Special Provisions

Table of Contents

Article	Description	Page #
General		2
Scope of Work		2
Prosecution and Progress		2
Lane Rental Fee Assessment fo	or Road America Events	2
Traffic		3
Holiday and Special Event Work	Restrictions	5
Utilities		5
Coordination with Project 1440-7	15-71	6
Information to Bidders, U.S. Arm	ny Corps of Engineers Section 404 Permit	6
Construction Over or Adjacent to	o Navigable Waters	7
HMA Pavement Percent Within	Limits (PWL) QMP	12
Appendix A		18
Traffic Control		27
	AID AO	28
	Scope of Work	Article General

STSP'S Revised July 8, 2021 SPECIAL PROVISIONS

1. General.

Perform the work under this construction contract for Project 1440-15-78, Fond du Lac – Plymouth, Seven Hills Road – CTH P, STH 23, Fond du Lac County, Wisconsin as the plans show and execute the work as specified in the State of Wisconsin, Department of Transportation, Standard Specifications for Highway and Structure Construction, 2022 Edition, as published by the department, and these special provisions.

If all or a portion of the plans and special provisions are developed in the SI metric system and the schedule of prices is developed in the US standard measure system, the department will pay for the work as bid in the US standard system.

100-005 (20210708)

2. Scope of Work.

The work under this contract shall consist of HMA pavement, pavement marking, shoulder rumble strips, paved shoulder widening, and all incidental items necessary to complete the work as shown on the plans and included in the proposal and contract.

104-005 (20090901)

3. Prosecution and Progress.

Begin work within ten calendar days after the engineer issues a written notice to do so.

Provide the time frame for construction of the project within the 2022 construction season to the engineer in writing within a month after executing the contract but at least 14 calendar days before the preconstruction conference. Assure that the time frame is consistent with the contract completion time. Upon approval, the engineer will issue the notice to proceed within ten calendar days before the beginning of the approved time frame.

To revise the time frame, submit a written request to the engineer at least two weeks before the beginning of the intended time frame. The engineer will approve or deny that request based on the conditions cited in the request and its effect on the department's scheduled resources.

The Notice to Proceed will be issued such that work shall start no later than June 13, 2022, unless otherwise approved by the engineer.

4. Lane Rental Fee Assessment for Road America Events.

A General

This special provision describes lane rental fee assessments associated with Road America Events with expected attendance over 30,000.

The contract designates some lane closures to perform the work. The contractor will not incur a Lane Rental Fee Assessment for closing lanes during the allowable lane closure times. The contractor will incur a Lane Rental Fee Assessment for each lane closure outside of the allowable lane closure times. If a lane is obstructed at any time due to contractor operations, it is considered a closure. The purpose of lane rental is to enforce compliance of lane restrictions and discourage unnecessary closures.

No lane closures can be in place for events with expected attendance over 30,000 at Road America, 5 hours before the start of the event and 8 hours after the start of the event regardless of the allowable closures stated elsewhere in the contract.

Submit the dates of the proposed lane, ramp, and roadway restrictions to the engineer as part of the progress schedule.

Coordinate lane, ramp, and roadway closures with any concurrent operations on adjacent roadways within 3 miles of the project. If other projects are in the vicinity of this project, coordinate lane closures to

1440-15-78 2 of 28

run concurrent with lane closures on adjacent projects when possible. When lane closures on adjacent projects extend into the limits of this project, Lane Rental Fee Assessments will only occur if the closure facilitates work under this contract.

B Lane Rental Fee Assessment

The Lane Rental Fee Assessment incurred for each lane closure, each ramp closure, and each full closure of a roadway, per direction of travel, is as follows:

- \$1,750 per lane, per direction of travel, per hour broken into 15 minute increments

The Lane Rental Fee Assessment represents a portion of the cost of the interference and inconvenience to the road users for each closure. All lane, roadway, or ramp closure event increments 15 minutes and less will be assessed as a 15-minute increment.

The engineer, or designated representative, will be the sole authority in determining time period length for the Lane Rental Fee Assessment.

Lane Rental Fee Assessments will not be assessed for closures due to crashes, accidents or emergencies not initiated by the contractor.

The department will assess Lane Rental Fee Assessment by the dollar under the administrative item Failing to Open Road to Traffic. The total dollar amount of Lane Rental Fee Assessment will be computed by multiplying the Lane Rental Assessment Rate by the number of 15-minute increments of each lane closure event as described above.

Lane Rental Fee Assessment will be in effect from the time of the Notice to Proceed until the department issues final acceptance. If interim completion time or contract time expires before the completion of specified work in the contract, additional liquidated damages will be assessed according to standard spec 108.11 or as specified within this contract.

ner-643-020 (20171213)

5. Traffic.

Traffic Operations and Staging

For each layer of milling and paving on STH 23, start by closing the inside/passing lane and shifting traffic to the outside/driving lanes. This will result in placing the notched wedge of the longitudinal joint on the driving lanes, which is the side of the centerline that has more space for traffic. Once the milling or paving layer is completed on the inside/passing lane, proceed with shifting traffic to the inside/passing lane while closing and completing the milling or paving layer on the outside/driving lanes.

STH 23 single lane closures will be allowed, except as restricted below and as restricted in the Holiday and Special Event Work Restrictions article.

Maintain access to the CTH G interchange ramps at all times.

Do not open both lanes of STH 23 traffic in one direction until the roadway surface has an even cross section between the adjacent lanes.

Do not allow the milled surface to remain exposed to traffic for a period greater than 72 hours unless adverse weather prevents placement of the asphalt layer. In the event of adverse weather, resume placement of the asphalt layer as soon as conditions permit.

Wisconsin Lane Closure System OSOW

In the Wisconsin Lane Closure System Advance Notification Table 108-1 below, available width is typically defined as the total width of the paved lane plus the paved shoulder for one direction of traffic. Since the inside/passing lanes and the existing outside/driving lanes in this section of STH 23 have 15 feet (12' lane + 3' paved shoulder) of available paved width, WisDOT allows 1 foot of the adjacent gravel shoulder to be included as part of the available width for this section of highway.

STH 23 is a designated WisDOT Freight Network Route and WisDOT Wind Tower Corridor. Maintain an available width no less than 16 feet (12' lane + 3' paved shoulder + 1' additional gravel or paved shoulder) at all times in each direction. If this minimum width is maintained for traffic, advanced notification according to the Wisconsin Lane Closure System (WLCS) is not required. Movement of standard OSOW freight including wind tower base loads is scheduled to occur during this construction

1440-15-78 3 of 28

project. Wind tower loads that normally require 16 feet of available paved width are allowed by WisDOT Oversize/Overweight permit to travel along this section of STH 23.

Wisconsin Lane Closure System Advance Notification

Provide the following advance notification to the engineer for incorporation into the Wisconsin Lane Closure System (LCS).

TABLE 108-1 CLOSURE TYPE AND REQUIRED MINIMUM ADVANCE NOTIFICATION

Closure type with height, weight, or width restrictions (available width, all lanes in one direction < 16 feet)	MINIMUM NOTIFICATION
Lane and shoulder closures	7 calendar days
Full roadway closures	7 calendar days
Ramp closures	7 calendar days
Detours	7 calendar days
Closure type without height, weight, or width restrictions (available width, all lanes in one direction ≥ 16 feet)	MINIMUM NOTIFICATION
Lane and shoulder closures	3 business days
Ramp closures	3 business days
Modifying all closure types	3 business days

Discuss LCS completion dates and provide changes in the schedule to the engineer at weekly project meetings in order to manage closures nearing their completion date.

Temporary Regulatory Speed Limit Reduction

A reduction of the posted regulatory speed limit from 70 or 65 mph to 55 mph is required when any of the following conditions are created within the project limits: 1. Bi-directional traffic separated by tubular markers. 2. Lane(s) closed and workers are present within 12 feet of the open lane. All other Work Zone configurations and conditions shall reduce the permanent posted speed limit to 60 mph. Restore the original posted regulatory speed limit at lane closures that only use drums during non-working hours.

No portion of sign text shall be visible when not in use, regardless if it is temporary or permanent regulatory speed limit sign.

During approved temporary regulatory speed limit reductions, install regulatory speed limit signs on the inside and outside shoulders of the roadway at the beginning of the reduced regulatory speed zone, after all locations where traffic may enter the highway segment or every 1/2 mile within the reduced regulatory speed zone. Signs shall be installed at the end of the temporary regulatory speed zone to designate the end of the temporary regulatory speed limit reverts back to the original posted speed limit. To minimize possible confusion to the traveling public and to ensure appropriate speed enforcement, enhanced attention to placement and changing of speed limit signs is required.

Coordinate with department construction field staff to notify the Northeast Region Traffic Section with field location(s) of the temporary regulatory speed zone. Primary contact phone number: 920-366-4747 (secondary contact number is 920-366-8033). Contact the Northeast Region Traffic Section at least 14 calendar days before installation of the temporary regulatory speed zone. After notification, Northeast Region Traffic will finalize a "Temporary Speed Zone Declaration" to meet statutory requirements, allowing enforcement of this temporary regulatory speed limit.

When construction activities impede the location of a post mounted regulatory speed limit sign, mount the regulatory speed limit sign on portable supports that meet the "crashworthy" definition and height criteria in the Manual on Uniform Traffic Control Devices for Streets and Highways (MUTCD).

ner-643-055 (20210126)

Temporary Work Zone Clear Zone Working Restrictions.

The temporary work zone clear zone for this project is 18-feet from the edge of traveled way. If auxiliary lanes are present, clear zone is from the outside edge of the auxiliary lane.

Do not perform work in the median at any time unless protected by concrete barrier temporary precast in both directions except as allowed during lane closure periods.

1440-15-78 4 of 28

Do not perform work within the clear zone unless protected by concrete barrier temporary precast or a lane closure during the allowed closure periods.

Park equipment and store materials, including stockpiles, a minimum of 30-feet from the edge of the traveled way. Equipment may be parked and material stored in the median if it meets the minimum distance requirement from both traveled ways or if it is protected by concrete barrier temporary precast.

