MAD JULY 2013

ORDER OF SHEETS

Section	No.	1	Title
Section	No.	2	Typical Sections and Detail
Section	No.	3	Estimate of Quantitles
Section	No.	3	Miscellaneous Quantitles
	Ma	4	Right of Way Plat
380 1 1011	140.	7	Kigiii oi way riai
Section	No.	5	Plan and Profile

Section No. 6 Standard Detail Drawings

TOTAL SHEETS = 114

DESIGN DESIGNATION

A.A.D.	T. 2014	=	N/A
A.A.D.	T. 2034	=	N/A
D.H.V.	2034	=	N/A
D.D.		=	
т.		=	
DESIG	N SPEED	=	70 MPH
FSAL	ς	=	N/A

CONVENTIONAL SYMBOLS

COMATMUME 21MPOF2
PLAN
CORPORATE LIMITS
PROPERTY LINE
LOT LINE
LIMITED HIGHWAY EASEMENT
EXISTING RIGHT OF WAY
PROPOSED OR NEW R/W LIN
CLODE INTERCERT

REFERENCE LINE EXISTING CULVERT PROPOSED CULVERT (Box or Pipe)

MARSH AREA

COMBUSTIBLE FLUIDS

WOODED OR SHRUB AREA

GRADE ELEVATION CULVERT (Profile View) UTILITIES ELECTRIC FIBER OPTIC SANITARY SEWER STORM SEWER TELEPHONE WATER UTILITY PEDESTAL POWER POLE TELEPHONE POLE

PROFILE

GRADE LINE

ORIGINAL GROUND MARSH OR ROCK PROFILE

SPECIAL DITCH

(To be noted as such)

STATE OF WISCONSIN **DEPARTMENT OF TRANSPORTATION**

PLAN OF PROPOSED IMPROVEMENT

JANESVILLE - MADISON

(CTH B TO LIEN ROAD)

IH 39/90 DANE COUNTY

> STATE PROJECT NUMBER 1001-06-73

ORIGINAL PLANS PREPARED BY

FEDERAL PROJECT

CONTRACT

PROJECT

WISC 2013328

STATE PROJECT

1001-06-73

6501 Watts Road Madison, WI 53719 fax: 608.273.6391

STATE OF WISCONSIN DEPARTMENT OF TRANSPORTATION

REPARED BY

Designer

Project Manager Regional Examiner

Regional Supervisor SCOTT LAWRY C.O. Examiner

APPROVED FOR THE DEPARTMENT

TOTAL NET LENGTH OF CENTERLINE = 00 MI.

"COORDINATES ON THIS PLAN ARE REFERENCED TO THE WISCONSIN COUNTY COORDINATE SYSTEM (WCCS), 'DANE' COUNTY."

UTILITY CONTACTS STANDARD ABBREVIATIONS

AGG AGGREGATE ASPH ASPHALTIC AVG AVERAGE

AADT ANNUAL AVERAGE DAILY TRAFFIC BRIDGE СТН COUNTY TRUNK HIGHWAY CY CLIBIC YARD

DEGREE OF CURVE DHV DESIGN HOUR VOLUME

DΙΔ DIAMETER EAT ENERGY ABSORBING TERMINAL

FAST EAST GRID COORDINATE

EB EASTBOUND ELEC ELECTRIC (AL) EL FIFVATION

ESALS EQUIVALENT SINGLE AXLE LOADS

EXC EXCAVATION EBS EXCAVATION BELOW SUBGRADE

GAS LS LUMP SUM

MGS MIDWEST GUARD RAIL SYSTEM

N NORTH GRID COORDINATE

NB NORTHBOUND ОН OVERHEAD PIPL PIPELINE

REINFORCING OR REINFORCEMENT RFINE

REQD REQUIRED RT RIGHT R/W RIGHT-OF-WAY RD ROAD RDWY ROADWAY SALV SALVAGED

SANITARY AND STORM SEWER SSS SAN S SANITARY SEWER

TRUCKS (PERCENT OF)

SEC SECTION SB SOUTHBOUND

STANDARD DETAIL DRAWINGS SDD STA STATION

TEL TELEPHONE TEMP TEMPORARY T or TN TOWN

TYP TYPICAL UNDERGROUND LIG VOLUME VOL WESTBOUND WB

ALLIANT ENERGY

GAS, ELECTRIC ATTN: MARK SCHOEN 4902 N. BITTMORE LANE, SUITE 1000 MADISON, WI 53718

TELEPHONE: 608-877-1648 E-MAIL: MARKSCHOEN@ALLIANTENERGY.COM

ANR PIPELINE COMPANY

GAS ATTN: ERIC WILLE 6827 CONSOLIDATED ROAD JANESVILLE, WI 53545 TELEPHONE: 608-373-6941 E-MAIL: ERIC WILLE@TRANSCANADA.COM

ATC MANAGEMENT INC.

ELECTRIC ATTN: MIKE OLSEN 801 O'KEEFE ROAD DEPERE, WI 54115

TELEPHONE: 920-660-2390 / 920-660-2390 MOBILE

E-MAIL: MOLSEN@ATCLC.COM

X AT&T LEGACY

COMMUNICATION ATTN: CARL DONAHUE 866 ROCK CREEK ROAD PLANO, IL 60545 TELEPHONE: 847-420-9115 E-MAIL: CD8729@ATT.COM

* AT&T WISCONSIN

COMMUNICATION ATTN: CAROL ANDERSON 316 WEST WASHINGTON AVENUE MADISON, WI 53703 TELEPHONE: 608-252-2385 E-MAIL: CA24@ATT.COM

CITY OF MADISON WATER UTILITY

WATER & SEWER ATTN: DENNIS CRAWLEY 119 EAST OLIN AVENUE MADISON, WI 53713 TELEPHONE: 608-266-4651 E-MAIL: D.CRAWLEY@CITYOFMADISON.COM * FRONTIER COMMUNICATIONS OF WI, LLC

COMMUNICATION ATTN: DANA GILLETT 100 COMMUNICATIONS DRIVE SUN PRAIRIE, WI 53590

TELEPHONE: 608-837-1605 / 608-512-2389 MOBILE E-MAIL: DANA,GILLETTE@FTR.COM

* KOCHS PIPELINE LP

GAS ATTN: DREW SUYDAM N4240 HWY 26 WAUPUN, WI 53963 TELEPHONE: 920-948-4665 E-MAIL: DREW.SUYDAM@KOCHPIPELINE.COM

* MADISON GAS & ELECTRIC

GAS AND ELECTRIC ATTN: TIM STATZ PO BOX 1231 MADISON, WI 53701-1231 TELEPHONE: 608-252-4727 E-MAIL: TSTATZ@MGE.COM

MADISON METROPOLITAN SEWERAGE DISTRICT

SEWER ATTN: ROB PHILLIPS

210 MARTIN LUTHER KING JR. BLVD.

MADISON, WI 53703 TELEPHONE: 608-266-4751

E-MAIL: RPHILLIPS@CITY OF MADISON.COM

MCLEOD USA TELECOMMUNICATIONS SERVICES, INC.

COMMUNICATION ATTN: JOHN LOUIS 1858 WRIGHT STREET MADISON, WI 53704 TELEPHONE: 262-792-7218 E-MAIL: JOHN.LOUIS@WINDSTREAM.COM

WISCONSIN DEPT. OF TRANSPORTATION

COMMUNICATIONS ATTN: JEFFERY MADSON 433 WEST ST. PAUL AVENUE, SUITE 300 MILWAUKEE, WI 53203 TELEPHONE: 414-225-3723 E-MAIL: JEFFREY.MADSON@DOT.WI.GOV

* DENOTES DIGGERS HOTLINE MEMBER

Call 811 3 Work Days Before You Dig or Toll Free (800) 242-8511 Hearing Impaired TDD (800) 542-2289 www.DiggersHotline.com

CONSULTANT CONTACT MEAD & HUNT, INC. 6501 WATTS ROAD MADISON, WI 53719-2700

ATTN: MR. KEITH KOSBAU, P.E. TELEPHONE: 608-273-6380 E-MAIL: KEITH.KOSBAU@MEADHUNT.COM DNR LIAISON

DEPARTMENT OF NATURAL RESOURCES SOUTH CENTRAL DISTRICT 3911 SOUTH FISH HATCHERY ROAD FITCHBURG, WI 53711

ATTN: MS. AMANDA CUSHMAN TELEPHONE: 608-275-3485 E-MAIL: AMANDA.CUSHMAN@WISCONSIN.GOV

GENERAL NOTES:

DISTURBED AREAS WITHIN THE RIGHT-OF-WAY, EXCEPT THE AREAS WITHIN THE FINISHED SHOULDER POINTS. ARE TO BE SEEDED AND FERTILIZED AS DIRECTED BY THE ENGINEER.

THE LOCATIONS OF EXISTING AND PROPOSED UTILITY INSTALLATIONS AS SHOWN ON THE PLANS ARE APPROXIMATE. THERE MAY BE OTHER UTILITY INSTALLATIONS WITHIN THE PROJECT AREA THAT ARE NOT SHOWN.

EROSION CONTROL IS SHOWN ON THE CONSTRUCTION DETAIL AND IN THE SUMMARY OF MISCELLANEOUS

BACKFILL ALL HOLES REMAINING DUE TO GUARDRAIL POST REMOVAL WITH BASE AGGREGATE DENSE 3/4-INCH.

ALL NECESSARY GRADING INCLUDED IN THE BID ITEM "BARRIER SYSTEM GRADING SHAPING FINISHING".

GUARDRAIL POST LOCATIONS SHOWN IN THE PLANS ARE FOR ILLUSTRATIVE PURPOSES ONLY. FOR ACTUAL INSTALLATION LOCATIONS AND CONSTRUCTION DETAILS SEE THE STANDARD DETAIL DRAWINGS.

PROJECT NO: 1166-02-81

HWY: IH 39

COUNTY: MARATHON

GENERAL NOTES

PLOT NAME : _____PLOT SCALE : 1" = 1'

SHEET

Ε

FILE NAME : X:\3230900\120136.01\TECH\CAD\10010603\SHEETSPLAN\020101_PO.DWG

2

PLOT DATE: 9/3/2008 9:36 AM

PLOT NAME: _____PLOT SCALE: 1 IN:10,000 FT

WISDOT/CADDS SHEET 42

_	_
-	7
4	•
_	

1 13	SITE NO.	SHEET	LOG MILE	LOCATION DESCRIPTION	STRUCTURE	COUNTER MEASURE
2	1	1	152	,	B-13-0149	MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT
2		-		, ,		
10	2	2, 3, 4	150.7	· · · · · · · · · · · · · · · · · · ·	B-13-0147	
1		_, _, .		·		
1	3	5	150	<u> </u>	B-13-0145	
4 6 1945 Promise indigened conference communication of the commu		,				'
1	4	6	149.6	,	B-13-0144	, , , , , , , , , , , , , , , , , , , ,
Page				,		, , , , , , , , , , , , , , , , , , ,
STEEL THEIR SEAR SELLANDER CHILD WIRES SELLANDER CHILD WEEKS SELLANDER CHILD WIRES SELLANDER WILLIAMS DIRECTION WEEKS SELLANDER CHILD WIRES SELLANDER WILLIAMS DIRECTION WEEKS SELLANDER CHILD WIRES SELLANDER WILLIAMS DIRECTION WEEKS SELLANDER CHILD WIRES SELLANDER WILLIAMS DIRECTION WEEKS SELLANDER WIRES	5	7	149.2		N/A	Y Y
Name	6	8	147.4	<u> </u>	B-13-0143	·
7						
8 9 90 1463 MRT, DOX CULVET FOR THE PAPER APPROACH PARTY TO PE 15-16-16-2-17-1	7	9	146.9	,	B-13-0142	
9	0	40	110 5	, ,	NI/A	, ,
9 11 965 IN RETLOVEN CHI IMPAPPRISCH 10 12 944 PERMANUSCH CHINAPPRISCH 11 13 9443 PERMANUSCH CHINAPPRISCH 11 14 944 PERMANUSCH CHINAPPRISCH 12 944 PERMANUSCH CHINAPPRISCH 13 944 PERMANUSCH CHINAPPRISCH 14 945 PERMANUSCH CHINAPPRISCH 15 947 PERMANUSCH CHINAPPRISCH 16 947 PERMANUSCH CHINAPPRISCH 16 947 PERMANUSCH CHINAPPRISCH 17 942 PERMANUSCH CHINAPPRISCH 18 949 PERMANUSCH CHINAPPRISCH 18 949 PERMANUSCH CHINAPPRISCH 19 15 947 PERMANUSCH CHINAPPRISCH 19 16 949 PERMANUSCH CHINAPPRISCH 19 17 942 PERMANUSCH CHINAPPRISCH 19 18 949 PERMANUSCH CHINAPPRISCH 19 19 19 PERMANUSCH CHINAPPRISCH 19	8	10	146.5	•	N/A	· · · · · · · · · · · · · · · · · · ·
10	9	11	146.5	·	B-13-0141	
10						
10	10	12	144.6	· · · · · · · · · · · · · · · · · · ·	B-13-0139	·
11 13 144.5 NR FT, OVER \$190ELXON ROADLAPPROACH S-13 003 MoS SEARGUARD MS GUARDRAL TERMINAL EAT MS FEARGUARD MS FEARGUARD MS GUARDRAL TERMINAL EAT MS FEARGUARD MS GUARDRAL TERMINAL EAT MS FEARGUARD MS GUARDRAL TERMINAL EAT MS FEARGUARD MS FEARGUARD MS GUARDRAL TERMINAL EAT MS FEARGUARD MS FEARGUARD MS GUARDRAL TERMINAL EAT MS FEARGUARD M				,		
14	11	13	144.3	,	B-13-0138	, ,
19				·		·
15	12	14	143.7	<u> </u>	S-13-0034	
No. 11, Post 142.6	40	45	440	,	N1/A	, , , , , , , , , , , , , , , , , , ,
14	13	15	143	,	N/A	'
15				· · · · · · · · · · · · · · · · · · ·	S-13-0010	,
No. 17. Vis. 1941. 194	14	16	142.5	·		· · · · · · · · · · · · · · · · · · ·
15					B-13-0467	
15 17 14.1 18 14.1				,		·
16	15	17	142.1	,	B-13-0463	·
17	40	40	1110	,	N1/A	, , , , , , , , , , , , , , , , , , ,
18				,		
19				·		
20 22 138.5 NB RT, SLOPE PROTECTION-APPROACH NIA MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD				· ·		
21 23 138.8 NB.LT, UNDER MILWUAKEE STREET-APPROACH B-13-0131 MSS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MSS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MSS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MSS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MSS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MSS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MSS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MSS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MSS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MSS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MSS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MSS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MSS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MSS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MG				, , , , , , , , , , , , , , , , , , ,		
23 138.5 NB RT LUNDER MILEMULAKE E STREET APPROACH B-13-0131 MS STHRIE BEAM TRANSITION, MSS BEAMGULARD 3, MSS GUARDRAIL TERMINAL EAT	20	22		,		·
Page	21	23	138.8	,	B-13-0131	·
18.5 NB RT, OVER STH 30 BB-APPROACH						
24 140 NB ET, OVER STH 30 WB-APPROACH NB RT, OVER STH 30 WB-APPROACH S-39-0289 MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT S-39-0289 MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EA	22	24	138.5	<u> </u>	B-13-0309	·
24 140 NB RT, OVER STH 30 WB-APPROACH B-19-0308 MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT						
25 138.1 NB RT, ENTRANCE RAMP FROM IH 94 OVER CTH T-APPROACH B-39-0289 MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMIN	23	24	140	'	B-13-0308	, , , , , , , , , , , , , , , , , , ,
26 26 27 27 27 28 28 27 27 28 28	24	25	138 1	,	B-39-0289	·
26 26 137.9 SB LT, SIGN BRIDGE-APPROACH EXIT 138A S-13-0026 MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, M	27	20	100.1	·	B 00 0200	
27	26	26	137.9		S-13-0026	, ,
27 138.1						· ·
Pack 138.5 SB RT, IH-39 OVER STH 30 EB B-13-0334 MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT INTEGRAL WALL, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT INTEGRAL WALL, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT INTEGRAL WALL, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT INTEGRAL WALL, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT INTEGRAL WALL, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM	27	27	138.1	,	B-13-0448	
28		-	105 -	,	D	
28 28 140 SB RT, IH-39 OVER STH 30 WB B-13-0307 MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT SB LT, MILWAUKEE ST OVER IH-39 INTEGRAL WALL, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT SB LT, MILWAUKEE ST OVER IH-39 NGS GUARDRACH B-13-0458 MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT NITEGRAL WALL, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT NITEGRAL WALL, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT NITEGRAL WALL, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT NITEGRAL WALL, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT NITEGRAL WALL, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT NITEGRAL WALL, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT NITEGRAL WALL, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT NITEGRAL WALL, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT NITEGRAL WALL, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT NITEGRAL WALL, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT NITEGRAL WALL, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT NITEGRAL WALL, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT NITEGRAL WALL, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT NITEGRAL WALL, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT NITEGRAL WALL, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT NITEGRAL WALL, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT NITEGRAL WALL, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT NITEGRAL WALL, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINA	29	28	138.5	· · · · · · · · · · · · · · · · · · ·	B-13-0334	·
28				SB RT, IH-39 OVER STH 30 WB		
SB RT, MILWAUKEE ST OVER IH-39 B-13-0477 INTEGRAL WALL, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT INTEGRAL WALL, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT INTEGRAL WALL, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT	28	28	140	•	B-13-0307	·
SB LT, MILWAUKEE ST OVER IH-39 INTEGRAL WALL, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT 32 20 141.1 SB RT, OVER WS RAILROAD-APPROACH 33 19 141.5 SB RT, BOX CULVERT-APPROACH 36 20 142 SB LT, OVER IH 90 RAMP TO 12/18 WB-APPROACH 37 30 142 SB LT, OVER IH 90 RAMP TO 12/18 WB-APPROACH 38 B LT, OVER IH 90 RAMP TO 12/18 WB-APPROACH 39 30 142.1 SB RT, OVER FEMRITE DRIVE-APPROACH 30 31 142.1 SB RT, OVER FEMRITE DRIVE-APPROACH 31 31 142.5 SB RT, OVER USH 12/18 WB-APPROACH 32 31 142.5 SB RT, OVER USH 12/18 WB-APPROACH 33 31 142.5 SB RT, OVER USH 12/18 WB-APPROACH 34 36 37 142.5 SB RT, OVER USH 12/18 WB-APPROACH 35 SB LT, OVER USH 12/18 WB-APPROACH 36 SB LT, OVER USH 12/18 WB-APPROACH 37 SB LT, OVER USH 12/18 WB-APPROACH 38 SB LT, OVER USH 12/18 WB-APPROACH 39 SB LT, OVER USH 12/18 WB-APPROACH 30 SB LT, OVER USH 12/18 WB-APPROACH 30 SB LT, OVER USH 12/18 WB-APPROACH 31 SB LT, OVER USH 12/18 WB-APPROACH 32 SB LT, OVER USH 12/18 WB-APPROACH 33 SB LT, OVER USH 12/18 WB-APPROACH 34 SB LT, OVER USH 12/18 WB-APPROACH 35 SB LT, OVER USH 12/18 WB-APPROACH 36 SB LT, OVER USH 12/18 WB-APPROACH 37 SB LT, OVER USH 12/18 WB-APPROACH 38 SB LT, OVER USH 12/18 WB-APPROACH 39 SB LT, OVER USH 12/18 WB-APPROACH 30 SB LT, OVER USH 12/18 WB-APPROACH 30 SB LT, OVER USH 12/18 WB-APPROACH 30 SB LT, OVER USH 12/18 WB-APPROACH 31 SB LT, OVER USH 12/18 WB-APPROACH 32 SB LT, OVER USH 12/18 WB-APPROACH 34 SB LT, OVER USH 12/18 WB-APPROACH 35 SB LT, OVER USH 12/18 WB-APPROACH 36 SB LT, OVER USH 12/18 WB-APPROACH 37 SB LT, OVER USH 12/18 WB-APPROACH 38 SB LT, OVER USH 12/18 WB-APPROACH 39 SB LT, OVER USH 12/18 WB-APPROACH 30 SB LT, OVER USH 12/18 WB-APPROACH 30 SB LT, OVER USH 12/18 WB-APPROACH 31 SB LT, OVER USH 12/18 WB-APPROACH 32 SB LT, OVER USH 12/18 WB-APPROACH 33 SB LT, OVER USH 12/18 WB-APPROACH 34 SB LT, OVER USH 12/18 WB-APPROACH 35 SB LT, OVER USH 12/18 WB-APPROACH 36 SB LT, OVER USH 12/18 WB-APPROACH 37 SB LT, OVER USH 12/18 WB-APPROACH 38 SB LT, OVER USH 12/18 WB-A		-		,	.	INTEGRAL WALL, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT
141.1 SB RT, OVER WS RAILROAD-APPROACH B-13-0458 MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT N/A MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT N/A MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT N/A MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT SB LT, OVER IH 90 RAMP TO 12/18 WB-APPROACH SB RT, OVER IH 90 RAMP TO 12/18 WB-APPROACH SB RT, OVER FEMRITE DRIVE-APPROACH SB RT, OVER FEMRITE DRIVE-APPROACH SB RT, OVER FEMRITE DRIVE-APPROACH SB LT, OVER USH 12/18 WB-APPROACH SB LT, OVER USH 12/18 BE-APPROACH SB L	30	29	138.7	SB LT, MILWAUKEE ST OVER IH-39	B-13-0477	INTEGRAL WALL, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT
141.5 SB RT, BOX CULVERT-APPROACH 33 19 141.5 SB RT, BOX CULVERT-APPROACH 34 30 142.1 SB LT, OVER IH 90 RAMP TO 12/18 WB-APPROACH 35 30 142.1 SB LT, OVER FEMRITE DRIVE-APPROACH 36 31 142.5 SB LT, OVER USH 12/18 WB-APPROACH 37 30 142.5 SB LT, OVER USH 12/18 WB-APPROACH 38 B LT, OVER USH 12/18 WB-APPROACH 39 30 142.5 SB LT, OVER USH 12/18 WB-APPROACH 30 30 142.5 SB LT, OVER USH 12/18 WB-APPROACH 30 30 142.5 SB LT, OVER USH 12/18 WB-APPROACH 30 30 142.5 SB LT, OVER USH 12/18 WB-APPROACH 30 31 142.5 SB LT, OVER USH 12/18 WB-APPROACH 30 31 142.5 SB LT, OVER USH 12/18 WB-APPROACH 30 31 31 142.5 SB LT, OVER USH 12/18 WB-APPROACH 30 31 31 142.5 SB LT, OVER USH 12/18 WB-APPROACH 31 32 34 35 SB LT, OVER USH 12/18 WB-APPROACH 32 31 31 31 31 32.5 SB LT, OVER USH 12/18 WB-APPROACH 33 31 31 32.5 SB LT, OVER USH 12/18 WB-APPROACH 34 36 37 SB LT, OVER USH 12/18 WB-APPROACH 35 SB LT, OVER USH 12/18 WB-APPROACH 36 SB LT, OVER USH 12/18 BE-APPROACH 37 SB LT, OVER USH 12/18 BE-APPROACH 38 SB LT, OVER USH 12/18 BE-APPROACH 39 SB LT, OVER USH 12/18 BE-APPROACH 30 SB LT, OVER USH 12/18 BE-APPROACH 30 SB LT, OVER USH 12/18 BE-APPROACH 31 SB LT, OVER USH 12/18 BE-APPROACH 32 SB LT, OVER USH 12/18 BE-APPROACH 33 SB LT, OVER USH 12/18 BE-APPROACH 34 SB LT, OVER USH 12/18 BE-APPROACH 35 SB LT, OVER USH 12/18 BE-APPROACH 36 SB LT, OVER USH 12/18 BE-APPROACH 37 SB LT, OVER USH 12/18 BE-APPROACH 38 SB LT, OVER USH 12/18 BE-APPROACH 39 SB LT, OVER USH 12/18 BE-APPROACH 30 SB LT, OVER USH 12/18 BE-APPROACH 30 SB LT, OVER USH 12/18 BE-APPROACH 31 SB LT, OVER USH 12/18 BE-APPROACH 32 SB LT, OVER USH 12/18 BE-APPROACH 33 SB LT, OVER USH 12/18 BE-APPROACH 34 SB LT, OVER USH 12/18 BE-APPROACH 35 SB LT, OVER USH 12/18 BE-APPROACH 36 SB LT, OVER USH 12/18 BE-APPROACH 37 SB LT, OVER USH 12/18 BE-APPROACH 38 SB LT, OVER USH 12/18 BE-APPROACH 39 SB LT, OVER USH 12/18 BE-APPROACH 30 SB LT, OVER USH 12/18 BE-APPROACH 30 SB LT, OVER USH 12/18 BE-APPROACH 31 SB LT, OVER USH 12/18 BE-APPROACH 32 SB LT, OVER US	32	20	141.1	·	B-13-0458	
35 30 142 SB LT, OVER IH 90 RAMP TO 12/18 WB-APPROACH 36 RT, OVER IH 90 RAMP TO 12/18 WB-APPROACH 37 ROWS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT 38 RT, OVER FEMRITE DRIVE-APPROACH 39 RAMP TO 12/18 WB-APPROACH 30 RAMP TO 12/18 WB-APPROACH 30 RAMP TO 12/18 WB-APPROACH 31 ROWS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT 39 RT, OVER FEMRITE DRIVE-APPROACH 30 ROWS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT 39 ROWS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT 39 ROWS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT 39 ROWS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT 39 ROWS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT 40 ROWS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT 40 ROWS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT 41 ROWS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT 42 ROWS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT 43 ROWS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT 44 ROWS THRIE BEAM TRANSITION, MGS BEAMGUARD 3				•		
35 30 142 SB RT, OVER IH 90 RAMP TO 12/18 WB-APPROACH 36 30 142 SB RT, OVER FEMRITE DRIVE-APPROACH 37 30 142.1 SB LT, OVER FEMRITE DRIVE-APPROACH 38 30 30 142.1 SB LT, OVER FEMRITE DRIVE-APPROACH 39 30 30 30 30 30 30 30 30 30 30 30 30 30				•		, , , , , , , , , , , , , , , , , , ,
34 30 142.1 SB LT, OVER FEMRITE DRIVE-APPROACH 35 RT, OVER FEMRITE DRIVE-APPROACH 36 SB LT, OVER USH 12/18 WB-APPROACH 37 SB LT, OVER USH 12/18 WB-APPROACH 38 LT, OVER USH 12/18 WB-APPROACH 39 SB LT, OVER USH 12/18 WB-APPROACH 30 SB LT, OVER USH 12/18 WB-APPROACH 30 SB LT, OVER USH 12/18 WB-APPROACH 31 SB LT, OVER USH 12/18 EB-APPROACH 32 SB LT, OVER USH 12/18 EB-APPROACH 33 SB LT, OVER USH 12/18 EB-APPROACH 34 SB LT, OVER USH 12/18 EB-APPROACH 35 SB LT, OVER USH 12/18 EB-APPROACH 36 SB LT, OVER USH 12/18 EB-APPROACH 37 SB LT, OVER USH 12/18 EB-APPROACH 38 SB LT, OVER USH 12/18 EB-APPROACH 39 SB LT, OVER USH 12/18 EB-APPROACH 30 SB LT, OVER USH 12/18 EB-APPROACH 31 SB LT, OVER USH 12/18 EB-APPROACH 32 SB LT, OVER USH 12/18 EB-APPROACH 33 SB LT, OVER USH 12/18 EB-APPROACH 34 SB LT, OVER USH 12/18 EB-APPROACH 35 SB LT, OVER USH 12/18 EB-APPROACH 36 SB LT, OVER USH 12/18 EB-APPROACH 37 SB	35	30	142	,	B-13-0461	
34 30 142.1 SB RT, OVER FEMRITE DRIVE-APPROACH 36 31 142.5 SB RT, OVER USH 12/18 WB-APPROACH 37 SB LT, OVER USH 12/18 WB-APPROACH 38 SB LT, OVER USH 12/18 WB-APPROACH 39 SB LT, OVER USH 12/18 WB-APPROACH 30 SB LT, OVER USH 12/18 WB-APPROACH 31 SB LT, OVER USH 12/18 EB-APPROACH 32 SB LT, OVER USH 12/18 EB-APPROACH 33 SB LT, OVER USH 12/18 EB-APPROACH 34 SB LT, OVER USH 12/18 EB-APPROACH 35 SB LT, OVER USH 12/18 EB-APPROACH 36 SB LT, OVER USH 12/18 EB-APPROACH 37 SB LT, OVER USH 12/18 EB-APPROACH 38 SB LT, OVER USH 12/18 EB-APPROACH 39 SB LT, OVER USH 12/18 EB-APPROACH 30 SB LT, OVER USH 12/18 EB-APPROACH 30 SB LT, OVER USH 12/18 EB-APPROACH 31 SB LT, OVER USH 12/18 EB-APPROACH 32 SB LT, OVER USH 12/18 EB-APPROACH 33 SB LT, OVER USH 12/18 WB-APPROACH 34 SB LT, OVER USH 12/18 WB-APPROACH 35 SB LT, OVER USH 12/18 EB-APPROACH 36 SB LT, OVER USH 12/18 EB-APPROACH 37 SB LT, OVER USH 12/18 EB-APPROACH 38 SB LT, OVER USH 12/18 EB-APPROACH 39 SB LT, OVER USH 12/18 EB-APPROACH 30 SB LT, OVER USH 12/18 EB-APPROACH 31 SB LT, OVER USH 12/18 EB-APPROACH 32 SB LT, OVER USH 12/18 EB-APPROACH 33 SB LT, OVER USH 12/18 EB-APPROACH 34 SB LT, OVER USH 12/18 EB-APPROACH 35 SB LT, OVER USH 12/18 EB-APPROACH 36 SB LT, OVER USH 12/18 EB-APPROACH 37 SB LT, OVER USH 12/18 EB-APPROACH 38 SB LT, OVER USH 12/18 EB-APPROACH 39 SB LT, OVER USH 12/18 EB-APPROACH 30 SB LT, OVER USH 12/18 EB-APPROACH 30 SB LT, OVER USH 12/18 EB-APPROACH 30 SB LT, OVER USH 12/18 EB-APPROACH 31 SB LT, OVER USH 12/18 EB-APPROACH 32 SB LT, OVER USH 12/18 EB-APPROACH 34 SB LT, OVER USH 12/18 EB-APPROACH 35 SB LT, OVER USH 12/18 EB-APPROACH 36 SB LT, OVE		0-	44- :	,	B 12 2 12 2	
36 31 142.5 SB LT, OVER USH 12/18 WB-APPROACH B-13-0464 MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3 MGS GUARDRAIL TERMINAL EAT MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3	34	30	142.1	,	B-13-0462	
36 31 142.5 SB RT, OVER USH 12/18 WB-APPROACH SB LT, OVER USH 12/18 EB-APPROACH B-13-0464 MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT B-13-0466 MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3				,		
SB LT, OVER USH 12/18 EB-APPROACH B-13-0466 MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3	36	31	142.5	·	B-13-0464	
				·	B-13-0466	MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3
	37	15	143	SB RT, BOX CULVERT S OF MP 143-APPROACH		MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT

PROJECT NO:1001-06-73

HWY: IH 39/90

COUNTY: DANE

PROJECT OVERVIEW

PLOT BY: LUKE SENZ

SHEET

SITE NO.	SHEET	LOG MILE	LOCATION DESCRIPTION	STRUCTURE	COUNTER MEASURE
38	12	144.2	SB LT, OVER SIGGELKOW ROAD-APPROACH	B-13-0137	MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT
30	13	144.2	SB RT, OVER SIGGELKOW ROAD-APPROACH	B-13-0137	MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT
39	12	144.7	SB RT, UNDER CTH AB-APPROACH	B-13-0139	REMOVE BARRIER TAPER, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT
40	10	146.5	SB RT, BOX CULVERT N OF B-13-0142-APPROACH	N/A	MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT
41	9	146.9	SB RT, UNDER WILLIAMS DRIVE-APPROACH	B-13-0142	REMOVE BARRIER TAPER, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT
42	8	147.4	SB RT, UNDER CTH N-APPROACH	B-13-0143	REMOVE BARRIER TAPER, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT
43	32, 33	149.2	SB RT RAVINE SLOPE PROTECTION	N/A	MGS GUARDRAIL TERMINAL EAT
43	32, 33 149.2	149.2	SB LT RAVINE SLOPE PROTECTION	IN/A	MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT
44	6	149.6	SB RT, UNDER CHURCH ST-APPROACH	B-13-0144	REMOVE BARRIER TAPER, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT
45	5	150	SB RT, UNDER CTH BN-APPROACH	B-13-0145	REMOVE BARRIER TAPER, MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT
46	224	150.7	SB LT, OVER DROTNING ROAD-APPROACH	B-13-0146	MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT
40	2, 3, 4	150.7	SB RT, OVER DROTNING ROAD-APPROACH	B-13-0146	MGS GUARDRAIL TERMINAL EAT
47	4	150	SB LT, OVER CTH W-APPROACH	D 42 0440	MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT
47	'	152	SB RT, OVER CTH W-APPROACH	B-13-0148	MGS THRIE BEAM TRANSITION, MGS BEAMGUARD 3, MGS GUARDRAIL TERMINAL EAT

NOTE: FOR OTHER DETAILS NOT SHOWN ON THIS DRAWING SEE STANDARD DETAIL DRAWING - "CONCRETE BARRIER, SINGLE-FACED (WITH ANCHORAGE)"

CONCRETE BARRIER TRANSITION SECTION 32-INCH

SITE - 3, 45 SITE - 4, 44 SITE - 6, 42 SITE - 7, 41

PAVEMENT RESTORATION AT CONCRETE BARRIER TRANSITION SECTION 32-INCH

SITE - 3, 45 SITE - 4, 44 SITE - 6, 42 SITE - 7, 41 SITE - 10, 39

BEAM GUARD AT EXIT END SITE - 8, 40 SITE - 12 SITE - 13, 37 SITE - 14 SITE - 20 SITE - 21 SITE - 26 SITE - 32

17, 33

ASPHALTIC CONCRETE CURB

USE AT UNDISTURBED LOCATIONS AS DIRECTED BY THE ENGINEER, WHERE THE EXISTING ASPHALTIC CURB IS MISSING OR UNABLE TO BE SALVAGED

Ε PROJECT NO: 1001-06-73 HWY: IH 39/90 COUNTY: DANE PLAN: CONSTRUCTION DETAILS SHEET

GENERAL NOTES

THIS DETAIL IS TYPICAL FOR CLOSING THE RIGHT LANE. FOR CLOSING THE LEFT LANE, REVERSE THE TRAFFIC CONTROL.

THIS DETAIL MAY BE USED FOR DIVIDED ROADWAYS WITH ANY NUMBER OF TRAVEL LANES.

AS NEEDED IN FRONT OF ARROW BOARD

HWY: IH 39/90

THE EXACT NUMBER, LOCATION, AND SPACING OF ALL SIGNS AND DEVICES SHALL BE ADJUSTED TO FIT FIELD CONDITIONS AS APPROVED BY THE ENGINEER.

THE SPACING BETWEEN TRAFFIC CONTROL SIGNS SHOULD BE ADJUSTED TO NOT CONFLICT WITH AND SHOULD PROVIDE A MINIMUM OF 200 FEET (500 FEET DESIRABLE) CLEARANCE TO EXISTING SIGNS.

ALL SIGNS ARE 48" X 48" UNLESS OTHERWISE NOTED.

"WO" SIGNS ARE THE SAME AS "W" SIGNS EXCEPT THE BACKGROUND IS ORANGE.

SIGN LAYOUTS SHALL BE IN ACCORDANCE WITH THE FHWA'S MANUAL OF STANDARD HIGHWAY SIGNS OR THE WISCONSIN STANDARD SIGN PLATES.

ANY SIGNS TEMPORARY OR EXISTING, WHICH CONFLICT WITH TRAFFIC CONTROL "IN USE" SHALL BE REMOVED OR COVERED AS NEEDED AND AS APPROVED BY THE ENGINEER.

CONSIDER GEOMETRICS WHEN LOCATING SIGNS AND ARROWBOARDS SO THE APPROACHING DRIVER HAS A CLEAR VIEW OF THE ARROWBOARDS AND LANE CLOSURE DRUMS FOR A MINIMUM 1500 FEET IN FRONT OF DRUMS.

TYPICAL DRUM PLACEMENT IS 2' OFFSET FROM THE "ACTIVE" PAVEMENT MARKING

BARRICADES IN A CLOSED LANE THAT MUST BE MOVED FOR A WORK OPERATION SHALL BE IMMEDIATELY RE-ESTABLISHED UPON COMPLETION OF THE OPERATION OR, FOR CONTINUING OPERATIONS, AT THE END OF EACH WORKING DAY.

FOR A LANE CLOSURE THAT IS IN PLACE LESS THAN 7 CONTINUOUS DAYS AND NIGHTS, THE ADVANCED WARNING SIGNS MAY BE MOUNTED ON PORTABLE SUPPORTS,

WHEN A RAMP INTERSECTS THE FACILITY ON WHICH THE WORK IS BEING PERFORMED, ADDITIONAL TRAFFIC CONTROLS SHALL BE PROVIDED AS SPECIFIED IN THE PLANS AND/OR THE SPECIAL PROVISIONS OR AS APPROVED BY THE ENGINEER.

LEGEND

TRAFFIC CONTROL DRUM

TRAFFIC CONTROL DRUM WITH TYPE C STEADY BURN LIGHT

WORK ZONE

ARROW BOARD

DIRECTION OF TRAFFIC

FILE NAME : X:\3230900\120136.01\TECH\CAD\10010603\SHEETSPLAN\025001_TC.DWG

PROJECT NO: 1001-06-73

COUNTY: DANE

TRAFFIC CONTROL LANE CLOSURE DETAILS

WISDOT/CADDS SHEET 42

Ε

DATE 10 LINE	DMAY13	EST	IMAT	E OF QUAN	T I T I E S 1001-06-73
NUMBER	ITEM	ITEM DESCRIPTION	UNI T	TOTAL	QUANTI TY
0010	204. 0110	REMOVING ASPHALTIC SURFACE	SY	220. 000	220. 000
0020	204. 0157	REMOVING CONCRETE BARRIER	LF	875.000	875.000
0030	204. 9060. S	REMOVING (ITEM DESCRIPTION) 01. BURIED BEAM GUARD TERMINALS	EACH	22. 000	22. 000
0040	213. 0100	FINISHING ROADWAY (PROJECT) 01. 1001-06-73	EACH	1. 000	1. 000
0050	305. 0110	BASE AGGREGATE DENSE 3/4-INCH	TON	1, 210. 000	1, 210. 000
0060	305. 0120	BASE AGGREGATE DENSE 1 1/4-INCH	TON	594.000	594. 000
0070	312. 0110	SELECT CRUSHED MATERIAL	TON	80.000	80.000
0800	465. 0105	ASPHALTIC SURFACE	TON	100.000	100.000
0090 0100	465. 0310 465. 0315	ASPHALTIC CURB ASPHALTIC FLUMES	LF SY	300. 000 60. 000	300. 000 60. 000
0110	520. 8000	CONCRETE COLLARS FOR PIPE	EACH	1.000	1.000
0120	522. 0118	CULVERT PIPE REINFORCED CONCRETE CLASS III 18-INCH	LF	15. 000	15. 000
0130	603. 8000	CONCRETE BARRIER TEMPORARY PRECAST DELIVERED	LF	1, 075. 000	1, 075. 000
0140	603. 8125	CONCRETE BARRIER TEMPORARY PRECAST INSTALLED	LF	1, 075. 000	1, 075. 000
0150	611. 0430	RECONSTRUCTING INLETS	EACH	1. 000	1. 000
0160	611. 0642	INLET COVERS TYPE MS	EACH	1. 000	1. 000
0170	611. 3901	INLETS MEDIAN 1 GRATE	EACH	1.000	1.000
0180 0190	614. 0010 614. 0200	BARRIER SYSTEM GRADING SHAPING FINISHING STEEL THRIE BEAM STRUCTURE APPROACH	EACH LF	78. 000 43. 200	78. 000 43. 200
0200	614. 0220	STEEL THRIE BEAM BULLNOSE TERMINAL	EACH	10. 000	10. 000
0210	614. 0230	STEEL THRIE BEAM	LF	650. 000	650. 000
0220	614. 0370	STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL	EACH	4. 000	4. 000
0230	614. 0400	ADJUSTING STEEL PLATE BEAM GUARD	LF	7, 650. 000	7, 650. 000
0240	614. 0805	CRASH CUSHIONS PERMANENT LOW MAINTENANCE	EACH	1.000	1.000
0250	614. 0905	CRASH CUSHIONS TEMPORARY	EACH	14. 000	14. 000
0260	614. 0920	SALVAGED RAIL	LF	19, 815. 000	19, 815. 000
0270 0280	614. 0925 614. 0935	SALVAGED GUARDRAIL END TREATMENTS SALVAGED SAND BARRELS	EACH EACH	55. 000 39. 000	55. 000 39. 000
0280	614. 0935	MGS GUARDRAIL 3	LF LF	39. 000 15, 255. 500	39. 000 15, 255. 500
0300	614. 2310	MGS GUARDRAIL 3 HS	LF	200.000	200. 000
0310	614. 2320	MGS GUARDRAIL 3 QS	LF	50. 000	50. 000
0320	614. 2500	MGS THRIE BEAM TRANSITION	LF	2,009.400	2,009.400
0330 0340	614. 2610 614. 2620	MGS GUARDRAIL TERMINAL EAT MGS GUARDRAIL TERMINAL TYPE 2	EACH EACH	65. 000 16. 000	65. 000 16. 000
0350	619. 1000	MOBI LI ZATI ON	EACH	1. 000	1. 000
0360	628. 1504	SILT FENCE	LF	1, 400. 000	1, 400. 000
0370 0380	628. 1520 628. 1905	SILT FENCE MAINTENANCE MOBILIZATIONS EROSION CONTROL	LF EACH	1, 400. 000 3. 000	1, 400. 000 3. 000
0380	628. 1905 628. 1910	MOBILIZATIONS EROSION CONTROL MOBILIZATIONS EMERGENCY EROSION CONTROL	EACH	3. 000	3. 000 3. 000
0400	628. 2004	EROSION MAT CLASS I TYPE B	SY	30, 640. 000	30, 640. 000
0410	628. 7010	INLET PROTECTION TYPE B	EACH	4. 000	4. 000
0420	628. 7504	TEMPORARY DITCH CHECKS	LF EACH	180.000	180.000
0430 0440	628. 7555 633. 0500	CULVERT PIPE CHECKS DELINEATOR REFLECTORS	EACH EACH	7. 000 9. 000	7. 000 9. 000
0450	633. 1000	DELINEATOR BRACKETS	EACH	9. 000	9. 000
0460	638. 2102	MOVING SIGNS TYPE II	EACH	2. 000	2. 000
0470	642. 5001	FIELD OFFICE TYPE B	EACH	1. 000	1.000
0480 0490	643. 0100 643. 0300	TRAFFIC CONTROL (PROJECT) 01. 1001-06-73 TRAFFIC CONTROL DRUMS	EACH DAY	1. 000 15, 544. 000	1. 000 15, 544. 000
				•	

ITEM 643.0715	ITEM DESCRIPTION			
	TRAFFIC CONTROL WARNING LIGHTS TYPE C	UNI T DAY	TOTAL 3, 722. 000	1001-06-73 QUANTI TY 3, 722. 000
643. 0800	TRAFFIC CONTROL ARROW BOARDS	DAY	462.000	462.000
				2, 173. 000 444. 000
645. 0140				1, 310. 000
649. 0300		LF		600.000
	TAPE 4-INCH			
690. 0150	SAWI NG ASPHALT	LF	1, 020. 000	1, 020. 000
ASP. 1TOA	ON-THE-JOB TRAINING APPRENTICE AT \$5.	HRS	200.000	200.000
ACD 1TOC		LIDC	200, 000	200,000
				300. 000 10. 000
3PV. 0000	SECTION 32-INCH	EACH	10.000	10.000
SPV. 0090	SPECIAL 01. 51-INCH CONCRETE INTEGRAL	LF	178. 000	178.000
	BARRI ER			
SPV 0090	SPECIAL O2 PROFILE CURR CUT		115 000	115. 000
SPV. 0195		TON		305. 000
64 64 64 65 AS SF	43. 0900 43. 1050 45. 0140 49. 0300 90. 0150 SP. 1TOA SP. 1TOG PV. 0060 PV. 0090	TRAFFIC CONTROL SIGNS TRAFFIC CONTROL SIGNS TRAFFIC CONTROL SIGNS PCMS 43. 1050 TRAFFIC CONTROL SIGNS PCMS 45. 0140 GEOTEXTILE FABRIC TYPE SAS TEMPORARY PAVEMENT MARKING REFLECTIVE TAPE 4-INCH 90. 0150 SAWING ASPHALT ON-THE-JOB TRAINING APPRENTICE AT \$5. 00/HR SP. 1TOG ON-THE-JOB TRAINING GRADUATE AT \$5. 00/HR PV. 0060 SPECIAL 01. CONCRETE BARRIER TRANSITION SECTION 32-INCH SPC. 1AL 01. 51-INCH CONCRETE INTEGRAL BARRIER PV. 0090 SPECIAL 02. PROFILE CURB CUT	43. 0900 TRAFFIC CONTROL SIGNS 43. 1050 TRAFFIC CONTROL SIGNS PCMS 45. 0140 GEOTEXTILE FABRIC TYPE SAS 49. 0300 TEMPORARY PAVEMENT MARKING REFLECTIVE TAPE 4-INCH DOI: 1000 DOI: 1000	43. 0900 TRAFFIC CONTROL SIGNS 43. 1050 TRAFFIC CONTROL SIGNS PCMS 45. 0140 GEOTEXTILE FABRIC TYPE SAS 49. 0300 TEMPORARY PAVEMENT MARKING REFLECTIVE LF 600. 000 TAPE 4-INCH 90. 0150 SAWING ASPHALT SP. 1TOA ON-THE-JOB TRAINING APPRENTICE AT \$5. HRS 200. 000 00/HR SP. 1TOG ON-THE-JOB TRAINING GRADUATE AT \$5. 00/HR HRS SP. 1TOG ON-THE-JOB TRAINING GRADUATE AT \$5. 00/HR HRS SPCI AL 01. CONCRETE BARRIER TRANSITION EACH 10. 000 SECTION 32-INCH PV. 0090 SPECIAL 02. PROFILE CURB CUT LF 115. 000

ı	7
ı	-

Ε

REMOVALS			BASE AGGRE	GATE				
	204.0110	204.0157			305.0110	305.0120	312.0110	SPV.0195.01
		REMOVING			BASE	BASE	SELECT	
	ASPHALTIC				AGGREGATE	AGGREGATE	CRUSHED	CLEAR
LOGATION	SURFACE	BARRIER		LOCATION		DENSE 1 1/4-INCH	MATERIAL	STONE
LOCATION	(SY)	(LF)		LOCATION	(TON)	(TON)	(TON)	(TON)
SITE 3 (RT) OUTSIDE APPROACH	20	65	SITE 1 (LT)	MEDIAN APPROACH	18			
SITE 4 (RT) OUTSIDE APPROACH	20	65	` '	OUTSIDE APPROACH	17			
SITE 6 (RT) OUTSIDE APPROACH	20	65	` '	MEDIAN APPROACH	18			
SITE 7 (RT) OUTSIDE APPROACH	20	65	` '	OUTSIDE APPROACH	12			
ITE 10 (RT) OUTSIDE APPROACH	20	65	` ,	MEDIAN APPROACH	9			60
ITE 19 (RT) OUTSIDE APPROACH		119	SITE 3 (RT)	OUTSIDE APPROACH	12	48		
SITE 21 GORE	20		, ,	MEDIAN APPROACH	9			60
SITE 30 (RT) OUTSIDE APPROACH		53	SITE 4 (RT)	OUTSIDE APPROACH	12	48		
SITE 30 (LT) MEDIAN APPROACH		53	SITE 5 (LT)	MEDIAN APPROACH	24			
SITE 39 (RT) OUTSIDE APPROACH	20	65	SITE 6 (LT)	MEDIAN APPROACH	7			67
SITE 41 (RT) OUTSIDE APPROACH	20	65		OUTSIDE APPROACH	12	48		
SITE 42 (RT) OUTSIDE APPROACH	20	65	SITE 7 (LT)	MEDIAN APPROACH	9			60
SITE 44 (RT) OUTSIDE APPROACH	20	65	SITE 7 (RT)	OUTSIDE APPROACH	12	48		
ITE 45 (RT) OUTSIDE APPROACH	20	65	, ,	OUTSIDE APPROACH	18			
TOTAL	220	875	SITE 9 (LT)	MEDIAN APPROACH	18			
			SITE 9 (RT)	OUTSIDE APPROACH	15			
			SITE 10 (LT)	MEDIAN APPROACH	9			58
			SITE 10 (RT)	OUTSIDE APPROACH	12	48		
FINISHING ROADWAY			SITE 11 (LT)	MEDIAN APPROACH	18			
	213.010	00	SITE 11 (RT)	OUTSIDE APPROACH	15			
	FINISHI		SITE 12 (LT)	MEDIAN APPROACH	16			
	ROADW		SITE 12 (RT)	OUTSIDE APPROACH	16			
LOCATION	(EACH		SITE 13 (RT)	OUTSIDE APPROACH	17			
	(=,	·/	SITE 14 (LT)	MEDIAN APPROACH	29			
PROJECT 1001-06-73	1		SITE 14 (RT)	OUTSIDE APPROACH	12			
TOTAL	1		SITE 14 (RT)	OUTSIDE APPROACH	18			
			SITE 15 (LT)	MEDIAN APPROACH	13			
			SITE 15 (RT)	OUTSIDE APPROACH	18			
			SITE 16 (LT)	MEDIAN APPROACH	13			
			SITE 17 (RT)	OUTSIDE APPROACH	18			
			, ,	OUTSIDE APPROACH	27			
AODUALTIO EL UNEO				OUTSIDE APPROACH	21	72	30	
ASPHALTIC FLUMES			, ,	OUTSIDE APPROACH	28			
	465.031		SITE 21 (LT)	MEDIAN APPROACH	23			
	ASPHAL			OUTSIDE APPROACH	21			
LOCATION	FLUME	S	. ,	MEDIAN APPROACH	18			
LOCATION	(SY)			OUTSIDE APPROACH	18			
LINDIOTOIDLITEE			` '	MEDIAN APPROACH	18			
UNDISTRIBUTED	60			OUTSIDE APPROACH	18			
TOTAL	60			OUTSIDE APPROACH	26			
			. ,	MEDIAN APPROACH	14			
			, ,	OUTSIDE APPROACH	14			
			` '	MEDIAN APPROACH	18			
			SITE 27 (RT)	OUTSIDE APPROACH	18			
				MEDIAN APPROACH	18			
			` '	OUTSIDE APPROACH	18			
			SITE 29 (LT)	MEDIAN APPROACH	18			
			` '	OUTSIDE APPROACH	18			
			, ,	MEDIAN APPROACH	15	21	25	
				OUTSIDE APPROACH	17	21	25	
			` '	OUTSIDE APPROACH	18			
			, ,	OUTSIDE APPROACH	18			
				MEDIAN APPROACH	12			
			CITE 24 (DT)	OUTSIDE APPROACH	18			

HWY: IH 39/90

PROJECT NO: 1001-06-73

BASE AGGREGATE (CONTINUED)				
	305.0110	305.0120	312.0110	SPV.0195.01
	BASE	BASE	SELECT	
	AGGREGATE	AGGREGATE	CRUSHED	CLEAR
	DENSE 3/4-INCH	DENSE 1 1/4-INCH	MATERIAL	STONE
LOCATION	(TON)	(TON)	(TON)	(TON)
OUTE OF # T. MEDIAN ADDDOAD!	40			
SITE 35 (LT) MEDIAN APPROACH	13			
SITE 35 (RT) OUTSIDE APPROACH	18			
SITE 36 (LT) MEDIAN APPROACH	13			
SITE 36 (RT) OUTSIDE APPROACH	13			
SITE 36 (LT) MEDIAN BETWEEN BR.	1			
SITE 37 (RT) OUTSIDE APPROACH	17			
SITE 38 (LT) MEDIAN APPROACH	18			
SITE 38 (RT) OUTSIDE APPROACH	15			
SITE 39 (RT) OUTSIDE APPROACH	12	48		
SITE 40 (RT) OUTSIDE APPROACH	18			
SITE 41 (RT) OUTSIDE APPROACH	12	48		
SITE 42 (RT) OUTSIDE APPROACH	12	48		
SITE 43 (RT) OUTSIDE APPROACH	13			
SITE 43 (LT) MEDIAN APPROACH	16			
SITE 44 (RT) OUTSIDE APPROACH	12	48		
SITE 45 (RT) OUTSIDE APPROACH	12	48		
SITE 46 (LT) MEDIAN APPROACH	18			
SITE 46 (RT) OUTSIDE APPROACH	40			
SITE 47 (LT) MEDIAN APPROACH	18			
SITE 47 (RT) OUTSIDE APPROACH	21			
TOTAL	1210	594	80	305

NOTE: BASE AGGREGATE DENSE 1 1/4-INCH INCLUDES MATERIAL TO RESTORE THE GRADE IN THE AREAS OF REMOVED CONCRETE BARRIER. BASE AGGREGATE DENSE 3/4-INCH INCLUDES MATERIAL TO BACK FILL THE REMOVED POST HOLES.

