Complete

Base Aggregates 305.0110, 305.0115, 305.0120, 305.0125, 305.0130, 305.0135, 305.0410, 310.0110, 310.0115

Quality Test Required regardless of tonnage.

- a) Contact Regional Materials for approved sources and for determination of whether your source needs to be tested this year. 905-0601-2016 # 225-0069-2012
- b) Obtain hard copy of test and assign an MIT/MTS prefix 900-_____
- c) If not from a currently tested and approved source sample contractor testing by a qualified laboratory is required. The department must observe sampling and a verification split is sent to The C.O. lab

2) Base Aggregate Field Acceptance

1)

- a) For contracts of less than 500 tons, diary entry required. (Quantity minimum apply to non-QMP base aggregates only.
- b) For contracts greater than 500 tons, sample for gradation at following frequencies:

i) Non-QMP Base Aggregate

- (1) One sample required for 501 through 3000 tons.
- (2) For more than 3000 ton per contract, one sample required per 3000 ton accumulative.
- (3) Sample 3-inch material at stockpile load out

ii) QMP Base Aggregate -- See *Item 301.0100.S* for detailed instructions. The department will conduct QV tests of each base aggregate size, source or classification, and type during placement conforming to the following:

- 1. One non-random test on the first day of placement.
- 2. At least one random test per 30,000 tons (30 000 Mg), or fraction of 30,000 tons (30 000 Mg), placed.
- 3. Department verification testing is optional for quantities of 6000 tons (6000 Mg) or less.
- 4. Sample 3-inch material at stockpile load out
- 5. Refer to special provision 301.0100.S regards small quantities

Bid Item	Description	Plan Quantity	Final Quantity
Number			
305.0110,	Base Aggregate Dense, ¾- inch	20	46100
30 5.0115	155-0003-2016	380 TON	101 10/0
305.0120,	Base Aggregate Dense, 1 ¼ -	10 - 2	1510 - 0
305.0125	inch 155-0004-2016	600 0089	6519 TON
305.0130,	Base Aggregate Dense, 3- inch		
305.0135			
305.0410,	Aggregate Detours		
305.0415			
310.0110,	Base Aggregate Open Graded		
310.0115			

Verification Testing

- Verification testing for gradation, fractured particles, and permeability (as applicable). See Special Provisions for minimum frequency. Sampling is to be done by qualified field personnel. Reporting is to be done by the testing laboratory on MTS/MIT prefix 217 reports.
- 2) Develop a 155-<u>0003 1 2016</u> to cover the entire QMP acceptance quantity. The RFI should discuss all aspects of verification testing and contractor's testing (control charts, adjustments, additional testing, etc.).
- 3) Quality Control Plan required from contractor (refer to the contract Special Provision regarding plan contents for small quantity items).

EXAMPLE OMP PREFIX 155

 Material:
 QMP SUMMARY BASE AGGREGATES

 Supplier:
 YAHARA MATERIALS, INC.

 Remarks:
 Y

 EXAMPLE REPORT

Description: A comprehensive quality control plan was submitted as required and is filed with project record. The plan was reviewed and found to conform to the equirements of the specification.

> QC sampling and testing was preformed at the Yahara Materials , HVVY K - Waunakee Lab. Qc sampling was done by I.M.Atester- HTCP #123456- Aggtec I- expires 4/27/2012. Testing was done by A. Onesiever - HTCP #456789-Aggtec I - expires 2/13/2012

Quality test 0-225-29-2009.

56789 tons of 1 1/4-inch base was placed- 21 QC tests were recorded. Test reports and control charts wre provided daily and reviewed. Complete documentation was submited within ten days of completing base placement. Documents are on file in the project record.

QC testing and documentation was reviewed and found to be in conformance to the specifications

Quality verification sampling was done by B.A. Saampler- HTCP #111111- Aggsamplerexpires 10/11/2011. Testing was done at the SW Region Madison Lab by N..O.Onetester-HTCP-#234567-Aggtec I-expires 4/27/12.

3 QV tests were recorded - all conformed to specifications: 1-217-1001-2010, 1-217-1040-2010, 1-217-1199-2010

Revised 3/17/2008, J.V.White

Description: CRUSHED AGGREGATE BASE COURSE QMP PROJECT SUMMARY

The QMP base course was accepted based on satisfactory QC testing. Review of QC test, Control chart, QC plan and other documents indicated that the specifications, required tests, and test frequencies were met. QC documents are on file with the project records.