If unsure whether an individual work operation will meet the safety requirements for working within the clear zone, review the proposed work operation with the engineer before proceeding with the work.

Replace standard specification 305.3.3.3(2) with the following:

If the roadway remains open to through traffic during construction and a 2-inch or more drop-off occurs within the clear zone, eliminate the drop-off prior to completing that day's work. Unless the special provisions specify otherwise, provide aggregate shoulder material compacted to a temporary 3:1 or flatter cross slope from the surface of the pavement edge.

ner-104-001 (20181017)

Side Roads and Private Driveways

Maintain access to and from side roads within the project limits at all times except as allowed by the engineer or as follows: Side roads may be reduced to one lane at the intersection with STH 23 during milling and paving operations in the intersection with appropriate flagging operations, or as directed by the engineer.

Maintain emergency access to the project area at all times.

Maintain access to private driveways at all times unless determined otherwise by the engineer. If a driveway closure is determined necessary, notify the property owner three working days prior to the anticipated closure. Close the driveway for a maximum of one working day.

Portable Changeable Message Signs - Message Prior Approval

After coordinating with department construction field staff, notify the Northeast Region Traffic Section at 920-366-8033 (secondary contact number is 920-360-3107) 3 business days before deploying or changing a message on a PCMS to obtain approval of the proposed message. The Northeast Region Traffic Unit will review the proposed message and either approve the message or make necessary changes.

PCMS boards must be deployed 7 days before the closure of STH 23.

ner-643-035 (20171213)

6. Holiday and Special Event Work Restrictions.

Do not perform work on, nor haul materials of any kind along or across any portion of the highway carrying STH 23 traffic, and entirely clear the traveled way and shoulders of such portions of the highway of equipment, barricades, signs, lights, and any other material that might impede the free flow of traffic during the following holiday and special event periods:

- From noon Friday, May 27, 2022 to 6:00 AM Tuesday, May 31, 2022 Memorial Day;
- From noon Friday, July 1, 2022 to 6:00 AM Tuesday, July 5, 2022 Independence Day;
- From noon Friday, September 2, 2022 to 6:00 AM Tuesday, September 6, 2022 Labor Day.

stp-107-005 (20210113)

7. Utilities.

This contract comes under the provision of Administrative Rule Trans 220.

stp-107-065 (20080501)

Additional detailed information regarding the location of utility facilities is available at the region WisDOT office during normal working hours.

The following utility companies have facilities within the project limits; however, no conflicts are anticipated.

1440-15-78 5 of 28

Alliant Energy (electric)

ANR Pipeline Co (gas)

AT&T Wisconsin (communication)

ATC Management, Inc (electric transmission)

Charter Communications (communication)

Northern Moraine Utility Commission (sewer)

Plymouth Utilities Co (communication & electric)

We Energies (electric)

West Shore Pipe Line Company(gas)

Wisconsin Public Service Corporation (gas)

8. Coordination with Project 1440-15-71.

The department let project 1440-15-71, USH 151 to Seven Hills Road in Fond Du Lac County, in March 2021. Work under this project began in the summer 2021 and extends into the 2022 construction season. This project includes grading, paving, and structures. Coordinate traffic control staging, work zone traffic control, roadway and lane closures, trucking activities, and other work items with this project as necessary.

9. Information to Bidders, U.S. Army Corps of Engineers Section 404 Permit.

The department has obtained a U.S. Army Corps of Engineers Section 404 permit. Comply with the requirements of the permit in addition to requirements of the special provisions. A copy of the permit is available from the regional office by contacting Eric Danke at (920) 492.5647.

stp-107-054 (20210708)

10. Select Site Archaeological Study.

Give the department 30 days' notice for locations of borrow pits and/or waste sites to be used on Project 1440-15-78. The department will perform a phase 1 archeological survey of the sites to determine if the sites can be cleared for archaeology, per the stipulation contained in the Section 106 Memorandum of Agreement for the project. The sites must be cleared by the department before any groundbreaking disturbances can occur and for the sites to be included in the ECIP. The department will contract with an approved archeologist to perform the phase 1 archeological survey. The department will not pay for any further investigation beyond a phase 1 archeological survey.

If the department does not clear the select sites based on the results of phase 1 archeological study the options are:

- 1. Choose a new site. This site will need to follow the approval process above.
- 2. Submit modified select site limits (if feasible based on-site limits) to avoid the resource identified during the phase 1 archaeological survey to the Bureau of Technical Services (BTS) for approval and clearance.
- Have a qualified archaeologist, approved by the department, conduct phase 2 archaeological survey to determine if the site is significant. Submit findings to BTS for review/approval and/or coordination with WHS/SHPO.

For any of the options, discovery of an archaeological resource may prevent the department from approving the site at any point in the review process.

ner-107-020 (20190718)

11. Archaeological and Historical Findings.

Add standard spec 107.25(3) as follows:

1440-15-78 6 of 28

These discoveries may result in potential delays to the contractor. The contractor shall stop construction in the area of the discovery to permit implementation of mitigation measures, including providing an opportunity for consulting tribes to perform tribal ceremonial activities.

12. Construction Over or Adjacent to Navigable Waters.

The Sheboygan River and Mullet River are classified as a state navigable waterway under standard spec 107.19.

stp-107-060 (20171130)

13. HMA Percent Within Limits (PWL) Test Strip Volumetrics, Item 460.0105.S; HMA Percent Within Limits (PWL) Test Strip Density Item 460.0110.S.

A Description

This special provision describes the Hot Mix Asphalt (HMA) density and volumetric testing tolerances required for an HMA test strip. An HMA test strip is required for contracts constructed under HMA Percent Within Limits (PWL) QMP. A density test strip is required for each pavement layer placed over a specific, uniform underlying material, unless specified otherwise in the plans. Each contract is restricted to a single mix design per mix type per layer (e.g., upper layer and lower layer may have different mix type specified or may have the same mix type with different mix designs). Each mix design requires a separate test strip. Density and volumetrics testing will be conducted on the same test strip whenever possible.

Perform work according to standard spec 460 and as follows.

B Materials

Use materials conforming to HMA Pavement Percent Within Limits (PWL) QMP special provision.

C Construction

C.1 Test Strip

Submit the test strip start time and date to the department in writing at least 5 calendar days in advance of construction of the test strip. If the contractor fails to begin paving within 2 hours of the submitted start time, the test strip is delayed, and the department will assess the contractor \$2,000 for each instance according to Section E of this document. Alterations to the start time and date must be submitted to the department in writing a minimum of 24 hours prior to the start time. The contractor will not be liable for changes in start time related to adverse weather days as defined by standard spec 101.3 or equipment breakdown verified by the department.

On the first day of production for a test strip, produce approximately 750 tons of HMA._(Note: adjust tonnage to accommodate natural break points in the project.) Locate test strips in a section of the roadway to allow a representative rolling pattern (i.e. not a ramp or shoulder, etc.).

C.1.1 Sampling and Testing Intervals

C.1.1.1 Volumetrics

Laboratory testing will be conducted from a split sample yielding three components, with portions designated for QC (quality control), QV (quality verification), and retained.

During production for the test strip, obtain sufficient HMA mixture for three-part split samples from trucks prior to departure from the plant. Collect three split samples during the production of test strip material. Perform sampling from the truck box and three-part splitting of HMA according to CMM 8-36. These three samples will be randomly selected by the engineer from each *third* of the test strip tonnage (T), excluding the first 50 tons:

Sample Number	<u>Production Interval (tons)</u>
1	50 to 1/3 T
2	1/3 T to 2/3 T
3	2/3 T to T

1440-15-78 7 of 28

C.1.1.2 Density

Required field tests include contractor QC and department QV nuclear density gauge tests and pavement coring at ten individual locations (five in each half of the test strip length) in accordance with Appendix A: Test Methods and Sampling for HMA PWL QMP Projects. Both QV and QC teams shall have two nuclear density gauges present for correlation at the time the test strip is constructed. QC and QV teams may wish to scan with additional gauges at the locations detailed in Appendix A, as only gauges used during the test strip correlation phase will be allowed.

C.1.2 Field Tests

C.1.2.1 Density

For contracts that include STSP 460-020 QMP Density in addition to PWL, a gauge comparison according to CMM 8-15.7 shall be completed prior to the day of test strip construction. Daily standardization of gauges on reference blocks and a project reference site shall be performed according to CMM 8-15.8. A standard count shall be performed for each gauge on the material placed for the test strip, prior to any additional data collection. Nuclear gauge readings and pavement cores shall be used to determine nuclear gauge correlation in accordance with Appendix A. The two to three readings for the five locations across the mat for each of two zones shall be provided to the engineer. The engineer will analyze the readings of each gauge relative to the densities of the cores taken at each location. The engineer will determine the average difference between the nuclear gauge density readings and the measured core densities to be used as a constant offset value. This offset will be used to adjust raw density readings of the specific gauge and shall appear on the density data sheet along with gauge and project identification. An offset is specific to the mix and layer; therefore, a separate value shall be determined for each layer of each mix placed over a differing underlying material for the contract. This constitutes correlation of that individual gauge for the given layer. Two gauges per team are not required to be onsite daily after completion of the test strip. Any data collected without a correlated gauge will not be accepted.

The contractor is responsible for coring the pavement from the footprint of the density tests and filling core holes according to Appendix A. Coring and filling of pavement core holes must be approved by the engineer. The QV team is responsible for the labeling and safe transport of the cores from the field to the QC laboratory. Testing of cores shall be conducted by the contractor and witnessed by department personnel. The contractor is responsible for drying the cores following testing. The department will take possession of cores following laboratory testing and will be responsible for any verification testing at the discretion of the engineer.

The target maximum density to be used in determining core density is the average of the three volumetric/mix Gmm values from the test strip multiplied by 62.24 lb/ft³. In the event mix and density portions of the test strip procedure are separated, or if an additional density test strip is required, the mix portion must be conducted prior to density determination. The target maximum density to determine core densities shall then be the Gmm four-test running average (or three-test average from a PWL volumetric-only test strip) from the end of the previous day's production multiplied by 62.24 lb/ft³. If no PWL production volumetric test is to be taken in a density-only test strip, a non-random three-part split mix sample will be taken and tested for Gmm by the department representative. The department Gmm test results from this non-random test will be entered in the HMA PWL Test Strip Spreadsheet and must conform to the Acceptance Limits presented in C.2.1.