ASPI	HALT	TI OF	EMS
------	------	-------	-----

		465.0105	465.0310
		ASPHALTIC	ASPHALTIC
		SURFACE	CURB
	LOCATION	(TON)	(LF)
SITE 3 (RT)	OUTSIDE APPROACH	3	
SITE 4 (RT)	OUTSIDE APPROACH	3	
SITE 6 (RT)	OUTSIDE APPROACH	3	
SITE 7 (RT)	OUTSIDE APPROACH	3	
SITE 10 (RT)	OUTSIDE APPROACH	3	
SITE 19 (RT)	OUTSIDE APPROACH	26	
SITE 30 (LT)	MEDIAN APPROACH	22	
SITE 30 (RT)	OUTSIDE APPROACH	22	
SITE 39 (RT)	OUTSIDE APPROACH	3	
SITE 41 (RT)	OUTSIDE APPROACH	3	
SITE 42 (RT)	OUTSIDE APPROACH	3	
SITE 44 (RT)	OUTSIDE APPROACH	3	
SITE 45 (RT)	OUTSIDE APPROACH	3	
	UNDISTRIBUTED		300
TOTAL		100	300

INLETS AND PIPES

MISCELLANEOUS QUANTITIES

	520.8000	522.0118	611.0642	611.3901	611.0430
		CULVERT PIPE			
	CONCRETE	REINFORCED	INLET	INLETS	
	COLLARS	CONCRETE	COVERS	MEDIAN 1	RECONSTRUCTING
	FOR PIPE	CLASS III 18-INCH	TYPE MS	GRATE	INLETS
LOCATION	(EACH)	(LF)	(EACH)	(EACH)	(EACH)
SITE 3 (LT) MEDIAN APPROACH					1
SITE 10 (LT) MEDIAN APPROACH	1	15	1	1	
TOTAL	1	15	1	1	1

PLOT NAME: PLOT DATE: 4/17/2013 2:07 PM

COUNTY: DANE

PLOT SCALE: 100.0:1.0

SHEET

BARRIER SYSTEM	I GRADING SHAPIN	IG FINI						
			614.0010		FOR INFORI	MATIONAL PU		ILY
			BARRIER SYSTEM				SEEDING	
		o	GRADING SHAPING			FERTILIZER	MIXTURE	SEEDING
		SITE	FINISHING	BORROW	TOPSOIL	TYPE B	NO. 70	TEMPORARY
LOC	ATION	CAT.	(EACH)	(CY)	(SY)	(CWT)	(LB)	(LB)
SITE 1 (LT) MEI	DIAN APPROACH		1	0	150	0.1	1	4
` '	ISIDE APPROACH		1	72	163	0.1	1	4
, ,	DIAN APPROACH		1	134	237	0.2	1	7
` '	ISIDE APPROACH		1	140	375	0.2	2	10
` '			2	40	2700	1.7	10	73
	DIAN APPROACH TSIDE APPROACH		1	0	150	0.1	1	4
` '			•	29		1.5		63
, ,	DIAN APPROACH		2 1		2340		9 1	
, ,	ISIDE APPROACH		1	3	150	0.1		4
(/	DIAN APPROACH		•	1289	1087	0.7	4	29
	DIAN APPROACH		1	38	2910	1.9	11	79
` '	ISIDE APPROACH		1	0	150	0.1	1	4
\ /	DIAN APPROACH		2	13	2790	1.8	10	75
` '	ISIDE APPROACH		1	0	150	0.1	1	4
` '	ISIDE APPROACH		1	50	186	0.1	1	5
	DIAN APPROACH		1	0	150	0.1	1	4
, ,	TSIDE APPROACH		1	211	492	0.3	2	13
SITE 10 (LT) MEI			2	231	2775	1.8	10	75
SITE 10 (RT) OUT	TSIDE APPROACH		1	217	492	0.3	2	13
SITE 11 (LT) MEI	DIAN APPROACH		1	0	150	0.1	1	4
SITE 11 (RT) OUT	TSIDE APPROACH		1	0	150	0.1	1	4
SITE 12 (LT) MEI	DIAN APPROACH		1	8	150	0.1	1	4
SITE 12 (RT) OUT	TSIDE APPROACH		1	9	150	0.1	1	4
SITE 13 (RT) OUT	TSIDE APPROACH		1	0	150	0.1	1	4
SITE 14 (LT) MEI	DIAN APPROACH		1	0	150	0.1	1	4
SITE 14 (RT) OUT	TSIDE APPROACH		1	6	152	0.1	1	4
SITE 14 (RT) OUT	TSIDE APPROACH		1	182	459	0.3	2	12
SITE 15 (LT) MEI	DIAN APPROACH		1	2	150	0.1	1	4
*SITE 15 (RT) OUT	TSIDE APPROACH	MF	1	200	500	0.3	2	14
SITE 16 (LT) MEI	DIAN APPROACH		1	0	150	0.1	1	4
SITE 17 (RT) OUT	TSIDE APPROACH		1	0	150	0.1	1	4
	TSIDE APPROACH		1	0	150	0.1	1	4
, ,	ISIDE APPROACH	MF	1	200	500	0.3	2	14
*SITE 20 (RT) OUT	ISIDE APPROACH	SF	1	100	175	0.1	1	5
*SITE 21 (LT) MEI	DIAN APPROACH	SF	1	100	175	0.1	1	5
, ,	TSIDE APPROACH	SF	1	100	175	0.1	1	5
*SITE 22 (LT) MEI		SF	1	100	175	0.1	1	5
	TSIDE APPROACH	MF	1	200	500	0.3	2	14
*SITE 23 (LT) MEI		SF	1	100	175	0.1	1	5
` '	TSIDE APPROACH	SF	1	100	175	0.1	1	5
` '	TSIDE APPROACH	MF	1	200	500	0.3	2	14
*SITE 26 (LT) MEI		SF	1	100	175	0.1	1	5
, ,	ISIDE APPROACH	SF	1	100	175	0.1	1	5
*SITE 27 (LT) MEI		SF	1	100	175	0.1	1	5
, ,				200				
, ,	ISIDE APPROACH	MF SF	1		500 175	0.3	2	14 5
*SITE 28 (LT) MEI			<u>1</u> 1	100	175	0.1	1	5
. ,	ISIDE APPROACH	SF	I ₄	100	175	0.1	1	5
*SITE 29 (LT) MEI		SF	ا ب	100	175	0.1	I	5
` '	TSIDE APPROACH	SF	1	100	175	0.1	1	5
*SITE 30 (LT) MEI		SF	1	50	150	0.1	1	4
	TSIDE APPROACH	SF	1	100	175	0.1	1	5
	TSIDE APPROACH		1	28	177	0.1	1	5
, ,	ISIDE APPROACH		1	1	150	0.1	1	4
SITE 34 (LT) MEI	DIAN APPROACH		1	0	150	0.1	1	4

0

150

150

0.1

0.1

0.1

SITE 34 (LT) MEDIAN APPROACH

SITE 34 (RT) OUTSIDE APPROACH

SITE 35 (LT) MEDIAN APPROACH

BARRIER SYSTEM GRADING SHAPING FINISHING (CONTINUED)												
	614.0010		FOR INFOR	MATIONAL PU	RPOSES ON	ILY						
	BARRIER SYSTEM				SEEDING							
	GRADING SHAPING		SALVAGED	FERTILIZER	MIXTURE	SEEDING						
SIT	E FINISHING	BORROW	TOPSOIL	TYPE B	NO. 70	TEMPORARY						
LOCATION CAT	Г. (EACH)	(CY)	(SY)	(CWT)	(LB)	(LB)						
						_						
SITE 35 (RT) OUTSIDE APPROACH	1	418	775	0.5	3	21						
*SITE 36 (LT) MEDIAN APPROACH LF	· ·	0	150	0.1	1	4						
*SITE 36 (RT) OUTSIDE APPROACH LF	<u> </u>	0	150	0.1	1	4						
*SITE 36 (RT) PROFILE CURB CUT LF	1	0	50	0.1	1	21						
SITE 37 (RT) OUTSIDE APPROACH	1	1	150	0.1	1	1						
SITE 38 (LT) MEDIAN APPROACH	1	0	150	0.1	1	4						
SITE 38 (RT) OUTSIDE APPROACH	1	267	568	0.4	2	15						
SITE 39 (RT) OUTSIDE APPROACH	1	59	205	0.1	1	6						
SITE 40 (RT) OUTSIDE APPROACH	1	70	239	0.2	1	6						
SITE 41 (RT) OUTSIDE APPROACH	1	33	204	0.1	1	6						
SITE 42 (RT) OUTSIDE APPROACH	1	44	308	0.2	1	8						
SITE 43 (LT) MEDIAN APPROACH	1	96	175	0.1	1	4						
SITE 43 (RT) OUTSIDE APPROACH	1	271	515	0.3	2	14						
SITE 44 (RT) OUTSIDE APPROACH	1	0	150	0.1	1	4						
SITE 45 (RT) OUTSIDE APPROACH	1	10	150	0.1	1	4						
SITE 46 (LT) MEDIAN APPROACH	1	4	150	0.1	1	4						
SITE 46 (RT) OUTSIDE APPROACH	1	383	762	0.5	3	21						
SITE 47 (LT) MEDIAN APPROACH	1	100	163	0.1	1	4						
SITE 47 (RT) OUTSIDE APPROACH	1	204	496	0.3	2	13						
TOTAL	78	7114	30945	19.8	138	855						

* NOTE: NO SURFACE INFORMATION WAS AVAILABLE FOR THESE LOCATIONS. QUANTITIES FOR GRADING, SHAPING AND FINISHING ITEMS WERE ESTIMATED BY COMPARING THIS SITE TO A SIMILAR SITE WHERE SURFACE INFORMATION WAS AVAILABLE. SITES WERE CATEGORIZED AS FOLLOWS:

NF: NO FILL (0 CY) SF: SMALL FILL (<150 CY) MF: MEDIUM FILL (<300 CY) LF: LARGE FILL (>300 CY)

PROJECT NO: 1001-06-73 HWY: IH 39/90 COUNTY: DANE MISCELLANEOUS QUANTITIES SHEET **E**

ILE NAME: PLOT DATE: 4/17/2013 2:07 PM PLOT BY: PLOT NAME: PLOT SCALE : 100.0 :1.0

9

-5

Е

SHEET

		SUMMARY	204.9060.S	614.0200	614.0220	614.0230	614.0370	614.0400	614.0920	614.0925	614.0935	614.2300	614.2310	614.2320	614.2500	614.2610	614.2620	SPV.0060.01
			207.3000.0	V17.0200	017.0220		STEEL PLATE BEAM		017.0020	SALVAGED	017.0000	017.2000	017.2010	017.2020	017.2000	MGS	MGS	0. 7.3000.01
			REMOVING BURIED	STEEL THRIE BEAM ST	EEL THRIE BEAM		GUARD ENERGY	ADJUSTING		GUARDRAIL	SALVAGED		MGS	MGS	MGS THRIE	GUARDRAIL		CONCRETE BARRIER
			BEAM GUARD	STRUCTURE	BULLNOSE	THRIE	ABSORBING	STEEL PLATE		END	SAND	MGS	GUARDRAIL	GUARDRAIL	BEAM	TERMINAL	TERMINAL	TRANSITION SECTION
			TERMINALS	APPROACH	TERMINAL	BEAM	TERMINAL	BEAM GUARD	RAIL	TREATMENTS		GUARDRAIL 3		3 QS	TRANSITION		TYPE 2	32-INCH
		LOCATION	(EACH)	(LF)	(EACH)	(LF)	(EACH)	(LF)	(LF)	(EACH)	(EACH)	(LF)	(LF)	(LF)	(LF)	(EACH)	(EACH)	(EACH)
	SITE 1 (LT)	MEDIAN APPROACH	1						375			250			39.4	1		
		OUTSIDE APPROACH	1						300			200			39.4	1		
	SITE 2 (LT)	MEDIAN APPROACH							350	1		250			39.4	1		
3		OUTSIDE APPROACH		21.6			1	975	50	1								
		OUTSIDE DEPARTURE						1875										
		MEDIAN APPROACH	2		2	125			525			25			20.4	4		4
		OUTSIDE APPROACH MEDIAN APPROACH	2		2	125			525			25			39.4	ı		I
	, ,	OUTSIDE APPROACH	2		2	125			323			50			39.4	1		1
	, ,	MEDIAN APPROACH	1				1	700	50			00			00.1	•		·
		MEDIAN APPROACH			2	150			425									
		OUTSIDE APPROACH										25			39.4	1		1
	, ,	MEDIAN APPROACH	2		2	125			525									
		OUTSIDE APPROACH							050			25			39.4	1		1
		OUTSIDE APPROACH MEDIAN APPROACH	1						350 350	1		375 250			39.4	1	1	
	` '	OUTSIDE APPROACH	1						175			200			39.4	1		
		MEDIAN APPROACH	2		2	125			525			200			00.4	•		
		OUTSIDE APPROACH										25			39.4	1		1
		MEDIAN APPROACH	1						350			200			39.4	1		
		OUTSIDE APPROACH	1						175			200			39.4	1		
	, ,	MEDIAN APPROACH							250			250				1	1	
	` '	OUTSIDE APPROACH							250	0		200				1	1	
	` '	OUTSIDE APPROACH MEDIAN APPROACH							275	2 2		250 112.5	50	12.5		1	1	
		OUTSIDE APPROACH								2		275	30	12.5		1	1	
		OUTSIDE APPROACH							325	1		425			39.4	1	•	
	, ,	MEDIAN APPROACH							75	1		12.5			39.4	1		
	` '	OUTSIDE APPROACH							325	1		237.5			39.4	1		
	. ,	MEDIAN APPROACH							75	1		12.5			39.4	1		
		OUTSIDE APPROACH							325	2		237.5			22.4	1	1	
	` '	OUTSIDE APPROACH							850 550	1		775 550			39.4 39.4	1		
	` '	OUTSIDE APPROACH							550 950	2		550 887.5			39.4	1	1	
		MEDIAN APPROACH							650	2	39	462.5	50	12.5		1	1	
		OUTSIDE APPROACH							500	1		350			39.4	1		
		MEDIAN APPROACH							375	1		287.5			39.4	1		
	` '	OUTSIDE APPROACH							325	1		237.5			39.4	1		
		MEDIAN APPROACH							375	1		287.5			39.4	1		
		OUTSIDE APPROACH							325	1		237.5 725			39.4 39.4	1		
		MEDIAN APPROACH							825 125	2		725 225			39.4	1	1	
		OUTSIDE APPROACH							125	2		225				1	1	
		MEDIAN APPROACH							375	1		225	50	12.5	39.4	1		
	SITE 27 (RT)	OUTSIDE APPROACH							375	1		225	50	12.5	39.4	1		
		MEDIAN APPROACH							375	1		287.5			39.4	1		
	` '	OUTSIDE APPROACH							325	1		237.5			39.4	1		
		MEDIAN APPROACH OUTSIDE APPROACH							325 325	1		237.5 237.5			39.4 39.4	1		
	311E 29 (N1)	OUTSIDE AFFRUAUR							323	Į.		237.3			33.4	ļ į		

FILE NAME: PLOT DATE: 4/17/2013 2:07 PM PLOT BY: PLOT NAME: PLOT SCALE : 100.0 :1.0

MISCELLANEOUS QUANTITIES

COUNTY: DANE

HWY:IH 39/90

PROJECT NO: 1001-06-73

		204.9060.S	614.0200	614.0220	614.0230	614.0370 STEEL PLATE BEAM	614.0400	614.0920	614.0925 SALVAGED	614.0935	614.2300	614.2310	614.2320	614.2500	614.2610 MGS	614.2620 MGS	SPV.0060.01
ı		REMOVING BURIED S	TEEL THRIE REAM	STEEL THRIE REAM		GUARD ENERGY	ADJUSTING			SALVAGED		MGS	MGS	MGS THRIE			CONCRETE BARRIER
L		BEAM GUARD	STRUCTURE	BULLNOSE	THRIE	ABSORBING	STEEL PLATE	SALVAGED		SAND	MGS	GUARDRAIL	GUARDRAIL	BEAM	TERMINAL		TRANSITION SECTION
ı		TERMINALS	APPROACH	TERMINAL	BEAM	TERMINAL	BEAM GUARD	RAIL	TREATMENTS	_	GUARDRAIL 3	3 HS	3 QS	TRANSITION	EAT	TYPE 2	32-INCH
L	LOCATION	(EACH)	(LF)	(EACH)	(LF)	(EACH)	(LF)	(LF)	(EACH)	(EACH)	(LF)	(LF)	(LF)	(LF)	(EACH)	(EACH)	(EACH)
1	OITE OO (LT) MEDIANI ADDDO A OIL							450	4		175			00.4			
	SITE 30 (LT) MEDIAN APPROACH							150	1					39.4	l 4		
	SITE 30 (RT) OUTSIDE APPROACH							275	1		100			39.4	1		
	SITE 32 (RT) OUTSIDE APPROACH							325	1		237.5			39.4	1		
	SITE 32 (RT) OUTSIDE DEPARTURE								1							1	
	SITE 33 (RT) OUTSIDE APPROACH							375	2		287.5				1	1	
	SITE 34 (LT) MEDIAN APPROACH								1		200			39.4	1		
	SITE 34 (RT) OUTSIDE APPROACH							325	1		250			39.4	1		
	SITE 34 (LT) MEDIAN DEPARTURE						75										
	SITE 34 (RT) OUTSIDE DEPARTURE						75										
	SITE 35 (LT) MEDIAN APPROACH							75	1		200			39.4	1		
1	SITE 35 (RT) OUTSIDE APPROACH							325	1		200			39.4	1		
	SITE 36 (LT) MEDIAN APPROACH							70	1		200			39.4	1		
ı	SITE 36 (RT) OUTSIDE APPROACH							70	1		50			39.4	1		
ı	SITE 36 (LT) MEDIAN BETWEEN BR.							75	1		243			78.8			
ı	SITE 37 (RT) OUTSIDE APPROACH							275	2		250				1	1	
1	SITE 38 (LT) MEDIAN APPROACH	1						350			200			39.4	1		
	SITE 38 (RT) OUTSIDE APPROACH	1						175			200			39.4	1		
	SITE 39 (RT) OUTSIDE APPROACH										25			39.4	1		1
	SITE 40 (RT) OUTSIDE APPROACH	1						350	1		450				1	1	·
	SITE 41 (RT) OUTSIDE APPROACH	·						000	•		25			39.4	1	·	1
	SITE 42 (RT) OUTSIDE APPROACH										25			39.4	1		<u> </u>
	SITE 43 (RT) OUTSIDE APPROACH	1				1	3950	50			20			00.4	'		'
	SITE 43 (LT) MEDIAN APPROACH	'					3330	225	1		175				1	1	
	SITE 44 (RT) OUTSIDE APPROACH							223	'		25			39.4	1	'	4
	SITE 45 (RT) OUTSIDE APPROACH										25 25			39.4	1		1
	SITE 45 (NT) OUTSIDE APPROACH	1						350			250			39.4	1		1
	SITE 46 (ET) MEDIAN APPROACH	1	21.6			4		50 50			230			33.4	1		
	- ' ' '	I	∠1.0			I			4		050			20.4	1		
	SITE 47 (LT) MEDIAN APPROACH							375	1		250			39.4	1		
Ι.	SITE 47 (RT) OUTSIDE APPROACH TOTAL	22	43.2	10	650	4	7650	525 19815	1 55	39	425 15255.5	200	50	39.4 2009.4	1 65	16	10

CRASH CUSHIONS

614.0805 614.0905

		CRASH CUSHIONS PERMANENT	CRASH CUSHIONS
		LOW MAINTENANCE	TEMPORARY
	LOCATION	(EA)	(EA)
SITE 3 (RT)	OUTSIDE APPROAC	CH	1
SITE 4 (RT)	OUTSIDE APPROAC	CH	1
SITE 6 (RT)	OUTSIDE APPROAC	CH	1
SITE 7 (RT)	OUTSIDE APPROAC	CH	1
SITE 10 (RT)	MEDIAN APPROACI	4	1
SITE 19 (RT)	OUTSIDE APPROAC	CH	1
*SITE 21 (LT)	GORE	1	1
SITE 30 (RT)	OUTSIDE APPROAC	CH	1
SITE 30 (LT)	MEDIAN APPROACI	4	1
SITE 39 (RT)	OUTSIDE APPROAC	CH	1
SITE 41 (RT)	OUTSIDE APPROAC	CH	1
SITE 42 (RT)	OUTSIDE APPROAC	CH	1
SITE 44 (RT)	OUTSIDE APPROAC	CH	1
SITE 45 (RT)	OUTSIDE APPROAC	CH	1
TOTAL	·	1	14

*NOTE: FOR GORE INSTALLATION USE OBJECT MARKING PATTERN OM-3C.

CRASH TEST CONDITION TL-3.