Date placed	Tons	QC Tests	Verification tests	Source
4/28/2005	2138.54	1	1-217-9876-2005	XYZ Pit
5/5/2005	591.19	•	1 211 0010 2000	XYZ Pit
5/6/2005	478.48			XYZ Pit
5/11/2005	348.12			XYZ Pit
5/12/2005	912.24			XYZ Pit
5/13/2005	285.39			XYZ Pit
5/17/2005	494.14	1		XYZ Pit
5/18/2005	994.63	1		XYZ Pit
5/19/2005	1001.73			XYZ Pit
5/20/2005	1066.85		1-217-9999-2005	XYZ Pit
5/23/2005	1072.78	1		XYZ Pit
6/13/2005	2056	1		XYZ Pit
6/14/2005	3567	2		XYZ Pit
6/15/2005	2222	1		XYZ Pit
6/16/2005	2345	1		XYZ Pit
6/17/2005	489			XYZ Pit

Total 20063.09

A Division of Mathy Construction Co.

Crushed Aggregate Base Course QMP Plan

Plan proposed For:

Baldwin - Menomonie IH-94 CTH J Bridge B-55-0259

St. Croix County

State Project Number:

1020-01-83

1

I. Description. This project consists of a total of 380 ton of ³/₄" Dense Graded Base and 6800 ton of 1 ¹/₄" Dense Graded Base. Therefore, by the specification it is classified as a small quantity and shall be treated as such according to the QPM Base Aggregate special provision, paragraph A.2, as listed below.

II. Specification.

A.2 Contractor Testing for Small Quantities

- (1) The department defines a small quantity, for each individual Base Aggregate bid item, as a plan quantity of 9000 tons or less of material as shown in the schedule of items under that bid item.
- (2) The requirements under this special provision apply equally to a small quantity for an individual bid item except as follows:
 - 1. The contractor need not submit a full quality control plan but shall provide an organizational chart to the engineer including names, telephone numbers and current certifications of all persons involved in the quality control program for material under affected bid items.

PLAN QUANTITY	MINIMUM REQUIRED TESTING
≤1500 tons	One test from production, load-out, or placement at the contractor's option. ^[1]
>1500 tons and ≤6000 tons	Two tests of the same type, either from production, load-out, or placement at the contractor's option. ^[1]
>6000 tons and ≤9000 tons	Three placement tests. ^{[2] [3]}

2. Divide the aggregate into uniformly sized sublots for testing as follows:

¹⁷ If using production tests for acceptance, submit test results to the engineer for review prior to incorporating the material into the work. Production test results are valid for a period of 3 years.

For 3-inch material, obtain samples at load-out.

- ^[3] If the actual quantity overruns 9000 tons, create overrun sublots to test at a rate of one additional placement test for each 3000 tons, or fraction of 3000 tons, of overrun.
- 3. No control charts are required. Submit aggregate loadout and placement test results to the engineer within one business day of obtaining the sample. Assure that all properties are within the limits specified in the standard specifications for each test.
- 4. Department verification testing is optional for quantities of 6000 tons or less.
- (3) Material represented by a sublot with any property outside the specification limits is nonconforming. The department may reject material or otherwise determine the final disposition of nonconforming material as specified in standard spec 106.5.

III. Personnel Listing

Constantion of the local division of the loc

Employee	<u>Title</u>	<u>Tech ID#</u>	Phone Number
1. Allen Schulze	Production Manager		608-783-6411
2. Kenton Olsvig	Crushing Manager		715-299-0500
3. Erv Dukatz	VP Material & Research	102614	608-779-6392
4. Paul Drees	QC Manager	102580	715-299-0375
5. Greg Montgomery	CDMP/ QC Manager	102071	715-299-1081
6. Brian Nash	AGGTEC-I, HMA-IPT	104109	715-246-7019

*Due to scheduling others may be assigned to this project. The names of these additional personnel and telephone numbers will be posted at the QC trailer.

.

1837 County Highway OO Chippewa Falls, WI 54729 Phone: 715-861-5045 Fax: 715-861-5048

PROJECT: Baldwin-Menomonie, IH 94, CTH J Bridge – B-55-0259 PROJECT ID#: 1020-01-83

ORGANIZATIONAL CHART FOR QMP BASE COURSE

CONTRACTOR

McCabe Construction 3101 Alpine Road Eau Claire, WI 54703

NAME	TITLE	OFFICE TELEPHONE:	MOBILE TELEPHONE: #
John Benish	Project Foreman	715-552-1346	715-559-4710

BASE COURSE SUPPLIER

Milestone Materials (a division of Mathy Construction)

Allen Schulze	Operations Manager		608-783-6411
NAME	TITLE		MOBILE TELEPHONE

QUALITY CONTROL TESTING

AET 1837 COUNTY HWY OO CHIPPEWA FALLS, WI 54729

NAME	TITLE	OFFICE TELEPHONE #	MOBILE TELEPHONE #
Joel Guanella	WIS DOT AGG Tech I	715-851-5045	715-559-0114
Tom Portman	WIS DOT AGG Tech I	715-851-5045	715-577-3898
Troy Tabor	WIS DOT AGG Tech I	715-851-5045	715-577-3257
Dennis Brill	WIS DOT AGG Tech I	715-851-5045	715-577-2415
Bob Dixon	WIS DOT AGG Tech I	715-851-5045	715-563-1036

