GRL Engineers, Inc.

1540 E. Dundee Road, Suite 102 Palatine, IL 60074 USA Phone: (847) 221-2750 Fax: (847) 221-2752

TRANSMITTAL

To: Mr. Wade Hamacher	From: Alexander McCaskill
Company: Lunda Construction Company	No. of Sheets: 36
E-mail:whamacher@lundaconstruction.com	Date: December 11, 2014

RE: Dynamic Testing Results – Pier 3
WisDOT Contract B-5-381 – STH 96 over Fox River
Wrightstown, Wisconsin

On December 9, 2014, Pier 3 #1 and Pier 3 #38 at the above structure were dynamically tested during initial driving. The piles were tested during restrike on December 10. The 75.5 foot long HP 12 x 53 H-piles were driven with an APE D25-42 hammer operated on fuel setting 3. The piles were equipped with driving shoes. The project plans indicate a required driving resistance, or ultimate capacity, of 420 kips for the piles in Pier 3, with an estimated pile length of 35 feet.

Pier 3 #1 was driven to a depth of 31.5 feet below the excavated ground surface at EI. 573.5, which corresponds to a pile tip elevation of EI. 542.0. The final blow count was 10 blows over ⁵/₈ of an inch of penetration at an average hammer stroke of 7.6 feet. The blow count at the beginning of restrike of was 10 blows for 1 inch of penetration at an average hammer stroke of 9.5 feet. Pier 3 #38 was driven to a depth of 32.5 feet below the ground surface at the same elevation, which corresponds to a tip elevation of EI. 541.0. The final blow count was 10 blows for 1 inch of penetration at an average hammer stroke of 8.8 feet. The blow count at the beginning of restrike was 10 blows over ³/₄ of an inch of penetration at an average hammer stroke of 9.4 feet.

For the 420 kip piles driven with the APE D25-42 hammer in Pier 3 of the STH 96 bridge over the Fox River we recommend using the following criteria:

Field Observed	Recommended Minimum
Hammer Stroke	Blow Count
(feet)	(blows per inch)
7.0	18
7.5	12
8.0	9
8.5	7
9.0	6

We recommended the above blow count at the corresponding hammer stroke be maintained for two inches of driving. Driving should be terminated immediately if the blow count reaches 10 blows per inch or greater at an average hammer stroke of 8.0 feet. We anticipate that the production piles will terminate at depths very similar to those of the test piles.

Please contact us if there are any problems meeting the recommended criterion or if you have any questions on these recommendations.

GRL Engineers, Inc.

Haaba Maaddil

Alexander McCaskill, E.I.

Travis Coleman, P.E.

cc: Steve Seymour – <u>steve.seymour@omnni.com</u> Jeff Horsfall – <u>jeffrey.horsfall@dot.wi.gov</u>

Attachments:

Dynamic Test Results-(Pages 3 - 12)CAPWAP Analysis Results-(Pages 13 - 36)

GRL Engineers, Inc. - Case Method & iCAP® Results

i

CSX (ksi) -----EMX (k-ft) RX9 (kips) -Max Measured Compr. Stress Max Case Method Capacity (JC=0.9) Max Transferred Energy 20 300 450 10 30 40 50 0 20 30 40 50 60 0 150 600 750 900 0 60 10 .1 ∽√ 1 . . 15 <u> مهمی</u> 19 Ρ е n e 23 t r а t 0 n 27 f t Ę ζ 31 35 0 10 20 30 2 6 12 80 40 50 60 0 8 10 0 40 120 240 4 160 200 BLC (blows/ft) CSB (ksi) -STK (ft) -Compression Stress at Bottom O.E. Diesel Hammer Stroke **Blow Count** 1 - Reference Elevation EL 573.5

