2.02		85.79
Subbasin Sub-13	Area	Soil	
Soil/Surface Description	(acres)	Group	CN
Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN	0.31 0.43 0.74	c c	98.00 74.00 84.10
Subbasin Sub-15			
Soil/Surface Description	Area (acres)	Soil Group	CN
Paved parking & roofs > 75% grass cover, Good	0.30 0.44	c	98.00 74.00
Composite Area & Weighted CN	0.74	Ü	83.69
Subbasin Sub-16			
Soil/Surface Description	Area (acres)	Soil Group	CN
> 75% grass cover, Good Paved parking & roofs	0.51 0.53	C C	74.00 98.00
Composite Area & Weighted CN	1.04		86.24
Subbasin Sub-17			
Soil/Surface Description	Area (acres)	Soil Group	CN
Row crops, straight row, Good Composite Area & Weighted CN	7.63 7.63	С	85.00 85.00
Subbasin Sub-18			
Soil/Surface Description	Area (acres)	Soil Group	CN
Paved parking & roofs	0.18	 C C	98.00 74.00
> 75% grass cover, Good Composite Area & Weighted CN	0.24 0.42	С	74.00 84.45
Subbasin Sub-19	Area	Soil	
Soil/Surface Description	(acres)	Group	CN
Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN	0.12 0.14 0.26	D C	98.00 74.00 85.09
Subbasin Sub-22			
Soil/Surface Description	Area (acres)	Soil Group	CN
Paved parking & roofs > 75% grass cover, Good	0.12 0.04	c c	98.00 74.00
Composite Area & Weighted CN	0.16		91.51
Subbasin Sub-23	Area	Soil	
Soil/Surface Description	(acres)	Group	CN
Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN	0.12 0.04 0.17	c	98.00 74.00 91.69
Subbasin Sub-24			
Soil/Surface Description	Area (acres)	Soil Group	CN
Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN	0.10 0.01 0.11	c c	98.00 74.00 95.28
Subbasin Sub-25			
Soil/Surface Description	Area (acres)	Soil Group	CN
Paved parking & roofs > 75% grass cover, Good	0.11 0.01	c c	98.00
Composite Area & Weighted CN	0.13		95.46
Subbasin Sub-26	Area	Soil	
Soil/Surface Description	(acres) 	Group C	CN 98.00
> 75% grass cover, Good Composite Area & Weighted CN	0.02 0.13	c c	98.00 74.00 94.95
Subbasin Sub-27			
Soil/Surface Description	Area (acres)	Soil Group	CN

Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN		0.10 0.01 0.11	C C	98.00 74.00 95.66
Subbasin Sub-28				
Soil/Surface Description		Area (acres)	Soil Group	CN
Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN		0.13 0.02 0.15	c c	98.00 74.00 95.47
Subbasin Sub-29				
Soil/Surface Description		Area (acres)		CN
Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN		0.11 0.01 0.12	c c	98.00 74.00 95.25
Subbasin Sub-30				
Soil/Surface Description		Area (acres)	Soil Group	CN
Paved parking & roofs > 75% grass cover, Good Composite Area & Weighted CN			c c	
Subbasin Sub-31				
Soil/Surface Description		Area (acres)	Soil Group	CN
Paved parking & roofs		0.09		98.00 74.00
> 75% grass cover, Good Composite Area & Weighted CN		0.01	С	74.00 95.59
Kirpich Time of Concentration Computa	tions Report			
Tc = (0.0078 * (L^0.77) * (S^-) Where:	-0.385))			
Tc = Time of Concentration (m: L = Flow length (ft) S = Slope (ft/ft)	in)			
Subbasin Sub-02				
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	680.27 0.47 9.32			
Subbasin Sub-03				
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	302.00 2.89 2.48			
Subbasin Sub-04				
User-Defined TOC override (min	nutes): 47.4	10		
Subbasin Sub-05				
Flow length (ft): Slope (%):	944.03 0.87			
Computed TOC (minutes):	9.46			
Subbasin Sub-06				
User-Defined TOC override (min	nutes): 48.2	2.4		
Subbasin Sub-07				
User-Defined TOC override (min	nutes): 41.8	88		
Subbasin Sub-08				
Flow length (ft): Slope (%): Computed TOC (minutes):	908.73 0.51 11.29			
Subbasin Sub-09				
Flow length (ft): Slope (%): Computed TOC (minutes):	633.32 0.89 6.90			
Subbasin Sub-10				
User-Defined TOC override (min	nutes): 45.0	00		
Subbasin Sub-11				
Flow length (ft): Slope (%): Computed TOC (minutes):	184.60 1.00 2.55			

Subbasin Sub-12	
Flow length (ft): Slope (%): Computed TOC (minutes):	647.00 0.43 9.28
Subbasin Sub-13	
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	485.00 0.25 9.16
Subbasin Sub-15	
Flow length (ft): Slope (%): Computed TOC (minutes):	543.00 1.11 5.63
Subbasin Sub-16	
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	777.36 0.37 11.33
Subbasin Sub-17	
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	915.00 0.81 9.50
Subbasin Sub-18	
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	326.96 2.04 3.01
Subbasin Sub-19	
Flow length (ft): Slope (%): Computed TOC (minutes):	259.00 1.80 2.64
Subbasin Sub-22	
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	120.60 1.58 1.54
Subbasin Sub-23	
Flow length (ft): Slope (%): Computed TOC (minutes):	133.76 1.43 1.74
Subbasin Sub-24	
Flow length (ft): Slope (%): Computed TOC (minutes):	144.70 0.47 2.83
Subbasin Sub-25	
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	149.80 4.43 1.23
Subbasin Sub-26	
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	172.20 1.04 2.38
Subbasin Sub-27	
Flow length (ft): Slope (%): Computed TOC (minutes):	103.90 0.72 1.86
Subbasin Sub-28	
Flow length (ft): Slope (%): Computed TOC (minutes):	184.80 0.84 2.73
Subbasin Sub-29	
Flow length (ft): Slope (%): Computed TOC (minutes):	155.80 0.72 2.54
Subbasin Sub-30	
<pre>Flow length (ft): Slope (%): Computed TOC (minutes):</pre>	137.70 1.30 1.84

Flow length (ft): Slope (%): Computed TOC (minutes):

174.20 2.70 1.67

Subbasin	Total	Total	Peak	Weighted		Time of
ID	Precip in	Runoff in	Runoff cfs	Curve Number		entration hh:mm:ss
Sub-02	5.60	3.73	5.23	83.040	0	00:09:19
Sub-03	5.60	3.78	3.78	83.570	0	00:05:00
Sub-04	5.60	3.93	103.99	85.000	0	00:47:24
Sub-05	5.60	3.66	11.82	82.400	0	00:09:27
Sub-06	5.60	3.81	217.35	83.920	0	00:48:14
Sub-07	5.60	3.92	45.09	84.920	0	00:41:52
Sub-08	5.60	3.77	16.18	83.440	0	00:11:17
Sub-09	5.60	3.91	26.03	84.800	0	00:06:54
Sub-10	5.60	3.90	80.60	84.780	0	00:45:00
Sub-11	5.60	4.59	2.94	91.260	0	00:05:00
Sub-12	5.60	4.01	11.51	85.790	0	00:09:16
Sub-13	5.60	3.83	3.92	84.100	0	00:09:09
Sub-15	5.60	3.79	4.32	83.690	0	00:05:37
Sub-16	5.60	4.05	5.51	86.240	0	00:11:19
Sub-17	5.60	3.93	41.16	85.000	0	00:09:30
Sub-18	5.60	3.87	2.55	84.450	0	00:05:00
Sub-19	5.60	3.94	1.56	85.090	0	00:05:00
Sub-22	5.60	4.62	1.15	91.510	0	00:05:00
Sub-23	5.60	4.64	1.15	91.690	0	00:05:00
Sub-24	5.60	5.04	0.78	95.280	0	00:05:00
Sub-25	5.60	5.07	0.92	95.460	0	00:05:00
Sub-26	5.60	5.01	0.92	94.950	0	00:05:00
Sub-27	5.60	5.09	0.83	95.660	0	00:05:00
Sub-28	5.60	5.07	1.11	95.470	0	00:05:00
Sub-29	5.60	5.04	0.88	95.250	0	00:05:00
Sub-30	5.60	5.10	1.02	95.730	0	00:05:00
Sub-31	5.60	5.08	0.74	95.590	0	00:05:00