This document shall not be reproduced, except in full, without written approval of American Engineering Testing, Inc. 1837 County Highway OO • Chippewa Falls, WI 54729 • 715-861-5046 • Fax 715-861-5048 • www.amengtest.com Offices throughout Florida, Minnesola, South Dakota and Wisconsin AN AFFIRMATIVE ACTION AND EQUAL OPPORTUNITY EMPLOYER Test Number: 0 - 225 - 0069 - 2012

Materials Laboratory Testing System Tests On: Aggregate Quality Type: CDE - CONTRACTOR DATA ENTRY

Main Project ID: 0617-06-00 DISTRICT 6 GENERAL TESTING

Labsite:

Page 1 of 1

Wisconsin Department of Transportation Bureau of Technical Services-Central Lab Truax Center, 3502 Kinsman Blvd. Madison, WI 53704 Ems 3/22/K

Date Sampled:	Date Requested / Received:	Date Tested:
03/09/12	03/19/12	03/21/12
By: Aaron Felton / 103989	By: NC REGION	By: Chad Lewis / 104870
Source: MIMBACH	QUARRY Legal Description: SW, NW, \$	Section: 5, T: 28 N, R: 19, W County: ST. CROIX

Material:

Aggregate Source:				
Name:				
Type:	QUARRY	County: ST CROIX		
Locatio	n:			

SIEVE ANALYSIS (AASHTO T-11, T-27 & T248)

Sieve Size	Percer	nt Passing		
Metric (English)	As Rec'd	Pass 4.75mm		
150.0 (6")	100			
75.0 (3'')	100			
50.0 (2'')	100			
37.5 (1 1/2")	100			
31.5 (1 1/4")	100			
25.0 (1'')	100			
19.0 (3/4")	100			
12.5 (1/2")	72			
9.5 (3/8'')	38			
4.75 (#4)	9			

Allowed Usage:

HMA <e-3, hma="">=E-3, CONCRETE, OGBC, Base Aggregate</e-3,>			
Liquid Limit (AASHTO T-89):	NON-COH	ß	
Plasticity Index (AASHTO T-90):	NP	V	
Crushed Particles (%):			
Lightweight Particles (%): (AASHTO T-113)	0.0		
LA Wear (AASHTO T-96)		4	
@ 100 Revolutions (%):	7.0	Janner.	
@ 500 Revolutions (%):	30.3	langer .	
Soundness (AASHTO T-104) (%):	2.9	6	
Freeze-Thaw (AASHTO T-103) (%):			
Specific Gravity and Absorption			
Coarse Aggregate (AASHTO T-85)			
Specific Gravity:	2.691		
Absorption:	1.597%		

Remarks: Satisfactory Data from Mathy Construction Company

Verified Date: 03/22/2012

Verified By: ROBERT DOWNING

225-0069-2012 365 04 7 1

- interest

Miscellane	oratory Testing System Tes ous Materials ERIFICATION	sts On:				
Hudson - I	ID: 1020-01-83 Baldwin Ige B-55-0259					
Date Sampled	:	Date Requ	ested / Received:		Date Entered: 03/24/16	
By: RYAN M. S	SIREK			1975 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 -	By: Ryan Sirek / 10	04589
Source: MIMBAC	CH .	QUARRY	Legal Description:	SW, NW, Section: 5	5, T: 28 N, R: 19, W	County: ST. CROIX
Manufacturer:	MILESTONE MATERIALS	(MIMBACH))	O	ther Associated Pro	ojects:
Material:	QMP BASE AGGREGATE	E SUMMARY	3/4			
Supplier:	MCCABE CONSTRUCTIO	DN, INC.				
Remarks:						
<u>Description</u> QMP Base Aggre	gate Summary 3/4 - Inch					
SizePlan Quantity 3/4-Inch	/unitsFinal Quantity/units 380 Ton	461 Ton				
Small Quantity pro	ovision apply? Yes					
QC organizational QC Plan Received QC Plan Reviewe Reviewed by: Rya Date reviewed: 3/	d? Yes an M. Sirek					
Source QuantityPi 31 Ton	t/Quarry NameAggregate Qu Mimbach Quarry		225-0069-2012			
Monitoring QC Sa	mpling/Testing					
All sampling/testin	ne & Location: Milestone Ma g personnel certified through ster(s) Name: Kyle Slaney	n HTCP?Yes	14, New Richmond Certification # 105			
Results submitted Testing frequencie	timely per specifications?Ye s met? Yes	S				

Remarks: Small quantity provisions apply. Material was accepted by acceptable production testings located behind this document Doc ID# 305.0110-1,2, and visual inspection. No QV or QC tests were required or taken at placement.