WIDTH REQUIREMENTS, DESIRABLE AND (MINIMUM) SHOWN IN PARENTHSIS;

N = 12' (6'), L = 55' (28'), F = 4' (2')

PROJECT NO: 1001-06-73 HWY: IH 39/90

COUNTY: DANE

MISCELLANEOUS QUANTITIES

SHEET

Ε

FILE NAME: PLOT DATE: 4/17/2013 2:07 PM PLOT NAME: PLOT SCALE: 100.0:1.0

	EROSION CONTROL ITEMS									
		628.1504	628.1520	628.1905	628.1910 MOBILIZATIONS	628.2004	628.7010	628.7504	628.7555	645.0140
				MOBILIZATIONS		EROSION MAT	INLET	TEMPORARY		GEOTEXTILE
			SILT FENCE	EROSION	EROSION	CLASS I	PROTECTION	DITCH	CULVERT PIPE	FABRIC TYPE
	LOCATION		MAINTENANCE (LF)	CONTROL (EACH)	CONTROL (EACH)	TYPE B (SY)	TYPE B	CHECKS	CHECKS (EACH)	SAS (SY)
	LOCATION	(LF)	(LF)	(EACH)	(EAGH)	(31)	(EACH)	(LF)	(EACH)	(31)
	SITE 1 (LT) MEDIAN APPROACH	200	200			150				
	SITE 1 (RT) OUTSIDE APPROACH	200	200			163				
٦	SITE 2 (LT) MEDIAN APPROACH SITE 2 (RT) OUTSIDE APPROACH	200 200	200 200			237 375				
3	SITE 3 (LT) MEDIAN APPROACH	200	200			2445	1	30	1	260
	SITE 3 (RT) OUTSIDE APPROACH	200	200			150			_	
	SITE 4 (LT) MEDIAN APPROACH SITE 4 (RT) OUTSIDE APPROACH	200	200			2084 150		30	2	260
┪	SITE 5 (LT) MEDIAN APPROACH	200	200			1087				
	SITE 6 (LT) MEDIAN APPROACH					2635	1	30		280
	SITE 6 (RT) OUTSIDE APPROACH SITE 7 (LT) MEDIAN APPROACH	200	200			150 2525		30	1	260
	SITE 7 (RT) OUTSIDE APPROACH	200	200			150		30	1	200
	SITE 8 (RT) OUTSIDE APPROACH	200	200			186				
	SITE 9 (LT) MEDIAN APPROACH	200	200			150				
	SITE 9 (RT) OUTSIDE APPROACH SITE 10 (LT) MEDIAN APPROACH	200	200			492 2521	1	30	2	250
	SITE 10 (RT) OUTSIDE APPROACH	200	200			492	'	30	2	230
	SITE 11 (LT) MEDIAN APPROACH	200	200			150				
	SITE 11 (RT) OUTSIDE APPROACH SITE 12 (LT) MEDIAN APPROACH	200 200	200			150				
	SITE 12 (CT) MEDIAN APPROACH	200	200			150				
	SITE 13 (RT) OUTSIDE APPROACH	200	200			150				
	SITE 14 (LT) MEDIAN APPROACH	200	200			150				
	SITE 14 (RT) OUTSIDE APPROACH SITE 14 (RT) OUTSIDE APPROACH	200 200	200			152 459				
	SITE 15 (LT) MEDIAN APPROACH	200	200			150				
	SITE 15 (RT) OUTSIDE APPROACH	200	200			500				
	SITE 16 (LT) MEDIAN APPROACH	200	200			150	1	30		
	SITE 17 (RT) OUTSIDE APPROACH SITE 18 (RT) OUTSIDE APPROACH	200 200	200			150 150				
	SITE 19 (RT) OUTSIDE APPROACH	200	200			500				
	SITE 20 (RT) OUTSIDE APPROACH	200	200			175				
	SITE 21 (LT) MEDIAN APPROACH SITE 21 (RT) OUTSIDE APPROACH	200 200	200 200			175 175				
	SITE 22 (LT) MEDIAN APPROACH	200	200			175				
	SITE 22 (RT) OUTSIDE APPROACH	200	200			500				
	SITE 23 (LT) MEDIAN APPROACH	200	200			175				
	SITE 23 (RT) OUTSIDE APPROACH SITE 24 (RT) OUTSIDE APPROACH	200 200	200 200			175 500				
	SITE 26 (LT) MEDIAN APPROACH	200	200			175				
	SITE 26 (RT) OUTSIDE APPROACH	200	200			175				
	SITE 27 (LT) MEDIAN APPROACH SITE 27 (RT) OUTSIDE APPROACH	200 200	200 200			175 500				
	SITE 28 (LT) MEDIAN APPROACH	200	200			175				
	SITE 28 (RT) OUTSIDE APPROACH	200	200			175				
	SITE 29 (LT) MEDIAN APPROACH SITE 29 (RT) OUTSIDE APPROACH	200 200	200 200			175 175				
	SITE 30 (LT) MEDIAN APPROACH	200	200			150				
	SITE 30 (RT) OUTSIDE APPROACH	200	200			175				
	SITE 32 (RT) OUTSIDE APPROACH	200	200			177	<u> </u>			
	SITE 33 (RT) OUTSIDE APPROACH SITE 34 (LT) MEDIAN APPROACH	200 400	200 400			150 150				
	SITE 34 (ET) MEDIAN APPROACH	200	200			150				
	1									

PROJECT NO: 1001-06-73 HWY: IH 39/90 COUNTY: DANE MISCELLANEOUS QUANTITIES SHEET **E**

FILE NAME:

	628.1504	628.1520	628.1905	628.1910	628.2004	628.7010	628.7504	628.7555	645.0140
				MOBILIZATIONS	EROSION				
			MOBILIZATIONS	EMERGENCY	MAT	INLET	TEMPORARY		GEOTEXTILE
		SILT FENCE	EROSION	EROSION	CLASS I	PROTECTION	DITCH	CULVERT PIPE	FABRIC TYPE
	SILT FENCE	MAINTENANCE	CONTROL	CONTROL	TYPE B	TYPE B	CHECKS	CHECKS	SAS
LOCATION	(LF)	(LF)	(EACH)	(EACH)	(SY)	(EACH)	(LF)	(EACH)	(SY)
SITE 35 (LT) MEDIAN APPROACH	400	400			150				
SITE 35 (RT) OUTSIDE APPROACH	200	200			775				
SITE 36 (LT) MEDIAN APPROACH	200	200			750				
SITE 36 (RT) OUTSIDE APPROACH	200	200			750				
SITE 37 (RT) OUTSIDE APPROACH	200	200			150				
SITE 38 (LT) MEDIAN APPROACH	200	200			150				
SITE 38 (RT) OUTSIDE APPROACH	200	200			568				
SITE 39 (RT) OUTSIDE APPROACH	200	200			205				
SITE 40 (RT) OUTSIDE APPROACH	200	200			239				
SITE 41 (RT) OUTSIDE APPROACH	200	200			204				
SITE 42 (RT) OUTSIDE APPROACH	200	200			308				
SITE 43 (LT) MEDIAN APPROACH	200	200			175			1	
SITE 43 (RT) OUTSIDE APPROACH	200	200			515				
SITE 44 (RT) OUTSIDE APPROACH	200	200			150				
SITE 45 (RT) OUTSIDE APPROACH	200	200			150				
SITE 46 (LT) MEDIAN APPROACH	200	200			150				
SITE 46 (RT) OUTSIDE APPROACH	200	200			762				
SITE 47 (LT) MEDIAN APPROACH	200	200			163				
SITE 47 (RT) OUTSIDE APPROACH	200	200			496				
UNDISTRIBUTED			3	3					
TOTAL	14000	14000	3	3	30640	4	180	7	1310

MOVING SIGNS

			638.2102
			MOVING SIGNS
			TYPE II
LC	CATION	SIGN DESCRIPTION	(EACH)
SITE 3 (LT) M	IEDIAN APPROACH	R1-03 - NO U TURN	1
SITE 10 (LT) M	IEDIAN APPROACH	R1-03 - NO U TURN	1
TOTAL			2

J

PROJECT NO: 1001-06-73 HWY: IH 39/90 COUNTY: DANE MISCELLANEOUS QUANTITIES SHEET **E**

PLOT DATE: 4/17/2013 2:07 PM PLOT BY: PLOT NAME: PLOT SCALE : 100.0 :1.0

18

PROJECT NO: 1001-06-73

TRAFFIC CONTROL							
		643.0100	643.0300	643.0715	643.0800	643.0900	643.1050
			DRUMS	WARNING LIGHTS TYPE C	ARROW BOARDS	SIGNS	SIGNS PCMS
	STAGE	TRAFFIC					
	DURATION	CONTROL	PAY	PAY	PAY	PAY	PAY
	CALENDAR	(PROJECT)	QUANTITY	QUANTITY	QUANTITY	QUANTITY	QUANTITY
LOCATION	DAYS	(EACH)	(DAYS)	(DAYS)	(DAYS)	(DAYS)	(DAYS)
SITE 1 (LT) MEDIAN APPROACH	1		70	16	2	8	
SITE 1 (RT) OUTSIDE APPROACH	1		66	16	2	8	
SITE 2 (LT) MEDIAN APPROACH	3		210	48	6	24	
SITE 2 (RT) OUTSIDE APPROACH/DEPARTURE	3		522	48	6	24	
SITE 3 (LT) MEDIAN APPROACH	3		306	96	12	48	
SITE 3 (RT) OUTSIDE APPROACH	10		580	160	20	80	
SITE 4 (LT) MEDIAN APPROACH	3		282	96	12	48	
SITE 4 (RT) OUTSIDE APPROACH	10		620	160	20	80	
SITE 5 (LT) MEDIAN APPROACH	1		82	16	2	8	
SITE 6 (LT) MEDIAN APPROACH	3		306	96	12	48	
SITE 6 (RT) OUTSIDE APPROACH	10		580	160	20	80	
SITE 7 (LT) MEDIAN APPROACH	3		306	48	6	24	
SITE 7 (RT) OUTSIDE APPROACH	10		580	160	20	80	
SITE 8 (RT) OUTSIDE APPROACH	1		74	16	2	8	
SITE 9 (LT) MEDIAN APPROACH	1		70	16	2	8	
SITE 9 (RT) OUTSIDE APPROACH	1		66	16	2	8	
SITE 10 (LT) MEDIAN APPROACH	3		306	96	12	48	
SITE 10 (RT) OUTSIDE APPROACH	10		580	160	20	80	
SITE 11 (LT) MEDIAN APPROACH	1		66	16	2	8	
SITE 11 (RT) OUTSIDE APPROACH	1		66 66	16 16	2	<u>8</u> 8	
SITE 12 (LT) MEDIAN APPROACH SITE 12 (RT) OUTSIDE APPROACH	1		66	16	2 2	8	
SITE 13 (RT) OUTSIDE APPROACH	1		70	16	2	8	
SITE 14 (LT) MEDIAN APPROACH	1		94	16	2	8	
SITE 14 (RT) OUTSIDE APPROACH	1		66	21	2	9	
SITE 14 (RT) OUTSIDE APPROACH	1		126	21	2	9	
SITE 15 (LT) MEDIAN APPROACH	1		58	16	2	8	
SITE 15 (RT) OUTSIDE APPROACH	1		66	16	2	8	
SITE 16 (LT) MEDIAN APPROACH	1		58	16	2	8	
SITE 17 (RT) OUTSIDE APPROACH	1		70	16	2	8	
SITE 18 (RT) OUTSIDE APPROACH	3		270	48	6	24	
SITE 19 (RT) OUTSIDE APPROACH	15		1230	240	30	135	
SITE 20 (RT) OUTSIDE APPROACH	3		282	48	6	24	
SITE 21 (LT) MEDIAN APPROACH	1		86	21	2	8	
SITE 21 (RT) OUTSIDE APPROACH	10		740	210	20	80	
SITE 21 GORE	10		70	40	•	90	
SITE 22 (LT) MEDIAN APPROACH	1		70	16	2	8	
SITE 22 (RT) OUTSIDE APPROACH	1		86	21 5	2	9	
SITE 23 (LT) MEDIAN APPROACH SITE 23 (RT) OUTSIDE APPROACH	1		40 66	5 16	2	6 8	
SITE 24 (RT) OUTSIDE APPROACH	3		258	48	6	24	
SITE 26 (LT) MEDIAN APPROACH	1		66	16	2	8	
SITE 26 (RT) OUTSIDE APPROACH	1		66	16	2	8	
SITE 27 (LT) MEDIAN APPROACH	1		70	16	2	9	
SITE 27 (RT) OUTSIDE APPROACH	1		122	21	2	9	
SITE 28 (LT) MEDIAN APPROACH	1		70	16	2	8	
SITE 28 (RT) OUTSIDE APPROACH	1		70	16	2	8	
SITE 29 (LT) MEDIAN APPROACH	1		35	5	1	6	
SITE 29 (RT) OUTSIDE APPROACH	1		70	16	2	8	
SITE 30 (LT) MEDIAN APPROACH	15		690	240	30	135	
SITE 30 (RT) OUTSIDE APPROACH	15		525	75	15	105	
SITE 32 (RT) OUTSIDE APPROACH	1		70	16	2	8	
SITE 33 (RT) OUTSIDE APPROACH	1		70	16	2	8	
SITE 34 (LT) MEDIAN APPROACH	1		62	16	2	8	

PAVEMENT MARKING

	649.0300
	TEMPORARY PAVEMENT MARKING
	REFLECTIVE TAPE 4-INCH
	WHITE
LOCATION	(LF)
SITE 30 (RT) OUTSIDE APPROACH	200
TOTAL	200

CONCRETE BARRIER TEMPORARY PRECAST

OONOHETE B	CONCRETE BARRIER TEMPORARY PRECAST								
		603.8000 DELIVERED	603.8125 INSTALLED						
	LOCATION	(LF)	(LF)						
	200/11011	(=:)	(=: /						
SITE 3 (RT)	OUTSIDE APPROACH	25	25						
SITE 4 (RT)	OUTSIDE APPROACH	25	25						
SITE 6 (RT)	OUTSIDE APPROACH	25	25						
SITE 7 (RT)	OUTSIDE APPROACH	25	25						
SITE 10 (RT)	OUTSIDE APPROACH	25	25						
SITE 19 (RT)	OUTSIDE APPROACH	200	200						
SITE 21 (LT)	GORE	250	250						
SITE 30 (LT)	MEDIAN APPROACH	200	200						
SITE 30 (RT)	OUTSIDE APPROACH	175	175						
SITE 39 (RT)	OUTSIDE APPROACH	25	25						
SITE 41 (RT)	OUTSIDE APPROACH	25	25						
SITE 42 (RT)	OUTSIDE APPROACH	25	25						
SITE 44 (RT)	OUTSIDE APPROACH	25	25						
SITE 45 (RT)	OUTSIDE APPROACH	25	25						
TOTAL		1075	1075						

Е COUNTY: DANE HWY: IH 39/90 MISCELLANEOUS QUANTITIES SHEET

PLOT DATE: 4/17/2013 2:07 PM PLOT NAME: PLOT SCALE : 100.0 :1.0

		643.0100	643.0300	643.0715	643.0800	643.0900	643.1050
			DRUMS	WARNING LIGHTS TYPE C	ARROW BOARDS	SIGNS	SIGNS PCMS
	STAGE	TRAFFIC					
	DURATION	CONTROL	PAY	PAY	PAY	PAY	PAY
	CALENDAR	(PROJECT)	QUANTITY	QUANTITY	QUANTITY	QUANTITY	QUANTITY
LOCATION	DAYS	(EACH)	(DAYS)	(DAYS)	(DAYS)	(DAYS)	(DAYS)
SITE 34 (RT) OUTSIDE APPROACH	1		70	16	2	8	
SITE 35 (LT) MEDIAN APPROACH	1		62	16	2	8	
SITE 35 (RT) OUTSIDE APPROACH	1		66	21	2	9	
SITE 36 (LT) MEDIAN APPROACH	1		62	16	2	8	
SITE 36 (LT) MEDIAN APPROACH	1		62	16	2	8	
SITE 36 (RT) OUTSIDE APPROACH	1		28	5	1	6	
SITE 37 (RT) OUTSIDE APPROACH	1		70	16	2	8	
SITE 38 (LT) MEDIAN APPROACH	1		70	16	2	8	
SITE 38 (RT) OUTSIDE APPROACH	1		66	16	2	8	
SITE 39 (RT) OUTSIDE APPROACH	10		580	160	20	80	
SITE 40 (RT) OUTSIDE APPROACH	1		74	16	2	8	
SITE 41 (RT) OUTSIDE APPROACH	1		58	16	2	8	
SITE 42 (RT) OUTSIDE APPROACH	10		580	160	20	80	
SITE 43 (LT) MEDIAN APPROACH	1		66	16	2	8	
SITE 43 (RT) OUTSIDE APPROACH	3		618	48	6	24	
SITE 44 (RT) OUTSIDE APPROACH	10		580	160	20	80	
SITE 45 (RT) OUTSIDE APPROACH	10		580	160	20	80	
SITE 46 (LT) MEDIAN APPROACH	1		58	16	2	8	
SITE 46 (RT) OUTSIDE APPROACH	1		58	16	2	8	
SITE 47 (LT) MEDIAN APPROACH	1		70	16	2	8	
SITE 47 (RT) OUTSIDE APPROACH	1	·	74	16	2	8	
PROJECT	74	1				148	444
TOTAL		1	15544	3722	462	2173	444

SAWING ASPH	ALT	
		690.0150 SAWING ASPHALT
-	LOCATION	(LF)
SITE 3 (RT)	OUTSIDE APPROACH	70
SITE 4 (RT)	OUTSIDE APPROACH	70
SITE 6 (RT)	OUTSIDE APPROACH	70
SITE 7 (RT)	OUTSIDE APPROACH	70
SITE 10 (RT)	OUTSIDE APPROACH	70
SITE 19 (RT)	OUTSIDE APPROACH	120
SITE 21	GORE	90
SITE 30 (RT)	OUTSIDE APPROACH	55
SITE 30 (LT)	MEDIAN APPROACH	55
SITE 39 (RT)	OUTSIDE APPROACH	70
SITE 41 (RT)	OUTSIDE APPROACH	70
SITE 42 (RT)	OUTSIDE APPROACH	70
SITE 44 (RT)	OUTSIDE APPROACH	70
SITE 45 (RT)	OUTSIDE APPROACH	70
TOTAL		1020

	SPV.0090.01	633.0 DELINE	633.1000					
	51-INCH INTEGRAL REFLECTORS DE							
	CONCRETE BARRIER	YELLOW	WHITE	BRACKETS				
LOCATION	(LF)	(EACH)	(EACH)	(EACH)				
SITE 19 (RT) OUTSIDE APPROACH	66		3	3				
SITE 30 (LT) MEDIAN APPROACH	56	3		3				
SITE 30 (RT) OUTSIDE APPROACH	56		3	3				
SUBTOTAL	178	3	6	9				
TOTAL	178	ç		9				

PROFILE CURB	CUT	
		SPV.0090.02
		PROFILE CURB CUT
	LOCATION	(LF)
SITE 36 (RT)	OUTSIDE APPROACH	115
TOTAL		115

PROJECT NO: 1001-06-73 HWY: IH 39/90 COUNTY: DANE MISCELLANEOUS QUANTITIES SHEET **E**

NAME: PLOT DATE: 4/17/2013 2:07 PM PLOT BY: PLOT NAME: PLOT SCALE : 100.0 :1.0

NOTES:

PERFORM THE GRADING AS SHOWN ON THE PERTINENT SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL" ALSO PERFORM GRADING REQUIRED TO MAINTAIN DRAINAGE FLOW OR SPECIAL GRADING REQUIREMENTS AS SHOWN ON THIS DRAWING.

DETAILS OF STEEL THRIE BEAM BULLNOSE TERMINAL OR STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL NOT SHOWN ON THIS DRAWING SHALL CONFORM TO PERTINENT REQUIREMENTS IN SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL"

BID ITEM	APPROACH MEDIAN, LT		APPROACH OUTSIDE, RT		APPRO MEDIAN		APPROACH OUTSIDE, RT	
	(LF)	(EACH)	(LF)	(EACH)	(LF)	(EACH)	(LF)	(EACH)
MGS THRIE BEAM TRANSITION	39.4		39.4		39.4		39.4	
MGS GUARDRAIL 3	250		200		250		425	
MGS GUARDRAIL TERMINAL EAT		1		1		1		1
BARRIER SYSTEM GRADING SHAPING FINISHING		1		1		1		1
REMOVING BURIED BEAM GUARD TERMINALS		1		1				
SALVAGED RAIL	375		300		375		525	
SALVAGED GUARDRAIL END TREATMENTS						1		1
	•	•						-

DI OT DATE . 1 ,20 ,2013 3.52 DM

SITE 1

SITE 47

SCALE, FEET

SHEET

Ε

PROJECT NO:1001-06-73 HWY: IH 39/90 FILE NAME . V. 3230000 120136 01 TECH CAD 10010603 SHEETSDLAN 050101 DD DWG

COUNTY: DANE

PLAN : BEAM GUARD LOCATIONS

DI OT BY . I INC CENT

PLOT NAME . ####

PLOT SCALE . 1". 100'

SHEET 1 OF 33

DETAILS OF STEEL THRIE BEAM BULLNOSE TERMINAL OR STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL NOT SHOWN ON THIS DRAWING SHALL CONFORM TO PERTINENT REQUIREMENTS IN SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL"

	SITE 2							SITE	46	
DID (75)					DEPARTURE OUTSIDE, RT		APPROACH MEDIAN, LT		APPROACH OUTSIDE, RT	
BID ITEM				,				, ,		
	(LF)	(EACH)	(LF)	(EACH)	(LF)	(EACH)	(LF)	(EACH)	(LF)	(EACH)
STEEL THRIE BEAM STRUCTURE APPROACH				21.6					21.6	
MGS THRIE BEAM TRANSITION	39.4							39.4		
MGS GUARDRAIL 3	250						250			
STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL				1						1
MGS GUARDRAIL TERMINAL EAT		1						1		
BARRIER SYSTEM GRADING SHAPING FINISHING		1		1				1		1
ADJUSTING STEEL PLATE BEAM GUARD			975		1,875					
SALVAGED RAIL	350		50				350		50	
SALVAGED GUARDRAIL END TREATMENTS		1		1						
REMOVING BURIED BEAM GUARD TERMINALS								1		1

SCALE, FEET

SHEET

Ε

PROJECT NO:1001-06-73 HWY: IH 39/90 COUNTY: DANE PLAN : BEAM GUARD LOCATIONS DI OT DATE . 1 ,20 ,2013 3.52 DM DI OT BY . I INC CENT PLOT NAME . ####

DIOT SCALE . 1". 100"

SHEET 2 OF 33

DETAILS OF STEEL THRIE BEAM BULLNOSE TERMINAL OR STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL NOT SHOWN ON THIS DRAWING SHALL CONFORM TO PERTINENT REQUIREMENTS IN SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL"

		SITE 2					SITE 46			
BID ITEM		OACH AN, LT	APPR OUTSID		DEPAR [*] OUTSID			OACH AN, LT	APPR OUTS	OACH IDE, RT
	(LF)	(EACH)	(LF)	(EACH)	(LF)	(EACH)	(LF)	(EACH)	(LF)	(EACH)
STEEL THRIE BEAM STRUCTURE APPROACH				21.6					21.6	
MGS THRIE BEAM TRANSITION	39.4							39.4		
MGS GUARDRAIL 3	250						250			
STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL				1						1
MGS GUARDRAIL TERMINAL EAT		1						1		
BARRIER SYSTEM GRADING SHAPING FINISHING		1		1				1		1
ADJUSTING STEEL PLATE BEAM GUARD			975		1,875					
SALVAGED RAIL	350		50				350		50	
SALVAGED GUARDRAIL END TREATMENTS		1		1						
REMOVING BURIED BEAM GUARD TERMINALS								1		1

SCALE, FEET

Ε PROJECT NO:1001-06-73 HWY: IH 39/90 COUNTY: DANE PLAN : BEAM GUARD LOCATIONS SHEET 3 OF 33 SHEET DIOT BY . IINE SENT

DETAILS OF STEEL THRIE BEAM BULLNOSE TERMINAL OR STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL NOT SHOWN ON THIS DRAWING SHALL CONFORM TO PERTINENT REQUIREMENTS IN SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL"

SITE 46 NB LOG MILE 150.7

	SITE 2							SITE 46				
BID ITEM	APPR MEDIA	OACH AN, LT	APPR OUTSID		DEPARTOUTSID			OACH AN, LT	APPR OUTS	OACH IDE, RT		
	(LF)	(EACH)	(LF)	(EACH)	(LF)	(EACH)	(LF)	(EACH)	(LF)	(EACH)		
STEEL THRIE BEAM STRUCTURE APPROACH				21.6					21.6			
MGS THRIE BEAM TRANSITION	39.4							39.4				
MGS GUARDRAIL 3	250						250					
STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL				1						1		
MGS GUARDRAIL TERMINAL EAT		1						1				
BARRIER SYSTEM GRADING SHAPING FINISHING		1		1				1		1		
ADJUSTING STEEL PLATE BEAM GUARD			975		1,875							
SALVAGED RAIL	350		50				350		50			
SALVAGED GUARDRAIL END TREATMENTS		1		1								
REMOVING BURIED BEAM GUARD TERMINALS								1		1		

SCALE, FEET

SHEET 4 OF 33 SHEET

PROJECT NO:1001-06-73

HWY: IH 39/90

COUNTY: DANE

PLAN : BEAM GUARD LOCATIONS

PLOT NAME . ####

DIOT BY . IINE CENT

DETAILS OF STEEL THRIE BEAM BULLNOSE TERMINAL OR STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL NOT SHOWN ON THIS DRAWING SHALL CONFORM TO PERTINENT REQUIREMENTS IN SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL"