Node ID	Average Depth Attained ft	Maximum Depth Attained ft	Maximum HGL Attained ft	Occu	of Max rrence	Total Flooded Volume acre-in	Total Time Flooded minutes	Retention Time hh:mm:ss
Jun-02	0.82	5.50	791.27	0	12:24	0	0	0:00:00
Jun-03	0.41	4.22	797.86	0	13:58	0	0	0:00:00
Jun-04	0.57	5.80	799.80	0	13:23	8.98	7	0:00:00
Jun-10	0.05	0.55	793.50	0	12:04	0	0	0:00:00
Jun-11	0.08	1.75	794.88	0	12:02	0	0	0:00:00
Jun-21	0.41	2.55	798.00	0	13:00	0	0	0:00:00
Jun-24	0.29	1.41	794.66	0	13:58	0	0	0:00:00
Jun-25	0.40	2.88	798.83	0	12:38	0	0	0:00:00
Jun-28	0.61	3.47	787.59	0	12:35	0	0	0:00:00
Jun-30	0.07	0.90	796.30	0	12:03	0	0	0:00:00
Jun-32	0.04	0.43	792.53	0	11:58	0	0	0:00:00
Jun-34	0.15	1.24	796.63	0	12:46	0	0	0:00:00
Jun-35	0.15	1.85	797.27	0	12:46	5.86	127	0:00:00
Jun-40	0.55	2.59	796.39	0	12:56	0	0	0:00:00
Jun-46	0.27	1.45	793.45	0	12:04	0	0	0:00:00
Jun-47	0.25	1.41	794.40	0	12:39	0	0	0:00:00
Out-02	0.00	0.00	783.38	0	00:00	0	0	0:00:00
Jun-01	0.32	1.99	791.89	0	13:04	0	0	0:00:00
Jun-05	0.57	3.61	797.90	0	12:47	38.22	48	0:00:00
Jun-06	0.73	3.74	798.00	0	13:00	0	0	0:00:00
Jun-12	0.51	3.91	796.28	0	13:01	0	0	0:00:00
Jun-20	0.38	2.10	796.50	0	12:34	0	0	0:00:00
sto	0.44	0.64	795.63	0	12:47	0	0	0:00:00
Storage	0.58	2.55	798.18	0	12:41	0	0	0:00:00

Node	Element	Maximum	Peak	T	ime of	Maximum	Time o	f Peak
ID	Type	Lateral	Inflow				looding Flood	
		Inflow			rrence			
		cfs		days	hh:mm		days	hh:mm
Jun-02	JUNCTION			0	12:24			
Jun-03	JUNCTION	5.30	254.89	0	13:23			
Jun-04	JUNCTION	3.61	334.24	0	13:38	167.74	0	13:46
Jun-10	JUNCTION		5.50	0	12:02	0.00		
Jun-11	JUNCTION	5.50	5.50	0	12:02	0.00		
Jun-21	JUNCTION	45.09	58.81	0	12:23	0.00		
Jun-24	JUNCTION		60.42	0	14:32			
Jun-25			63.21	0	12:38	0.00		
Jun-28			174.57	0	12:35			
Jun-30	JUNCTION		16.18	0	12:02			
Jun-32	JUNCTION		3.72	0	11:57	0.00		
Jun-34	JUNCTION	1.54		0	12:46	0.00		
Jun-35	JUNCTION	0.00	10.91	0	12:43	5.55	0	12:46
Jun-40	JUNCTION		9.17	0	12:59			
Jun-46	JUNCTION		36.35	0	12:03	0.00		
Jun-47	JUNCTION		53.77	0	12:34			
Out-02	OUTFALL	0.00	174.57	0	12:35	0.00		
Jun-01	STORAGE	0.00	36.27	0	12:04	0.00		
Jun-05	STORAGE		241.07	0	13:23		0	13:02
Jun-06	STORAGE	45.74	218.01	0	12:33	0.00		
Jun-12	STORAGE	30.28	67.32	0	12:34	0.00		
Jun-20	STORAGE		80.29	0	12:22	0.00		
sto	STORAGE	0.00	12.71	0	12:46	0.00		
Storage	STORAGE	216.75	267.94	0	12:24	0.00		

Inlet ID	Max Gutter Spread during Peak Flow ft	Max Gutter Water Elev during Peak Flow ft	Max Gutter Water Depth during Peak Flow ft	Time of Maximum Depth Occurrence days hh:mm

Inlet-01 Inlet-02 9.07 6.38 798.58 798.61 0.15 0 11:58 0 11:58

Inlet Flow Summary

Inlet ID	Peak Flow	Peak Lateral Flow	Peak Flow Intercepted by Inlet	Peak Flow Bypassing Inlet	Inlet Efficiency during Peak Flow	Total Flooding	Total Time Flooded
	cfs	cfs	cfs	cfs	8	acre-in	minutes
Inlet-01 Inlet-02	1.29 1.12	1.12	0.96	0.17	85.21	0.000	0

***** Storage Node Summary

Storage Node ID	Maximum Ponded Volume 1000 ft ³	Maximum Ponded Volume (%)		of Max Ponded Volume hh:mm	Average Ponded Volume 1000 ft ³	Average Ponded Volume (%)	Maximum Storage Node Outflow cfs	Maximum Exfiltration Rate cfm	Time of Max. Exfiltration Rate hh:mm:ss	Total Exfiltrated Volume 1000 ft ³
Jun-01	5.057	33	0	13:04	0.404	3	35.76	0.00	0:00:00	0.000
Jun-05	70.451	100	0	12:47	6.913	10	314.38	0.00	0:00:00	0.000
Jun-06	324.419	61	0	13:00	30.445	6	116.99	0.00	0:00:00	0.000
Jun-12	78.012	53	0	13:01	3.635	2	34.98	0.00	0:00:00	0.000
Jun-20	84.254	72	0	12:34	5.169	4	64.23	0.00	0:00:00	0.000
sto	0.227	74	0	12:47	0.111	36	12.67	0.00	0:00:00	0.000
Storage	236.682	43	0	12:41	18.898	3	214.47	0.00	0:00:00	0.000

****** Outfall Loading Summary

Outfall	Node ID	Flow Frequency (%)	Average Flow cfs	Peak Inflow cfs
Out-02		67.24	25.42	174.57
System		67.24	25.42	174.57