Milestone Materials

Ems 16/28/16

R4-P4 Aggregate Gradation

- Alternation

Project Informat	lion					Project N	ame			0.0		
						Project #			County	0.0		
							Production	1 Tests		St. Cro	oix	
						Sample T	Produ				14-1B	
Source Name &	Number	I	Type of N	Material Dense Grade	Rasa	Contractor/ Producer Milestone - Cal-608-790-5914				Date	13/2015	
Station/ Sample		,	Source T	уре		Sample T		-000-7 90	0314	Cum. Tonnage	13/2013	
	Belt			Crushed Sto	ne	ļ	C				0	
		Moisture	Content			Wt. of To	tal Sample,	, Dry & Ur	washed	5651.1	-	
Weight of Samp			5933		-							
Weight of Samp	ole (dry)		5651		-	Wt. of R4	.75mm (#4) Dry & Uı	nwashed	=	49.3%	
Moisture Loss			282		•							
% Moisture	m (R -4) Mat	orial	5.0	in a sector in the sector of the sector of the sector is t	im (P -4) N		.75mm (#4 Sampled I		hwashed	2865.5 =	50.7%	
Washed	Ye			Washed	Yes		Gampieu	Бу	Kyle	e Slaney		
Wt. =	278	5.6	,	Wt. =	753.					al Materials		
	Weight	%	%	Weight	(Min. 50)					Passing Combined	an at the sector of the sector	
Sieve	Retained	Retained			Retained		(R -4) (A)(C)	(P -4) (B)(D)	Cum. Wt.	Percent Passing	Spec. Low High	
				2.00,7			(0)		Oun. W.	1 doonig		
												
											mx	
	a de la d											
											×+	
											24	
											en-	
1 -			400.0							484.6		
25.0mm 3/4 -	0.0	0.0	100.0	0.0	0.0	100.0	49.3	50.7		100.0	100 - 100	
19.0mm	19.5	0.7	99.3	0.0	0.0	100.0	48.9	50.7		99.7	95 - 100	
1/2 - 12.5mm	902.5	32.4	67.6	0.0	0.0	100.0	33.3	50.7		84.0	0 - 0	
3/8 - 9.5mm	1487.5	53.4	46.6	0.0	0.0	100.0	23.0	50.7		73.7	50 - 90	
#4 -												
4.75mm #10 -	2612.5	93.8	6.2	8.5	1.1	98.9	3.1	50.1		53.2	35 - 70	
2.00mm	2667.5	95.8	4.2	228.7	30.3	69.7	2.1	35.3		37.4	15 - 55	
#40 - 425µm	2680.1	96.2	3.8	401.5	53.3	46.7	1.9	23.7		25.6	10 - 35	
#200 - 75µm	2717.4	97.6	2.4	589.5	78.2	21.8	1.2	11.1		12.3	8 - 15	
											15	
IN PAN	2733.2			620.4								
Wt. One Face P	articles		0.0			Pla	sticity Che	ck				
Wt. Two Face P	articles		0.0		Can 425	5um (P -40) be rolled	into 3.2m	m (1/8")	Mass/r	n3	
Wt. Total Particl			0.0			Threa	ad when mo	oist?		(weight/	c.v.)	
% Two Face Cru		November of the second										
% One Face Cru					Fineness I			1	41			
Lab Name:	Note: If test		neet cont Lab Loca		ents, notify	Project Er	igineer and		the correct Tested By	tive action taken		
	Plant 14			00 County Ro	oad G, Nev	v Richmoi	nd, WI 540		Kyle Slar		8	

