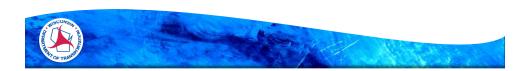

What's New

Session 14


What's happening

- **HMA PWL**
- ► CIP (Cold-In-Place Recycling)
- Combined Bid
- ▶ Longitudinal Joint Study
- Tack Coat Changes
- High Recycle Pilots
- Round Robin samples
- WHRP; Ongoing research
- Ignition Oven

Mix Design Changes

- ▶ 3 yr mix design life
- ▶ E-mix vs. LT, MT, HT
- More mix design verification
- FAA, TSR
- More Aggregate Testing
- Better tracking of mix specifics

Benefits of PWL

- More discerning than other quality measures
- Efficiently captures the mean and standard deviation into one measure of quality
- Encourages Uniformity
 - Controls both the average level and variability of the product in a statistically efficient way
 - Variability is a predictor of performance

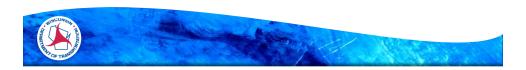
What's New?

Current QMP

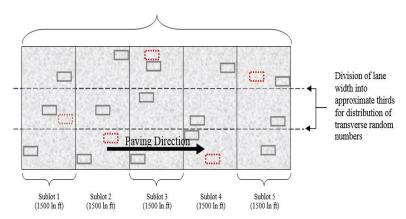
- 4 point running average
- Volumetrics
 - Lot size, currently variable (600, 900, 1200, 1500, etc)
- Densities
 - Lot sizes will not change with PWL
- Nuclear Gauges are not correlated to specific mix

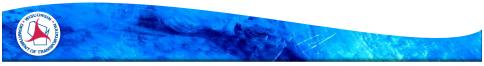
PWL

- Statistically based (Individual tests)
- · Volumetrics:
 - Lot size = 3750 ton
 - Sublot size = 750 ton
- Densities
 - Lot sizes will not change with PWL
 - QV tests become more statistically meaningful in new system
- Nuclear Gauges will be correlated to specific mix for each layer (cores)

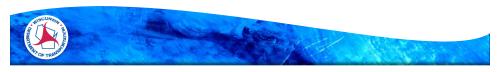

HMA PWL Pilot Projects

- Better system for Contractor and Department
- Requires a Test Strip
 - Core/gauge Correlation
- For mix testing, split material with the contractor
 - Contractor and Department are testing the same sample


When will it be used?


- ▶ Pilot projects in 2016 construction season
 - Goal is 1 pilot project per Region
- Implementation beginning 2017
 - Will evaluate Pilot Project data
 - Adjustments may be needed before full implementation
 - Round 1: projects with > 11,250 tons per mix type
 - Round 2: lower threshold to use PWL with smaller tonnage projects

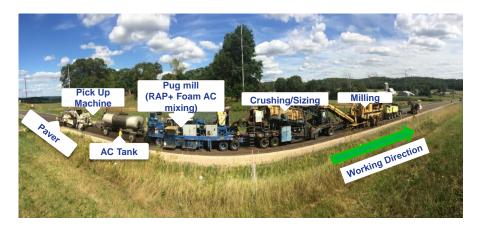
Main Production – Density

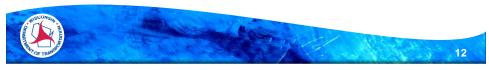

1 lot (7500 lane ft)

Gmm or Gmb chart

	Air Voids									α
Lot	Date	QC Tests	Verification Test	QC Tests	QV Test	Number of QC Tests	Number of QA Tests	Variances Compare?	Means Compare?	0.025
1A	6/01/2014		2.475		2.475					
1B	6/02/2014	2.469		2.469						
1C	6/03/2014	2.477		2.477						
1D	6/04/2014	2.466		2.466						
1E	6/07/2014	2.467		2.467						
2A	6/01/2014	2.464		2.464						
2B	6/02/2014		2.482		2.482					
2C	6/03/2014	2.471		2.471						
2D	6/04/2014	2.473		2.473						
2E	6/07/2014	2.470		2.470						
3A	6/01/2014	2.474		2.474						
3B	6/02/2014	2.469		2.469						
3C	6/03/2014		2.472		2.472					
3D	6/04/2014	2.470		2.470						
3E	6/07/2014	2.476		2.476		12	3	Yes	Yes	
4A	6/01/2014	2.467		2.467						
4B	6/02/2014	2.470		2.470						
4C	6/03/2014	2.468		2.468						
4D	6/04/2014		2.471		2.471					
4E	6/07/2014	2.477		2.477		16	4	Yes	Yes	
5A	6/01/2014	2.468		2.468						
5B	6/02/2014	2.483		2.483						
5C	6/03/2014	2.481		2.481						
5D	6/04/2014		2.479		2.479					
5E	6/07/2014	2.473		2.473		20	5	Yes	Yes	