****** Link Flow Summary

Link ID Element Time of Maximum Velocity Attained ft/sec 5.32 3.91 6.21 8.39 5.84 3.66 5.21 4.71 0.68 1.38 Maximum Length Peak Flow Design Ratio of Flow Maximum Ratio of Total Reported Condition Peak Flow Type Factor Maximum Flow Time Analysis Occurrence days hh:mm Surcharged Capacity cfs /Design Flow cfs Depth minutes 356 SURCHARGED

0 Calculated

0 CALCULATE

0 CALCULATE

0 CALCULATE

10 CARCITY

0 CARCITY

0 CARCITY

10 CALCULATE

10 CALCULAT 5.14 57.13 5.42 200.50 2.87 782.03 3.32 9.94 91.91 62.73 Link-01 Link-02 Link-03 Link-06 Link-10 Link-15 Link-15 Link-16 Link-18 Link-21 CONDUIT CHANNEL CONDUIT CONDUIT CHANNEL CONDUIT CHANNEL CHANNEL CHANNEL CHANNEL 6.46 53.67 8.29 143.44 5.50 95.42 6.23 13.17 5.40 17:54 12:34 12:46 12:24 12:02 12:23 12:21 12:25 12:02 12:03 1.26 0.94 1.53 0.72 1.91 0.12 1.87 1.32 0.06 0.25 1.00 0.94 0.71 0.81 0.72 0.87 1.00 1.00 0.50 0.76 1.75 4.05 1.34 3.69 4.79 10.91 9.17 24.72 34.98 9.17 51.50 35.76 174.57 36.27 53.15 0.95 2.24 9.18 Link-23 CHANNEL 11:58 1.00 0.40 0.86 Link-26 Link-37 Link-36 Link-37 Link-38 Link-39 Link-41 Link-44 Link-45 Link-45 Link-45 Link-46 Link-47 Link-48 CONDUIT CHANNEL 12:46 12:43 1.00 0.99 1.00 1.00 0.79 0.97 1.00 0.61 0.53 0.81 0.97 0.62 0.90 0.59 CHANNEL CONDUIT CONDUIT CONDUIT CHANNEL CONDUIT CHANNEL CHANNEL CONDUIT CONDUIT CHANNEL WEIR 12:59 12:31 13:01 12:59 14:32 13:04 12:35 12:04 15:38 11:57 11:58 11:57 5.19 9.24 8.44 5.35 3.34 7.85 8.04 3.36 3.52 2.29 3.48 0.27 5.60 13.13 17.34 5.71 40.30 58.32 938.00 43.81 78.40 6.37 2.70 0.97 1.64 1.88 2.02 1.61 1.28 0.61 0.19 0.83 0.68 0.15 0.83 13:38 12:33 12:47 Weir-01 WEIR 35.60 Weir-01 Weir-02 Weir-04 Weir-05 Weir-06 Weir-07 Weir-08 Weir-09 Weir-11 Weir-11 Weir-12 WEIR 51.62 12.67 0.73 WEIR 12.67 4.43 63.21 310.17 0.00 144.40 11.87 0.00 101.86 251.06 WEIR WEIR WEIR WEIR WEIR WEIR WEIR 12:47 12:46 12:38 13:23 00:00 12:35 12:38 00:00 1.00 0.92 1.00 0.00 0.50 0.68 0.00 1.00

Highest Flow Instability Indexes
Link Weir-06 (15)
Link Link-15 (15)
Link Weir-07 (14)
Link Link-01 (13)
Link Link-37 (12)

WARNING 116 : Conduit inlet invert elevation defined for Conduit Link-12 is below upstream node invert elevation.

Assumed conduit inlet invert elevation equal to upstream node invert elevation.

Conduit inlet invert elevation defined for Conduit Link-23 is below upstream node invert elevation.

Assumed conduit inlet invert elevation equal to upstream node invert elevation.

WARNING 002 : Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-03.

WARNING 002 : Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-04.

WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-11.
WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-24.
WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-24.
WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-24.
WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-30.
WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-34.
WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-35.
WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-36.
WARNING 002: Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-36.

Analysis began on: Thu Sep 16 22:00:40 2021 Analysis ended on: Thu Sep 16 22:01:02 2021 Total elapsed time: 00:00:22

Appendix H - Hydraflow Express Calculations

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Sep 23 2021

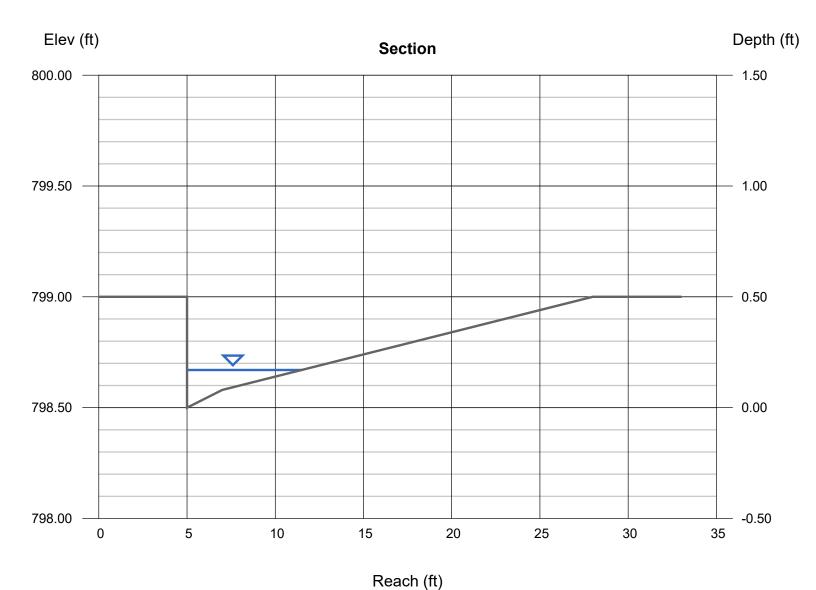
Sub-basin 24

Gutter	
Cross SI, Sx (ft/ft)	= 0.020
Cross SI, Sw (ft/ft)	= 0.040
Gutter Width (ft)	= 2.00
Invert Elev (ft)	= 798.30
Slope (%)	= 0.49
N-Value	= 0.015

Calculations

Compute by: Known Q Known Q (cfs) = 0.55

Highlighted	
Depth (ft)	= 0.16
Q (cfs)	= 0.550
Area (sqft)	= 0.39
Velocity (ft/s)	= 1.40
Wetted Perim (ft)	= 6.11
Crit Depth, Yc (ft)	= 0.16
Spread Width (ft)	= 5.95
EGL (ft)	= 0.19



Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

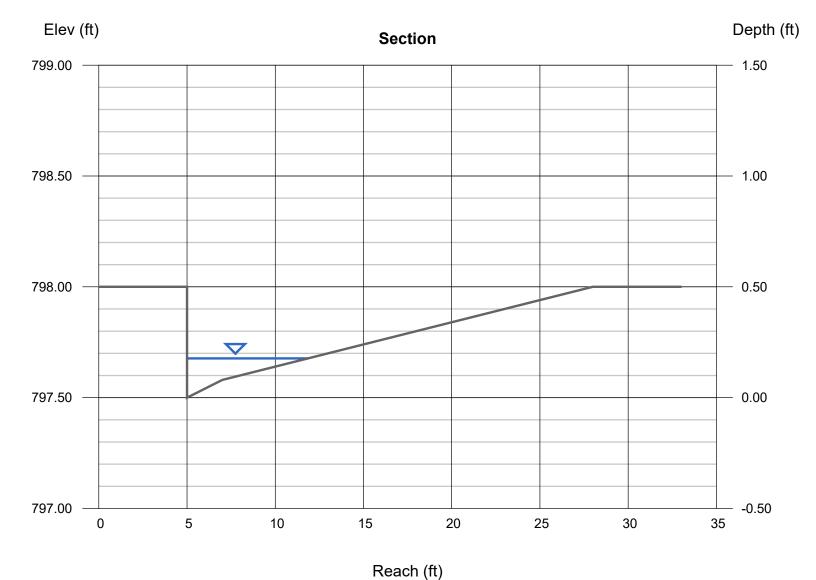
Thursday, Sep 23 2021

Sub-basin 25

Gutter		Highlighted	
Cross SI, Sx (ft/ft)	= 0.020	Depth (ft)	= 0.17
Cross SI, Sw (ft/ft)	= 0.040	Q (cfs)	= 0.650
Gutter Width (ft)	= 2.00	Area (sqft)	= 0.46
Invert Elev (ft)	= 798.50	Velocity (ft/s)	= 1.41
Slope (%)	= 0.45	Wetted Perim (ft)	= 6.67
N-Value	= 0.015	Crit Depth, Yc (ft)	= 0.17
		Spread Width (ft)	= 6.50
Calculations		EGL (ft)	= 0.20
Compute by:	Known Q		
Known Q (cfs)	= 0.65		

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Sep 23 2021


Gutter Spread - Subbasin 26

Gutter	
Cross SI, Sx (ft/ft)	= 0.020
Cross SI, Sw (ft/ft)	= 0.040
Gutter Width (ft)	= 2.00
Invert Elev (ft)	= 797.50
Slope (%)	= 0.34
N-Value	= 0.015

Calculations

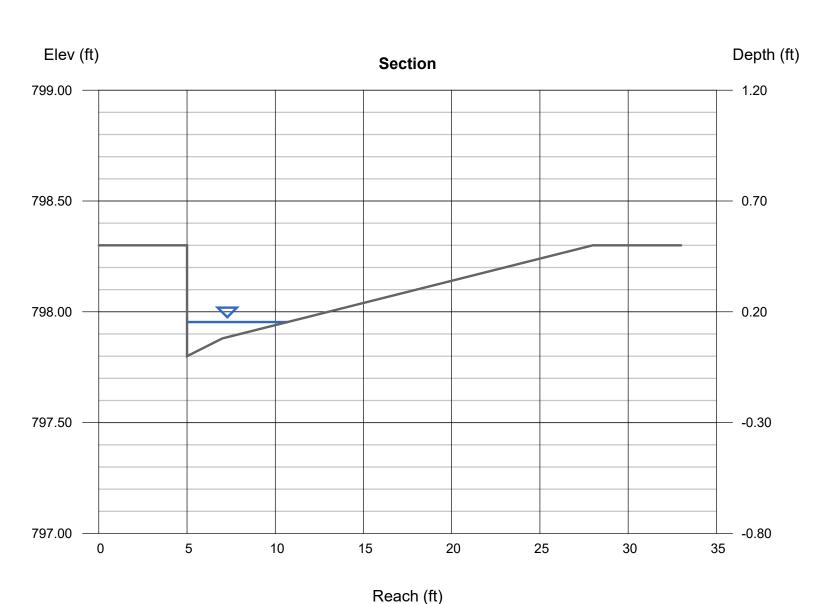
Compute by: Known Q Known Q (cfs) = 0.64

Highlighted		
Depth (ft)	=	0.18
Q (cfs)	=	0.640
Area (sqft)	=	0.51
Velocity (ft/s)	=	1.26
Wetted Perim (ft)	=	7.03
Crit Depth, Yc (ft)	=	0.17
Spread Width (ft)	=	6.85
EGL (ft)	=	0.20

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Known Q

= 0.59


Thursday, Sep 23 2021

= 0.15 = 0.590 = 0.36 = 1.62 = 5.86 = 0.17 = 5.70 = 0.19

Sub-basin 27

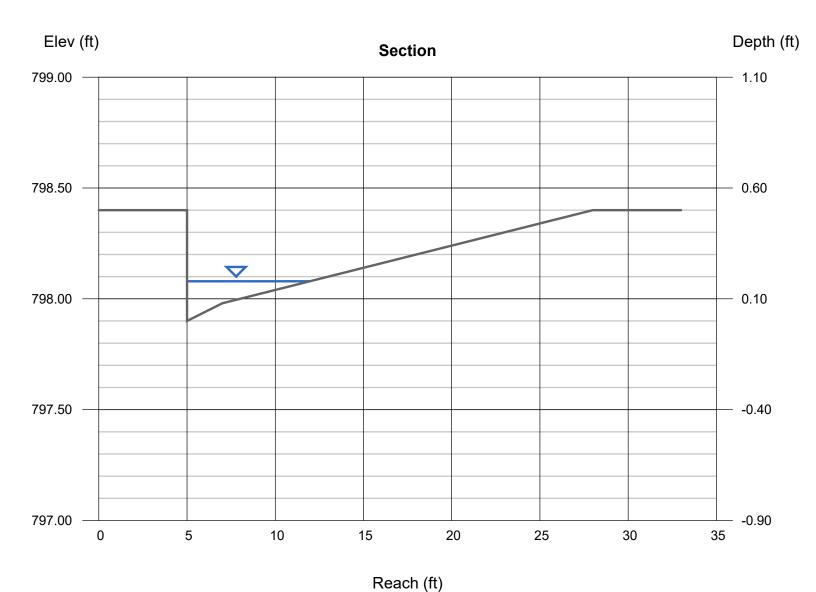
Compute by: Known Q (cfs)

	Highlighted
= 0.020	Depth (ft)
= 0.040	Q (cfs)
= 2.00	Area (sqft)
= 797.80	Velocity (ft/s)
= 0.69	Wetted Perim (ft)
= 0.015	Crit Depth, Yc (ft)
	Spread Width (ft)
	EGL (ft)
	= 0.040 = 2.00 = 797.80 = 0.69

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Known Q

= 0.78

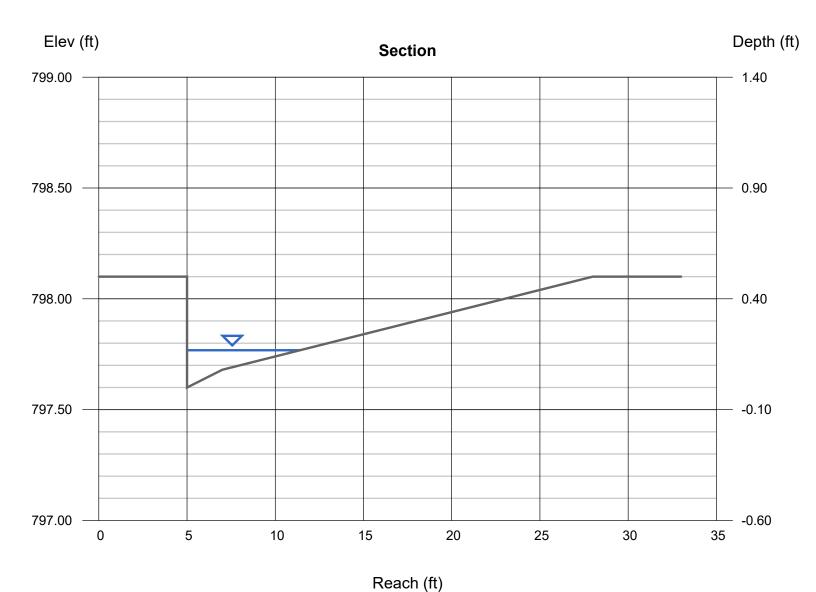

Thursday, Sep 23 2021

Sub-basin 28

Compute by:

Known Q (cfs)

Gutter		Highlighted	
Cross SI, Sx (ft/ft)	= 0.020	Depth (ft)	= 0.18
Cross SI, Sw (ft/ft)	= 0.040	Q (cfs)	= 0.780
Gutter Width (ft)	= 2.00	Area (sqft)	= 0.52
Invert Elev (ft)	= 797.90	Velocity (ft/s)	= 1.49
Slope (%)	= 0.47	Wetted Perim (ft)	= 7.13
N-Value	= 0.015	Crit Depth, Yc (ft)	= 0.18
		Spread Width (ft)	= 6.95
Calculations		EGL (ft)	= 0.21



Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Sep 23 2021

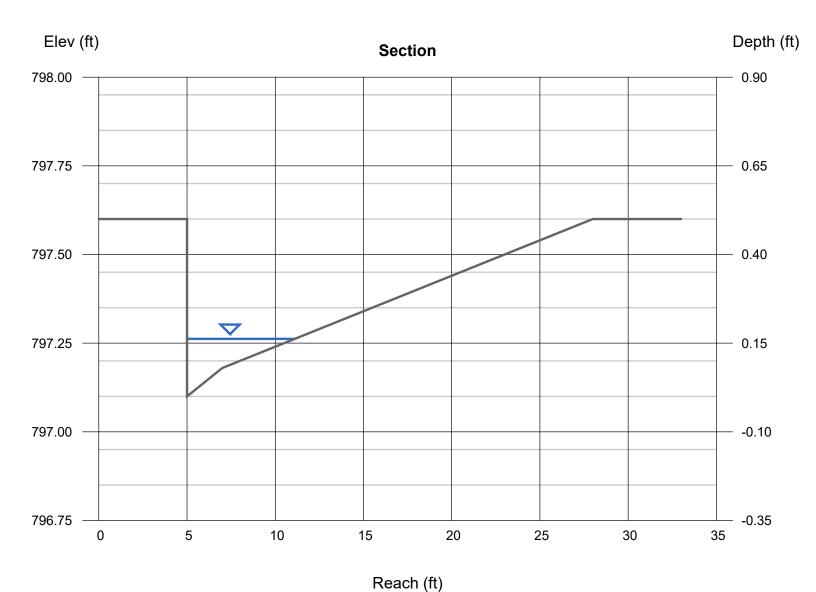
Sub-basin 29

Gutter		Highlighted	
Cross SI, Sx (ft/ft)	= 0.020	Depth (ft)	= 0.17
Cross SI, Sw (ft/ft)	= 0.040	Q (cfs)	= 0.610
Gutter Width (ft)	= 2.00	Area (sqft)	= 0.45
Invert Elev (ft)	= 797.60	Velocity (ft/s)	= 1.36
Slope (%)	= 0.43	Wetted Perim (ft)	= 6.57
N-Value	= 0.015	Crit Depth, Yc (ft)	= 0.17
		Spread Width (ft)	= 6.40
Calculations		EGL (ft)	= 0.20
Compute by:	Known Q		
Known Q (cfs)	= 0.61		

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Known Q

= 0.72


Thursday, Sep 23 2021

Sub-basin 30

Compute by:

Known Q (cfs)

Gutter		Highlighted	
Cross SI, Sx (ft/ft)	= 0.020	Depth (ft)	= 0.16
Cross SI, Sw (ft/ft)	= 0.040	Q (cfs)	= 0.720
Gutter Width (ft)	= 2.00	Area (sqft)	= 0.41
Invert Elev (ft)	= 797.10	Velocity (ft/s)	= 1.75
Slope (%)	= 0.75	Wetted Perim (ft)	= 6.26
N-Value	= 0.015	Crit Depth, Yc (ft)	= 0.18
		Spread Width (ft)	= 6.10
Calculations		EGL (ft)	= 0.21

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Known Q

= 0.52

Thursday, Sep 23 2021

Sub-basin 31

Compute by:

Known Q (cfs)

Gutter		Highlighted	
Cross SI, Sx (ft/ft)	= 0.020	Depth (ft)	= 0.15
Cross SI, Sw (ft/ft)	= 0.040	Q (cfs)	= 0.520
Gutter Width (ft)	= 2.00	Area (sqft)	= 0.34
Invert Elev (ft)	= 797.30	Velocity (ft/s)	= 1.54
Slope (%)	= 0.66	Wetted Perim (ft)	= 5.60
N-Value	= 0.015	Crit Depth, Yc (ft)	= 0.16
		Spread Width (ft)	= 5.45
Calculations		EGL (ft)	= 0.19

Appendix I - NRCS Web Soil Survey

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Kenosha and Racine Counties, Wisconsin

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2 053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	
Soil Map	
Legend	
Map Unit Legend	
Map Unit Descriptions	
Kenosha and Racine Counties, Wisconsin	
AtA—Ashkum silty clay loam, 0 to 2 percent slopes	14
AzB—Aztalan loam, 2 to 6 percent slopes	
BcA—Beecher silt loam, 1 to 3 percent slopes	
EtB—Elliott silty clay loam, 2 to 6 percent slopes	18
FoB—Fox loam, 2 to 6 percent slopes	19
HeB2—Hebron loam, 2 to 6 percent slopes, eroded	
MeB—Markham silt loam, 2 to 6 percent slopes	
MgA—Martinton silt loam, 1 to 3 percent slopes	
Mzc—Montgomery silty clay	
Na—Navan silt loam	25
Pa—Palms muck, 0 to 2 percent slopes	26
VaB—Varna silt loam, 2 to 6 percent slopes	
References	

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

(o)

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

Lava Flow Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot Sandy Spot

Severely Eroded Spot

Sinkhole

Sodic Spot

Slide or Slip

Spoil Area

Stony Spot

Very Stony Spot

Ŷ

Wet Spot Other

Δ

Special Line Features

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

00

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:15.800.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Kenosha and Racine Counties, Wisconsin Survey Area Data: Version 17, Jun 8, 2020

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Apr 29, 2011—Mar 28. 2012

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
AtA	Ashkum silty clay loam, 0 to 2 percent slopes	22.3	13.3%
AzB	Aztalan loam, 2 to 6 percent slopes	23.5	14.0%
BcA	Beecher silt loam, 1 to 3 percent slopes	5.6	3.4%
EtB	Elliott silty clay loam, 2 to 6 percent slopes	8.6	5.1%
FoB	Fox loam, 2 to 6 percent slopes	5.7	3.4%
HeB2	Hebron loam, 2 to 6 percent slopes, eroded	5.8	3.4%
MeB	Markham silt loam, 2 to 6 percent slopes	30.7	18.3%
MgA	Martinton silt loam, 1 to 3 percent slopes	8.3	5.0%
Mzc	Montgomery silty clay	30.5	18.2%
Na	Navan silt loam	24.5	14.6%
Pa	Palms muck, 0 to 2 percent slopes	1.5	0.9%
VaB	Varna silt loam, 2 to 6 percent slopes	0.6	0.4%
Totals for Area of Interest	·	167.6	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called

noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can

be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Kenosha and Racine Counties, Wisconsin

AtA—Ashkum silty clay loam, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 2ssrw