SITE 45 SB MILE LOG 150.0 MGS THRIE BEAM TRANSITION CONCRETE BARRIER TRANSITION SECTION 32-INCH - REMOVING ASPHALTIC SURFACE REMOVING CONCRETE BARRIER 5 SAWING ASPHALT PAVEMENT SALVAGED RAIL REMOVING BURIED BEAM GUARD TERMINALS MGS GUARDRAIL STEEL THRIE BEAM CENTER ON PIER, REMOVING BURIED BEAM GUARD TERMINALS TERMINAL EAT MAINTAIN MIN OF 50' BETWEEN PIER AND POST 5 OF BULLNOSE TERMINAL BARRIER SYSTEM GRADING SHAPING FINISHING IH 39/90 SB MGS THRIE BEAM TRANSITION -CONCRETE BARRIER TRANSITION SECTION 32-INCH BARRIER SYSTEM GRADING SHAPING FINISHING - MGS GUARDRAIL 3 REMOVING CONCRETE BARRIER -BARRIER SYSTEM GRADING SHAPING FINISHING IH 39/90 NB MGS THRIE BEAM BULLNOSE TERMINAL REMOVING ASPHALTIC SURFACE - SAWING ASPHALT PAVEMENT BARRIER SYSTEM GRADING SHAPING FINISHING MGS GUARDRAIL 3 RECONSTRUCTING INLETS (FIELD ADJUST THE RIM ELEVATION TO MGS GUARDRAIL TERMINAL EAT MATCH THE FINAL GRADING) ALLIANT ENERGY SITE 3 NB MILE LOG 150.0 SITE 45 APPROACH. APPROACH APPROACH MEDIAN PIER, LT OUTSIDE, RT OUTSIDE, RT BID ITEM (LF) (EACH) (LF) (EACH) SY (LF) (EACH) SY MGS THRIE BEAM TRANSITION 39.4 MGS GUARDRAIL 3 MGS THRIE BEAM BULLNOSE TERMINAL MGS GUARDRAIL TERMINAL EAT BARRIER SYSTEM GRADING SHAPING AND FINISHING CONCRETE BARRIER TRANSITION SECTION 32-INCH STEEL THRIE BEAM SAWING ASPHALT 70 REMOVING ASPHALTIC SURFACE SALVAGED RAIL 525 REMOVING BURIED BEAM GUARD TERMINALS REMOVING CONCRETE BARRIER 65 --- | --- | 65 | ---RECONSTRUCTNG INLETS

HWY: IH 39/90

PROJECT NO: 1001-06-73

COUNTY: DANE

PLAN : BEAM GUARD LOCATIONS

DI OT BY . I LIKE CENT

SCALE, FEET

SHEET

Ε

DETAILS OF STEEL THRIE BEAM BULLNOSE TERMINAL OR STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL NOT SHOWN ON THIS DRAWING SHALL CONFORM TO PERTINENT REQUIREMENTS IN SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL"

		SITE 4				SITE 44			
BID ITEM		APPROACH OUTSIDE, RT			APPROACH MEDIAN PIER, LT		APPROACH OUTSIDE, RT		
	(LF)	(EACH)	SY	(LF)	EACH	SY	(LF)	(EACH)	
MGS THRIE BEAM TRANSITION	39.4						39.4		
MGS GUARDRAIL 3	50						25		
MGS GUARDRAIL TERMINAL EAT		1						1	
BARRIER SYSTEM GRADING SHAPING FINISHING		1			2			1	
MGS THRIE BEAM BULLNOSE TERMINAL					2				
CONCRETE BARRIER TRANSITION SECTION 32-INCH		1						1	
REMOVING ASPHALTIC SURFACE			20			20			
SAWING ASPHALT	70						70		
STEEL THRIE BEAM				125					
SALVAGED RAIL				525					
REMOVING BURIED BEAM GUARD TERMINALS					2				
REMOVING CONCRETE BARRIER	65						65		

SCALE, FEET SHEET

Ε

PROJECT NO:1001-06-73 HWY: IH 39/90 FILE NAME . V. 3230000 120136 01 TECH CAD 10010603 SHEETSDLAN 050101 DD DWG

PLAN : BEAM GUARD LOCATIONS DI OT DATE . 1,20,2013 3.57 DM

COUNTY: DANE

DIOT BY . IINE SENT PLOT NAME . ####

SHEET 6 OF 33

DETAILS OF STEEL THRIE BEAM BULLNOSE TERMINAL OR STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL NOT SHOWN ON THIS DRAWING SHALL CONFORM TO PERTINENT REQUIREMENTS IN SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL"

	SITE 5	
BID ITEM		OACH N, LT
	(LF)	(EACH)
STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL		1
BARRIER SYSTEM GRADING SHAPING FINISHING		1
REMOVING BURIED BEAM GUARD TERMINALS		1
ADJUSTING STEEL PLATE BEAM GUARD	700	
SALVAGED RAIL	50	

SCALE, FEET

SHEET

PROJECT NO:1001-06-73 HWY: IH 39/90 EII E NIAME . V.\ 3330000\ 130136 01\ TECH\ CAD\ 10010603\ CHEETCDI AN\ 050101 DD DWC

COUNTY: DANE

DI OT DATE . 1 .20 .2013 3.59 DM

DIOT BY . IINE CENT

PLAN : BEAM GUARD LOCATIONS

PLOT NAME . ####

DIOT SCALE . 1" - 100"

SHEET 7 OF 33

NOTES:

PERFORM THE GRADING AS SHOWN ON THE PERTINENT SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL" ALSO PERFORM GRADING REQUIRED TO MAINTAIN DRAINAGE FLOW OR SPECIAL GRADING REQUIREMENTS AS SHOWN ON THIS DRAWING.

DETAILS OF STEEL THRIE BEAM BULLNOSE TERMINAL OR STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL NOT SHOWN ON THIS DRAWING SHALL CONFORM TO PERTINENT REQUIREMENTS IN SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL"

FILE NAME : X:\3230900\120136.01\TECH\CAD\10010603\SHEETSPLAN\050101_PD.DWG

PLOT DATE: 1/31/2013 11:32 AM

PLOT BY : KEITH KOSBAU

PLOT NAME : ####

PLOT SCALE : 1": 100'

WISDOT/CADDS SHEET 45

DETAILS OF STEEL THRIE BEAM BULLNOSE TERMINAL OR STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL NOT SHOWN ON THIS DRAWING SHALL CONFORM TO PERTINENT REQUIREMENTS IN SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL"

SCALE, FEET

350

Ε

FILE NAME . V. 3230000 120136 01 TECH CAD 10010603 SHEETSDLAN 050101 DD DWG

PROJECT NO:1001-06-73

COUNTY: DANE

PLAN : BEAM GUARD LOCATIONS DI OT BY . I LIKE CENT

PLOT NAME . ####

SHEET 10 OF 33 SHEET

BARRIER SYSTEM GRADING SHAPING FINISHING REMOVING BURIED BEAM GUARD TERMINALS

SALVAGED GUARDRAIL END TREATMENTS

HWY: IH 39/90

SALVAGED RAIL

DETAILS OF STEEL THRIE BEAM BULLNOSE TERMINAL OR STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL NOT SHOWN ON THIS DRAWING SHALL CONFORM TO PERTINENT REQUIREMENTS IN SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL"

		SITE 9					
BID ITEM	APPR MEDIA	OACH AN, LT	APPROACH OUTSIDE, RT				
	(LF)	(EACH)	(LF)	(EACH)			
MGS THRIE BEAM TRANSITION	39.4		39.4				
MGS GUARDRAIL 3	250		200				
MGS GUARDRAIL TERMINAL EAT		1		1			
BARRIER SYSTEM GRADING SHAPING FINISHING		1		1			
REMOVING BURIED BEAM GUARD TERMINALS		1		1			
SALVAGED RAIL	350		175				

SCALE, FEET

Ε PROJECT NO:1001-06-73 HWY: IH 39/90 COUNTY: DANE PLAN : BEAM GUARD LOCATIONS SHEET 11 OF 33 SHEET DIOT BY . IINE CENT

DETAILS OF STEEL THRIE BEAM BULLNOSE TERMINAL OR STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL NOT SHOWN ON THIS DRAWING SHALL CONFORM TO PERTINENT REQUIREMENTS IN SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL"

NOTES:

SITE 11

MEDIAN, LT

39.4

200

350

APPROACH OUTSIDE, RT

--- 39.4 ---

200

(LF) (EACH) (LF) (EACH) (LF) (EACH) (LF) (EACH)

--- 175 --- 350 --- 175

200

SITE 38

39.4 --- 39.4 ---

--- 200

APPROACH APPROACH MEDIAN, LT OUTSIDE, RT

PERFORM THE GRADING AS SHOWN ON THE PERTINENT SDD "STEEL THRIE BEAM BULLNOSE TERMINAL"
OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL" ALSO PERFORM GRADING REQUIRED TO
MAINTAIN DRAINAGE FLOW OR SPECIAL GRADING REQUIREMENTS AS SHOWN ON THIS DRAWING.

DETAILS OF STEEL THRIE BEAM BULLNOSE TERMINAL OR STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL NOT SHOWN ON THIS DRAWING SHALL CONFORM TO PERTINENT REQUIREMENTS IN SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL"

BID ITEM

BARRIER SYSTEM GRADING SHAPING FINISHING

REMOVING BURIED BEAM GUARD TERMINALS

MGS THRIE BEAM TRANSITION

MGS GUARDRAIL TERMINAL EAT

MGS GUARDRAIL 3

SALVAGED RAIL

SCALE, FEET 6 50

SHEET

Ε

NOTES:

PERFORM THE GRADING AS SHOWN ON THE PERTINENT SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL" ALSO PERFORM GRADING REQUIRED TO MAINTAIN DRAINAGE FLOW OR SPECIAL GRADING REQUIREMENTS AS SHOWN ON THIS DRAWING.

DETAILS OF STEEL THRIE BEAM BULLNOSE TERMINAL OR STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL NOT SHOWN ON THIS DRAWING SHALL CONFORM TO PERTINENT REQUIREMENTS IN SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL"

HWY: IH 39/90

PROJECT NO:1001-06-73

COUNTY: DANE

250

250

SALVAGED RAIL

SALVAGED GUARDRAIL END TREATMENTS

PLAN : BEAM GUARD LOCATIONS

SCALE, FEET

SHEET

Ε

	SITE 13		SITE 37		
BID ITEM		APPROACH OUTSIDE, RT		APPROACH OUTSIDE, RT	
	(LF)	(EACH)	(LF)	(EACH)	
MGS GUARDRAIL 3	250		250		
MGS GUARDRAIL TERMINAL EAT		1		1	
MGS GUARDRAIL TERMINAL TYPE 2		1		1	
BARRIER SYSTEM GRADING SHAPING FINISHING		1		1	
SALVAGED RAIL	275		275		
SALVAGED GUARDRAIL END TREATMENTS		2		2	

SCALE, FEET

Ε PROJECT NO:1001-06-73 HWY: IH 39/90 COUNTY: DANE PLAN : BEAM GUARD LOCATIONS SHEET SHEET 15 OF 33 DIOT BY . IINE SENT

NOTES:

PERFORM THE GRADING AS SHOWN ON THE PERTINENT SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL" ALSO PERFORM GRADING REQUIRED TO MAINTAIN DRAINAGE FLOW OR SPECIAL GRADING REQUIREMENTS AS SHOWN ON THIS DRAWING.

DETAILS OF STEEL THRIE BEAM BULLNOSE TERMINAL OR STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL NOT SHOWN ON THIS DRAWING SHALL CONFORM TO PERTINENT REQUIREMENTS IN SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL"

EXISTING ASPHALTIC CURB LOCATIONS ARE APPROXIMATE, CONTRACTOR SHALL FIELD VERIFY. REMOVE DAMAGED ASPHALTIC CURB AND REPLACE TO THE LIMITS AS DIRECTED BY THE ENGINEER.

EXISTING LOCATIONS OF FLUMES ARE APPROXIMATE CONTRACTOR SHALL FIELD VERIFY, EXISTING FLUMES MAY REQUIRE RELOCATION TO AVOID BEAM GUARD POST SPACING, ALTERNATIVE POST SPACING MAY BE USED IF APPROVED BY THE ENGINEER.

SCALE, FEET

SHEET 16 OF 33 SHEET E

HWY: IH 39/90

PROJECT NO: 1001-06-73

COUNTY: DANE

PLAN : BEAM GUARD LOCATIONS

DIOT BY . LIKE SENT

PERFORM THE GRADING AS SHOWN ON THE PERTINENT SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL" ALSO PERFORM GRADING REQUIRED TO MAINTAIN DRAINAGE FLOW OR SPECIAL GRADING REQUIREMENTS AS SHOWN ON THIS DRAWING.

DETAILS OF STEEL THRIE BEAM BULLNOSE TERMINAL OR STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL NOT SHOWN ON THIS DRAWING SHALL CONFORM TO PERTINENT REQUIREMENTS IN SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL"

EXISTING ASPHALTIC CURB LOCATIONS ARE APPROXIMATE, CONTRACTOR SHALL FIELD VERIFY. REMOVE DAMAGED ASPHALTIC CURB AND REPLACE TO THE LIMITS AS DIRECTED BY THE ENGINEER.

EXISTING LOCATIONS OF FLUMES ARE APPROXIMATE CONTRACTOR SHALL FIELD VERIFY, EXISTING FLUMES MAY REQUIRE RELOCATION TO AVOID BEAM GUARD POST SPACING, ALTERNATIVE POST SPACING MAY BE USED IF APPROVED BY THE ENGINEER.

		SITE 15					
BID ITEM		APPROACH MEDIAN, LT		OACH E, RT			
	(LF)	(EACH)	(LF)	(EACH)			
MGS THRIE BEAM TRANSITION	39.4		39.4				
MGS GUARDRAIL 3	12.5		237.5				
MGS GUARDRAIL TERMINAL EAT		1		1			
BARRIER SYSTEM GRADING SHAPING FINISHING		1		1			
SALVAGED RAIL	75		325				
SALVAGED GUARDRAIL END TREATMENTS		1		1			

SCALE, FEET

Ε PROJECT NO:1001-06-73 HWY: IH 39/90 COUNTY: DANE PLAN : BEAM GUARD LOCATIONS SHEET 17 OF 33 SHEET DI OT BY . I LIKE CENT

MEDIAN, LT

(LF) (EACH)

39.4 ---

12.5

BID ITEM

BARRIER SYSTEM GRADING SHAPING FINISHING

SALVAGED GUARDRAIL END TREATMENTS

MGS THRIE BEAM TRANSITION

MGS GUARDRAIL TERMINAL EAT

MGS GUARDRAIL 3

SALVAGED RAIL

PERFORM THE GRADING AS SHOWN ON THE PERTINENT SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL" ALSO PERFORM GRADING REQUIRED TO MAINTAIN DRAINAGE FLOW OR SPECIAL GRADING REQUIREMENTS AS SHOWN ON THIS DRAWING.

DETAILS OF STEEL THRIE BEAM BULLNOSE TERMINAL OR STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL NOT SHOWN ON THIS DRAWING SHALL CONFORM TO PERTINENT REQUIREMENTS IN SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL"

SCALE, FEET 6 50

PERFORM THE GRADING AS SHOWN ON THE PERTINENT SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL" ALSO PERFORM GRADING REQUIRED TO MAINTAIN DRAINAGE FLOW OR SPECIAL GRADING REQUIREMENTS AS SHOWN ON THIS DRAWING.

DETAILS OF STEEL THRIE BEAM BULLNOSE TERMINAL OR STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL NOT SHOWN ON THIS DRAWING SHALL CONFORM TO PERTINENT REQUIREMENTS IN SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL"

EXISTING ASPHALTIC CURB LOCATIONS ARE APPROXIMATE, CONTRACTOR SHALL FIELD VERIFY. REMOVE DAMAGED ASPHALTIC CURB AND REPLACE TO THE LIMITS AS DIRECTED BY THE ENGINEER.

EXISTING LOCATIONS OF FLUMES ARE APPROXIMATE CONTRACTOR SHALL FIELD VERIFY, EXISTING FLUMES MAY REQUIRE RELOCATION TO AVOID BEAM GUARD POST SPACING, ALTERNATIVE POST SPACING MAY BE USED IF APPROVED BY THE ENGINEER.

COUNTY: DANE

PLOT NAME . ####

SCALE, FEET

SHEET

Ε

HWY: IH 39/90

PROJECT NO:1001-06-73

PERFORM THE GRADING AS SHOWN ON THE PERTINENT SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL" ALSO PERFORM GRADING REQUIRED TO MAINTAIN DRAINAGE FLOW OR SPECIAL GRADING REQUIREMENTS AS SHOWN ON THIS DRAWING.

DETAILS OF STEEL THRIE BEAM BULLNOSE TERMINAL OR STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL NOT SHOWN ON THIS DRAWING SHALL CONFORM TO PERTINENT REQUIREMENTS IN SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL"

EXISTING ASPHALTIC CURB LOCATIONS ARE APPROXIMATE, CONTRACTOR SHALL FIELD VERIFY. REMOVE DAMAGED ASPHALTIC CURB AND REPLACE TO THE LIMITS AS DIRECTED BY THE ENGINEER.

EXISTING LOCATIONS OF FLUMES ARE APPROXIMATE CONTRACTOR SHALL FIELD VERIFY, EXISTING FLUMES MAY REQUIRE RELOCATION TO AVOID BEAM GUARD POST SPACING, ALTERNATIVE POST SPACING MAY BE USED IF APPROVED BY THE ENGINEER.

	SITE 18			SITE	SITE 32		
BID ITEM		APPROACH OUTSIDE, RT		APPROACH OUTSIDE, RT		TURE E, RT	
		(EACH)	(LF)	(EACH)	(LF)	(EACH)	
MGS THRIE BEAM TRANSITION	39.4		39.4				
MGS GUARDRAIL 3			237.5				
MGS GUARDRAIL TERMINAL EAT		1		1			
MGS GUARDRAIL TERMINAL TYPE 2						1	
BARRIER SYSTEM GRADING SHAPING FINISHING		1		1			
SALVAGED RAIL			325				
SALVAGED GUARDRAIL END TREATMENTS		1		1		1	

SCALE, FEET SHEET

Ε

PROJECT NO:1001-06-73 HWY: IH 39/90 FILE NAME . V. 3230000 120136 01 TECH CAD 10010603 SHEETSDLAN 050101 DD DWG

DI OT DATE . 1,20,2013 4.00 DM

COUNTY: DANE

PLAN : BEAM GUARD LOCATIONS DI OT BY . I LIKE CENT

PLOT NAME . ####

SHEET 20 OF 33

PERFORM THE GRADING AS SHOWN ON THE PERTINENT SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL" ALSO PERFORM GRADING REQUIRED TO MAINTAIN DRAINAGE FLOW OR SPECIAL GRADING REQUIREMENTS AS SHOWN ON THIS DRAWING.

DETAILS OF STEEL THRIE BEAM BULLNOSE TERMINAL OR STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL NOT SHOWN ON THIS DRAWING SHALL CONFORM TO PERTINENT REQUIREMENTS IN SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL"

DI OT BY . I LIKE CENT

PERFORM THE GRADING AS SHOWN ON THE PERTINENT SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL" ALSO PERFORM GRADING REQUIRED TO MAINTAIN DRAINAGE FLOW OR SPECIAL GRADING REQUIREMENTS AS SHOWN ON THIS DRAWING.

DETAILS OF STEEL THRIE BEAM BULLNOSE TERMINAL OR STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL NOT SHOWN ON THIS DRAWING SHALL CONFORM TO PERTINENT REQUIREMENTS IN SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL"

EXISTING ASPHALTIC CURB LOCATIONS ARE APPROXIMATE, CONTRACTOR SHALL FIELD VERIFY. REMOVE DAMAGED ASPHALTIC CURB AND REPLACE TO THE LIMITS AS DIRECTED BY THE ENGINEER.

EXISTING LOCATIONS OF FLUMES ARE APPROXIMATE CONTRACTOR SHALL FIELD VERIFY, EXISTING FLUMES MAY REQUIRE RELOCATION TO AVOID BEAM GUARD POST SPACING. ALTERNATIVE POST SPACING MAY BE USED IF APPROVED BY THE ENGINEER.

	SIT	E 20
BID ITEM	APPROACH OUTSIDE, RT	
	(LF)	(EACH)
MGS GUARDRAIL 3	887.5	
MGS GUARDRAIL TERMINAL EAT		1
MGS GUARDRAIL TERMINAL TYPE 2		1
BARRIER SYSTEM GRADING SHAPING FINISHING		1
SALVAGED RAIL	950	
SALVAGED GUARDRAIL END TREATMENTS		2

SCALE, FEET

SHEET 22 OF 33 SHEET

Ε

COUNTY: DANE

PLAN : BEAM GUARD LOCATIONS

PERFORM THE GRADING AS SHOWN ON THE PERTINENT SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL" ALSO PERFORM GRADING REQUIRED TO MAINTAIN DRAINAGE FLOW OR SPECIAL GRADING REQUIREMENTS AS SHOWN ON THIS DRAWING.

DETAILS OF STEEL THRIE BEAM BULLNOSE TERMINAL OR STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL NOT SHOWN ON THIS DRAWING SHALL CONFORM TO PERTINENT REQUIREMENTS IN SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL"

EXISTING ASPHALTIC CURB LOCATIONS ARE APPROXIMATE, CONTRACTOR SHALL FIELD VERIFY. REMOVE DAMAGED ASPHALTIC CURB AND REPLACE TO THE LIMITS AS DIRECTED BY THE ENGINEER.

EXISTING LOCATIONS OF FLUMES ARE APPROXIMATE CONTRACTOR SHALL FIELD VERIFY, EXISTING FLUMES MAY REQUIRE RELOCATION TO AVOID BEAM GUARD POST SPACING, ALTERNATIVE POST SPACING MAY BE USED IF APPROVED BY THE ENGINEER.

FILE NAME : X:\3230900\120136.01\TECH\CAD\10010603\SHEETSPLAN\050101_PD.DWG

PLOT DATE : 2/1/2013 3:22 PM

PLOT BY : KEITH KOSBAU

PLOT NAME: ####

PLOT SCALE : 1": 100'

WISDOT/CADDS SHEET 45

PERFORM THE GRADING AS SHOWN ON THE PERTINENT SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL" ALSO PERFORM GRADING REQUIRED TO MAINTAIN DRAINAGE FLOW OR SPECIAL GRADING REQUIREMENTS AS SHOWN ON THIS DRAWING.

DETAILS OF STEEL THRIE BEAM BULLNOSE TERMINAL OR STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL NOT SHOWN ON THIS DRAWING SHALL CONFORM TO PERTINENT REQUIREMENTS IN SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL"

EXISTING ASPHALTIC CURB LOCATIONS ARE APPROXIMATE, CONTRACTOR SHALL FIELD VERIFY. REMOVE DAMAGED ASPHALTIC CURB AND REPLACE TO THE LIMITS AS DIRECTED BY THE ENGINEER.

EXISTING LOCATIONS OF FLUMES ARE APPROXIMATE CONTRACTOR SHALL FIELD VERIFY, EXISTING FLUMES MAY REQUIRE RELOCATION TO AVOID BEAM GUARD POST SPACING. ALTERNATIVE POST SPACING MAY BE USED IF APPROVED BY THE ENGINEER.

		SITE	SITE 23					
BID ITEM		APPROACH APPROA MEDIAN, LT OUTSIDE,			APPROACH MEDIAN, LT		APPROACH OUTSIDE, RT	
		(EACH)	(LF)	(EACH)	(LF)	(EACH)	(LF)	(EACH)
MGS THRIE BEAM TRANSITION	39.4		39.4		39.4		39.4	
MGS GUARDRAIL 3	287.5		237.5		287.5		237.5	
MGS GUARDRAIL TERMINAL EAT		1		1		1		1
BARRIER SYSTEM GRADING SHAPING FINISHING		1		1		1		1
SALVAGED RAIL	375		325		375		325	
SALVAGED GUARDRAIL END TREATMENTS		1		1		1		1

DI OT DATE . 1,20,2013 4.16 DM

SCALE, FEET 50

SHEET

Ε

PROJECT NO:1001-06-73 HWY:IH 39/90

COUNTY: DANE

PLAN : BEAM GUARD LOCATIONS

DI OT BY . I LIKE CENT

PLOT NAME . ####

DIOT SCALE . 1". 100"

SHEET 24 OF 33

PERFORM THE GRADING AS SHOWN ON THE PERTINENT SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL" ALSO PERFORM GRADING REQUIRED TO MAINTAIN DRAINAGE FLOW OR SPECIAL GRADING REQUIREMENTS AS SHOWN ON THIS DRAWING.

DETAILS OF STEEL THRIE BEAM BULLNOSE TERMINAL OR STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL NOT SHOWN ON THIS DRAWING SHALL CONFORM TO PERTINENT REQUIREMENTS IN SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL"

EXISTING ASPHALTIC CURB LOCATIONS ARE APPROXIMATE, CONTRACTOR SHALL FIELD VERIFY. REMOVE DAMAGED ASPHALTIC CURB AND REPLACE TO THE LIMITS AS DIRECTED BY THE ENGINEER.

EXISTING LOCATIONS OF FLUMES ARE APPROXIMATE CONTRACTOR SHALL FIELD VERIFY, EXISTING FLUMES MAY REQUIRE RELOCATION TO AVOID BEAM GUARD POST SPACING. ALTERNATIVE POST SPACING MAY BE USED IF APPROVED BY THE ENGINEER.