Milestone Materials

				<u> </u> [4*]	4 Aggre	Contraction of the second s						
Project Informat	tion					Project N	ame			0.0		
						Project #	Production	Tests	County	St. Cro)ix	
						Sample Type				Sample #	<u>///</u>	
						Production					13-2S	
	1bach #174			Dense Grade	Base	Miles	r/ Produce stone - Cal		5914		10/2015	
Station/ Sample			Source 7			Sample T	-			Cum. Tonnage	0	
<u>`</u>	itockpile			Crushed Sto	ne		0			(00R R	0	
Weight of Samp	le (moist)	Moisture	Content 521	3.1		Wt. of To	al Sample,	Dry & Un	washed	4897.5	-	
Weight of Samp			4897		-	Wt of R4	.75mm (#4	Dry & Hr	washed	2639.6 =	53.9%	
Moisture Loss	ne (ury)	P (c)	318		-	VVI. 011(-4)	. r Unin (m -r	, Diy a Oi	washed	2000.0 -	00.070	
% Moisture		10	6.		-		.75mm (#4)	Dry & Ur	washed	2257.9 =	46.1%	
	m (R -4) Mat	erial	0.;		nm (P -4) N		Sampled I		IWasheu	2207.9 -	-40.170	
Washed	Ye			Washed	Yes			-,	Kyle	e Slaney		
Wt. =	263			Wt. =	541.				Total	Materials		
VVI	203	5.0		VVI. –		in. 500 gr.) %				al materials Passing		
	Weight	%	%	Weight	%	%	4.75mm	4.75mm		Combined		
Sieve	Retained	Retained	Passing (C)	Retained	Retained	Passing (D)	(R -4) (A)(C)_	(P -4) (B)(D)	Cum. Wt.	Percent Passing	Spec. Low High	
			(0)				(7)(0)			r assnig	LOW Tright	
											~	
											45.	
daamaa												
		1	ļ				-					
[[
1 - 25.0mm	0.0	0.0	100.0	0.0	0.0	100.0	53.9	46.1		100.0	100 - 100	
3/4 - 19.0mm	22.6	0.9	99.1	0.0	0.0	100.0	53.4	46.1		99.5	95 - 100	
1/2 - 12.5mm	701.2	26.6	73.4	0.0	0.0	100.0	39.6	46.1		85.7	0 - 0	
3/8 -	101,2	20.0	10.4	0.0		100.0				50011		
9.5mm	1339.9	50.8	49.2	0.0	0.0	100.0	26.5	46.1		. 72.6	50 - 90	
#4 - 4.75mm	2463.9	93.3	6.7	5.9	1.1	98.9	3.6	45.6		49.2	35 - 70	
#10 -	0540 5	05.0		450.8	00.0	744		00.0		25.0	AF FE	
<u>2.00mm</u> #40 -	2513.7	95.2	4.8	156.5	28.9	71.1	2.6	32.8		35.3	16 - 55	
425µm	2523.3	95.6	4.4	282.7	52.2	47.8	2.4	22.0		24.4	10 - 35	
#200 - 75µm	2564.9	97.2	2.8	420.0	77.6	22.4	1.5	10.3		11.8	8 - 15	
											~	
IN PAN	2582.0			442.3								
Wt. One Face P		<u>.</u>	0.0			Pla	sticity Che	ck				
Wt. Two Face P			0.0		Can 42) be rolled		m (1/8")	Mass/n	n3	
Wt. Total Particl		104000-000-000-000-000-000-000-000-000-0	0.0			·	, ad when me		. ,	(weight/d		
% Two Face Cri		6249494449									,	
% One Face Cri		-	and an international state of the second		Fineness	Modulus			•			
		t does not r	meet cont	ract requirem			ngineer and	l indicate	the correct	tive action taken		
Lab Name:	generation and an Arbain an an Arbain an Arbain an Arbain an Arbain an Arbain an		Lab Loca						Tested B	y:	~	
	Plant 14		11	90 County Re	oad G, Nev	v Richmo	nd, WI 540)17	Kyle Slaı	ney # 10596	8	

Materials Laboratory Testing System Tests On: **Miscellaneous Materials** Type: V - VERIFICATION Main Project ID: 1020-01-83 Hudson - Baldwin CTH J Bridge B-55-0259 194 **Date Sampled:** Date Requested / Received: Date Entered: 03/24/16 By: RYAN M. SIREK By: Ryan Sirek / 104589 Source: MIMBACH QUARRY Legal Description: SW, NW, Section: 5, T: 28 N, R: 19, W County: ST. CROIX **MILESTONE MATERIALS (MIMBACH)** Manufacturer: **Other Associated Projects: QMP BASE AGGREGATE SUMMARY 1 1/4** Material: Supplier: MCCABE CONSTRUCTION, INC. Remarks: Description QMP Base Aggregate Summary SizePlan Quantity/unitsFinal Quantity/units 6519 Ton 1 1/4 - Inch 6800 Ton Small Quantity provision apply? Yes QC organizational chart received?Yes QC Plan Received? Yes QC Plan Reviewed? Yes Reviewed by: Ryan M. Sirek Date reviewed: 3/10/16 Source QuantityPit/Quarry NameAggregate Quality # :00 Ton Mimbach Quarry 225-0069-2012 Monitoring QC Sampling/Testing Qualified Lab Name & Location: AET 1837 County HWY OO, Chippewa Falls, WI 54729 All sampling/testing personnel certified through HTCP?Yes QC Sampler(s)/Tester(s) Name: Tom Portman Certification # 101117 Results submitted timely per specifications?Yes Testing frequencies met? No Final original documentation provided?Yes Date Submitted: 10/4/2016 Reviewed by: Ryan M. Sirek Date Reviewed: 10/4/2016 QV Sampling/Testing Date Sampled: Location: MTS Verification Test # 26+50 Non Random (1st day placement) 3/23/2016 6-217-0002-2016 4/12/2016 11+25 Random (3300 Ton) 6-217-0003-2016 QV Testing Frequency met?Yes QV Sampler(s)/Tester(s) Name: Ryan M. Sirek Certification #: 104589 Remarks: QMP Base Aggregate Special provision requires three placement tests for base aggregate quintities from 6,000 Ton to 9,000 Ton. Final