STH 96 over Fox River (B-5-381) - Pier 3 #1 - EOID APE D25-42, HP 12 x 53

Test date: 9-Dec-2014

GRL Engineers, Inc. Case Method & iCAP® Results

STH 9 OP: A	6 over Fox River (B-5-381) - Pier 3 #1 - EOID Z
AR:	15.50 in^2

Page 1 of 2 PDIPLOT Ver. 2014.1 - Printed: 11-Dec-2014

APE D25-42, HP 12 x 53 Test date: 9-Dec-2014

<u>OP: A</u>	Z							Test date: 9	-Dec-2014
AR: LE: WS: 1	15.50 in^2 72.50 ft 6,807.9 f/s							SP:	0.492 k/ft3 0,000 ksi 1.00
	Max Measured Co	ompr. Stress				EMX:	Max Transfe		1.00
	Compression Stre						Blows per Mi		
<u>STK:</u> BL#	O.E. Diesel Hamm	BLC	TYPE	CSX	CSB	STK	Max Case M EMX	ethod Capacit BPM	<u>y (JC=0.9)</u> RX9
end	depth ft	bl/ft	TIFE	ksi	ksi	ft	⊑ivi⊼ k-ft	DF IVI **	kips
2	15.00	2	AV1	0.3	0.0	2.6	0	70	0
			MAX MIN	0.3 0.3	0.0 0.0	2.6 2.6	0 0	70 70	0 0
4	16.00	2	AV1	22.1	3.9	5.0	26	53	0
			MAX MIN	22.1 22.1	3.9 3.9	5.0 5.0	26 26	53 53	0 0
6	17.00	2	AV1	6.2	1.9	2.4	7	74	0
			MAX MIN	6.2 6.2	1.9 1.9	2.4 2.4	7 7	74 74	0 0
11	19.00	3	AV2	15.3	3.7	3.8	15	60	29
			STD MAX	4.1 19.4	0.5 4.2	0.5 4.3	6 21	4 64	5 34
			MIN	11.3	3.2	3.3	8	56	23
14	20.00	3	AV3	16.6	4.4	4.1	19	57	25
			STD MAX	1.0 17.8	0.3 4.7	0.1 4.3	2 21	1 59	10 37
			MIN	15.5	4.1	3.9	17	56	12
18	21.00	4	AV3 STD	15.9 8.1	4.0 1.3	4.2 1.1	17 11	58 8	29 18
			MAX	23.2	5.0	5.4	28	68	54
		_	MIN	4.7	2.1	2.8	2	50	17
22	22.00	4	AV3 STD	15.9 6.9	4.1 1.2	4.1 0.9	15 10	58 6	39 14
			MAX	22.0	5.0	5.0	27	67	57
00	00.00	4	MIN	6.2	2.4	2.9	3	52	24
26	23.00	4	AV3 STD	16.8 6.5	4.9 1.0	4.3 0.9	16 10	57 6	64 13
			MAX MIN	21.7 7.6	5.7 3.5	4.9 3.0	28 2	66 53	75 46
30	24.00	4	AV3	21.8	6.0	5.2	24	52	40 69
			STD	3.4	0.7	0.8	10	4	5
			MAX MIN	25.3 17.1	6.9 5.3	6.0 4.1	35 12	57 48	76 63
35	25.00	5	AV4	21.5	6.0	5.1	21	52	77
			STD MAX	3.5 24.5	0.6 6.8	0.8 6.0	7 28	4 58	9 90
			MIN	15.9	5.1	4.0	10	48	63
42	26.00	7	AV6	24.6	11.2	6.1	20	49	158
			STD MAX	6.3 29.9	3.0 14.1	1.4 7.8	9 32	7 63	46 198
			MIN	11.0	4.9	3.4	4	42	62
49	27.00	7	AV7 STD	25.9 2.6	15.2 1.4	6.3 0.8	22 5	47 3	219 13
			MAX	29.5	16.6	7.5	27	52	235
			MIN	22.0	12.9	5.0	13	43	195
64	28.00	15	AV15 STD	26.7 1.3	16.0 1.3	6.6 0.5	22 3	46 2	238 17
			MAX	29.0	18.3	7.7	27	48	271
05	00.00	04	MIN	24.3	14.3	5.9	17	43	214
85	29.00	21	AV21 STD	25.6 1.8	16.0 1.2	6.5 0.5	20 3	46 2	243 16
			MAX	27.9	17.4	7.3	26	50	270
108	30.00	23	MIN AV23	21.8 24.5	13.8 12.4	5.5 6.2	13 18	44 48	214 218
100	55.00	20	STD	1.9	0.9	0.6	3	2	20
			MAX MIN	28.5 20.4	14.3 10.7	7.6 5.1	25 11	52 43	250 182
			IVIIIN	20.4	10.7	5.1		-10	102

GRL Engineers, Inc. Case Method & iCAP® Results

STH 96 over Fox River (B-5-381) - Pier 3 #1 - EOID OP: AZ Page 2 of 2 PDIPLOT Ver. 2014.1 - Printed: 11-Dec-2014

APE D25-42, HP 12 x 53

OP: AZ								Test date: 9-	Dec-2014
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
end	ft	bl/ft		ksi	ksi	ft	k-ft	**	kips
139	31.00	31	AV28	25.2	14.1	6.3	17	47	248
			STD	1.4	0.6	0.4	2	1	8
			MAX	27.9	15.3	7.2	22	50	262
			MIN	22.1	13.0	5.5	13	44	233
161	31.45	49	AV20	26.7	20.8	6.8	18	45	358
			STD	1.6	6.0	0.6	2	2	84
			MAX	29.4	29.9	7.9	23	48	478
			MIN	24.1	13.3	6.0	14	42	251
171	31.50	192	AV9	30.3	31.7	7.6	21	43	501
			STD	1.4	1.5	0.7	4	2	27
			MAX	32.5	33.9	9.2	29	45	543
			MIN	28.5	29.4	6.9	16	39	469
			Average	24.5	14.6	6.2	19	48	234
			Std. Dev.	4.9	6.8	1.1	5	5	116
			Maximum	32.5	33.9	9.2	35	74	543
			Minimum	0.3	0.0	2.4	0	39	0
				Total nur	mber of blows a	nalvzed: 153			