PWL Air void payment calculated from Gmm & Gmb data


		Project1234							
				Air Voids					
Lot	Date	Contractor QC Test	Department QV Test	PWL	PF _{AV}	Lot Size (Ton)	Air Voids Pay Adjustment	Use Contractors Test?	
1A	6/1/2014	2.83	2.86						T
1B	6/2/2014	2.87							
10	6/3/2014	3.36							
1D	6/4/2014	4.14							
1E	6/7/2014	4.80		72.93	91.47	3750.00	(\$12,795.00)	Yes	Υ
2A	6/8/2014	3.05					•		Ī
2B	6/9/2014	3.47	2.97						
2C	6/10/2014	3.68							
2D	6/11/2014	3.86							
2E	6/12/2014	3.66		99.89	103.96	3750.00	\$5,940.00	Yes	Υ
3A	6/13/2014	3.79							
3B	6/14/2014	3.66							
3C	6/15/2014	4.17	2.30						
3D	6/16/2014	4.20							
3E	6/17/2014	3.82		100.00	104.00	3750.00	\$6,000.00	Yes	Y
4A	6/18/2014	3.55							
4B	6/19/2014	3.43							
4C	6/20/2014	3.60							
4D	6/21/2014	3.89	3.25						
4E	6/22/2014	3.65		100.00	104.00	3750.00	\$6,000.00	Yes	Υ
5A	6/23/2014	3.01							Ī
5B	6/24/2014	4.51							
5C	6/25/2014	4.55							
5D	6/26/2014	4.04	2.99						
5E	6/27/2014	3.77		95.38	102.15	3750.00	\$3,225.00	Yes	Υ
									Γ
						Total	\$8,370.00		
							•		


Cold-In Place Recycling (CIR)

- Mills deteriorated pavement (Typically 3 to 4 inches) to be used as recycled asphalt pavement (RAP)
- CIR process stays within existing asphalt layer
- Crushes RAP to the required gradation
- Mixes with Recycling Agents
- Re-Paves Recycled Mix
- □ Compacts to specified density
- Readies for surface treatment

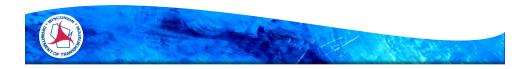
Multi- Unit CIR Train

Benefit of Cold-In Place Recycling

- **D**Economics
 - Studies show significant savings per project (compared to equivalent Mill and Overlay)
- Reduced construction time
- Environment
 - Reduction of green house gases
- Roadway remains open

13

Benefit of Cold-In Place Recycling


- ☐ Effective in rehabilitating distressed pavements with stable bases and subgrades.
- ☐ Using in-place materials minimizes hauling and use of virgin materials.
- Using CIR can improve structural capacity of pavement, allowing for reduction of required overlay thickness.

14

2016 Combining HMA Bid Items


- When
 - 2017 Standard Specification
 - Available by STSP in February 2016
- Why
 - Streamline the bidding and estimating processes
 - Aid design/development staff in preparing estimates
 - Simplify the choice of PG Binders for the marketplace

Let's put it all together!

mas)	Traffic Level Low Traffic Vol.	Asphalt Binder	De	signation Level	
mm LT	Low Traffic Vol.		Designation Level		
	(40 gyrations)	58-34	S	Standard	
mm MT	Medium Traffic Vol. (75 gyrations)	58-28	Н	Heavy	
mm HT	High Traffic Vol. (100 gyrations)		V	Very Heavy	
mm		-	E	Extremely Heavy	
nm					
mm					
r		mm MT (75 gyrations) mm HT (100 gyrations) mm	mm MT (75 gyrations) 58-28 mm HT High Traffic Vol. (100 gyrations) mm	mm MT (75 gyrations) 58-28 H mm HT High Traffic Vol. (100 gyrations) V mm E	

- Questions?
- Comments?
- Experiences?