Exclusions such as shoulders and appurtenances shall be tested and reported according to CMM 8-15. However, all acceptance testing of shoulders and appurtenances will be conducted by the department, and average lot (daily) densities must conform to standard spec Table 460-3. No density incentive or disincentive will be applied to shoulders or appurtenances. However, unacceptable shoulder material will be handled according to standard spec 460.3.3.1 and CMM 8-15.11.

C.1.3 Laboratory Tests

C.1.3.1 Volumetrics

Obtain random samples according to C.1.1.1 and Appendix A. Perform tests the same day as taking the sample.

Theoretical maximum specific gravities of each mixture sample will be obtained according to AASHTO T 209 as modified in CMM 8-36.6.6. Bulk specific gravities of both gyratory compacted samples and field cores shall be determined according to AASHTO T 166 as modified in CMM 8-36.6.5. The bulk specific gravity values determined from field cores shall be used to calculate a correction factor (i.e., offset) for

1440-15-78 8 of 28

each QC and QV nuclear density gauge. The correction factor will be used throughout the remainder of the layer.

C.2 Acceptance

C.2.1 Volumetrics

Produce mix conforming to the following limits based on individual QC and QV test results (tolerances based on most recent JMF):

ITEM	ACCEPTANCE LIMITS
Percent passing given sieve:	
37.5-mm	+/- 8.0
25.0-mm	+/- 8.0
19.0-mm	+/- 7.5
12.5-mm	+/- 7.5
9.5-mm	+/- 7.5
2.36-mm	+/- 7.0
75-µm	+/- 3.0
Asphaltic content in percent ^[1]	- 0.5
Air Voids	-1.5 & +2.0
VMA in percent ^[2]	- 1.0
Maximum specific gravity	+/- 0.024

^[1] Asphalt content more than -0.5% below the JMF will be referee tested by the department's AASHTO accredited laboratory and HTCP certified personnel using automated extraction according to ASTM D8159 as modified in CMM 8-36.6.3.1.

QV samples will be tested for Gmm, Gmb, and AC. Air voids and VMA will then be calculated using these test results.

Calculation of air voids shall use either the QC, QV, or retained split sample test results, as identified by conducting the paired t-test with the WisDOT PWL Test Strip Spreadsheet.

If QC and QV test results do not correlate as determined by the split sample comparison, the retained split sample will be tested by the department's AASHTO accredited laboratory and HTCP certified personnel as a referee test. Additional investigation shall be conducted to identify the source of the difference between QC and QV data. Referee data will be used to determine material conformance and pay.

C.2.2 Density

Compact all layers of test strip HMA mixture to the applicable density shown in the following table:

TABLE 460-3 MINIMUM REQUIRED DENSITY[1]

MIXTURE TYPE

LAYER	LT & MT	HT
LOWER	93.0 ^[2]	93.0 ^[3]
UPPER	93.0	93.0

^[1] If any individual core density test result falls more than 3.0 percent below the minimum required target maximum density, the engineer will investigate the acceptability of that material per CMM 8-15.11.

1440-15-78 9 of 28

^[2] VMA limits based on minimum requirement for mix design nominal maximum aggregate size in table 460-1.

^[2] Minimum reduced by 2.0 percent for a lower layer constructed directly on crushed aggregate or recycled base courses.

^[3] Minimum reduced by 1.0 percent for lower layer constructed directly on crushed aggregate or recycled base courses.

Nuclear density gauges are acceptable for use on the project only if correlation is completed for that gauge during the time of the test strip and the department issues documentation of acceptance stating the correlation offset value specific to the gauge and mix design. The offset is not to be entered into any nuclear density gauge as it will be applied by the department-furnished Field Density Worksheet.

C.2.3 Test Strip Approval and Material Conformance

All applicable laboratory and field testing associated with a test strip shall be completed prior to any additional mainline placement of the mix. All test reports shall be submitted to the department upon completion and approved before paving resumes. The department will notify the contractor within 24 hours from start of test strip regarding approval to proceed with paving, unless an alternate time frame is agreed upon in writing with the department. The 24-hour approval time includes only working days as defined in standard spec 101.3.

The department will evaluate material conformance and make pay adjustments based on the PWL value of air voids and density for the test strip. The QC core densities and QC and QV mix results will be used to determine the PWL values as calculated in accordance with Appendix A.

The PWL values for air voids and density shall be calculated after determining core densities. An approved test strip is defined as the individual PWL values for air voids and density both being equal to or greater than 75, mixture volumetric properties conforming to the limits specified in C.2.1, and an acceptable gauge-to-core correlation. Further clarification on PWL test strip approval and appropriate post-test strip actions are shown in the following table:

PWL TEST STRIP APPROVAL AND MATERIAL CONFORMANCE CRITERIA

PWL VALUE FOR AIR VOIDS AND DENSITY	TEST STRIP APPROVAL	MATERIAL CONFORMANCE	POST-TEST STRIP ACTION
Both PWL ≥ 75	Approved ¹	Material paid for according to Section E	Proceed with Production
50 <u><</u> Either PWL < 75	Not Approved	Material paid for according to Section E	Consult BTS to determine need for additional test strip
Either PWL < 50	Not Approved	Unacceptable material removed and replaced or paid for at 50% of the contract unit price according to Section E	Construct additional Volumetrics or Density test strip as necessary

¹ In addition to these PWL criteria, mixture volumetric properties must conform to the limits specified in C.2.1, split sample comparison must have a passing result and an acceptable gauge-to-core correlation must be completed.

A maximum of two test strips will be allowed to remain in place per pavement layer per contract. If material is removed, a new test strip shall replace the previous one at no additional cost to the department. If the contractor changes the mix design for a given mix type during a contract, no additional compensation will be paid by the department for the required additional test strip and the department will assess the contractor \$2,000 for the additional test strip according to Section E of this special provision. For simultaneously conducted density and volumetric test strip components, the following must be achieved:

- i. Passing/Resolution of Split Sample Comparison
- ii. Volumetrics/mix PWL value > 75
- iii. Density PWL value > 75
- iv. Acceptable correlation

If not conducted simultaneously, the mix portion of a test strip must accomplish (i) & (ii), while density must accomplish (iii) & (iv). If any applicable criteria are not achieved for a given test strip, the engineer, with authorization from the department's Bureau of Technical Services, will direct an additional test strip (or alternate plan approved by the department) be conducted to prove the criteria can be met prior to additional paving of that mix. For a density-only test strip, determination of mix conformance will be according to main production, i.e., HMA Pavement Percent Within Limits (PWL) QMP special provision.

D Measurement

The department will measure HMA Percent Within Limits (PWL) Test Strip as each unit of work, acceptably completed as passing the required air void, VMA, asphalt content, gradation, and density

1440-15-78 10 of 28

correlation for a Test Strip. Material quantities shall be determined according to standard spec 450.4 and detailed here within.

E Payment

The department will pay for measured quantities at the contract unit price under the following bid item:

ITEM NUMBER	DESCRIPTION	UNIT
460.0105.S	HMA Percent Within Limits (PWL) Test Strip Volumetrics	EACH
460.0110.S	HMA Percent Within Limits (PWL) Test Strip Density	EACH

These items are intended to compensate the contractor for the construction of the test strip for contracts paved under the HMA Pavement Percent Within Limits QMP article.

Payment for HMA Percent Within Limits (PWL) Test Strip Volumetrics is full compensation for volumetric sampling, splitting, and testing; for proper labeling, handling, and retention of split samples.

Payment for HMA Percent Within Limits (PWL) Test Strip Density is full compensation for collecting and measuring of pavement cores, acceptably filling core holes, providing of nuclear gauges and operator(s), and all other work associated with completion of a core-to-gauge correlation, as directed by the engineer.

Acceptable HMA mixture placed on the project as part of a volumetric or density test strip will be compensated by the appropriate HMA Pavement bid item with any applicable pay adjustments. If a test strip is delayed as defined in C.1 of this document, the department will assess the contractor \$2,000 for each instance, under the HMA Delayed Test Strip administrative item. If an additional test strip is required because the initial test strip is not approved by the department or the mix design is changed by the contractor, the department will assess the contractor \$2,000 for each additional test strip (i.e. \$2,000 for each individual volumetrics or density test strip) under the HMA Additional Test Strip administrative item.

Pay adjustment will be calculated using 65 dollars per ton of HMA pavement. The department will pay for measured quantities of mix based on \$65/ton multiplied by the following pay adjustment:

PAY ADJUSTMENT FOR HMA PAVEMENT AIR VOIDS & DENSITY

PERCENT WITHIN LIMITS	PAYMENT FACTOR, PF
(PWL)	(percent of \$65/ton)
≥ 90 to 100	PF = ((PWL - 90) * 0.4) + 100
≥ 50 to < 90	(PWL * 0.5) + 55
<50	50% ^[1]

where, PF is calculated per air voids and density, denoted PFair voids & PFdensity

[1] Material resulting in PWL value less than 50 shall be removed and replaced, unless the engineer allows for such material to remain in place. In the event the material remains in place, it will be paid at 50% of the contract unit price of HMA pavement.

For air voids, PWL values will be calculated using lower and upper specification limits of 2.0 and 4.3 percent, respectively. Lower specification limits for density will be according to Table 460-3 as modified herein. Pay adjustment will be determined for an acceptably completed test strip and will be computed as shown in the following equation:

Pay Adjustment = $(PF-100)/100 \times (WP) \times (tonnage) \times (\$65/ton)^*$ *Note: If Pay Factor <50, the contract unit price will be used in lieu of \$65/ton

The following weighted percentage (WP) values will be used for the corresponding parameter:

<u>Parameter</u>	<u>WP</u>
Air Voids	0.5
Density	0.5

Individual Pay Factors for each air voids (PF_{air voids}) and density (PF_{density}) will be determined. PF_{air voids} will be multiplied by the total tonnage produced (i.e., from truck tickets), and PF_{density} will be multiplied by the

1440-15-78 11 of 28

calculated tonnage used to pave the mainline only (i.e., traffic lane excluding shoulder) as determined in accordance with Appendix A.