SCALE, FEET =

SHEET 25 OF 33 SHEET **E**

HWY: IH 39/90

PROJECT NO:1001-06-73

COUNTY: DANE

PLAN : BEAM GUARD LOCATIONS

DI OT BY . I INE CENT

DETAILS OF STEEL THRIE BEAM BULLNOSE TERMINAL OR STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL NOT SHOWN ON THIS DRAWING SHALL CONFORM TO PERTINENT REQUIREMENTS IN SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL"

EXISTING ASPHALTIC CURB LOCATIONS ARE APPROXIMATE, CONTRACTOR SHALL FIELD VERIFY. REMOVE DAMAGED ASPHALTIC CURB AND REPLACE TO THE LIMITS AS DIRECTED BY THE ENGINEER.

EXISTING LOCATIONS OF FLUMES ARE APPROXIMATE CONTRACTOR SHALL FIELD VERIFY, EXISTING FLUMES MAY REQUIRE RELOCATION TO AVOID BEAM GUARD POST SPACING. ALTERNATIVE POST SPACING MAY BE USED IF

		SITE 26					
BID ITEM		OACH AN, LT	APPROACH OUTSIDE, RT				
	(LF)	(EACH)	(LF)	(EACH)			
MGS GUARDRAIL 3	225		225				
MGS GUARDRAIL TERMINAL EAT		1		1			
MGS GUARDRAIL TERMINAL TYPE 2		1		1			
BARRIER SYSTEM GRADING SHAPING FINISHING		1		1			
MGS THRIE BEAM BULLNOSE TERMINAL							
SALVAGED RAIL	125		125				
SALVAGED GUARDRAIL END TREATMENTS		2		2			

SCALE, FEET 🖺

Ε PROJECT NO:1001-06-73 COUNTY: DANE PLAN : BEAM GUARD LOCATIONS SHEET 26 OF 33 SHEET HWY: IH 39/90 DI OT DATE . 1 ,20 ,201 7 4.21 DM DI OT BY . I LIKE CENT PLOT NAME . #### DIOT SCALE . 1". 100"

PERFORM THE GRADING AS SHOWN ON THE PERTINENT SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL" ALSO PERFORM GRADING REQUIRED TO MAINTAIN DRAINAGE FLOW OR SPECIAL GRADING REQUIREMENTS AS SHOWN ON THIS DRAWING.

DETAILS OF STEEL THRIE BEAM BULLNOSE TERMINAL OR STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL NOT SHOWN ON THIS DRAWING SHALL CONFORM TO PERTINENT REQUIREMENTS IN SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL"

EXISTING ASPHALTIC CURB LOCATIONS ARE APPROXIMATE, CONTRACTOR SHALL FIELD VERIFY. REMOVE DAMAGED ASPHALTIC CURB AND REPLACE TO THE LIMITS AS DIRECTED BY THE ENGINEER.

EXISTING LOCATIONS OF FLUMES ARE APPROXIMATE CONTRACTOR SHALL FIELD VERIFY, EXISTING FLUMES MAY REQUIRE RELOCATION TO AVOID BEAM GUARD POST SPACING, ALTERNATIVE POST SPACING MAY BE USED IF

--- 1

375 ---

SCALE, FEET

Ε COUNTY: DANE PLAN : BEAM GUARD LOCATIONS SHEET 27 OF 33 SHEET PROJECT NO: 1001-06-73 HWY: IH 39/90 DI OT DATE . 1,20,2013 4.21 DM DI OT BY . I INC CENT PLOT NAME . #### PLOT SCALE . 1". 100"

375

BARRIER SYSTEM GRADING SHAPING FINISHING

SALVAGED GUARDRAIL END TREATMENTS

SALVAGED RAIL

PERFORM THE GRADING AS SHOWN ON THE PERTINENT SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL" ALSO PERFORM GRADING REQUIRED TO MAINTAIN DRAINAGE FLOW OR SPECIAL GRADING REQUIREMENTS AS SHOWN ON THIS DRAWING.

DETAILS OF STEEL THRIE BEAM BULLNOSE TERMINAL OR STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL NOT SHOWN ON THIS DRAWING SHALL CONFORM TO PERTINENT REQUIREMENTS IN SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL"

EXISTING ASPHALTIC CURB LOCATIONS ARE APPROXIMATE, CONTRACTOR SHALL FIELD VERIFY. REMOVE DAMAGED ASPHALTIC CURB AND REPLACE TO THE LIMITS AS DIRECTED BY THE ENGINEER.

EXISTING LOCATIONS OF FLUMES ARE APPROXIMATE CONTRACTOR SHALL FIELD VERIFY, EXISTING FLUMES MAY REQUIRE RELOCATION TO AVOID BEAM GUARD POST SPACING, ALTERNATIVE POST SPACING MAY BE USED IF APPROVED BY THE ENGINEER

(LF) (EACH) (LF) (EACH) (LF) (EACH) (LF) (EACH) MGS THRIE BEAM TRANSITION 39.4 39.4 ---39.4 39.4 MGS GUARDRAIL 3 287.5 --- 237**.**5 237.5 237.5 MGS GUARDRAIL TERMINAL EAT BARRIER SYSTEM GRADING SHAPING FINISHING --- | 1 | --- | 375 --- 325 --- 1 ---325 325 SALVAGED GUARDRAIL END TREATMENTS

SCALE, FEET

SHEET 28 OF 33 SHEET **E**

COUNTY: DANE

PLAN : BEAM GUARD LOCATIONS

DI OT BY . I LIKE CENT

PERFORM THE GRADING AS SHOWN ON THE PERTINENT SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL" ALSO PERFORM GRADING REQUIRED TO MAINTAIN DRAINAGE FLOW OR SPECIAL GRADING REQUIREMENTS AS SHOWN ON THIS DRAWING.

DETAILS OF STEEL THRIE BEAM BULLNOSE TERMINAL OR STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL NOT SHOWN ON THIS DRAWING SHALL CONFORM TO PERTINENT REQUIREMENTS IN SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL"

EXISTING ASPHALTIC CURB LOCATIONS ARE APPROXIMATE, CONTRACTOR SHALL FIELD VERIFY. REMOVE DAMAGED ASPHALTIC CURB AND REPLACE TO THE LIMITS AS DIRECTED BY THE ENGINEER.

EXISTING LOCATIONS OF FLUMES ARE APPROXIMATE CONTRACTOR SHALL FIELD VERIFY, EXISTING FLUMES MAY REQUIRE RELOCATION TO AVOID BEAM GUARD POST SPACING, ALTERNATIVE POST SPACING MAY BE USED IF APPROVED BY THE ENGINEER.

FILE NAME . V. 3230000 120136 01 TECH CAD 10010603 SHEETSDLAN 050101 DD DWG

HWY: IH 39/90

PROJECT NO: 1001-06-73

DI OT DATE . 1,20,2013 4.22 DM DI OT BY . I LIKE CENT

COUNTY: DANE

PLOT NAME . ####

PLAN : BEAM GUARD LOCATIONS

PLOT SCALE . 1" - 100"

SCALE, FEET SHEET 29 OF 33 SHEET

Ε

PERFORM THE GRADING AS SHOWN ON THE PERTINENT SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL" ALSO PERFORM GRADING REQUIRED TO MAINTAIN DRAINAGE FLOW OR SPECIAL GRADING REQUIREMENTS AS SHOWN ON THIS DRAWING.

DETAILS OF STEEL THRIE BEAM BULLNOSE TERMINAL OR STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL NOT SHOWN ON THIS DRAWING SHALL CONFORM TO PERTINENT REQUIREMENTS IN SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL"

EXISTING ASPHALTIC CURB LOCATIONS ARE APPROXIMATE, CONTRACTOR SHALL FIELD VERIFY. REMOVE DAMAGED ASPHALTIC CURB AND REPLACE TO THE LIMITS AS DIRECTED BY THE ENGINEER.

EXISTING LOCATIONS OF FLUMES ARE APPROXIMATE CONTRACTOR SHALL FIELD VERIFY, EXISTING FLUMES MAY REQUIRE RELOCATION TO AVOID BEAM GUARD POST SPACING, ALTERNATIVE POST SPACING MAY BE USED IF APPROVED BY THE ENGINEER.

HWY: IH 39/90

PROJECT NO: 1001-06-73

COUNTY: DANE

PLAN : BEAM GUARD LOCATIONS

DIOT BY . LINE SENT

SHEET 30 OF 33

SCALE, FEET

SHEET

Ε

PERFORM THE GRADING AS SHOWN ON THE PERTINENT SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL" ALSO PERFORM GRADING REQUIRED TO MAINTAIN DRAINAGE FLOW OR SPECIAL GRADING REQUIREMENTS AS SHOWN ON THIS DRAWING.

DETAILS OF STEEL THRIE BEAM BULLNOSE TERMINAL OR STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL NOT SHOWN ON THIS DRAWING SHALL CONFORM TO PERTINENT REQUIREMENTS IN SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL"

EXISTING ASPHALTIC CURB LOCATIONS ARE APPROXIMATE, CONTRACTOR SHALL FIELD VERIFY. REMOVE DAMAGED ASPHALTIC CURB AND REPLACE TO THE LIMITS AS DIRECTED BY THE ENGINEER.

EXISTING LOCATIONS OF FLUMES ARE APPROXIMATE CONTRACTOR SHALL FIELD VERIFY, EXISTING FLUMES MAY REQUIRE RELOCATION TO AVOID BEAM GUARD POST SPACING, ALTERNATIVE POST SPACING MAY BE USED IF APPROVED BY THE ENGINEER.

	SITE 36					
BID ITEM		APPROACH MEDIAN, LT		APPROACH OUTSIDE, RT		EN BR.
		(EACH)	(LF)	(EACH)	(LF)	(EACH)
MGS THRIE BEAM TRANSITION	39.4		39.4		78.8	
MGS GUARDRAIL 3	200		50		243	
MGS GUARDRAIL TERMINAL EAT		1		1		
BARRIER SYSTEM GRADING SHAPING FINISHING		1		2		
SALVAGED RAIL	70		70		75	
SALVAGED GUARDRAIL END TREATMENTS		1		1		1
PROFILE CURB CUT			115			

SCALE, FEET

Ε COUNTY: DANE PLAN : BEAM GUARD LOCATIONS SHEET PROJECT NO: 1001-06-73 HWY: IH 39/90 SHEET 31 OF 33 DIOT BY . IINE SENT

PERFORM THE GRADING AS SHOWN ON THE PERTINENT SDD "STEEL THRIE BEAM BULLNOSE TERMINAL"
OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL" ALSO PERFORM GRADING REQUIRED TO
MAINTAIN DRAINAGE FLOW OR SPECIAL GRADING REQUIREMENTS AS SHOWN ON THIS DRAWING.

DETAILS OF STEEL THRIE BEAM BULLNOSE TERMINAL OR STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL NOT SHOWN ON THIS DRAWING SHALL CONFORM TO PERTINENT REQUIREMENTS IN SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL"

EXISTING ASPHALTIC CURB LOCATIONS ARE APPROXIMATE, CONTRACTOR SHALL FIELD VERIFY, REMOVE DAMAGED ASPHALTIC CURB AND REPLACE TO THE LIMITS AS DIRECTED BY THE ENGINEER.

EXISTING LOCATIONS OF FLUMES ARE APPROXIMATE CONTRACTOR SHALL FIELD VERIFY, EXISTING FLUMES MAY REQUIRE RELOCATION TO AVOID BEAM GUARD POST SPACING, ALTERNATIVE POST SPACING MAY BE USED IF APPROVED BY THE ENGINEER.

SITE 43 SB LOG MILE 149.2

	SITE 43			
BID ITEM	APPR OUTSID		APPROACH MEDIAN, LT	
	(LF)	(EACH)	(LF)	(EACH)
ADJUSTING STEEL PLATE BEAM GUARD	3,950			
STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL	-	1		
MGS GUARDRAIL TERMINAL EAT				1
BARRIER SYSTEM GRADING SHAPING FINISHING		1		1
SALVAGED RAIL	50		225	
SALVAGED GUARDRAIL END TREATMENTS				1
REMOVING BURIED BEAM GUARD TERMINALS		1		
MGS GUARDRAIL 3			175	
MGS GUARDRAIL TERMINAL TYPE 2				1

SCALE, FEET

50 100

Ε

HWY:IH 39/90

COUNTY: DANE

PLAN : BEAM GUARD LOCATIONS

DI OT BY . I INC CENT

SHEET 32 OF 33

SHEET

SHEET

PROJECT NO:1001-06-73

PERFORM THE GRADING AS SHOWN ON THE PERTINENT SDD "STEEL THRIE BEAM BULLNOSE TERMINAL"
OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL" ALSO PERFORM GRADING REQUIRED TO
MAINTAIN DRAINAGE FLOW OR SPECIAL GRADING REQUIREMENTS AS SHOWN ON THIS DRAWING.

DETAILS OF STEEL THRIE BEAM BULLNOSE TERMINAL OR STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL NOT SHOWN ON THIS DRAWING SHALL CONFORM TO PERTINENT REQUIREMENTS IN SDD "STEEL THRIE BEAM BULLNOSE TERMINAL" OR SDD "STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL"

EXISTING ASPHALTIC CURB LOCATIONS ARE APPROXIMATE, CONTRACTOR SHALL FIELD VERIFY, REMOVE DAMAGED ASPHALTIC CURB AND REPLACE TO THE LIMITS AS DIRECTED BY THE ENGINEER.

EXISTING LOCATIONS OF FLUMES ARE APPROXIMATE CONTRACTOR SHALL FIELD VERIFY, EXISTING FLUMES MAY REQUIRE RELOCATION TO AVOID BEAM GUARD POST SPACING, ALTERNATIVE POST SPACING MAY BE USED IF APPROVED BY THE ENGINEER.

	SITE 43			
BID ITEM		DACH E, RT	APPROACH MEDIAN, LT	
	(LF)	(EACH)	(LF)	(EACH)
ADJUSTING STEEL PLATE BEAM GUARD	3,950			
STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL		1		
MGS GUARDRAIL TERMINAL EAT				1
BARRIER SYSTEM GRADING SHAPING FINISHING		1		1
SALVAGED RAIL	50		225	
SALVAGED GUARDRAIL END TREATMENTS				1
REMOVING BURIED BEAM GUARD TERMINALS		1		
MGS GUARDRAIL 3			175	
MGS GUARDRAIL TERMINAL TYPE 2	-			1

SCALE, FEET 6 50

SHEET

Ε

PROJECT NO:1001-06-73 HWY: H 39/90 COUNTY: DANE PLOT DATE 1/29/2013 4:22 DM PLOT BY 1 LIKE SENZ PLOT NAME : #### PLOT SCALE 1/1: 1001

6

Standard Detail Drawing List

```
08A05-18B
               INLET COVERS TYPE B, B-A, C, MS, MS-A, & WM
08C08-01
               INLETS MEDIAN 1 AND 2 GRATE
08D04-05
               CONCRETE SURFACE DRAINS & ASPHALTIC FLUMES
08E08-03
               TYPICAL INSTALLATIONS OF EROSION BALES / TEMPORARY DITCH CHECKS
08E09-06
               SILT FENCE
08E10-02
               INLET PROTECTION TYPE A, B, C AND D
08F04-07
               JOINT TIES FOR CONCRETE PIPE AND CONCRETE COLLAR DETAIL
14B07-13A
               CONCRETE BARRIER TEMPORARY PRECAST, 12'-6"
14B07-13B
               CONCRETE BARRIER TEMPORARY PRECAST, 12'-6"
14B07-13C
               CONCRETE BARRIER TEMPORARY PRECAST, 12'-6"
14B07-13D
               CONCRETE BARRIER TEMPORARY PRECAST, 12'-6"
14B07-13E
               CONCRETE BARRIER TEMPORARY PRECAST, 12'-6"
14B07-13F
               CONCRETE BARRIER TEMPORARY PRECAST, 12'-6"
14B07-13G
               CONCRETE BARRIER TEMPORARY PRECAST, 12'-6"
14B07-13H
               CONCRETE BARRIER TEMPORARY PRECAST, 12'-6"
               STEEL PLATE BEAM GUARD, CLASS "A" INSTALLATION & ELEMENTS STEEL PLATE BEAM GUARD, CLASS "A" INSTALLATION & ELEMENTS
14B15-07A
14B15-07B
               STEEL PLATE BEAM GUARD, CLASS "A", INSTALLATION & ELEMENTS
STEEL PLATE BEAM GUARD, CLASS "A" (AT BRIDGES, OBSTACLES AND SIDEROADS/DRIVEWAYS)
14B15-07C
14B18-06A
14B18-06B
               STEEL PLATE BEAM GUARD, CLASS "A" AT MEDIAN APPROACH TO BRIDGES
14B20-11A
               STEEL THRIE BEAM STRUCTURE APPROACH
14B20-11D
               STEEL THRIE BEAM STRUCTURE APPROACH, CONNECTION TO SLOPED END PARAPETS
14B20-11G
               STEEL THRIE BEAM STRUCTURE APPROACH, CONNECTOR PLATE DETAIL
               STEEL THRIE BEAM STRUCTURE APPROACH, SINGLE SLOPE ATTACHMENT
14B20-11H
14B22-05A
               CONCRETE BARRIER, SINGLE-FACED (WITH ANCHORAGE)
14B22-05B
               CONCRETE BARRIER, SINGLE-FACED (WITH ANCHORAGE)
14B24-07A
               STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL
14B24-07B
               STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL
14B24-07C
               STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL
14B26-02A
               STEEL THRIE BEAM BULLNOSE TERMINAL
               STEEL THRIE BEAM BULLNOSE TERMINAL
14B26-02B
14B26-02C
               STEEL THRIE BEAM BULLNOSE TERMINAL
14B26-02D
               STEEL THRIE BEAM BULLNOSE TERMINAL
14B26-02E
               STEEL THRIE BEAM BULLNOSE TERMINAL
14B42-02A
               MIDWEST GUARDRAIL SYSTEM (MGS) GUARDRAIL
14B42-02B
               MIDWEST GUARDRAIL SYSTEM (MGS) GUARDRAIL
14B42-02C
               MI DWEST GUARDRAIL SYSTEM (MGS) GUARDRAIL
14B43-02B
               MIDWEST GUARDRAIL SYSTEM LONG SPAN MGS (L)
14B43-02C
               MIDWEST GUARDRAIL SYSTEM LONG SPAN MGS (L)
14B44-01A
               MIDWEST GUARDRAIL SYSTEM ENERGY ABSORBING TERMINAL (MGS)
14B44-01B
               MIDWEST GUARDRAIL SYSTEM ENERGY ABSORBING TERMINAL (MGS)
14B44-01C
               MIDWEST GUARDRAIL SYSTEM ENERGY ABSORBING TERMINAL (MGS)
14B45-03A
               MIDWEST GUARDRAIL SYSTEM THRIE BEAM TRANSITION (MGS)
14B45-03B
               MIDWEST GUARDRAIL SYSTEM THRIE BEAM TRANSITION (MGS)
14B45-03C
               MIDWEST GUARDRAIL SYSTEM THRIE BEAM TRANSITION (MGS)
               MIDWEST GUARDRAIL SYSTEM THRIE BEAM TRANSITION (MGS)
14B45-03D
14B45-03E
               MIDWEST GUARDRAIL SYSTEM THRIE BEAM TRANSITION (MGS)
14B45-03F
               MIDWEST GUARDRAIL SYSTEM THRIE BEAM TRANSITION (MGS)
14B45-03G
               MIDWEST GUARDRAIL SYSTEM THRIE BEAM TRANSITION (MGS)
14B45-03H
               MIDWEST GUARDRAIL SYSTEM THRIE BEAM TRANSITION (MGS)
14B45-03I
               MIDWEST GUARDRAIL SYSTEM THRIE BEAM TRANSITION (MGS)
14B45-03J
               MIDWEST GUARDRAIL SYSTEM THRIE BEAM TRANSITION (MGS)
               MIDWEST GUARDRAIL SYSTEM (MGS) TYPE 2 TERMINAL
14B47-01A
               MI DWEST GUARDRAIL SYSTEM (MGS) TYPE 2 TERMI NAL
14B47-01B
               MI DWEST GUARDRAIL SYSTEM (MGS) TYPE 2 TERMINAL
14B47-01C
15A02-07
               DELINEATOR POST, DELINEATOR BRACKET AND DELINEATOR
15D12-02
               TRAFFIC CONTROL, LANE CLOSURE, SPEEDS GREATER THAN 40 M.P.H.
15D27-01
               TRAFFIC CONTROL, SHOULDER CLOSURE ON DIVIDED ROADWAY, SPEEDS GREATER THAN 40 MPH
```


6

Ö

 \Box

 ∞

TYPE "B" (APPROXIMATE WEIGHT 405 LBS.)

FRAME......294 LBS. GRATE..... 111 LBS.

ALTERNATIVE GRATE FOR TYPE "B" COVER

(APPROXIMATE GRATE WEIGHT 134 LBS.)

USE WHERE PEDESTRIAN OR BICYCLE TRAFFIC IS POSSIBLE. NOTED AS TYPE B-A ON THE DRAINAGE TABLE

TYPE "C"

(APPROXIMATE WEIGHT 259 LBS.)

FRAME...... 152 LBS. GRATE..... 107 LBS.

GENERAL NOTES

DETAILS OF CONSTRUCTION, MATERIALS AND WORKMANSHIP NOT SHOWN ON THIS DRAWING SHALL CONFORM TO THE PERTINENT REQUIREMENTS OF THE STANDARD SPECIFICATIONS AND THE APPLICABLE SPECIAL PROVISIONS.

DETAIL DRAWINGS FOR PROPOSED ALTERNATE DESIGNS FOR CATCH BASIN, MANHOLE AND INLET COVERS SHALL BE SUBMITTED TO THE ENGINEER FOR APPROVAL PROVIDING THAT SUCH ALTERNATE DESIGNS MAKE PROVISION FOR EQUIVALENT CAPACITY AND STRENGTH.

ROUND FRAMES AND COVERS SHALL HAVE CONTINUOUSLY MACHINED BEARING SURFACES TO PREVENT ROCKING AND RATTLING.

THE ACTUAL WEIGHT OF COVERS MAY VARY WITHIN 5 PERCENT, PLUS OR MINUS, OF THE APPROXIMATE WEIGHT.

ALTERNATIVE TYPE "MS"

(APPROXIMATE GRATE WEIGHT 329 LBS.)

USE WHERE PEDESTRIAN OR BICYCLE TRAFFIC IS PERMITTED NOTED AS TYPE MS-A ON THE DRAINAGE TABLE

TYPE "MS"

(APPROXIMATE GRATE WEIGHT 268 LBS.)

USE ON FREEWAYS AND EXPRESSWAYS NOTED AS TYPE MS ON DRAINAGE TABLE

DIAGONAL SLOTS, SHALL BE ORIENTED TO THE DIRECTION OF FLOW AS ILLUSTRATED. GRATES ARE MANUFACTURED TO BE REVERSIBLE.

NOTE: CURB BOX HEIGHT ADJUSTABLE 6" TO 9"

TYPE "WM"

(APPROXIMATE WEIGHT 648 LBS.)

GRATE..... 156 LBS. CURB BOX..... 137 LBS.

INLET COVERS TYPE B, B-A, C, MS, MS-A, & WM

> STATE OF WISCONSIN DEPARTMENT OF TRANSPORTATION

APPROVED

6/5/2012 /S/ Jerry H. Zogg ROADWAY STANDARDS DEVELOPMENT ENGINEER

 \triangleleft ∞ Ω Ω

GENERAL NOTES

DETAILS OF CONSTRUCTION, MATERIALS AND WORKMANSHIP NOT SHOWN ON THIS DRAWING SHALL CONFORM TO THE PERTINENT REQUIREMENTS OF THE STANDARD SPECIFICATIONS AND THE APPLICABLE SPECIAL PROVISIONS.

TEMPORARY DITCH CHECKS EITHER EROSION BALES OR MANUFACTURED SHALL BE PAID FOR UNDER THE BID ITEM OF TEMPORARY DITCH CHECK. THE DEPARTMENT WILL NOT PAY FOR TEMPORARY DITCH CHECKS CONSTRUCTED OF A SINGLE ROW OF EROSION BALES.

WHEN ALTERING THE DIRECTION OF FLOW

PLAN VIEW

FRONT ELEVATION

WHEN EXISTING GROUND SLOPES AWAY FROM FILL SLOPE

EROSION BALES FOR SHEET FLOW

TYPICAL INSTALLATIONS OF **EROSION BALES / TEMPORARY** DITCH CHECKS

6

 ∞

 ∞

Ω

Δ

STATE OF WISCONSIN DEPARTMENT OF TRANSPORTATION

APPROVED

6/04/02 /S/ Beth Connestro
CHIEF ROADWAY DEVELOPMENT ENGINEER

6

Ō Ö

TYPICAL APPLICATION OF SILT FENCE

6

b

Ō

Ш

PLAN VIEW SILT FENCE AT MEDIAN SURFACE DRAINS

GENERAL NOTES

DETAILS OF CONSTRUCTION NOT SHOWN ON THIS DRAWING SHALL CONFORM TO THE PERTINENT REQUIREMENTS OF THE STANDARD SPECIFICATIONS AND APPLICABLE SPECIAL PROVISIONS.