Elevation: 520 to 930 feet

Mean annual precipitation: 33 to 41 inches Mean annual air temperature: 46 to 54 degrees F

Frost-free period: 160 to 190 days

Farmland classification: Prime farmland if drained

Map Unit Composition

Ashkum, drained, and similar soils: 92 percent

Minor components: 8 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Ashkum, Drained

Setting

Landform: Ground moraines, end moraines Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf

Down-slope shape: Linear Across-slope shape: Concave

Parent material: Clayey colluvium over till

Typical profile

Ap - 0 to 12 inches: silty clay loam Bg1 - 12 to 29 inches: silty clay 2Bg2 - 29 to 54 inches: silty clay loam 2Cg - 54 to 60 inches: silty clay loam

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Poorly drained Runoff class: Negligible

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.60 in/hr)

Depth to water table: About 0 to 12 inches

Frequency of flooding: None Frequency of ponding: Frequent

Calcium carbonate, maximum content: 25 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: Moderate (about 8.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2w

Hydrologic Soil Group: C/D

Ecological site: R110XY024IL - Ponded Depressional Sedge Meadow

Hydric soil rating: Yes

Minor Components

Peotone, drained

Percent of map unit: 5 percent

Landform: Depressions on ground moraines Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip

Down-slope shape: Concave Across-slope shape: Concave

Ecological site: R110XY024IL - Ponded Depressional Sedge Meadow

Hydric soil rating: Yes

Orthents, clayey

Percent of map unit: 2 percent

Landform: Lake plains, ground moraines Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Urban land

Percent of map unit: 1 percent Landform: Ground moraines

Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

AzB—Aztalan loam, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: 2wspk

Elevation: 570 to 980 feet

Mean annual precipitation: 31 to 37 inches Mean annual air temperature: 45 to 48 degrees F

Frost-free period: 124 to 193 days

Farmland classification: Prime farmland if drained

Map Unit Composition

Aztalan and similar soils: 90 percent Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Aztalan

Setting

Landform: Glacial lakes (relict)

Landform position (three-dimensional): Talf

Down-slope shape: Concave Across-slope shape: Linear

Parent material: Loamy outwash over stratified silty and clayey lacustrine deposits

Typical profile

Ap - 0 to 10 inches: loam Bt - 10 to 27 inches: loam

2C - 27 to 79 inches: silty clay loam

Properties and qualities

Slope: 2 to 6 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.60 in/hr)

Depth to water table: About 0 to 12 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 20 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water supply, 0 to 60 inches: High (about 10.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: C/D

Forage suitability group: High AWC, high water table (G095BY007WI) Other vegetative classification: High AWC, high water table (G095BY007WI)

Hydric soil rating: No

Minor Components

Navan

Percent of map unit: 6 percent

Landform: Ground moraines, depressions
Landform position (two-dimensional): Footslope
Landform position (three-dimensional): Base slope

Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: Yes

Colwood

Percent of map unit: 4 percent Landform: Lakebeds (relict)

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Interfluve

Down-slope shape: Concave Across-slope shape: Concave

Other vegetative classification: High AWC, high water table (G095BY007WI)

Hydric soil rating: Yes

BcA—Beecher silt loam, 1 to 3 percent slopes

Map Unit Setting

National map unit symbol: g76j Elevation: 680 to 1,020 feet

Mean annual precipitation: 29 to 35 inches Mean annual air temperature: 45 to 55 degrees F

Frost-free period: 140 to 180 days

Farmland classification: Prime farmland if drained

Map Unit Composition

Beecher and similar soils: 95 percent

Minor components: 5 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Beecher

Setting

Landform: Moraines

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Interfluve

Down-slope shape: Concave Across-slope shape: Linear

Parent material: Loess over calcareous, silty or loamy till

Typical profile

Ap - 0 to 9 inches: silt loam
A2 - 9 to 12 inches: silt loam

B1t,2B2t-B3t - 12 to 28 inches: silty clay 2C - 28 to 60 inches: silty clay loam

Properties and qualities

Slope: 1 to 3 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat poorly drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.14 in/hr)

Depth to water table: About 0 to 12 inches

Frequency of flooding: None Frequency of ponding: Occasional

Calcium carbonate, maximum content: 30 percent

Available water supply, 0 to 60 inches: High (about 10.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2w

Hydrologic Soil Group: C/D

Ecological site: R110XY010IL - Moist Glacial Drift Upland Savanna Forage suitability group: High AWC, high water table (G095BY007WI)

Other vegetative classification: High AWC, high water table (G095BY007WI)

Hydric soil rating: No

Minor Components

Ashkum

Percent of map unit: 5 percent Landform: Depressions

Landform position (three-dimensional): Dip

Hydric soil rating: Yes

EtB—Elliott silty clay loam, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: g779 Elevation: 680 to 1,020 feet

Mean annual precipitation: 29 to 35 inches Mean annual air temperature: 45 to 52 degrees F

Frost-free period: 140 to 180 days

Farmland classification: Prime farmland if drained

Map Unit Composition

Elliott and similar soils: 95 percent Minor components: 5 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Elliott

Setting

Landform: Till plains

Landform position (two-dimensional): Footslope

Down-slope shape: Concave Across-slope shape: Linear

Parent material: Loess over calcareous silty till

Typical profile

Ap - 0 to 10 inches: silty clay loam B1,2B2t,2B3t - 10 to 30 inches: silty clay 2C1,2C2 - 30 to 60 inches: silty clay loam

Properties and qualities

Slope: 2 to 6 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat poorly drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

high (0.00 to 0.57 in/hr)

Depth to water table: About 0 to 24 inches

Frequency of flooding: None Frequency of ponding: Rare

Calcium carbonate, maximum content: 40 percent

Available water supply, 0 to 60 inches: Moderate (about 8.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: C/D

Ecological site: R110XY007IL - Moist Glacial Drift Upland Prairie
Forage suitability group: Mod AWC, high water table (G095BY004WI)
Other vegetative classification: Mod AWC, high water table (G095BY004WI)

Hydric soil rating: No

Minor Components

Ashkum

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

FoB—Fox loam, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: 2szgj Elevation: 740 to 1,140 feet

Mean annual precipitation: 31 to 35 inches
Mean annual air temperature: 45 to 48 degrees F

Frost-free period: 124 to 190 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Fox and similar soils: 93 percent Minor components: 7 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Fox

Setting

Landform: Outwash plains

Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Crest

Down-slope shape: Convex Across-slope shape: Linear

Parent material: Fine-loamy glaciofluvial deposits over sandy and gravelly outwash

Typical profile

Ap - 0 to 7 inches: loam

Bt1 - 7 to 22 inches: clay loam

2Bt2 - 22 to 36 inches: gravelly loam

2C - 36 to 79 inches: stratified sand to gravel

Properties and qualities

Slope: 2 to 6 percent

Depth to restrictive feature: 20 to 26 inches to strongly contrasting textural

stratification

Drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.60 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 25 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 2.0

Available water supply, 0 to 60 inches: Low (about 4.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: C

Forage suitability group: Mod AWC, adequately drained (G095BY005WI)

Other vegetative classification: Mod AWC, adequately drained (G095BY005WI)

Hydric soil rating: No

Minor Components

Casco

Percent of map unit: 4 percent Landform: Outwash plains

Landform position (three-dimensional): Riser

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Fox

Percent of map unit: 3 percent Landform: Outwash plains

Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Crest

Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

HeB2—Hebron loam, 2 to 6 percent slopes, eroded

Map Unit Setting

National map unit symbol: g77w Elevation: 700 to 1,000 feet

Mean annual precipitation: 28 to 33 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 130 to 180 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Hebron and similar soils: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Hebron