The department will pay incentive for air voids under the following bid item:

ITEM NUMBER	DESCRIPTION	UNIT
460.2005	Incentive Density PWL HMA Pavement	DOL
460.2010	Incentive Air Voids HMA Pavement	DOL

The department will administer disincentives under the Disincentive Density HMA Pavement and the Disincentive Air Voids HMA Pavement administrative items.

stp-460-040 (20191121)

14. HMA Pavement Percent Within Limits (PWL) QMP.

A Description

This special provision describes percent within limits (PWL) pay determination, providing and maintaining a contractor Quality Control (QC) Program, department Quality Verification (QV) Program, required sampling and testing, dispute resolution, corrective action, pavement density, and payment for HMA pavements. Pay is determined by statistical analysis performed on contractor and department test results conducted according to the Quality Management Program (QMP) as specified in standard spec 460, except as modified below.

B Materials

Conform to the requirements of standard spec 450, 455, and 460 except where superseded by this special provision. The department will allow only one mix design for each HMA mixture type per layer required for the contract, unless approved by the engineer. The use of more than one mix design for each HMA pavement layer will require the contractor to construct a new test strip in accordance with HMA Pavement Percent Within Limits (PWL) QMP Test Strip Volumetrics and HMA Pavement Percent Within Limits (PWL) QMP Test Strip Density articles at no additional cost to the department.

Replace standard spec 460.2.8.2.1.3.1 Contracts with 5000 Tons of Mixture or Greater with the following:

460.2.8.2.1.3.1 Contracts under Percent within Limits

- (1) Furnish and maintain a laboratory at the plant site fully equipped for performing contractor QC testing. Have the laboratory on-site and operational before beginning mixture production.
- (2) Obtain random samples and perform tests according to this special provision and further defined in Appendix A: *Test Methods & Sampling for HMA PWL QMP Projects*. Obtain HMA mixture samples from trucks at the plant. For the sublot in which a QV sample is collected, discard the QC sample and test a split of the QV sample.
- (3) Perform sampling from the truck box and three-part splitting of HMA samples according to CMM 8-36. Sample size must be adequate to run the appropriate required tests in addition to one set of duplicate tests that may be required for dispute resolution (i.e., retained). This requires sample sizes which yield three splits for all random sampling per sublot. All QC samples shall provide the following: QC, QV, and Retained. The contractor shall take possession and test the QC portions. The department will observe the splitting and take possession of the samples intended for QV testing (i.e., QV portion from each sample) and the Retained portions. Additional sampling details are found in Appendix A. Label samples according to CMM 8-36. Additional handling instructions for retained samples are found in CMM 8-36.
- (4) Use the test methods identified below to perform the following tests at a frequency greater than or equal to that indicated:
 - Blended aggregate gradations in accordance with AASHTO T 30
 - Asphalt content (AC) in percent determined by ignition oven method according to AASHTO T 308 as modified in CMM 8-36.6.3.6, chemical extraction according to AASHTO T 164 Method A or B, or automated extraction according to ASTM D8159 as modified in CMM 8-36.6.3.1.
 - Bulk specific gravity (Gmb) of the compacted mixture according to AASHTO T 166 as modified in CMM 8-36.6.5.

1440-15-78 12 of 28

- Maximum specific gravity (Gmm) according to AASHTO T 209 as modified in CMM 8-36.6.6
- Air voids (V_a) by calculation according to AASHTO T 269.
- Voids in Mineral Aggregate (VMA) by calculation according to AASHTO R35.

(5) Lot size shall consist of 3750 tons with sublots of 750 tons. Test each design mixture at a frequency of 1 test per 750 tons of mixture type produced and placed as part of the contract. Add a random sample for any fraction of 750 tons at the end of production for a specific mixture design. Partial lots with less than three sublot tests will be included into the previous lot for data analysis and pay adjustment. Volumetric lots will include all tonnage of mixture type under specified bid item unless otherwise specified in the plan.

⁽⁶⁾ Conduct field tensile strength ratio tests according to AASHTO T283, without freeze-thaw conditioning cycles, on each qualifying mixture in accordance with CMM 8-36.6.14. Test each full 50,000-ton production increment, or fraction of an increment, after the first 5,000 tons of production. Perform required increment testing in the first week of production of that increment. If field tensile strength ratio values are below the spec limit, notify the engineer. The engineer and contractor will jointly determine a corrective action.

Delete standard spec 460.2.8.2.1.5 and 460.2.8.2.1.6.

Replace standard spec 460.2.8.2.1.7 Corrective Action with the following:

460.2.8.2.1.7 Corrective Action

(1) Material must conform to the following action and acceptance limits based on individual QC and QV test results (tolerances relative to the JMF used on the PWL Test Strip):

ITEM	ACTION LIMITS	ACCEPTANCE LIMITS
Percent passing given sieve:	0	
37.5-mm	+/- 8.0	
25.0-mm	+/- 8.0	
19.0-mm	+/- 7.5	
12.5-mm	+/- 7.5	
9.5-mm	+/- 7.5	
2.36-mm	+/- 7.0	
75-µm	+/- 3.0	
AC in percent ^[1]	-0.3	-0.5
Va		- 1.5 & +2.0
VMA in percent ^[2]	- 0.5	-1.0

^[1] The department will not adjust pay based on QC AC in percent test results; however corrective action will be applied to nonconforming material according to 460.2.8.2.1.7(3) as modified herein. ^[2] VMA limits based on minimum requirement for mix design nominal maximum aggregate size in table 460-1.

1440-15-78 13 of 28

⁽²⁾ QV samples will be tested for Gmm, Gmb, and AC. Air voids and VMA will then be calculated using these test results.

⁽³⁾ Notify the engineer if any individual test result falls outside the action limits, investigate the cause and take corrective action to return to within action limits. If two consecutive test results fall outside the action limits, stop production. Production may not resume until approved by the engineer. Additional QV samples may be collected upon resuming production, at the discretion of the engineer.

⁽⁴⁾ For any additional tests outside the random number testing conducted for volumetrics, the data collected will not be entered into PWL calculations. Additional QV tests must meet acceptance limits or be subject to production stop and/or remove and replace.

(5) Remove and replace unacceptable material at no additional expense to the department. Unacceptable material is defined as any individual QC or QV tests results outside the acceptance limits or a PWL value < 50. The engineer may allow such material to remain in place with a price reduction. The department will pay for such HMA Pavement allowed to remain in place at 50 percent of the contract unit price.

Replace standard spec 460.2.8.3.1.2 Personnel Requirements with the following:

460.2.8.3.1.2 Personnel Requirements

- (1) The department will provide at least one HTCP-certified Transportation Materials Sampling (TMS) Technician, to observe QV sampling of HMA mixtures.
- (2) Under departmental observation, a contractor TMS technician shall collect and split samples.
- (3) A department HTCP-certified Hot Mix Asphalt, Technician I, Production Tester (HMA-IPT) technician will ensure that all sampling is performed correctly and conduct testing, analyze test results, and report resulting data.
- (4) The department will make an organizational chart available to the contractor before mixture production begins. The organizational chart will include names, telephone numbers, and current certifications of all QV testing personnel. The department will update the chart with appropriate changes, as they become effective.

Replace standard spec 460.2.8.3.1.4 Department Verification Testing Requirements with the following:

460.2.8.3.1.4 Department Verification Testing Requirements

- (1) HTCP-certified department personnel will obtain QV random samples by directly supervising HTCP-certified contractor personnel sampling from trucks at the plant. Sample size must be adequate to run the appropriate required tests in addition to one set of duplicate tests that may be required for dispute resolution (i.e., retained). This requires sample sizes which yield three splits for all random sampling per sublot. All QV samples shall furnish the following: QC, QV, and Retained. The department will observe the splitting and take possession of the samples intended for QV testing (i.e., QV portion from each sample) and the Retained portions. The department will take possession of retained samples accumulated to date each day QV samples are collected. The department will retain samples until surpassing the analysis window of up to 5 lots, as defined in standard spec 460.2.8.3.1.7(2) of this special provision. Additional sampling details are found in Appendix A.
- (2) The department will verify product quality using the test methods specified here in standard spec 460.2.8.3.1.4(3). The department will identify test methods before construction starts and use only those methods during production of that material unless the engineer and contractor mutually agree otherwise.
- (3) The department will perform all testing conforming to the following standards:
 - Bulk specific gravity (Gmb) of the compacted mixture according to AASHTO T 166 as modified in CMM 8-36.6.5.
 - Maximum specific gravity (Gmm) according to AASHTO T 209 as modified in CMM 8-36.6.6.
 - Air voids (Va) by calculation according to AASHTO T 269.
 - Voids in Mineral Aggregate (VMA) by calculation according to AASHTO R 35.
 - Asphalt Content (AC) in percent determined by ignition oven method according to AASHTO T 308 as modified in CMM 8-36.6.3.6, chemical extraction according to AASHTO T 164 Method A or B, or automated extraction according to ASTM D8159 as modified in CMM 8-36.6.3.1.

(4) The department will randomly test each design mixture at the minimum frequency of one test for each lot.

Delete standard spec 460.2.8.3.1.6.

Replace standard spec 460.2.8.3.1.7 Dispute Resolution with the following:

460.2.8.3.1.7 Data Analysis for Volumetrics

(1) Analysis of test data for pay determination will be contingent upon QC and QV test results. Statistical analysis will be conducted on Gmm and Gmb test results for calculation of Va. If either Gmm or Gmb analysis results in non-comparable data as described in 460.2.8.3.1.7(2), subsequent testing will be performed for both parameters as detailed in the following paragraph.