- ① HORIZONTAL BRACE REQUIRED WITH 2" X 4" WOODEN FRAME OR EQUIVALENT AT TOP OF POSTS.
- 2 FOR MANUAL INSTALLATIONS THE TRENCH SHALL BE A MINIMUM OF 4" WIDE & 6" DEEP TO BURY AND ANCHOR THE GEOTEXTILE FABRIC. FOLD MATERIAL TO FIT TRENCH AND BACKFILL & COMPACT TRENCH WITH EXCAVATED SOIL.
- 3 WOOD POSTS SHALL BE A MINIMUM SIZE OF 11/8" X 11/8" OF OAK OR HICKORY.
- 4) SILT FENCE TO EXTEND ACROSS THE TOP OF THE PIPE.
- (5) CONSTRUCT SILT FENCE FROM A CONTINUOUS ROLL IF POSSIBLE BY CUTTING LENGTHS TO AVOID JOINTS. IF A JOINT IS NECESSARY USE ONE OF THE FOLLOWING TWO METHODS; A) OVERLAP THE END POSTS AND TWIST, OR ROTATE, AT LEAST 180 DEGREES, B) HOOK THE END OF EACH SILT FENCE LENGTH.

TRENCH DETAIL

SILT FENCE TIE BACK

(WHEN REQUIRED BY THE ENGINEER)

SILT FENCE

တ ∞

INLET PROTECTION, TYPE A

GENERAL NOTES

INLET PROTECTION DEVICES SHALL BE MAINTAINED OR REPLACED AT THE DIRECTION OF THE ENGINEER.

MANUFACTURED ALTERNATIVES APPROVED AND LISTED ON THE DEPARTMENT'S EROSION CONTROL PRODUCT ACCEPTABILITY LIST MAY BE

WHEN REMOVING OR MAINTAINING INLET PROTECTION, CARE SHALL BE TAKEN SO THAT THE SEDIMENT TRAPPED ON THE GEOTEXTILE FABRIC DOES NOT FALL INTO THE INLET. ANY MATERIAL FALLING INTO THE INLET SHALL BE REMOVED IMMEDIATELY.

- 1) FINISHED SIZE, INCLUDING FLAP POCKETS WHERE REQUIRED, SHALL EXTEND A MINIMUM OF 10" AROUND THE PERIMETER TO FACILITATE MAINTENANCE OR REMOVAL.
- (2) FOR INLET PROTECTION, TYPE C (WITH CURB BOX), AN ADDITIONAL 18" OF FABRIC IS WRAPPED AROUND THE WOOD AND SECURED WITH STAPLES. THE WOOD SHALL NOT BLOCK THE ENTIRE HEIGHT OF THE CURB BOX OPENING.
- (3) FLAP POCKETS SHALL BE LARGE ENOUGH TO ACCEPT WOOD 2X4.

INLET PROTECTION, TYPE C (WITH CURB BOX)

INSTALLATION NOTES

TYPE B & C

TRIM EXCESS FABRIC IN THE FLOW LINE TO WITHIN 3" OF THE GRATE.

THE CONTRACTOR SHALL DEMONSTRATE A METHOD OF MAINTENANCE, USING A SEWN FLAP, HAND HOLDS OR OTHER METHOD TO PREVENT ACCUMULATED SEDIMENT FROM ENTERING THE INLET.

TYPE D

DO NOT INSTALL INLET PROTECTION TYPE D IN INLETS SHALLOWER THAN 30", MEASURED FROM THE BOTTOM OF THE INLET TO THE TOP OF THE GRATE.

TRIM EXCESS FABRIC IN THE FLOW LINE TO WITHIN 3" OF THE GRATE.

THE INSTALLED BAG SHALL HAVE A MINIMUM SIDE CLEARANCE, BETWEEN THE INLET WALLS AND THE BAG, MEASURED AT THE BOTTOM OF THE OVERFLOW HOLES, OF 3". WHERE NECESSARY THE CONTRACTOR SHALL CINCH THE BAG, USING PLASTIC ZIP TIES, TO ACHIEVE THE 3" CLEARANCE, THE TIES SHALL BE PLACED AT A MAXIMUM OF 4" FROM THE BOTTOM OF THE BAG.

INLET PROTECTION TYPE A, B, C, AND D

STATE OF WISCONSIN DEPARTMENT OF TRANSPORTATION

APPROVED

10/16/02

/S/ Beth Cannestra CHIEF ROADWAY DEVELOPMENT ENGINEER 6

0

ш

 ∞

GENERAL NOTES

DETAILS OF CONSTRUCTION, MATERIALS, AND WORKMANSHIP NOT SHOWN ON THIS DRAWING SHALL CONFORM TO THE PERTINENT REQUIREMENTS OF THE STANDARD SPECIFICATIONS AND APPLICABLE SPECIAL PROVISIONS.

CONCRETE CULVERT AND STORM SEWER PIPE SHALL BE TIED TOGETHER IN THE MANNER ILLUSTRATED BY THIS DETAIL AT LOCATIONS DESIGNATED IN THE STANDARD SPECIFICATIONS AND THE PLAN. THE CONTRACTOR MAY USE EITHER ALTERNATE 1, 2 OR 3 FOR DRAINAGE STRUCTURES, ONLY ALTERNATE 1 AND 3 MAY BE USED FOR CATTLE PASSES, UNLESS OTHERWISE STATED IN THE CONTRACT. THE MATERIALS, FABRICATION AND WORK NECESSARY TO TIE THE PIPE BY THIS DETAIL WILL BE CONSIDERED INCIDENTAL TO THE PIPE AND APRON ENDWALLS IF REQUIRED.

DETAILED DRAWINGS FOR PROPOSED ALTERNATE DESIGNS FOR JOINT TIES SHALL BE SUBMITTED TO THE ENGINEER FOR APPROVAL.

JOINT TIES TO BE HOT-DIP GALVANIZED PER ASTM A 153.

- (1) & OF TONGUE AND GROOVE OR BELL AND SPIGOT JOINTS.
- THE INSIDE OF THE THREADED INSERTS SHALL BE CLEAN TO ALLOW THE INSERTION OF THREADED EYE
- ${\mathfrak S}$ HOLES SHALL BE CAST-IN-PLACE OR DRILLED 12 INCHES FROM ${\mathfrak L}$ OF TONGUE AND GROOVE.
- 4 BOLT PROJECTION INSIDE OF PIPE SHALL NOT EXCEED 2 INCHES.
- (5) OPENING TO BE ROD DIAMETER PLUS 1 INCH.
- ⑥ LENGTH ADEQUATE TO EXTEND TO WITHIN $rac{1}{2}$ INCH OF THE INNER SURFACE OF THE PIPE.

D

ADJUSTABLE TIE ROD TABLE 5/8 5 12-60 3/4 5 1/2 3/4 90-108 DIMENSIONS SHOWN ARE IN INCHES **TAPERED** PLAIN RIGHT AND LEFT THREADS **SLEEVE NUTS** 2 1/2" MIN. THREADED

ADJUSTABLE TIE ROD (ALTERNATE NO. 3)

FOR PIPE SECTIONS REQUIRING TIE RODS

TRANSVERSE SECTION

SECTION A-A

CONCRETE COLLAR DETAIL

JOINT TIES FOR CONCRETE PIPE AND CONCRETE COLLAR DETAIL

STATE OF WISCONSIN DEPARTMENT OF TRANSPORTATION

6/5/2012 /S/ Jerry H. Zogg DATE ROADWAY STANDARDS DEVELOPMENT ENGINEER

 ∞

Ω

BAR	BAR SIZE	NO. OF BARS	LENGTH FT.				
4V1	4	2	1'-11"				
4V2	4	2	2'-2"				
4V3	4	2	2'-6"				
4V4	4	2	2'-9"				
4V5	4	2	3'-2"				
4V6	4	2	3'-4"				
4F1	4	2	12'-0"				
4F2	4	2	7'-6"				
5F3	5	1	11'-9''				
LOOP ASSEMBLY							
6D1	6	1	8'-5"				
6D2	6	1	7'-7''				
6D3	6	1	8'-6"				

DETAIL "C"

BENT BAR DETAIL

TAPER BARRIER SECTION

BARRIER SECTION

BILL OF MATERIALS (PER 12'-6" BARRIER SECTION)

BAR	BAR SIZE	NO. OF BARS	LENGTH FT.					
4A1	4	12	6'-0"					
6A2	6	6	2'-11"					
5B1	5	3	12'-2"					
4C1	4	2	12'-2"					
LOOP ASSEMBLY								
6D1	6	2	8'-5"					
6D2	6	2	7'-7"					
6D3	6	2	8'-6"					

1) NEVER USE LOOP BARS (6D1, 6D2 OR 6D3) TO LIFT, MOVE OR REPOSITION THE BARRIER.

PLAN VIEW LOOP BAR ASSEMBLY

(MARKED END SHOWN, INVERT FOR OTHER END)

GENERAL NOTES

BARRIER SECTION

CONCRETE BARRIER TEMPORARY PRECAST, 12'-6"

STATE OF WISCONSIN DEPARTMENT OF TRANSPORTATION

Ð ۵

 $\boldsymbol{\varpi}$

Ω

6

Ö

THROUGH BOLTED ANCHOR INSTALLATION ON BRIDGE DECK

(DO NOTUSE ON CONCRETE BRIDGE DECK WITH ASPHALT OVERLAY)

CONCRETE BARRIER TEMPORARY PRECAST MASONRY ANCHOR TYPE S 1 1/8- INCH . 🗸 $(1\frac{1}{8}" - ASTM (A307)$ ADHESIVE BONDED ANCHOR NON-TRAFFIC WITH HEAVY HEX NUT SIDE AND 1/2" X 3" X 3" SQUARE WASHER (A36)) TRAFFIC SIDE **EMBEDMENT** ablaBRIDGE DECK, APPROACH SLAB OR CONCRETE PAVEMENT

REMOVABLE ADHESIVE BONDED ANCHOR INSTALLATION ON CONCRETE BRIDGE DECK, CONCRETE APPROACH SLAB, OR CONCRETE PAVEMENT

(DO NOT USE ON CONCRETE WITH AN ASPHALTIC OVERLAY)

GENERAL NOTES

(1) CONCRETE BARRIER TEMPORARY PRECAST, 12'-6" SHALL BE ANCHORED IF: THE DISTANCE TO A 2 FOOT OR GREATER DROPOFF THAT IS STEEPER THAN 3H: 1V. FOR EXAMPLE THE EDGE OF A BRIDGE DECK OR A DROPOFF AT THE EDGE OF PAVEMENT, IS LESS THAN 4 FEET FROM THE SIDE OF THE BARRIER CLOSEST TO THE DROPOFF AND THE POSTED SPEED IS 45 MPH OR GREATER, OR

THE DISTANCE TO A 2 FOOT OR GREATER DROPOFF THAT IS STEEPER THAN 3H: 1V. FOR EXAMPLE THE EDGE OF A BRIDGE DECK OR A DROPOFF AT THE EDGE OF PAVEMENT. IS LESS THAN 2 FEET FROM THE SIDE OF THE BARRIER CLOSEST TO THE DROPOFF AND THE POSTED SPEED IS 40 MPH OR LESS.

(2) ANCHORING IS INCIDENTAL TO CONCRETE BARRIER TEMPORARY PRECAST.

WITH THE APPROVAL OF THE ENGINEER, REMOVABLE ADHESIVE BONDED (EPOXY) ANCHOR BOLT INSTALLATION MAY BE USED IN LIEU OF THROUGH BOLTED ANCHOR INSTALLATION. THE ADHESIVE BONDED ANCHOR BOLT MUST BE REMOVABLE. USE ASTM (A307) MASONRY ANCHORS TYPE S 1 1/a-INCH, EMBEDDED TO A DEPTH SUFFICIENT TO DEVELOP THE ULTIMATE CAPACITY OF THE ANCHOR BOLT AND PROVIDE DOCUMENTATION TO CONFIRM THIS.

UPON REMOVAL OR RELOCATION OF THE BARRIER UNITS, REMOVE ALLANCHOR BOLTS AND COMPLETELY FILL IN THE REMAINING HOLES IN CONCRETE BRIDGE DECKS, CONCRETE APPROACH SLABS AND CON-CRETE PAVEMENTS THAT ARE TO REMAIN, WITH A NON-SHRINK COMMERICAL GROUT OR EPOXY MATERIAL IDENTIFIED ON THE CURRENT WISDOT APPROVED PRODUCTS LIST.

STAKE DOWN INSTALLATION FOR ASPHALTIC OR PORTLAND CEMENT CONCRETE SURFACE

(STAKING IS INCIDENTAL TO CONCRETE BARRIER TEMPORARY PRECAST)

FREE STANDING TRANSITION TO TIED-DOWN SYSTEM

(PLACE TRANSITION IN A TANGENT SECTION OF BARRIER PARALLEL TO THE ROADWAY, IF TRANSITION OCCURS ON STRUCTURAL SLAB, ANCHOR AS SHOWN,)

CONCRETE BARRIER TEMPORARY PRECAST, 12'-6'

STATE OF WISCONSIN DEPARTMENT OF TRANSPORTATION 6

 \mathbf{m}

Ω Ω

GUSSET LOCATION

CAP DETAILS FOR TEMPORARY CONCRETE BARRIER TO 56" PERMANENT CONCRETE BARRIER

GUSSETS 1 - 12

ALL GUSSETS 1/8" STEEL PLATE

GUSSET DIMENSIONS								
GUSSET NO.	Α	В	С	D				
1	2 1/8"	73/4"	1/4"	8				
2	4"/16 "	7%6"	1/2"	8				
3	61/2"	73/8"	11/16 ''	81/16 "				
4	85/6"	7¾ ₆ "	7/8"	81/16"				
5	101/8"	7''	1 1/16 "	8½ ₆ "				
6	11 ¹⁵ / ₁₆ ''	6 ¹³ / ₁₆ "	1 1/4"	81/16 "				
7	13¾"	65⁄8''	1 7/6"	81/16"				
8	15% "	67∕ ₁₆ ''	1 % "	8½ ₆ "				
9	173/8"	6 ¹ /4"	1 13/16 "	81/16"				
10	193/6"	6½ ₆ "	1 15/16 ''	81/16"				
11	21"	57/8"	23/6"	81/16"				
12	2213/16 "	511/16 "	25/6"	81/16"				

SIDE PLATES, TOP PLATE, END PLATE AND GUSSETS ARE 12 GAUGE ASTM A36 STEEL AND GALVANIZED.

GUSSETS AND END PLATE ARE STITCH WELDED ON 3 SIDES. TWO TRIANGULAR SIDE PLATES ARE STITCH WELDED TO TOP PLATE, END PLATE AND GUSSETS.

> CONCRETE BARRIER TEMPORARY PRECAST, 12'-6"

STATE OF WISCONSIN DEPARTMENT OF TRANSPORTATION

POST SPACING STANDARD INSTALLATION

SYMMETRICAL TABOUT € ∕-12 GAGE

SECTION THRU W BEAM

BEAM SPLICE AT WOOD POST AND POST MOUNTING DETAIL

GENERAL NOTES

- 1 PROVIDE TYPE "H" SILVER REFLECTIVE SHEETING ON ALL REFLECTORS EXCEPT THOSE LOCATED ALONG THE LEFT EDGE OF ONE-WAY ROADWAYS, WHICH SHALL BE PROVIDED WITH TYPE "H" YELLOW REFLECTIVE SHEETING.
- 2 DO NOT INSTALL REFLECTORS ON THE FIRST 50 FEET OF THE APPROACH END OF THE ENERGY ABSORBING TERMINAL.
- 3 REVERSE EVERY OTHER REFLECTOR FOR 2-WAY VISIBILITY. THE CONTRACTOR MAY FURNISH TWO-SIDED REFLECTORS IN LIEU OF ONE-SIDED REFLECTORS.
- 4 PROVIDE AN ANGLE OF BEND OF 90° ± 1° FOR TWO-SIDED REFLECTORS.
- (5) 8 % " ϕ X 2 " BUTTON HEAD BOLTS WITH OVAL SHOULDERS & RECESS NUTS.
- 6 $\frac{1}{8}$ " ϕ X 1'-6" BUTTON HEAD BOLT AND AND RECESS NUT WITH ROUND WASHER UNDER NUT.

12½" LAP $\frac{3}{4}$ " × $2\frac{1}{2}$ " POST BOLT SLOT . Ç POST BOLT SLOT " × 1 1/8" NOTCHED SPLICE BOLT SLOT PLASTIC -BLCKOUT DIRECTION OF TRAFFIC

FRONT VIEW BEAM SPLICE AT STEEL POST

TYPICAL SPLICING DETAILS OF STEEL PLATE BEAM GUARD

NESTED W BEAM (NW)

USE ALL OTHER STANDARD BEAM GUARD DETAILS FOR CONSTRUCTING NESTED W BEAM (NW)

	-	12'-6" OF		-	1		
		EFFECTIVE LEN	NGTH OF BEAM				
	3'-1 ¹ / ₂ " C-C	3'-1 ^l / ₂ " C-C	3'-1 ¹ / ₂ " C-C	3'-1 <mark>/</mark> 2" C-C			
İ	POST SPACING	POST SPACING	POST SPACING	POST SPACING			
			•	•			
	-	+ +			2'-3¾''		
				NICATION DIDECTION			
	FINIS SHOL	HED/ JLDER		DIRECTION TRAFFIC	N OF		
That it							

FRONT VIEW

POST SPACING FOR LONGER POST AT HALF POST SPACING W BEAM (LHW)

REFLECTOR SPACING

220.00. 0					
		BEAM GUARD	REFLECTOR	NO. SURFACES	MIN. NO.
		LENGTH	SPACING	REFLECTORIZED	REFLECTORS
	ONE WAY	< 200'	50' C-C	1	3
	TRAFFIC	> 200'	100, C-C	1	
	TWO WAY	< 200'	25' C-C	1(3)	6
	TRAFFIC	> 200'	50' C-C	1 🔍	
	TWO WAY	< 200'	50' C-C	2(4)	3
	TRAFFIC	> 200'	100' C-C	2 4	

ONE SIDED REFLECTOR DETAIL AND TYPICAL INSTALLATION

STEEL PLATE BEAM GUARD, CLASS "A", INSTALLATION & ELEMENTS

STATE OF WISCONSIN DEPARTMENT OF TRANSPORTATION 6

Ω Ω

 $\mathbf{\omega}$

- 1-10d GALVANIZED NAILS

DETAIL FOR TRIPLE BLOCKS

TRIPLE BLOCK DETAIL IS LIMITED TO ONE LOCATION WITHIN A BEAM GUARD RUN.

NOTES: USE DOUBLE OR TRIPLE BLOCKS WHEN UNDERGROUND OBSTACLES PREVENT THE POST FROM BEING INSTALLED.

6

Ē

. כ

14

 $\boldsymbol{\varpi}$

DO NOT USE EXTRA BLOCKOUTS IF IT CAUSES THE POST TO BE DRIVEN BEYOND SHOULDER HINGE POINT OR CAUSES A FIXED OBJECT TO BE WITHIN THE DEFLECTION DISTANCE OF THE BARRIER.

PLAN VIEW
BEAM LAPPING DETAIL

POST DRIVING FOR CONTINUOUS UNDERGROUND OBSTRUCTION

STEEL PLATE BEAM GUARD, CLASS "A", INSTALLATION & ELEMENTS

STATE OF WISCONSIN
DEPARTMENT OF TRANSPORTATION

APPROVED

5/23/II
DATE
ROADWAY STANDARDS DEVELOPMENT
ENGINEER

S.D.D. 14

 $\mathbf{\omega}$

BEAM GUARD AT SIDEROADS OR DRIVEWAYS

BEAM GUARD AT OBSTACLES **EXIT END - ONE WAY TRAFFIC**

GENERAL NOTES

DETAILS OF CONSTRUCTION, MATERIALS AND WORKMANSHIP SHALL CONFORM TO THE PERTINENT STANDARD SPECIFICATIONS AND THE APPLICABLE SPECIAL

W6 X 9 OR W6 X 8.5 STEEL POSTS WITH NOTCHED PLASTIC BLOCKOUTS ARE ACCEPTABLE ALTERNATIVES FOR 6" X 8" WOOD POSTS WITH WOOD OR PLASTIC BLOCKOUTS. USE APPROVED NOTCHED PLASTIC BLOCKOUTS WITH STEEL POSTS.

THE LOCATIONS AND LENGTHS OF BEAM GUARD ARE SHOWN ELSEWHERE IN THE PLAN.

- (1) STEEL THRIE BEAM STRUCTURAL APPROACH (STBSA) SEE CURRENT SDD 14B20.
- 2 USE AN APPROVED END TREATMENT FOR THE TRAFFIC APPROACH SIDE OF BRIDGE/OBSTACLES. USE TYPE 2 ANCHORAGE ONLY AT THE DOWNSTREAM ENDS OF BEAM GUARD LOCATED ALONG ROADWAYS WITH ONE WAY TRAFFIC.

3	MINIMUM LATERAL DISTANCE FROM FACE OF BEAM GUARD TO FIXED OBJECT	POST SPACING
	3'-6"	3' - 11/2"
	4'-6"	6' - 3"

BEAM GUARD AT FULL WIDTH BRIDGES

BEAM GUARD AT OBSTACLES - TWO WAY TRAFFIC

(RAIL TO OBSTACLE CLEARANCE 3'-6" TO 4'-6")

END TP 1 STBSA VARIABLE TREATMENT BEGIN FLARE END FLARE → EDGE OF FINISHED SHOULDER BRIDGE->SHOULDER **─** TRAFFIC EDGE OF TRAVELED WAY -FLARE RATE PER TABLE 1 AT RIGHT (FLARE RATES FOR BEAM GUARD AT NARROW BRIDGES)

BEAM GUARD AT NARROW BRIDGES (FLARED TO SHOULDER EDGE, THEN PARALLEL TO ROADWAY)

TABLE 1 FLARE RATES FOR BEAM **GUARD AT NARROW BRIDGES**

POSTED SPEED (MPH)	FLARE RATE
25	13:1
30	15:1
35	16:1
40	18:1
45	21:1
50	24:1
55	26:1
65	30:1

STEEL PLATE BEAM GUARD CLASS "A' AT BRIDGES, OBSTACLES AND SIDEROADS/DRIVEWAYS

STATE OF WISCONSIN DEPARTMENT OF TRANSPORTATION

APPROVED	
8-21-07	/S/ Jerry H.Zogg
DATE	ROADWAY STANDARDS DEVELOPMENT
FHWΔ	ENGINEER

6

b

 $\boldsymbol{\varpi}$

18

6

 $\mathbf{\omega}$ Ω

Ω

- 1 STEEL THRIE BEAM STRUCTURAL APPROACH (STBSA) SEE CURRENT SDD 14B20.
- 2) LOCATIONS AND LENGTHS OF BEAM GUARD ARE SHOWN ELSEWHERE IN THE PLAN.

BEAM GUARD AT MEDIAN APPROACH TO BRIDGES

STEEL PLATE BEAM GUARD CLASS "A" AT MEDIAN APPROACH TO BRIDGES

STATE OF WISCONSIN
DEPARTMENT OF TRANSPORTATION

6

Ω

ي

APPROVED

8-21-07 /S/ Jerry H. Zogg
DATE ROADWAY STANDARDS DEVELOPMENT ENGINEER

S.D.D. 14 B 18-6b

CONNECTOR PLATE DIMENSION (PER ASSEMBLY)				
PLATE	QUANTITY	SHAPE	SIZE (A x B x C x D)	THICKNESS
P1	1	в₫	20" × 20"	3/6 "
P2	1	B₽Ĉ	20" × 20" × 28 % 6"	3/6 "
Р3	1	B _ C D	39" × 35/8" × 20" × 195/6"	3∕16 "
S1	4	BA	18 1/16 " × 3 5/8" × 18 3/4"	1/4"
S2	1	B C D	10 ¹ / ₄ " × 2 ¹ / ₁₆ " × 10 ³ / ₈ " × ¹ / ₂ "	1/4"
S3	1	B₽D	3" × 1½6" × 3½" × ½"	1/4"
S4	1	вЁ	61/8" × 21/6"	1/4"
S5	1	вД	61/8" × 11/16"	1/4"
S6	1	в≜	7¾" × 1¾"	1/4"
S7	1	₽	2%6" × 6" × 3%" × 5%"	1/4"
S8	1	A DC	1 ⁵ / ₃₂ " × 7 ¹ / ₂ " × 2 ¹ / ₂ " × 7 ³ / ₈ "	1/4"
S9	1	C B	61/16" × 63/16" × 13/32"	1/4"
S10	1	₩	11/8" × 91/8" × 35/8" × 911/16 "	1/4"
S11	1	C A	8½" × 8¾" × 1⅓6 "	1/4"

Ö

b

 $\boldsymbol{\varpi}$

0

STEEL THRIE BEAM STRUCTURE APPROACH

STEEL THRIE BEAM STRUCTURE APPROACH, CONNECTOR PLATE DETAIL 6

20

Ω

Ω

Ω

STATE OF WISCONSIN DEPARTMENT OF TRANSPORTATION

APPROVED 8/31/2012

/S/ Jerry H. Zogg ROADWAY STANDARDS DEVELOPMENT ENGINEER

GENERAL NOTES

CONSTRUCT PER STANDARD SPECIFICATION 614.