QMP Base Aggregate Special provision requires three placement tests for base aggregate quintities from 6,000 Ton to 9,000 Ton. Final Quatity of 6519 Tons were placed requiring three tests. Contractor mistakenly missed the last required test. Production tests submitted and placement tests taken both QC (2) tests and QV (2) tests indicating compliance with WisDot Standard specifications. Contractor offered to try to get a sample from the grade to bring the material testing requirements back into compliance, but at this point a representative sample 'ould not be able to be taken. The quantity that was not accounted for in testing was a small quantity 519 Ton, and is expected to perform as tended. No penalty will be assessed.

SIEVE ANALYSIS FOR BASE AGGREGATE QUALITY CONTROL

	PROJECT DESCRIPTION	SAMPLE INFORMATIC	SAMPLE INFORMATION						
Client	McCabe Construction	Material Type	C Open Graded						
Project CTH J Bridge		Placed Bewteen Old and New Pavement Gravel							
		Sampled By Tom Portman	^{ite} 3/23/2016						
Project ID	#	Sampled At Roadway Tir	^{ne} 9:30						
\ET #		Tonnage/Station 24+50-25+50 Sa	mple No. 1						
		Qu	arry Mimbach						

MOISTURE CONTENT:

Wet Wt of Sample (g) = 12015.0 Dry Wt of Sample (g) = 11461.0

Percent Moisture = 4.8%

SIEVE ANALYSIS:

Wt of R-4 = 8503.0 Wt of P-4 = 2958.0

	R	- 4 Materia		Wt =	P - 4 Material Wt = 509.8			Total Materials		
Sleve	Weight Retained	% Retained	% Pass	Weight Retained	% Retained	% Pass	R-4	. P4	Total	(31.6 mm)
3" (78mm)	0	0.0	100.0	0	0.0	100.0	74.2	25.8	100	
., 1 1/2" (a7.6mni)	0.0	0.0	100.0	0.0	0,0	100.0	74.2	25.8	100	
1 1/4" (31.6 mm)	0.0	0.0	100.0	0,0	0.0	100.0	74.2	25.8	100	95 - 100
1 ¹¹ (28mm)	431.2	5.1	94.9	0.0	0.0	100.0	70.4	25.8	96	
3/4" (19mm)	1921.8	22.6	77,4	0.0	0.0	100.0	57.4	25.8	83	70 - 93
3/8" (9,6mm)	5564.7	65.4	34.6	0.0	0.0	100.0	25.6	25.8	51	42 - 80
#4 (4.75mm)	7638.0	89.8	10,2	0.0	0.0	100.0	7,5	25,8	33	25 - 63
#10 (2.00mm)	7891.0	92.8	7.2	177.7	34.9	65.1	5.3	16.8	22	16 - 48
#40 (425uni)	7918.0	93.1	6.9	276.8	54.3	45.7	5.1	11.8	17	8 - 28
#200 (76µm)	8078.0	95.0	5.0	389.1	76.3	23.7	3.7	6.1	9.8	2.0 - 12.0
Pan	8147.0	95.810242	4.18676	392.9	77.069439	22,931	3,10619	6.9182		

R-4 FRACTURE COUNT:

PLASTICITY CHECK:

Fractured Particles = _____ Total Particles = _____ % Fracture = _____

Can P-40 be rolled into 1/8" thread when moist?

REMARKS:

Sample meets gradation specifications for 1 1/4 - Inch Basecourse.

Date of Test:

Tested By:

Checked By:

SIEVE ANALYSIS FOR BASE AGGREGATE QUALITY CONTROL

	PROJECT DESCRIPTION	SAMPLE INFORMATION						
Client	McCabe Construction	Material Type (* 3" (* 1 1/4" (* 3/4" (* Open Graded						
Project	CTH J Bridge	Placed Bewteen Old and New Pavement Gravel Contractor/Producer						
		Sampled By Tom Portman	Date	6/21/2016				
Project ID #	1020-01-83	Sampled At Roadway	Time	4:00				
AET#	31-01464	Tonnage/Station Station 16-17	Sample No.	2				
	E CONTENT:		Quarry	Mimbach				
	Mat Mt of Sama	1- (-) - dd (00 0	L					

Wet Wt of Sample (g) = 11582.0

Dry Wt of Sample (g) = 11224.0

Percent Moisture = 3.2%

SIEVE ANALYSIS:

Wt of R-4 = 7598.5 Wt of P-4 = 3625.5

67.7% of total sample __32.3% of total sample

	R • 4 Material			P + Wt =	4 Material 578.8			Total Material	5	1 1/4 • Inch (31.5 mm)
Sleve	Weight Retained	% Retained	% Pass	Weight Retained	% Retained	% Pass	R-4	P:4	Total	
3'1 (76mm)	0	0.0	100.0	0	0.0	100.0	67.7	32.3	100	
1 1/2" (37.6mm)	0.0	0.0	100.0	0.0	0.0	100.0	67.7	32.3	100	
1 1/4" (31.5 mm)	64.5	0.8	99,2	0.0	0.0	100.0	67.1	32.3	99	95 - 100
1". (25mm)	349.2	4.6	95.4	0.0	0.0	100.0	64.6	32.3	97	
3/4" (10mm)	1737.3	22.9	77.1	0.0	0.0	100.0	52.2	32.3	85	70 - 93
3/8" (9.6mm)	5040.4	66.3	33.7	0.0	0.0	100.0	22.8	32.3	55	42 - 80
#4 (4.75mm)	7121.0	93.7	6.3	0,0	0.0	100.0	4.3	32.3	37	25 - 63
#10 (2.00mm)	7294.0	96.0	4.0	203,9	35.2	64.8	2.7	20.9	24	16 - 48
#40 (425um)	7304.0	96.1	3.9	368.7	63.7	36.3	2.6	11.7	14	8 - 28
#200 (75um)	7353.0	96.8	3.2	461.1	79.7	20.3	2.2	6.6	8.8	2.0 - 12.0
Pan	7392.0	97,282358	2.71764	466.1	80.52868	19,471	1,83981	6.2895		

R-4 FRACTURE COUNT:

PLASTICITY CHECK:

Fractured Particles = Total Particles ≈ % Fracture =

Can P-40 be rolled into 1/8" thread when moist?

REMARKS:

Sample meets gradation specifications for 1 1/4 - Inch Basecourse.

Date of Test:

Tested By:

Checked By:

Test Number: 6 - 217 - 0002 - 2016		Labsite:	Page 1 of	1	
Materials Laboratory Testing System Te Coarse Aggregates Type: V - VERIFICATION	ests On:	6-NW REGION- Eau Cla WisDOT NW REGION- 5009 Highway 53 South, Eau Claire, WI 54701	- Eau Claire Lab (LAN ONLY)		
Main Project ID: 1020-01-83 Hudson - Baldwin CTH J Bridge B-55-0259 I 94					
Date Sampled: 03/23/16 By: Ryan Sirek / 104589	Date Requested / Rec 03/25/16	eived:	Date Tested: 03/25/16 By: Amber Bever / 10	03186	
Source: MIMBACH	QUARRY Legal Des	cription: SW, NW, Section: 5,	T: 28 N, R: 19, W	County: ST. CROIX	

Type of Use:

P4 Percentage: 31.1%

Type of Aggregate: Dense Graded Base

Grade: 1 1/4 inch

Percentage Passing Sieve Size Metric (English) P-4 R-4 Specs Results (As Recd.) Specs 150.0 (6") 125.0 (5") 75.0 (3") 50.0 (2") 37.5 (1 1/2") 31.5 (1 1/4") 100.0 95 - 100 99.4 99.6 25.0 (1") 94.9 100.0 96.5 19.0 (3/4") 75.1 100.0 70 - 93 82.9 12.5 (1/2") 47.4 100.0 63.7 9.5 (3/8") 29.8 100.0 42 - 80 51.7 4.75 (#4) 4.3 100.0 25 - 63 34.0 2.36 (#8) 2.00 (#10) 3.0 65.2 16 - 48 22.3 1.18 (#16) 0.600 (#30) 0.425 (#40) 2.9 48.8 8 - 28 17.2 0.300 (#50) 0.150 (#100) 75 µm (#200) 2.4 27.3 2 - 12 10.1

Moisture Percent: 5.9%

Specification Requirement: %

Percent Fractured:

Plasticity Check (Can P-40 be rolled into 1/8" thread when moist?): No

Remarks: Satisfactory

STATION 26+50 NON RANDOM; FIRST DAY OF PLACEMENT

Verified Date: 03/25/2016

Verified By: AMBER BEVER

Test Number: 6 - 217 - 0003 - 2016	;	Labsite:	Page 1 d	of 1			
Materials Laboratory Testing System Coarse Aggregates Type: V - VERIFICATION	m Tests On:	WisDOT_NW 5009 Highwa	6-NW REGION- Eau Claire WisDOT NW REGION- Eau Claire Lab (LAN ONLY) 5009 Highway 53 South, IH 94 Eau Claire, WI 54701				
Main Project ID: 1020-01-83 Hudson - Baldwin CTH J Bridge B-55-0259 I 94							
Date Sampled:	Date Reques	ted / Received:	Date Tested:				
04/12/16	04/13/16		04/14/16				
By: Ryan Sirek / 104589		Mar Combina and a substance of a second s	By: Amber Bever /	103186			
Source: MIMBACH	QUARRY	Legal Description: SW, NV	W, Section: 5, T: 28 N, R: 19, W	County: ST. CROIX			