Setting

Landform: Lake plains

Landform position (two-dimensional): Footslope

Down-slope shape: Concave Across-slope shape: Linear

Parent material: Loamy outwash over stratified, calcareous silty and clayey

lacustrine deposits

Typical profile

Ap, A2 - 0 to 11 inches: loam

B1,B21t,B22t - 11 to 24 inches: clay loam 2B23t - 24 to 28 inches: silty clay loam 2C - 28 to 60 inches: silty clay loam

Properties and qualities

Slope: 2 to 6 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.14 to 0.57 in/hr)

Depth to water table: About 60 to 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 35 percent

Available water supply, 0 to 60 inches: High (about 9.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: C

Ecological site: F110XY011IL - Dry Glacial Drift Upland Forest

Forage suitability group: Mod AWC, adequately drained (G095BY005WI)

Other vegetative classification: Mod AWC, adequately drained (G095BY005WI)

Hydric soil rating: No

MeB—Markham silt loam, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: 2ytpv Elevation: 620 to 900 feet

Mean annual precipitation: 33 to 41 inches Mean annual air temperature: 45 to 54 degrees F

Frost-free period: 140 to 180 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Markham and similar soils: 90 percent

Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Markham

Setting

Landform: Ground moraines, end moraines

Landform position (two-dimensional): Backslope, shoulder Landform position (three-dimensional): Interfluve, side slope

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Loess over silty clay loam till

Typical profile

Ap - 0 to 11 inches: silt loam

2Bt1 - 11 to 21 inches: silty clay loam 2Bt2 - 21 to 31 inches: silty clay loam 2Cd - 31 to 60 inches: silty clay loam

Properties and qualities

Slope: 2 to 6 percent

Depth to restrictive feature: 20 to 55 inches to densic material

Drainage class: Moderately well drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 24 to 42 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 30 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water supply, 0 to 60 inches: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: C

Ecological site: R110XY010IL - Moist Glacial Drift Upland Savanna

Hydric soil rating: No

Minor Components

Ashkum, drained

Percent of map unit: 6 percent

Landform: End moraines, ground moraines Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope

Down-slope shape: Linear Across-slope shape: Concave

Ecological site: R110XY024IL - Ponded Depressional Sedge Meadow

Hydric soil rating: Yes

Pewamo

Percent of map unit: 4 percent

Landform: Ground moraines, end moraines Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope

Down-slope shape: Concave Across-slope shape: Concave

Ecological site: R110XY024IL - Ponded Depressional Sedge Meadow Other vegetative classification: Mixed/Transitional (Mixed Native Vegetation)

Hydric soil rating: Yes

MgA—Martinton silt loam, 1 to 3 percent slopes

Map Unit Setting

National map unit symbol: g78d Elevation: 700 to 1,000 feet

Mean annual precipitation: 29 to 40 inches Mean annual air temperature: 45 to 52 degrees F

Frost-free period: 150 to 180 days

Farmland classification: Prime farmland if drained

Map Unit Composition

Martinton and similar soils: 95 percent

Minor components: 5 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Martinton

Setting

Landform: Drainageways on lake plains, flats on lake plains

Landform position (two-dimensional): Toeslope

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Calcareous silty and clayey lacustrine deposits

Typical profile

Ap,A3 - 0 to 12 inches: silt loam

B1t, B21t-B3 - 12 to 34 inches: silty clay loam C - 34 to 60 inches: stratified sandy loam to silty clay

Properties and qualities

Slope: 1 to 3 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat poorly drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.14 to 0.57 in/hr)

Depth to water table: About 0 to 24 inches

Frequency of flooding: None Frequency of ponding: Occasional

Calcium carbonate, maximum content: 30 percent

Available water supply, 0 to 60 inches: High (about 10.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2w

Hydrologic Soil Group: C/D

Ecological site: R110XY007IL - Moist Glacial Drift Upland Prairie
Forage suitability group: High AWC, high water table (G095BY007WI)
Other vegetative classification: High AWC, high water table (G095BY007WI)

Hydric soil rating: No

Minor Components

Montgomery

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Mzc—Montgomery silty clay

Map Unit Setting

National map unit symbol: g78t Elevation: 340 to 800 feet

Mean annual precipitation: 40 to 46 inches
Mean annual air temperature: 52 to 57 degrees F

Frost-free period: 170 to 210 days

Farmland classification: Prime farmland if drained

Map Unit Composition

Montgomery and similar soils: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Montgomery

Setting

Landform: Depressions on lake plains, drainageways on lake plains

Landform position (two-dimensional): Toeslope

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Calcareous silty and clayey lacustrine deposits

Typical profile

Ap,A1,A3g - 0 to 16 inches: silty clay

B21-22g,B3g - 16 to 36 inches: silty clay loam Cg - 36 to 60 inches: stratified silty clay loam to clay

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Very poorly drained

Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.14 in/hr)

Depth to water table: About 0 inches

Frequency of flooding: NoneRareFrequentOccasional

Frequency of ponding: Frequent

Calcium carbonate, maximum content: 35 percent

Available water supply, 0 to 60 inches: High (about 9.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3w

Hydrologic Soil Group: C/D

Ecological site: F110XY026IL - Lacustrine Swamp Forest

Forage suitability group: Frequently flooded, organics (G095BY010WI)

Other vegetative classification: Frequently flooded, organics (G095BY010WI)

Hydric soil rating: Yes

Na-Navan silt loam

Map Unit Setting

National map unit symbol: g797 Elevation: 600 to 1,200 feet

Mean annual precipitation: 32 to 35 inches
Mean annual air temperature: 37 to 55 degrees F

Frost-free period: 140 to 180 days

Farmland classification: Prime farmland if drained

Map Unit Composition

Navan and similar soils: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Navan

Setting

Landform: Drainageways on lake plains, depressions on lake plains

Landform position (two-dimensional): Toeslope

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Loamy outwash over stratified, calcareous silty and clayey

lacustrine deposits

Typical profile

Ap - 0 to 10 inches: silt loam

A1,B1g-31tg - 10 to 35 inches: clay loam 2B32g,2Cg - 35 to 60 inches: silty clay

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Poorly drained

Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

high (0.00 to 0.57 in/hr)

Depth to water table: About 0 inches

Frequency of flooding: NoneRareFrequentOccasional

Frequency of ponding: Frequent

Calcium carbonate, maximum content: 30 percent

Available water supply, 0 to 60 inches: High (about 9.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2w

Hydrologic Soil Group: C/D

Ecological site: F110XY026IL - Lacustrine Swamp Forest

Forage suitability group: Frequently flooded, organics (G095BY010WI)

Other vegetative classification: Frequently flooded, organics (G095BY010WI)

Hydric soil rating: Yes

Pa—Palms muck, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 2szdc Elevation: 780 to 1,240 feet

Mean annual precipitation: 31 to 35 inches Mean annual air temperature: 43 to 49 degrees F

Frost-free period: 124 to 178 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Palms, muck, and similar soils: 87 percent

Minor components: 13 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Palms, Muck

Setting

Landform: Interdrumlins

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope

Down-slope shape: Concave Across-slope shape: Concave

Parent material: Herbaceous organic material over loamy drift

Typical profile

Oap - 0 to 13 inches: muck Oa - 13 to 30 inches: muck

2Cg - 30 to 79 inches: silty clay loam

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Very poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high