1440-15-78 14 of 28

(2) The engineer, upon completion of the first 3 lots, will compare the variances (F-test) and the means (t-test) of the QV test results with the QC test results. Additional comparisons incorporating the first 3 lots of data will be performed following completion of the 4th and 5th lots (i.e., lots 1-3, 1-4, and 1-5). A rolling window of 5 lots will be used to conduct F & t comparison for the remainder of the contract (i.e., lots 2-6, then lots 3-7, etc.), reporting comparison results for each individual lot. Analysis will use a set alpha value of 0.025. If the F- and t-tests report comparable data, the QC and QV data sets are determined to be statistically similar and QC data will be used to calculate the Va used in PWL and pay adjustment calculations. If the F- and t-tests result in non-comparable data, proceed to the *dispute resolution* steps found below. Note: if both QC and QV Va PWL result in a pay adjustment of 102% or greater, dispute resolution testing will not be conducted. Dispute resolution via further investigation is as follows:

[1] The Retained portion of the split from the lot in the analysis window with a QV test result furthest from the QV mean (not necessarily the sublot identifying that variances or means do not compare) will be referee tested by the bureau's AASHTO accredited laboratory and certified personnel. All previous lots within the analysis window are subject to referee testing and regional lab testing as deemed necessary. Referee test results will replace the QV data of the sublot(s).

[2] Statistical analysis will be conducted with referee test results replacing QV results.

- If the F- and t-tests indicate variances and means compare, no further testing is required for the lot and QC data will be used for PWL and pay factor/adjustment calculations.
- ii. If the F- and t-tests indicate non-comparable variances or means, the Retained portion of the random QC sample will be tested by the department's regional lab for the remaining 4 sublots of the lot which the F- and t- tests indicate non-comparable datasets. The department's regional lab and the referee test results will be used for PWL and pay factor/adjustment calculations. Upon the second instance of non-comparable variance or means and for every instance thereafter, the department will assess a pay reduction for the additional testing of the remaining 4 sublots at \$2,000/lot under the HMA Regional Lab Testing administrative item.

[3] The contractor may choose to dispute the regional test results on a lot basis. In this event, the retained portion of each sublot will be referee tested by the department's AASHTO accredited laboratory and certified personnel. The referee Gmm and Gmb test results will supersede the regional lab results for the disputed lot.

- If referee testing results in an increased calculated pay factor, the department will pay for the cost of the additional referee testing.
- ii. If referee testing of a disputed lot results in an equal or lower calculated pay factor, the department will assess a pay reduction for the additional referee testing at \$2,000/lot under the Referee Testing administrative item.
- (3) The department will notify the contractor of the referee test results within 3 working days after receipt of the samples by the department's AASHTO accredited laboratory. The intent is to provide referee test results within 7 calendar days from completion of the lot.
- (4) The department will determine mixture conformance and acceptability by analyzing referee test results, reviewing mixture data, and inspecting the completed pavement according to the standard spec, this special provision, and accompanying Appendix A.
- (5) Unacceptable material (i.e., resulting in a PWL value less than 50 or individual QC or QV test results not meeting the Acceptance Requirements of 460.2.8.2.1.7 as modified herein) will be referee tested by the bureau's AASHTO accredited laboratory and certified personnel and those test results used for analysis. Such material may be subject to remove and replace, at the discretion of the engineer. If the engineer allows the material to remain in place, it will be paid at 50% of the HMA Pavement contract unit price. Replacement or pay adjustment will be conducted on a sublot basis. If an entire PWL sublot is removed and replaced, the test results of the newly placed material will replace the original data for the sublot. Any remove and replace shall be performed at no additional cost to the department. Testing of replaced material must include a minimum of one QV result. [Note: If the removed and replaced material does not result in replacement of original QV data, an additional QV test will be conducted and under such circumstances will be entered into the HMA PWL Production spreadsheet for data analysis and pay determination.] The quantity of material paid at 50% the contract unit price will be deducted from PWL pay adjustments, along with accompanying data of this material.

Delete standard spec 460.2.8.3.1.8 Corrective Action.

1440-15-78 15 of 28

C Construction

Replace standard spec 460.3.3.2 Pavement Density Determination with the following:

460.3.3.2 Pavement Density Determination

- (1) The engineer will determine the target maximum density using department procedures described in CMM 8-15. The engineer will determine density as soon as practicable after compaction and before placement of subsequent layers or before opening to traffic.
- (2) Do not re-roll compacted mixtures with deficient density test results. Do not operate continuously below the specified minimum density. Stop production, identify the source of the problem, and make corrections to produce work meeting the specification requirements.
- (3) A lot is defined as 7500 lane feet with sublots of 1500 lane feet (excluding shoulder, even if paved integrally) and placed within a single layer for each location and target maximum density category indicated in table 460-3. The contractor is required to complete three tests randomly per sublot and the department will randomly conduct one QV test per sublot. A partial quantity less than 750 lane feet will be included with the previous sublot. Partial lots with less than three sublots will be included in the previous lot for data analysis/acceptance and pay, by the engineer. If density lots/sublots are determined prior to construction of the test strip, any random locations within the test strip shall be omitted. Exclusions such as shoulders and appurtenances shall be tested and recorded in accordance with CMM 8-15. However, all acceptance testing of shoulders and appurtenances will be conducted by the department, and average lot (daily) densities must conform to standard spec Table 460-3. No density incentive or disincentive will be applied to shoulders or appurtenances. Offsets will not be applied to nuclear density gauge readings for shoulders or appurtenances. Unacceptable shoulder material will be handled according to standard spec 460.3.3.1 and CMM 8-15.11.
- (4) The three QC locations per sublot represent the outside, middle, and inside of the paving lane. The QC density testing procedures are detailed in Appendix A.
- ⁽⁵⁾ QV nuclear testing will consist of one randomly selected location per sublot. The QV density testing procedures will be the same as the QC procedure at each testing location and are also detailed in Appendix A.
- ⁽⁶⁾ An HTCP-certified nuclear density technician (NUCDENSITYTEC-I) shall identify random locations and perform the testing for both the contractor and department. The responsible certified technician shall ensure that sample location and testing is performed correctly, analyze test results, and provide density results to the contractor weekly, or at the completion of each lot.
- ⁽⁷⁾ For any additional tests outside the random number testing conducted for density, the data collected will not be entered into PWL calculations. However, additional QV testing must meet the tolerances for material conformance as specified in the standard specification and this special provision. If additional density data identifies unacceptable material, proceed as specified in CMM 8-15.11.

Replace standard spec 460.3.3.3 Waiving Density Testing with Acceptance of Density Data with the following:

460.3.3.3 Analysis of Density Data

- (1) Analysis of test data for pay determination will be contingent upon test results from both the contractor (QC) and the department (QV).
- (2) As random density locations are paved, the data will be recorded in the HMA PWL Production Spreadsheet for analysis in chronological order. The engineer, upon completion of the first 3 lots, will compare the variances (F-test) and the means (t-test) of the QV test results with the QC test results. A rolling window of 3 lots will be used to conduct F & t comparison for the remainder of the contract (i.e., lots 2-4, then lots 3-5, etc.), reporting comparison results for each individual lot. Analysis will use a set alpha value of 0.025.
 - If the F- and t-tests indicate variances and means compare, the QC and QV data sets are determined to be statistically similar and QC data will be used for PWL and pay adjustment calculations.
 - ii. If the F- and t-tests indicate variances or means do not compare, the QV data will be used for subsequent calculations.

1440-15-78 16 of 28

- (3) The department will determine mixture density conformance and acceptability by analyzing test results, reviewing mixture data, and inspecting the completed pavement according to standard spec, this special provision, and accompanying Appendix A.
- (4) Density resulting in a PWL value less than 50 or not meeting the requirements of 460.3.3.1 (any individual density test result falling more than 3.0 percent below the minimum required target maximum density as specified in standard spec Table 460-3) is unacceptable and may be subject to remove and replace at no additional cost to the department, at the discretion of the engineer.
 - Replacement may be conducted on a sublot basis. If an entire PWL sublot is removed and replaced, the test results of the newly placed material will replace the original data for the sublot.
 - ii. Testing of replaced material must include a minimum of one QV result. [Note: If the removed and replaced material does not result in replacement of original QV data, an additional QV test must be conducted and under such circumstances will be entered into the data analysis and pay determination.]
 - iii. If the engineer allows such material to remain in place, it will be paid for at 50% of the HMA Pavement contract unit price. The extent of unacceptable material will be addressed as specified in CMM 8-15.11. The quantity of material paid at 50% the contract unit price will be deducted from PWL pay adjustments, along with accompanying data of this material.

D Measurement

The department will measure the HMA Pavement bid items acceptably completed by the ton as specified in standard spec 450.4 and as follows in standard spec 460.5 as modified in this special provision.

E Payment

Replace standard spec 460.5.2 HMA Pavement with the following:

460.5.2 HMA Pavement

460.5.2.1 General

- (1) Payment for HMA Pavement Type LT, MT, and HT mixes is full compensation for providing HMA mixture designs; for preparing foundation; for furnishing, preparing, hauling, mixing, placing, and compacting mixture; for HMA PWL QMP testing and aggregate source testing; for warm mix asphalt additives or processes; for stabilizer, hydrated lime and liquid antistripping agent, if required; and for all materials including asphaltic materials.
- (2) If provided for in the plan quantities, the department will pay for a leveling layer, placed to correct irregularities in an existing paved surface before overlaying, under the pertinent paving bid item. Absent a plan quantity, the department will pay for a leveling layer as extra work.

460.5.2.2 Calculation of Pay Adjustment for HMA Pavement using PWL

(1) Pay adjustments will be calculated using 65 dollars per ton of HMA pavement. The HMA PWL Production Spreadsheet, including data, will be made available to the contractor by the department as soon as practicable upon completion of each lot. The department will pay for measured quantities of mix based on this price multiplied by the following pay adjustment calculated in accordance with the HMA PWL Production Spreadsheet:

PAY FACTOR FOR HMA PAVEMENT AIR VOIDS & DENSITY

 PERCENT WITHIN LIMITS
 PAYMENT FACTOR, PF

 (PWL)
 (percent of \$65/ton)

 \geq 90 to 100
 PF = ((PWL - 90) * 0.4) + 100

 \geq 50 to < 90</td>
 (PWL * 0.5) + 55

 \leq 50
 50%[1]

where PF is calculated per air voids and density, denoted PFair voids & PFdensity

[1] Any material resulting in PWL value less than 50 shall be removed and replaced unless the engineer allows such material to remain in place. In the event the material remains in place, it will be paid at 50% of the contract unit price of HMA pavement.