Type of Aggregate: Dense Graded Base

Grade: 1 1/4 inch

Type of Use:

P4 Percentage: 31.6%

Sieve Size		Percentage Passing								
Metric (English)	R-4	Specs	P-4	Specs	Results (As Recd.)					
150.0 (6")	100.0		100.0		100.0					
125.0 (5")	100.0		100.0		100.0					
75.0 (3")	100.0		100.0		100.0					
50.0 (2")	100.0		100.0		100.0					
37.5 (1 1/2")	100.0		100.0		100.0					
31.5 (1 1/4")	100.0		100.0	95 - 100	100.0					
25.0 (1")	91.6		100.0		94.3					
19.0 (3/4")	76.8		100.0	70 - 93	84.1					
12.5 (1/2")	52.2		100.0		67.3					
9.5 (3/8")	35.3		100.0	42 - 80	55.7					
4.75 (#4)	5.4		100.0	25 - 63	35.2					
2.36 (#8)										
2.00 (#10)	3.2		57.2	16 - 48	20.3					
1.18 (#16)										
0.600 (#30)										
0.425 (#40)	3.1		43.7	8 - 28	15.9					
0.300 (#50)										
0.150 (#100)										
75 µm (#200)	2.3		25.1	2 - 12	9.5					

Moisture Percent: 5.1%

Specification Requirement: %

Percent Fractured:

Plasticity Check (Can P-40 be rolled into 1/8" thread when moist?): No

Remarks: Satisfactory RANDOM 3300 TONS STATION 11+25 RT

Miscellane	oratory Testing System Te ous Materials /ERIFICATION	sts On:				
Hudson -	ID: 1020-01-83 Baldwin dge B-55-0259					
Date Sampled	l:	Date Reque	ested / Received:		Date Entered:	
By: RYAN M. S	SIREK				03/24/16 By: Ryan Sirek / 10	94589
Source: MIMBA	сн	QUARRY	Legal Description:	SW, NW, Section: 5	, T: 28 N, R: 19, W	County: ST. CROIX
Manufacturer:	MILESTONE MATERIALS	(MIMBACH)		Ot	her Associated Pro	jects:
Material:	QMP BASE AGGREGATE	SUMMARY	3/4			
Supplier:	MCCABE CONSTRUCTIO	DN, INC.				
Remarks: Description QMP Base Aggree	gate Summary 3/4 - Inch					
SizePlan Quantity 3/4-Inch	/unitsFinal Quantity/units 380 Ton	461 Ton				
Small Quantity pro	ovision apply? Yes					
QC organizational QC Plan Received QC Plan Reviewed Reviewed by: Rya Date reviewed: 3/	d? Yes an M. Sirek					
Source QuantityPi 461 Ton	t/Quarry NameAggregate Qu Mimbach Quarry		25-0069-2012			
Monitoring QC Sa	mpling/Testing					
All sampling/testin	ne & Location: Milestone Ma g personnel certified through ster(s) Name: Kyle Slaney	HTCP?Yes	14, New Richmonc Certification # 1059			
Results submitted Testing frequencie	timely per specifications?Ye s met? Yes	S				

Remarks: Small quantity provisions apply. Material was accepted by acceptable production testings located behind this document Doc ID# 305.0110-1,2, and visual inspection. No QV or QC tests were required or taken at placement.

DESIGN/FINAL COMPUTA. IONS DT2138 2005 (Replaces ED408)

BASE ADDREDATE 14.	INCH				
PLAN QUANTIT	1 - 6,800 TON				
RANSON # - *USED CASIO S	0.469 fx-300MS CALOUM	708- RANC	an ingus	ER GENERA	5752
6,800 TON × 07	969 = 3189.2 TON	E - [SAROI	26 Q 3	3189 7015	
* ASD NEED ?	FIRST DAN PLACENE	Mez			
BAGE AUGREGATE 34 - IN	<u>CH</u>				
PLAN QUONSTI	M - 308 TON				
777719CQ LAMEX	H-DONT NEED S	MPLE			
oject/Structure No. 520 · 01 · 83 anne of Rosed 774 J BRIDGE R-SE · 7391	Hwy. No. 1-014 ST. CR	××	Computations by B Checked by		Date Cale
RANDOM NUMPER FOR	SAMPLEING BASE	5 AG151		Sheet }	or)