(0.14 to 1.98 in/hr)

Depth to water table: About 0 to 4 inches

Frequency of flooding: None Frequency of ponding: Frequent

Calcium carbonate, maximum content: 20 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: Very high (about 15.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3w

Hydrologic Soil Group: B/D Hydric soil rating: Yes

Minor Components

Houghton, muck

Percent of map unit: 8 percent

Landform: Depressions

Landform position (three-dimensional): Dip

Down-slope shape: Concave Across-slope shape: Concave

Hydric soil rating: Yes

Adrian

Percent of map unit: 5 percent

Landform: Interdrumlins

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope

Down-slope shape: Concave Across-slope shape: Concave

Hydric soil rating: Yes

VaB—Varna silt loam, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: 2yrr0 Elevation: 660 to 820 feet

Mean annual precipitation: 33 to 37 inches Mean annual air temperature: 45 to 48 degrees F

Frost-free period: 140 to 185 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Varna and similar soils: 96 percent Minor components: 4 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Varna

Setting

Landform: End moraines, ground moraines

Landform position (two-dimensional): Shoulder, summit Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loess over silty clay loam or clay loam till

Typical profile

Ap - 0 to 12 inches: silt loam

2Bt1 - 12 to 30 inches: silty clay loam 2Bt2 - 30 to 48 inches: silty clay loam 2Cd - 48 to 60 inches: silty clay loam

Properties and qualities

Slope: 2 to 6 percent

Depth to restrictive feature: 24 to 55 inches to densic material

Drainage class: Moderately well drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 24 to 42 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 30 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: Moderate (about 7.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: C

Ecological site: R110XY007IL - Moist Glacial Drift Upland Prairie

Hydric soil rating: No

Minor Components

Ashkum, drained

Percent of map unit: 4 percent

Landform: Ground moraines, end moraines Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope

Down-slope shape: Linear Across-slope shape: Concave

Ecological site: R110XY024IL - Ponded Depressional Sedge Meadow

Hydric soil rating: Yes

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

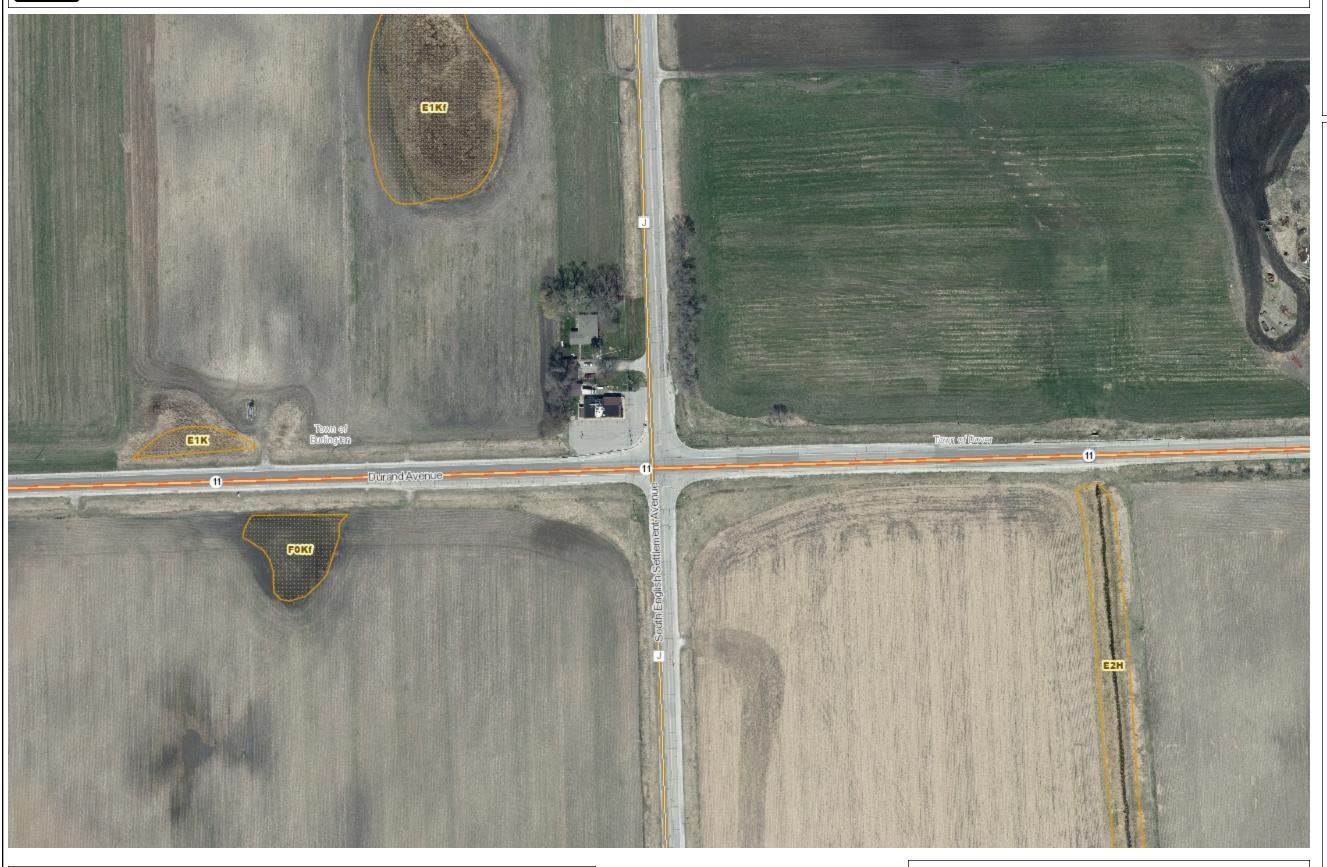
Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242


United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Appendix J – Wisconsin DNR Surface Water Data Viewer Map

WISCONSIN DEPT. OF NATURAL RESOURCES

Surface Water Data Viewer Map

Legend

Wetland Class Areas

Wetland Class Points

Dammed pond

Excavated pond

Filled/drained wetland

Wetland too small to delineate

Filled excavated pond

// Filled Points

Wetland Class Areas

Filled Areas

Wetland Identifications and Confirmations

Index to EN_Image_Basemap_Leaf_Off

0.1 0 0.03 0.1

NAD_1983_HARN_Wisconsin_TM

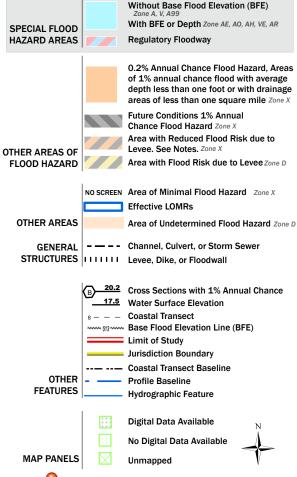
1:1,980

DISCLAIMER: The information shown on these maps has been obtained from various sources, and are of varying age, reliability and resolution. These maps are not intended to be used for navigation, nor are these maps an authoritative source of information about legal land ownership or public access. No warranty, expressed or implied, is made regarding accuracy, applicability for a particular use, completeness, or legality of the information depicted on this map. For more information, see the DNR Legal Notices web page: http://dnr.wi.gov/legal/

Notes

Appendix K – FEMA Floodplain Map

National Flood Hazard Layer FIRMette



Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

The pin displayed on the map is an approximate point selected by the user and does not represent

an authoritative property location.

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 9/21/2021 at 9:44 AM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.