1440-15-78 17 of 28

For air voids, PWL values will be calculated using lower and upper specification limits of 2.0 and 4.3 percent, respectively. Lower specification limits for density shall be in accordance with standard spec Table 460-3. Pay adjustment will be determined on a lot basis and will be computed as shown in the following equation.

Pay Adjustment = $(PF-100)/100 \times (WP) \times (tonnage) \times (\$65/ton)^*$

*Note: If Pay Factor <50, the contract unit price will be used in lieu of \$65/ton

The following weighted percentage (WP) values will be used for the corresponding parameter:

<u>Parameter</u>	<u>WP</u>
Air Voids	0.5
Density	0.5

Individual Pay Factors for each air voids (PF_{air voids}) and density (PF_{density}) will be determined. PF_{air voids} will be multiplied by the total tonnage placed (i.e., from truck tickets), and PF_{density} will be multiplied by the calculated tonnage used to pave the mainline only (i.e., travel lane excluding shoulder) as determined in accordance with Appendix A.

The department will pay incentive for air voids and density under the following bid items:

ITEM NUMBER	DESCRIPTION	UNIT
460.2005	Incentive Density PWL HMA Pavement	DOL
460.2010	Incentive Air Voids HMA Pavement	DOL

The department will administer disincentives under the Disincentive Density HMA Pavement and the Disincentive Air Voids HMA Pavement administrative items.

The department will administer a disincentive under the Disincentive HMA Binder Content administrative item for each individual QV test result indicating asphalt binder content below the Action Limit in 460.2.8.2.1.7 presented herein. The department will adjust pay per sublot of mix at 65 dollars per ton of HMA pavement multiplied by the following pay adjustment calculated according to the HMA PWL Production Spreadsheet:

AC Binder Relative to JMF	Pay Adjustment / Sublot
-0.4% to -0.5%	75%
More than -0.5%	50%[1]

^[1] Any material resulting in an asphalt binder content more than 0.5% below the JMF AC content shall be removed and replaced unless the engineer allows such material to remain in place. In the event the material remains in place, it will be paid at 50% of the contract unit price of HMA pavement. Such material will be referee tested by the department's AASHTO accredited laboratory and HTCP certified personnel using automated extraction according to automated extraction according to ASTM D8159 as modified in CMM 8-36.6.3.1.

Note: PWL value determination is further detailed in the *Calculations* worksheet of the HMA PWL Production spreadsheet.

stp-460-050 (20210113)

15. Appendix A.

Test Methods & Sampling for HMA PWL QMP Projects.

The following procedures are included with the HMA Pavement Percent Within Limits (PWL) Quality Management Program (QMP) special provision:

- WisDOT Procedure for Nuclear Gauge/Core Correlation Test Strip
 - WisDOT Test Method for HMA PWL QMP Density Measurements for Main Production

1440-15-78 18 of 28

- Sampling for WisDOT HMA PWL QMP
- Calculation of PWL Mainline Tonnage Example

<u>WisDOT Procedure for Nuclear Gauge/Core Correlation – Test Strip</u>

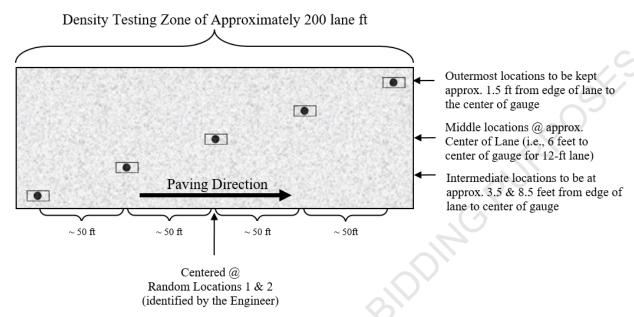


Figure 1: Nuclear/Core Correlation Location Layout

The engineer will identify two zones in which gauge/core correlation is to be performed. These two zones will be randomly selected within each *half* of the test strip length. (Note: Density zones shall not overlap and must have a minimum of 100 feet between the two zones; therefore, random numbers may be shifted (evenly) in order to meet these criteria.) Each zone shall consist of five locations across the mat as identified in Figure 1. The following shall be determined at each of the five locations within both zones:

- two one-minute nuclear density gauge readings for QC team*
- two one-minute nuclear density gauge readings for QV team*
- pavement core sample

*If the two readings exceed 1.0 pcf of one another, a third reading is conducted in the same orientation as the first reading. In this event, all three readings are averaged, the individual test reading of the three which falls farthest from the average value is discarded, and the average of the remaining two values is used to represent the location for the gauge.

The zones are supposed to be undisclosed to the contractor/roller operators. The engineer will not lay out density/core test sites until rolling is completed and the cold/finish roller is beyond the entirety of the zone. Sites are staggered across the 12-foot travel lane, and do not include shoulders. The outermost locations should be 1.5-feet from the center of the gauge to the edge of lane. [NOTE: This staggered layout is only applicable to the test strip. All mainline density locations after test strip should have a longitudinal- as well as transverse-random number to determine location as detailed in the *WisDOT Test Method for HMA PWL QMP Density Measurements for Main Production* section of this document.]

Individual locations are represented by the symbol as seen in Figure 1 above. The symbol is two-part, comprised of the nuclear test locations and the location for coring the pavement, as distinguished here:

The nuclear site is the same for QC and QV readings for the test strip, i.e., the QC and QV teams are to take nuclear density gauge readings in the same footprint. Each of the QC and QV teams are to take a

1440-15-78 19 of 28

minimum of two one-minute readings per nuclear site, with the gauge rotated 180 degrees between readings, as seen here:

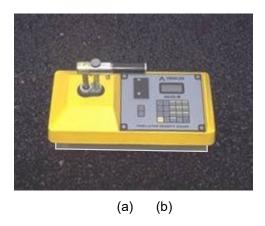


Figure 2: Nuclear gauge orientation for (a) 1st one-minute reading and (b) 2nd one-minute reading

Photos should be taken of each of the 10 core/gauge locations of the test strip. This should include gauge readings (pcf) and a labelled core within the gauge footprint. If a third reading is needed, all three readings should be recorded and documented. Only raw readings in pcf should be written on the pavement during the test strip, with a corresponding gauge ID/SN (generalized as QC-1 through QV-2 in the following Figure) in the following format:

Figure 3: Layout of raw gauge readings as recorded on pavement

Each core will then be taken from the center of the gauge footprint and will be used to correlate each gauge with laboratory-measured bulk specific gravities of the pavement cores. One core in good condition must be obtained from each of the 10 locations. If a core is damaged at the time of extracting from the pavement, a replacement core should be taken immediately adjacent to the damaged core, i.e., from the same footprint. If a core is damaged during transport, it should be recorded as damaged and excluded from the correlation. Coring after traffic is on the pavement should be avoided. The contractor is responsible for coring of the pavement. Coring and filling of core holes must be approved by the engineer. The QV team is responsible for the labeling and safe transport of the cores from the field to the QC laboratory. Core density testing will be conducted by the contractor and witnessed by department personnel. The contractor is responsible for drying the cores following testing. The department will take possession of cores following initial testing and is responsible for any verification testing.

Each core 150 mm (6 inches) in diameter will be taken at locations as identified in Figure 1. Each random core will be full thickness of the layer being placed. The contractor is responsible for thoroughly drying cores obtained from the mat in accordance with ASTM D 7227 prior to using specimens for in-place density determination in accordance with AASHTO T 166 as modified by CMM 8-36.6.5.

Cores must be taken before the pavement is open to traffic. Cores are cut under department/project staff observation. Relabel each core immediately after extruding or ensure that labels applied to pavement prior to cutting remain legible. The layer interface should also be marked immediately following extrusion. Cores should be cut at this interface, using a wet saw, to allow for density measurement of only the most recently placed layer. Cores should be protected from excessive temperatures such as direct sunlight. Also, there should be department custody (both in transport and storage) for the cores until they are tested, whether that be immediately after the test strip or subsequent day if agreed upon between Department and Contractor. Use of concrete cylinder molds works well to transport cores. Cores should be placed upside down (flat surface to bottom of cylinder mold) in the molds, one core per mold, cylinder molds stored upright, and ideally transported in a cooler. Avoid any stacking of pavement cores.

Fill all core holes with non-shrink rapid-hardening grout, mortar, or concrete, or with HMA. When using grout, mortar, or concrete, remove all water from the core holes prior to filling. Mix the mortar or concrete

1440-15-78 20 of 28

in a separate container prior to placement in the hole. If HMA is used, fill all core holes with hot-mix matching the same day's production mix type at same day compaction temperature +/- 20 F. The core holes shall be dry and coated with tack before filling, filled with a top layer no thicker than 2.25 inches, lower layers not to exceed 4 inches, and compacted with a Marshall hammer or similar tamping device using approximately 50 blows per layer. The finished surface shall be flush with the pavement surface. Any deviation in the surface of the filled core holes greater than 1/4 inch at the time of final inspection will require removal of the fill material to the depth of the layer thickness and replacement.