CONNECTOR PLATE, DRILLING HOLES THROUGH PARAPET, BOLTS, NUTS, WASHERS AND REPAIRING DAMAGED CONCRETE ARE INCIDENTAL TO THE CONTRACT.

1 BOLTS MAY BE A325 BOLTS OR A449 BOLTS. BOLT LENGTH AND THREADING LENGTH ARE TO ALLOW FOR A TIGHT CONNECTION BETWEEN RIGID BARRIER AND THRIE BEAM CONNECTION PLATE. CONTRACTOR IS TO FIELD VERIFY BOLT LENGTH AND THREAD LENGTH. ONE ROUND WASHER REQUIRED BETWEEN BOLT HEAD AND THRIE BEAM TERMINAL CONNECTOR. BOLTS THAT EXTEND THROUGH THE PARAPET AND OUT THE BACK FACE REQUIRE A HARDENED ROUND STEEL WASHER THAT IS 2" O.D. X 5/8" THICK AND ONE PLATE WASHER REPAIR ANY DAMAGED CONCRETE FROM BOLT INSTALLATION.

CONNECTOR PLATE LOCATION

STEEL THRIE BEAM STRUCTURE APPROACH

STEEL THRIE BEAM STRUCTURE APPROACH, SINGLE SLOPE ATTACHMENT

Ω

Ω

Ω

STATE OF WISCONSIN
DEPARTMENT OF TRANSPORTATION

APPROVED

8/31/2012 /S/ Jerry H. Zogg

DATE ROADWAY STANDARDS DEVELOPMENT ENGINEER

S.D.D. 14 B 20-11h

TRANSITION DETAILS OF DOUBLE FACED TO SINGLE FACED CONCRETE MEDIAN BARRIER (FOOTINGS ARE NOT SHOWN)

PLAN VIEW

HIGH SIDE CONCRETE BARRIER DETAIL

TYPICAL APPLICATIONS

JOINT DETAILS

GENERAL NOTES

SPLICES OF LONGITUDINAL BARS SHALL BE MADE WITH BARS LAPPED AT LEAST 18-INCHES AND FIRMLY TIED OR FASTENED TOGETHER.

ALL BAR STEEL REINFORCEMENT SHALL CONFORM TO REQUIREMENTS OF AASHTO M31, GRADE 60.

- 1 BARRIER SHALL BE INSTALLED ON A CONCRETE SHOULDER INSTEAD OF THE CONCRETE FOOTING WHEN SPECIFIED OR SHOWN ELSEWHERE IN CONTRACT.
- 2 OPENINGS FOR DRAINAGE SHALL BE PLACED AT LOW POINTS OF VERTICAL CURVES OR WHERE DIRECTED BY THE ENGINEER.
- (3) 3/4-INCH BEVEL OR 1-INCH RADIUS (TYPICAL).
- 4 NO. 4 BARS SHALL BE CONTINUED THROUGH CONSTRUCTION JOINTS.
- (5) EXPANSION JOINTS SHALL BE PLACED AT EXISTING EXPANSION JOINTS IN THE PAVEMENT AND AT STRUCTURES. SEE REINFORCEMENT AT BARRIER END DETAIL.
- 6 SAWED CONTRACTION JOINTS SHALL BE PROVIDED ACROSS THE FULL WIDTH OF THE BARRIER FOOTING, AND IN FRONT, TOP AND BACK FACE OF THE BARRIER AT EXISTING PAVEMENT JOINTS AND AT UNIFORM INTERVALS BETWEEN WITH A MAXIMUM SPACING OF 25 FEET.

©CONTRACTION JOINT

CONCRETE BARRIER SINGLE-FACED (WITH ANCHORAGE)

STATE OF WISCONSIN DEPARTMENT OF TRANSPORTATION

Ō $\mathbf{\omega}$

6

22- $\mathbf{\omega}$ Ω Δ

5a

STEEL PLATE BEAM GUARD ENERGY ABSORBING TERMINAL

STATE OF WISCONSIN DEPARTMENT OF TRANSPORTATION

HAZARD FREE AREA INSIDE BULLNOSE

GENERAL NOTES

SEE STANDARD DETAIL DRAWINGS 14 B 26a-e.

FOR POSTS 2 THROUGH 14, IF POST CANNOT BE INSTALLED AT SPECIFIED LOCATION 1 EXTRA STANDARD WOOD BLOCK MAY BE ADDED.

- 1 SLOTTED THRIE BEAM RAIL NO. 1. (POST 1 TO POST 1)
- 2A SLOTTED THRIE BEAM RAIL NO. 2A, (POST 1 TO POST 5)
- 2B SLOTTED THRIE BEAM RAIL NO. 2B, (POST 1 TO POST 5)
- 3 SLOTTED THRIE BEAM RAIL NO. 3. (POST 5 TO POST 8)
- 4 UNBENT STANDARD THRIE-BEAM RAIL NO. 4, (POST 8 TO POST 10 & POST 10 TO POST 12)
- BEYOND POST 12: CONSTRUCT STEEL THRIE BEAM USE UNBENT STANDARD THRIE BEAM RAIL NO. 5.
- (1) DIMENSIONS ARE FROM BACK OF RAIL TO BACK OF RAIL WHERE RAIL IS BOLTED TO POST.
- TAPER BEGINNING AT POST NO.1 MUST CONTINUE TO POST NO.5. PAST POST NO.5 TAPER MAY END OR BE EXTENDED UP TO 15.6 DEGREES TO FIT VARIABLE MEDIAN WIDTHS. (SEE PLAN)
- FOR MEDIANS WIDER THAN 14'-21/2" MEASURED FROM BACK OF RAIL TO BACK OF RAIL WHERE RAIL IS BOLTED TO A POST OR BLOCK.

PLAN VIEW

WIDENED BULLNOSE DESIGN

(INSTALLATION AT TWIN BRIDGES WITH BI-DIRECTIONAL TRAFFIC SHOWN)

STEEL THRIE BEAM **BULLNOSE TERMINAL**

STATE OF WISCONSIN DEPARTMENT OF TRANSPORTATION

D Ď

 \Box

26

6

9 2 $\mathbf{\omega}$ 14 Ω

2 b

6

Ω

26 $\mathbf{\omega}$

Ω Ω

Ē

b

 $\mathbf{\omega}$

3/6" DIA. X 1/2" SLOTS ON CORRUGATIONS FOR

NOSE CABLE RETAINING CLIP

SLOT B

GENERAL NOTES

SEE STANADRD DETAIL DRAWINGS 14 B 26a-e.

SLOT D

STEEL THRIE BEAM **BULLNOSE TERMINAL**

STATE OF WISCONSIN DEPARTMENT OF TRANSPORTATION

APPROVED

/S/ Jerry H. Zogg
ROADWAY STANDARDS DEVELOPMENT
ENGINEER 9-16-2010

14 Ω Δ

2 e

26-

 $\mathbf{\omega}$

GENERAL NOTES

- (1) WOOD OR STEEL POSTS (W6X9 OR W6X8.5) MAY BE USED. DO NOT INTERMIX WOOD AND STEEL POSTS. INSTALL STEEL POSTS WITH HOLES ON APPROACHING TRAFFIC SIDE.
- ② USE WOOD OR APPROVED PLASTIC BLOCKOUTS. WOOD BLOCKOUTS MAY BE CONSTRUCTED OUT OF TWO OR MORE WOOD BLOCKOUTS. SEE ALTERNATE WOOD BLOCKOUT DETAIL. DIMENSIONS OF APPROVED PLASTIC BLOCKOUTS MAY VARY.
- (3) IF ROCK IS ENCOUNTERED DURING EXCAVATION, PROVIDE A HOLE 12 INCHES IN DIAMETER EXTENDING 20 INCHES DEEP INTO THE ROCK. PLACE APPROXIMATELY 21/2INCHES OF GRANULAR MATERIAL IN THE BOTTOM OF THE HOLE. CUT THE POSTS THE TO LENGTH AMD INSTALL. BACKFILL WITH EXCAVATED MATERIAL AND COMPACT. BACKFILL IS TO BE FREE OF LARGE ROCKS.
- (4) WHEN THE DISTANCE FROM BACK OF POST TO SHOULDER HINGE POINT IS LESS THAN 2 FEET INSTALL LONGER POST AT HALF POST SPACING (K).
- (5) FOR NEW MGS INSTALLATION TOP OF W-BEAM RAIL TOLERANCE IS ± 1". FOR EXISTING MGS INSTALLATION TOP OF W-BEAM IS BETWEEN 27¾" TO 32".

END VIEW

LOCATED ALONG A ROADWAY SHOULDER STANDARD INSTALLATION

SETTING STEEL OR WOOD POST IN ROCK $^{\scriptsize{\textcircled{3}}}$

END VIEW
LOCATED ALONG A CURBED ROADWAY

MGS LONGER POST AT HALFPOST SPACING W BEAM (K)

STEEL POST & HOLE PUNCHING DETAIL (w6X9)

PLAN VIEW
WOOD POST,
BLOCKOUT & BEAM

PLAN VIEW
STEEL POST,
PLASTIC BLOCKOUT & BEAM

WOOD POST (6" X 8") NOMINAL

WOOD OR PLASTIC BLOCKOUT

MIDWEST GUARDRAIL SYSTEM (MGS) GUARDRAIL

STATE OF WISCONSIN
DEPARTMENT OF TRANSPORTATION

S.D.D.

 \Box

6

2 a

N

Ω

Ω

ONE SIDED REFLECTOR DETAIL AND TYPICAL INSTALLATION

6

Ū

D

 $\boldsymbol{\varpi}$

QUARTER POST SPACING (QS)

¹⁵/₁₆" R

SYMMETRICAL

12 GAGE

ABOUT €

6

BEAM GUARD REFLECTOR NO. SURFACES MIN. NO.

SPACING | REFLECTORIZED | REFLECTORS 3 6 1 3 2 4 3

> MIDWEST GUARDRAIL SYSTEM (MGS) GUARDRAIL

STATE OF WISCONSIN DEPARTMENT OF TRANSPORTATION Ω Ω

3

DETAIL FOR 16" BLOCKOUT DEPTH

IT IS ACCEPTABLE TO USE BLOCKOUTS UP TO 16" DEEP TO INCREASE THE POST OFFSET TO AVOID UNDERGROUND OBSTACLES. THERE IS NO LIMIT TO THE NUMBER OF POSTS THAT CAN HAVE ADDITIONAL BLOCKOUTS UP TO 16" DEEP.

DETAIL FOR 36" BLOCKOUT DEPTH

NOTES: UNDER SPECIAL CIRCUMSTANCES, SUCH AS AVOIDING OBSTACLES THAT ARE NOT RELOCATED, IT IS ACCEPTABLE TO INSTALL ADDITIONAL BLOCKOUTS TO OBTAIN UP TO 36" DEPTH FOR ONE OR TWO POSTS IN A SECTION OF GUARDRAIL.

DO NOT USE 16" OR 36" BLOCKOUTS IF IT CAUSES THE POST TO BE DRIVEN BEYOND SHOULDER HINGE POINT OR CAUSES A FIXED OBJECT TO BE WITHIN THE DEFLECTION DISTANCE OF THE BARRIER.

NOTE: 1. ALL FILLETS SHALL HAVE A MINIMUM RADIUS OF 1/16".

2. IF THE BOLT EXTENDS MORE THAN 1/4" FROM THE NUT THE BOLT SHOULD BE TRIMMED BACK.

POST BOLT TABLE

L	T (MIN.)
11/4"	1 1/8"
2"	13/4"
10"	4"
14"	4½ ₆ "
18"	4"
21"	4½ "
25"	4"

ALTERNATE BOLT HEAD

POST BOLT AND RECESS NUT

PLAN VIEW BEAM LAPPING DETAIL

POST DRIVING FOR CONTINUOUS UNDERGROUND OBSTRUCTION

ALTERNATE WOOD BLOCKOUT DETAIL

MIDWEST GUARDRAIL SYSTEM (MGS) GUARDRAIL

STATE OF WISCONSIN DEPARTMENT OF TRANSPORTATION

APPROVED

II/15/20II /S/ Jerry H. Zogg

DATE ROADWAY STANDARDS DEVELOPMENT ENGINEER

.D.D. 14 B 42-2c

SECTION B-B POSTS NO. 1-3 SEE OTHER DETAILS

SECTION A-A POSTS NO. 4-8

SEE OTHER DETAILS

GENERAL NOTES

D TOLERANCE FOR TOP OF W-BEAM RAIL IS ± 1".

MIDWEST GUARDRAIL SYSTEM LONG SPAN MGS (L)

6

43-

14

D.D

STATE OF WISCONSIN DEPARTMENT OF TRANSPORTATION

APPROVED

8/31/2012 /S/ Jerry H. Zogg ROADWAY STANDARDS DEVELOPMENT ENGINEER

₩

GENERIC ANCHOR CABLE BOX

GENERIC GROUND STRUT

9 H

PLAN VIEW

BILL OF MATERIALS

PART NO.	DESCRIPTION MATERIALS PROVIDED BY MGS EAT MANUFACTURER. SEE MANUFACTURER'S DETAILS FOR MORE INFORMATION.
1	WOOD BREAKAWAY POST
@	6" X 8" X 0.188", 6'-0" LONG FOUNDATION TUBE AT POSTS 1AND 2
3	WOOD CRT
4	WOOD BLOCKOUT
(5)	PIPE SLEEVE
6	BEARING PLATE
7	BCT CABLE ASSEMBLY
8	ANCHOR CABLE BOX
9	GROUND STRUT
10	PERFORATED W-BEAM RAIL END PANEL, 12'-6" LONG.
(1)	STANDARD W-BEAM RAIL.MULTIPLE SECTIONS REQUIRED. SECTIONS VARY IN LENGTH.
(2)	END SECTION EAT
13)	0.040" ALUMINUM SHEET WITH REFLECTIVE SHEETING TYPE H (ONLY THE SHEETING IS SUPPLIED BY THE MANUFACTURER)
14)	EAT MARKER POST - YELLOW (SEE APPROVED PRODUCTS LIST)

MIDWEST GUARDRAIL SYSTEM ENERGY ABSORBING TERMINAL (MGS)

STATE OF WISCONSIN
DEPARTMENT OF TRANSPORTATION

S.D.D.

D

THESE ARE TYPICAL CONNECTION DETAILS. ADJUST THE POSTION OF CONNECTIONS TO EXISTING BRIDGES TO FIT THE ACTUAL BRIDGE AND SITE DIMENSIONS.

- (1) DRILLING BOLT HOLES THROUGH THE PARAPET, BOLTS, NUTS, WASHERS AND REPAIRING DAMAGED CONCRETE ARE INCIDENTAL TO THE CONTRACT.
- (2) BOLTS MAY BE A325 BOLTS OR A449 BOLTS. BOLT LENGTH AND THREADING LENGTH ARE TO ALLOW FOR A TIGHT CONNECTION BETWEEN RIGID BARRIER AND THRIE BEAM CONNECTION PLATE. CONTRACTOR IS TO FIELD VERIFY BOLT LENGTH AND THREAD LENGTH. ONE ROUND WASHER REQUIRED BETWEEN BOLT HEAD AND THRIE BEAM CONNECTOR PLATE, BOLTS THAT EXTEND THROUGH THE PARAPET AND OUT THE BACK FACE REQUIRE A HARDENED ROUND STEEL WASHER THAT IS 2" O.D. X 5%" THICK AND ONE PLATE WASHER REPAIR ANY DAMAGED CONCRETE FROM BOLT INSTALLATION.
- (3) THE RECESS FOR A W-BEAM CONNECTION, WHICH EXISTS ON SOME PARAPETS OF THIS TYPE, SHALL BE FILLED WITH A TREATED TIMBER BLOCKOUT. BLOCKOUT SIZE IS 1'-6" X 2'-0" X 3 1/2". BLOCK IS INCIDENTAL TO THE CONTRACT.
- 4 BOLT, NUT AND WASHERS NOT REQUIRED FOR THIS LOCATION WHEN RETROFITTING AN EXISTING PAPAPET AND THE HOLE IS EITHER ABOVE PARAPET OR WITHIN 4 INCHES OF THE EDGE OF PARAPET.

② 1/8" DIA. X 1'-2" H.S.

REQUIRED

WHEN RETROFITTING

A TRANSITION TO

AN EXISTING RIGID

BARRIFR INSTALL -

PLATE WASHERS

ON BACKSIDE OF

RIGID BARRIER

HEX BOLT AND WASHERS

W BEAM TERMINAL -CONNECTOR

4

LIMIT OF STEEL PLATE

5'-0 1/4" -

4'-2 1/4"

- 3'-1¹/2'

MGS BEAM GUARD

ONE WAY

(B)

6

2

 $\mathbf{\omega}$

Ω

MIDWEST GUARDRAIL SYSTEM

THRIE BEAM TRANSITION (MGS)

STATE OF WISCONSIN

DEPARTMENT OF TRANSPORTATION

/S/ Jerry H. Zogg

ROADWAY STANDARDS DEVELOPMENT

ENGINEER

APPROVED

8-31-2012

2'-7"

TRAFFIC

(PER ASSEMBLY)					
PLATE	QUANTITY	SHAPE	SIZE (A × B × C × D)	THICKNESS	
P1	1	в₫	20" × 20"	3/6 "	
P2	1	B∱c	20" × 20" × 28%6"	¾6 "	
Р3	1	B C D	39" × 35/8" × 20" × 191/6"	3∕16 ''	
S1	4	B	18 1/16 " × 3 1/8" × 18 1/4"	1/4"	
S2	1	B C D	10 ¹ / ₄ " × 2 ¹ / ₁₆ " × 10 ³ / ₈ " × ¹ / ₂ "	1/4"	
S3	1	B C D	$3" \times 1^{1}/_{16}" \times 3^{1}/_{8}" \times 1^{1}/_{2}"$	1/4"	
S4	1	вД	6½" × 2½6"	1/4"	
S5	1	В	6½" × ½"	1/4"	
S6	1	В	7¾" × 1¾"	1/4"	
S7	1	ABC	2%6" × 6" × 3%" × 5%"	1/4"	
S8	1	A∯C	1 ⁵ / ₃₂ " × 7 ¹ / ₂ " × 2 ¹ / ₂ " × 7 ³ / ₈ "	1/4"	
S9	1	C 	$6\frac{1}{16}$ " × $6\frac{3}{16}$ " × $1\frac{3}{32}$ "	1/4"	
S10	1	A D C	1%" × 9%" × 3%" × 911/16"	1/4"	
S11	1	C A	8½" × 8¾" × 1⅓6 "	1/4"	

D

Ö

 $\boldsymbol{\varpi}$

SINGLE SLOPE CONNECTION PLATE

MIDWEST GUARDRAIL SYSTEM THRIE BEAM TRANSITION (MGS)

STATE OF WISCONSIN
DEPARTMENT OF TRANSPORTATION

APPROVED

8/31/2012 /S/ Jerry H. Zogg

DATE ROADWAY STANDARDS DEVELOPMENT ENGINEER

S.D.D. 1

 $\mathbf{\omega}$

THRIE BEAM CONNECTION TO SINGLE SLOPE BARRIER

SINGLE SLOPE CONNECTION PLATE PLACEMENT

GENERAL NOTES

CONNECTOR PLATE, DRILLING BOLT HOLES THROUGH THE PARAPET, BOLTS, WASHERS AND REPAIRING DAMAGED CONCRETE ARE INCIDENTAL TO THE CONTRACT.

BOLTS MAY BE A325 BOLTS OR A449 BOLTS. BOLT LENGTH AND THREADING LENGTH ARE TO ALLOW FOR A TIGHT CONNECTION BETWEEN RIGID BARRIER AND THRIE BEAM CONNECTION PLATE. CONTRACTOR IS TO FIELD VERIFY BOLT LENGTH AND THREAD LENGTH. ONE ROUND WASHER REQUIRED BETWEEN BOLT HEAD AND THRIE BEAM CONNECTOR PLATE. BOLTS THAT EXTEND THROUGH THE PARAPET AND OUT THE BACK FACE REQUIRE A HARDENED ROUND STEEL WASHER THAT IS 2" O.D. X 5/8" THICK AND ONE PLATE WASHER. REPAIR ANY DAMAGED CONCRETE FROM BOLT INSTALLATION.

MIDWEST GUARDRAIL SYSTEM THRIE BEAM TRANSITION (MGS)

45

 $\mathbf{\omega}$

Ω

STATE OF WISCONSIN DEPARTMENT OF TRANSPORTATION

APPROVED 8/31/2012

/S/ Jerry H. Zogg ROADWAY STANDARDS DEVELOPMENT ENGINEER

Ω

DEPARTMENT OF TRANSPORTATION

Ω

LEGEND

- POST WITH ATTACHED SIGN
- POST WITH ATTACHED SIGN
- ✓ DRUM WITH WARNING LIGHT (TYPE C)
- DRUM
- → ARROW BOARD
- 8' TYPE III BARRICADE
- * x * REMOVING PAVEMENT MARKING
- □⇒ DIRECTION OF TRAFFIC

GENERAL NOTES:

THE EXACT NUMBER, LOCATION, AND SPACING OF ALL SIGNS AND DEVICES SHALL BE ADJUSTED TO FIT FIELD CONDITIONS AS APPROVED BY THE ENGINEER.

THE SPACING BETWEEN SIGNS SHOULD BE ADJUSTED TO NOT CONFLICT WITH AND TO PROVIDE A MINIMUM OF 200 FEET, (500 FEET DESIREABLE) DISTANCE TO EXISTING SIGNS.

THIS LANE CLOSURE IS TYPICAL FOR CLOSING RIGHT LANE - REVERSE FOR CLOSING LEFT LANE.

ALL SIGNS ARE 48"x48" UNLESS OTHERWISE NOTED.

"WO" IS THE SAME AS "W" EXCEPT THE BACKGROUND IS ORANGE.

ANY SIGNS TEMPORARY OR EXISTING, WHICH CONFLICT WITH TRAFFIC CONTROL "IN USE" SHALL BE REMOVED OR COVERED AS NEEDED AND AS APPROVED BY THE ENGINEER. NO WARNING LIGHTS SHALL BE WORKING ON "COVERED" OR "DOWNED" SIGNS.

(1) CONSIDER GEOMETRICS WHEN LOCATING SIGNS AND ARROW BOARD SO THE DRIVER HAS A CLEAR VIEW OF THE ARROW BOARD AND LANE CLOSURE DRUMS FOR A MINIMUM 1500 FEET IN FRONT OF DRUMS.

FOR A LANE CLOSURE THAT IS IN PLACE LESS THAN 7 CONTINUOUS DAYS AND NIGHTS. THE ADVANCED WARNING SIGNS MAY BE MOUNTED ON PORTABLE SUPPORTS.

GENERAL NOTES CONTINUED:

REMOVE PAVEMENT MARKINGS IF LANE CLOSURE IS TO BE IN PLACE FOR LONGER THAN 7 CONTINUOUS DAYS AND NIGHTS.

WARNING LIGHTS ARE NOT REQUIRED IF THE LANE CLOSURE IS A DAYTIME ONLY OPERATION.

IF THE HORIZONTAL ALIGNMENT IS SUCH THAT A CURVE MAY REQUIRE ADDITIONAL DELINEATION, THE DEVICE SPACING MAY BE DECREASED TO 50 FEET.

IF LANE CLOSURE IS MORE THAN 1 MILE, PLACE A TYPE III BARRICADE APPROXIMATELY EVERY 1/4 MILE ACROSS THE CLOSED LANE TO HELP ENFORCE THE DRUM LINE.

ADJUSTMENTS IN BUFFER SPACE NEED TO BE INCORPORATED WHEN THE LANE CLOSURE OCCURS NEAR AN INTERCHANGE EXIT OR ENTRANCE RAMP. THE LANE CLOSURE MUST MUST TAKE PLACE FAR ENOUGH IN ADVANCE OF AN EXIT OR ENTRANCE RAMP TO STILL ALLOW FOR ADEQUATE BUFFER SPACE. THE MINIMUM LENGTH OF THE BUFFER SPACE BEFORE AN EXIT RAMP SHOULD BE 1/2 THE LENGTH OF THE TRANSITION AREA. THE ENTRANCE RAMP SHOULD BE FOLLOWED BY THE ORIGINAL BUFFER SPACE LENGTH OF 800 FEET DESIRABLE PRIOR TO ANOTHER TRAFFIC CONTROL CHANGE SUCH AS A CROSSOVER MANEUVER.

* THE LEFT REVERSE CURVE SIGN (WO1-4L) IS ONLY REQUIRED WHEN THIS DETAIL IS USED IN COMBINATION WITH "SINGLE LANE CROSSOVER" DETAIL.

TRAFFIC CONTROL, LANE CLOSURE, SPEEDS GREATER THAN 40 M.P.H.

STATE OF WISCONSIN
DEPARTMENT OF TRANSPORTATION

APPROVED

8-7-95

DATE

/S/ Chester J. Spang
DIRECTOR, OFFICE OF TRAFFIC

6

2

Ω

2

Ω

Ω

S.D.D. 15 D 12-2

Notes

Wisconsin Department of Transportation

Dedicated people creating transportation solutions through innovation and exceptional service.

http://www.dot.wisconsin.gov