WisDOT Test Method for HMA PWL QMP Density Measurements for Main Production

For nuclear density testing of the pavement beyond the test strip, QC tests will be completed at three locations per sublot, with a sublot defined as 1500 lane feet. The three locations will represent the outside, middle, and inside of the paving lane (i.e., the lane width will be divided into thirds as shown by the dashed longitudinal lines in Figure 3 and random numbers will be used to identify the specific transverse location within each third in accordance with CMM 8-15). Longitudinal locations within each sublot shall be determined with 3 independent random numbers. The PWL Density measurements do not include the shoulder and other appurtenances. Such areas are tested by the department and are not eligible for density incentive or disincentive. Each location will be measured with two one-minute gauge readings oriented 180 degrees from one another, in the same footprint as detailed in Figure 2 above. Each location requires a minimum of two readings per gauge. The density gauge orientation for the first test will be with the source rod towards the direction of paving. QV nuclear testing will consist of one randomly selected location per sublot. The QV is also comprised of two one-minute readings oriented 180 degrees from one another. For both QC and QV test locations, if the two readings exceed 1.0 pcf of one another, a third reading is conducted in the same orientation as the first reading. In this event, all three readings are averaged, the individual test reading of the three which falls farthest from the average value is discarded, and the average of the remaining two values is used to represent the location for the gauge. The sublot density testing layout is depicted in Figure 4, with QC test locations shown as solid lines and QV as dashed.



Figure 4: Locations of main lane HMA density testing (QC=solid lines, QV=dashed)

Raw nuclear density data must be shared by both parties at the end of each shift. Paving may be delayed if the raw data is not shared in a timely manner. QC and QV nuclear density gauge readings will be statistically analyzed in accordance with Section 460.3.3.3 of the HMA PWL QMP SPV. (Note: For density data, if F- and t-tests compare, QC data will be used for the subsequent calculations of PWL value and pay determination. However, if an F- or t-test does not compare, the QV data will be used in subsequent calculations.)

Investigative cores will be allowed on the approaching side of traffic outside of the footprint locations. Results must be shared with the department.

The QV density technician is expected to be onsite within 1 hour of the start of paving operations and should remain on-site until all paving is completed. Perform footprint testing as soon as both the QC and QV nuclear density technician are onsite and a minimum of once per day to ensure the gauges are not drifting apart during a project. Footprint testing compares the density readings of two gauges at the same

1440-15-78 21 of 28

testing location and can be done at any randomly selected location on the project. Both teams are encouraged to conduct footprint testing as often as they feel necessary. Footprint testing does not need to be performed at the same time. At project start-up, the QV should footprint the first 10 QC locations. Individual density tests less than 0.5% above the lower limit should be communicated to the other party and be footprint tested. Each gauge conducts 2 to 3 1-minute tests according to CMM 8-15 and the final results from each gauge are compared for the location. If the difference between the QC and QV gauges exceeds 1.0 pcf (0.7 percent) for an average of 10 locations, investigate the cause, check gauge moisture and density standards and perform additional footprint testing. If the cause of the difference between gauge readings cannot be identified, the regional HMA Coordinator will consult the RSO, the regional PWL representative and the BTS HMA unit to determine necessary actions. If it is agreed that there is a gauge comparison issue, perform one of the following 2 options:

New Gauge Combination

- All 4 gauges used on the test strip must footprint 10 locations on the pavement.
 Pavement placed on a previous day may be used.
- The results of the footprint testing will be analyzed to see if a better combination of acceptable gauges is available.
- If a better combination is found, those gauges should be used moving forward.
- If a better combination cannot be found, a new gauge correlation must be performed. (see below)

Re-correlation of Gauges

- Follow all test strip procedures regarding correlating gauges except the following:
 - o The 10 locations can be QC or QV random locations
 - The locations used may have been paved on a previous day
- Retesting with gauges must be done immediately prior to coring.
- New gauge offsets will be used for that day's paving and subsequent paving days. New gauge offsets will not be used to recalculate density results from prior days.

Density Dispute Resolution Procedure

Density results may be disputed by the contractor on a lot by lot basis if one of the following criteria is met:

- The lot average for either QC or QV is below the lower specification limit.
- The lot average for QC is different from the lot average for QV by more than 0.5%.

In lieu of using density gauges for acceptance of the lot, the lot will be cored in the QV locations. The results of the cores from the entire lot will be entered in the spreadsheet and used for payment. If the pay factor increases, the contractor will only receive the additional difference in payment for the disputed lot. If the pay factor does not increase, the department will assess the contractor \$2,000 for the costs of additional testing.

Notify the engineer in writing before dispute resolution coring. Immediately prior to coring, QC and QV will test the locations with nuclear density gauges.

Under the direct observation of the engineer, cut 100 or 150 mm (4 or 6 inch) diameter cores. Cores will be cut by the next working day not to exceed 48 hours after placement of the last QV test of the lot. Prepare cores and determine density according to AASHTO T166 as modified in CMM 8-36.6.5. Dry cores after testing. Fill core holes according to Appendix A and obtain engineer approval before opening to traffic. The department will maintain custody of cores throughout the entire sampling and testing process. The department will label cores, transport cores to testing facilities, witness testing, store dried cores, and provide subsequent verification testing. If a core is damaged at the time of coring, immediately take a replacement core 1 ft ahead of the existing testing location in the direction of traffic at the same

1440-15-78 22 of 28

offset as the damaged core. If a core is damaged during transport, record it as damaged and notify the engineer immediately.

Sampling for WisDOT HMA PWL QMP Production

Sampling of HMA mix for QC, QV and Retained samples shall conform to CMM 8-36 except as modified here.

Delete CMM 8-36.4 Sampling Hot Mix Asphalt and replace with the following to update sublot tonnages:

Sampling Hot Mix Asphalt

At the beginning of the contract, the contractor determines the anticipated tonnage to be produced. The frequency of sampling is 1 per 750 tons (sublot) for QC and Retained Samples and 1 per 3750 tons (lot or 5 sublots) for QV as defined by the HMA PWL QMP SPV. A test sample is obtained randomly from each sublot. Each random sample shall be collected at the plant according to CMM 8-36.4.1 and 8-36.4.2. The contractor must submit the random numbers for all mix sampling to the department before production begins.

Example 1

Expected production for a contract is 12,400 tons. The number of required samples is determined based on this expected production (per HMA PWL QMP SPV) and is determined by the random sample calculation.

The approximate location of each sample within the prescribed sublots is determined by selecting random numbers using ASTM Method D-3665 or by using a calculator or computerized spreadsheet that has a random number generator. The random numbers selected are used in determining when a sample is to be taken and will be multiplied by the sublot tonnage. This number will then be added to the final tonnage of the previous sublot to yield the approximate cumulative tonnage of when each sample is to be taken.

To allow for plant start-up variability, the procedure calls for the first random sample to be taken at 50 tons or greater per production day (not intended to be taken in the first two truckloads). Random samples calculated for 0-50 ton should be taken in the next truck (51-75 ton).

This procedure is to be used for any number of samples per contract.

If the production is less than the final randomly generated sample tonnage, then the random sample is to be collected from the remaining portion of that sublot of production. If the randomly generated sample is calculated to be within the first 0-50 tons of the subsequent day of production, it should be taken in the next truck. Add a random sample for any fraction of 750 tons at the end of the contract. Lot size will consist of 3750 tons with sublots of 750 tons. Partial lots with less than three sublot tests will be included into the previous lot, by the engineer.

It's intended that the plant operator not be advised ahead of time when samples are to be taken.

If belt samples are used during troubleshooting, the blended aggregate will be obtained when the mixture production tonnage reaches approximately the sample tonnage. For plants with storage silos, this could be up to 60 minutes in advance of the mixture sample that's taken when the required tonnage is shipped from the plant.

QC, QV, and retained samples shall be collected for all test strip and production mixture testing using a three-part splitting procedure according to CMM 8-36.5.2.

1440-15-78 23 of 28

Calculation of PWL Mainline Tonnage Example

A mill and overlay project in being constructed with a 12-foot travel lane and an integrally paved 3-foot shoulder. The layer thickness is 2 inches for the full width of paving. Calculate the tonnage in each sublot eligible for density incentive or disincentive.

Solution:

$$\frac{1500 ft \times 12 ft}{9 sf/sy} \times \frac{2 in \times 112 lb/sy/in}{2000 lb/ton} = 224 tons$$

stp-460-055 (20210113)

16. HMA Pavement Longitudinal Joint Density.

A Description

This special provision incorporates longitudinal joint density requirements into the contract and describes the data collection, acceptance, and procedure used for determination of pay adjustments for HMA pavement longitudinal joint density. Pay adjustments will be made on a linear foot basis, as applicable per pavement layer and paving lane. Applicable longitudinal joints are defined as those between any two or more traffic lanes including full-width passing lanes, turn lanes, or auxiliary lanes more than 1,500 lane feet, and those lanes must also include the 460.2005 Incentive Density PWL HMA Pavement bid item. This excludes any joint with one side defined as a shoulder and ramp lanes of any length. If echelon paving is required in the contract, the longitudinal joint density specification shall not apply for those joints. Longitudinal joints placed during a test strip will be tested for information only to help ensure the roller pattern will provide adequate longitudinal joint density during production. Longitudinal joint density test results collected during a test strip are not eligible for pay adjustment.

Pay is determined according to standard spec 460, HMA Pavement Percent Within Limits QMP special provisions, and as modified within.

B Materials

Compact all applicable HMA longitudinal joints to the appropriate density based on the layer, confinement, and mixture type shown in Table B-1.

1	Percent of Target Maximum Density			
Layer	Unconfined		Confined	
	LT and MT	HT	LT and MT	HT
Lower (on crushed/recycled base)	88	89	89.5	90.5
Lower (on Concrete/HMA)	90	90	91.5	91.5
Upper	90	90	91.5	91.5

TABLE B-1 MINIMUM REQUIRED LONGITUDINAL JOINT DENSITY

C Construction

Add the following to standard spec 460.3.3.2:

(5) Establish companion density locations at each applicable joint. Each companion location shares longitudinal stationing with a QC or QV density location within each sublot and is located transversely with the center of the gauge 6-inches from the final joint edge of the paving area. Sublot and lot numbering remains the same as mainline densities, however, in addition to conventional naming, joint identification must clearly indicate "M" for inside/median side of lane or "O" for outside shoulder side of lane, as well as "U" for an unconfined joint or "C" for a confined joint (e.g., XXXXX-MC or XXXXXX-OU).

1440-15-78 24 of 28

- (6) Each joint will be measured, reported, and accepted under methods, testing times, and procedures consistent with the program employed for mainline density, i.e., PWL.
- (7) For single nuclear density test results greater than 3.0% below specified minimums per Table B-1 herein, perform the following:
 - a) Testing at 50-foot increments both ahead and behind the unacceptable site
 - b) Continued 50-foot incremental testing until test values indicate higher than or equal to -3.0 percent from target joint density.
 - c) Materials within the incremental testing indicating lower than -3.0 percent from target joint density are defined as unacceptable and will be handled with remedial action as defined in the payment section of this document.
 - d) The remaining sublot average (exclusive of unacceptable material) will be determined by the first forward and backward 50-foot incremental tests that reach the criteria of higher than or equal to -3.0 percent from target joint density.

Note: If the 50-foot testing extends into a previously accepted sublot, remedial action is required up to and inclusive of such material; however, the results of remedial action must not be used to recalculate the previously accepted sublot density. When this occurs, the lane feet of any unacceptable material will be deducted from the sublot in which it is located, and the previously accepted sublot density will be used to calculate pay for the remainder of the sublot.

- (8) Joint density measurements will be kept separate from all other density measurements and entered as an individual data set into Atwood Systems.
- (9) Placement and removal of excess material outside of the final joint edge, to increase joint density at the longitudinal joint nuclear testing location, will be done at the contractor's discretion and cost. This excess material and related labor will be considered waste and will not be paid for by the department. Joints with excess material placed outside of the final joint edge to increase joint density or where a notched wedge is used will be considered unconfined joints.
- (10) When not required by the contract, echelon paving may be performed at the contractor's discretion to increase longitudinal joint density and still remain eligible to earn incentive. The additional costs incurred related to echelon paving will not be paid for by the department. If lanes are paved in echelon, the contractor may choose to use a longitudinal vertical joint or notched wedge longitudinal joint as described in SDD 13c19. Lanes paved in echelon shall be considered confined on both sides of the joint regardless of the selected joint design. The joint between echelon paved lanes shall be placed at the centerline or along lane lines.
- (11) When performing inlay paving below the elevation of the adjacent lane, the longitudinal joint along the adjacent lane to be paved shall be considered unconfined. Inlay paving operations will limit payment for additional material to 2 inches wider than the final paving lane width at the centerline.

D Measurement

(1) The department will measure each side of applicable longitudinal joints, as defined in Section A of this special provision, by the linear foot of pavement acceptably placed. Measurement will be conducted independently for the inside or median side and for the outside or shoulder side of paving lanes with two applicable longitudinal joints. Each paving layer will be measured independently at the time the mat is placed.

E Payment

Add the following as 460.5.2.4 Pay Adjustment for HMA Pavement Longitudinal Joint Density:

(1) The department will administer longitudinal joint density adjustments under the Incentive Density HMA Pavement Longitudinal Joints and Disincentive Density HMA Pavement Longitudinal Joints items. The department will adjust pay based on density relative to the specified targets in Section B of this special provision, and linear foot of the HMA Pavement bid item for that sublot as follows:

PAY ADJUSTMENT FOR HMA PAVEMENT LONGITUDINAL JOINT DENSITY

PERCENT SUBLOT DENSITY

PAY ADJUSTMENT PER LINEAR FOOT

ABOVE/BELOW SPECIFIED MINIMUM

Equal to or greater than +1.0 confined, +2.0 unconfined

\$0.40

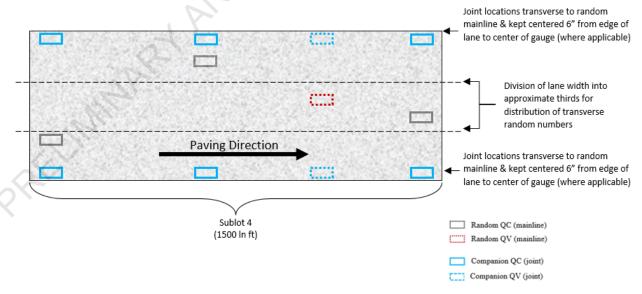
From 0.0 to +0.9 confined, 0.0 to +1.9 unconfined	\$0
From -0.1 to -1.0	\$(0.20)
From -1.1 to -2.0	\$(0.40)
From -2.1 to -3.0	\$(0.80)
More than -3.0	REMEDIAL ACTION [1]

^[1] Remedial action must be approved by the engineer and agreed upon at the time of the pre-pave meeting and may include partial sublots as determined and defined in 460.3.3.2(7) of this document. If unacceptable material is removed and replaced per guidance by the engineer, the removal and replacement will be for the full lane width of the side of which the joint was constructed with unacceptable material.

- (2) The department will not assess joint density disincentives for pavement placed in cold weather because of a department-caused delay as specified in standard spec 450.5.2(3).
- (3) The department will not pay incentive on the longitudinal joint density if the traffic lane is in disincentive A disincentive may be applied for each mainline lane and all joint densities if both qualify for a pay reduction.

The department will pay incentive for longitudinal joint density under the following bid items:

ITEM NUMBER	DESCRIPTION	UNIT
460.2007	Incentive Density HMA Pavement Longitudinal Joints	DOL


The department will administer disincentives under the Disincentive Density HMA Pavement Longitudinal Joints administrative item.

Appendix

WisDOT Longitudinal Joint - Nuclear Gauge Density Layout

Each QC and QV density location must have a companion density location at any applicable joint. This companion location must share longitudinal stationing with each QC or QV density location and be located transversely with the center of the gauge 6-inches from the edge of the paving area.

For HMA Pavement Percent Within Limits QMP projects, this appears as follows:

Further Explanation of PAY ADJUSTMENT FOR HMA PAVEMENT LONGITUDINAL JOINT DENSITY
Table

1440-15-78 26 of 28

	Confined				
	Lower Layer (On Base)		Upper Layer		
	LT/MT	HT	LT/MT	HT	Pay Adjust
Mainline Target (SS 460-3)	91.0	92.0	93.0	93.0	-
Confined Target (mainline - 1.5)	89.5	90.5	91.5	91.5	-
Equal to or greater than +1.0	<u>></u> 90.5	<u>></u> 91.5	<u>></u> 92.5	<u>></u> 92.5	\$0.40
From 0.0 to +0.9	90.4 - 89.5	91.4 - 90.5	92.4 - 91.5	92.4 - 91.5	\$0
From -0.1 to -1.0	89.4 - 88.5	90.4 - 89.5	91.4 - 90.5	91.4 - 90.5	(\$0.20)
From -1.1 to -2.0	88.4 - 87.5	89.4 - 88.5	90.4 - 89.5	90.4 - 89.5	(\$0.40)
From -2.1 to -3.0	87.4 - 86.5	88.4 - 87.5	89.4 - 88.5	89.4 - 88.5	(\$0.80)
More than -3.0	< 86.5	< 87.5	< 88.5	< 88.5	REMEDIAL ACTION

	Unconfined				7,
	Lower Layer (On Base)		Upper Layer		
	LT/MT	HT	LT/MT	HT	Pay Adjust
Mainline Target (SS 460-3)	91.0	92.0	93.0	93.0	-
Unconfined Target (Mainline -3.0)	88.0	89.0	90.0	90.0	-
Equal to or greater than +2.0	<u>></u> 90.0	<u>></u> 91.0	<u>></u> 92.0	<u>></u> 92.0	\$0.40
From 0.0 to +1.9	89.9 - 88.0	90.9 - 89.0	91.9 - 90.0	91.9 - 90.0	\$0
From -0.1 to -1.0	87.9 - 87.0	88.9 - 88.0	89.9 - 89.0	89.9 - 89.0	(\$0.20)
From -1.1 to -2.0	86.9 - 86.0	87.9 - 87.0	88.9 - 88.0	88.9 - 88.0	(\$0.40)
From -2.1 to -3.0	85.9 - 85.0	86.9 - 86.0	87.9 - 87.0	87.9 - 87.0	(\$0.80)
More than -3.0	< 85.0	< 86.0	< 87.0	< 87.0	REMEDIAL ACTION

stp-460-075 (20210113)

17. Traffic Control

Perform this work conforming to standard spec 643, and as the plans show, or as the engineer approves, except as follows.

Submit to engineer for approval a detailed traffic control plan for any changes to the proposed traffic control detail as the plans show. Submit this plan ten (10) days before the preconstruction conference.

The turning of traffic control devices when not in use to obscure the message will not be allowed under this contract.

Obtain prior approval from the engineer for the location of egress and ingress for construction vehicles to prosecute the work.

Conduct operations in such a manner that causes the least interference and inconvenience to the free flow of vehicles on the roadways. This includes the following:

Do not park or store any vehicle, piece of equipment, or construction materials on the right of way, unless otherwise specified in the traffic control article or without approval of the engineer.

All construction vehicles and equipment entering or leaving live traffic lanes shall yield to through traffic.

Equip all vehicles and equipment entering or leaving the live traffic lanes with a hazard identification beam (flashing yellow signal) capable of being visible on a sunny day when viewed without the sun directly on or behind the device from a distance of 1000 feet. Activate the beam when merging into or exiting a live traffic lane.

1440-15-78 27 of 28

Do not disturb, remove or obliterate any traffic control signs, advisory signs, shoulder delineators or beam guard in place along the traveled roadways without the approval of the engineer. Immediately repair or replace any damage done to the above during the construction operations at contractor expense.

The traffic requirements are subject to change at the direction of the engineer in the event of an emergency.

ner-643-065 (20190410)

18. Pavement Marking and Centerline Rumble Strip/Type 2 Rumble Strip.

Before installing Centerline Rumble Strips place centerline Temporary Marking Line (Epoxy) 4-Inch. Before installing Type 2 Rumble Strips place edgelines Temporary Marking Line (Epoxy) 4-Inch. Except "npo "ave beet where removed with the rumble application, do not remove the centerline/edgeline Temporary Marking Line (Epoxy) 4-Inch. After the Centerline Rumble Strips or Type 2 Rumble Strips have been installed,

1440-15-78 28 of 28