Total number of blows analyzed: 153

Time Summary

Drive 6 minutes 42 seconds 3:49:26 PM - 3:56:08 PM (12/9/2014) BN 1 - 171

BL# depth (ft) Comments

^{2 15.00} Reference Elevation EL 573.5

GRL Engineers, Inc. - Case Method & iCAP® Results

PDIPLOT Ver. 2014.1 - Printed: 11-Dec-2014

Test date: 10-Dec-2014

STH 96 over Fox River (B-5-381) - Pier 3 #1 - BOR APE D25-42, HP 12 x 53 GRL Engineers, Inc. Case Method & iCAP® Results Page 1 of 1 PDIPLOT Ver. 2014.1 - Printed: 11-Dec-2014

STH 96 over Fox River (B-5-381) - Pier 3 #1 - BOR

APE D25-42, HP 12 x 53

0		(0000)	lor o // 1 Bort				,		
OP: A	Z							Test date: 10)-Dec-2014
AR:	15.50 in^2							SP:	0.492 k/ft3
LE:	72.50 ft							EM: 3	30,000 ksi
WS: 1	16,807.9 f/s							JC:	1.00
CSX:	Max Measured C	Compr. Stress	6			EMX	: Max Transfe	rred Energy	
CSB:	Compression Str	ess at Bottor	n			BPM	: Blows per M	inute	
STK:	O.E. Diesel Ham	mer Stroke				RX9:	Max Case M	ethod Capaci	ty (JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
end	. ft	bl/ft		ksi	ksi	ft	k-ft	**	kips
10	31.58	120	AV10	38.9	40.9	9.5	31	39	657
			STD	2.4	4.0	0.9	4	2	48
			MAX	42.1	46.5	11.3	41	42	709
			MIN	33.1	30.7	7.9	26	35	544
			Average	38.9	40.9	9.5	31	39	657
			Std. Dev.	2.4	4.0	0.9	4	2	48
			Maximum	42.1	46.5	11.3	41	42	709
			Minimum	33.1	30.7	7.9	26	35	544
				Total nu	mber of blows a	analyzed: 10			

Time Summary

Drive 14 seconds 9:37:14 AM - 9:37:28 AM (12/10/2014) BN 1 - 10

GRL Engineers, Inc. - Case Method & iCAP® Results

PDIPLOT Ver. 2014.1 - Printed: 11-Dec-2014

Test date: 9-Dec-2014

STH 96 over Fox River (B-5-381) - Pier 3 #38 - EOID APE D25-42, HP 12 x 53

GRL Engineers, Inc. Case Method & iCAP® Results

STH 96 over Fox River (B-5-381) - Pier 3 #38 - EOID)
OP: AZ	

Page 1 of 2 PDIPLOT Ver. 2014.1 - Printed: 11-Dec-2014

APE D25-42, HP 12 x 53

Test date:	9-Dec-2014
SP:	0.492 k/ft3
	20 000 kci

<u>OP: A</u>	Z							Test date: 9-	Dec-2014
AR: LE:	15.50 in^2 72.50 ft							EM: 30	0.492 k/ft3 0,000 ksi
CSX:	6,807.9 f/s Max Measured Co							JC: Hammer Stroke	<u>1.00</u> ə
	: Compression Stress at Bottom BPM: Blows per Minute : Max Transferred Energy RX9: Max Case Method Capacity (JC=0.9)								
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
end	ft	bl/ft		ksi	ksi	k-ft	ft	**	kips
3	16.00	2	AV1	16.2	3.2	24	4.1	57.4	0
			MAX MIN	16.2 16.2	3.2 3.2	24 24	4.1 4.1	57.4 57.4	0 0
3	17.00	2	AV1	14.7	3.6	18	3.6	61.0	0
			MAX MIN	14.7 14.7	3.6 3.6	18 18	3.6 3.6	61.0 61.0	0 0
5	18.00	2	AV1	0.9	0.2	0	2.7	69.0	0
Ū		-	MAX	0.9	0.2	0	2.7	69.0	0
_	40.00		MIN	0.9	0.2	0	2.7	69.0	0
7	19.00	2	AV1 MAX	24.2 24.2	4.1 4.1	28 28	5.8 5.8	48.8 48.8	0 0
			MIN	24.2	4.1	28	5.8	48.8	0
9	20.00	2	AV2	6.5	1.6	7	3.3	63.8	0
			STD MAX	6.5 12.9	1.6 3.3	6 13	0.2 3.5	1.7 65.6	0 0
			MIN	0.0	0.0	0	3.1	62.1	0
11	21.00	2	AV1	23.5	4.3	34	5.8	48.6	0
			MAX MIN	23.5 23.5	4.3 4.3	34 34	5.8 5.8	48.6 48.6	0 0
13	22.00	2	AV1	16.7	3.3	17	4.1	57.2	9
			MAX MIN	16.7 16.7	3.3 3.3	17 17	4.1 4.1	57.2 57.2	9 9
15	23.00	2	AV2	15.6	3.1	18	4.8	54.3	2
10	20.00	-	STD	8.6	1.2	14	1.1	5.8	2
			MAX MIN	24.2 7.0	4.3 2.0	32 4	5.8 3.7	60.1 48.6	4 0
19	24.00	4	AV3	18.6	4.5	19	4.5	56.1	42
			STD	5.3	0.6	7	1.1	6.1	15
			MAX MIN	25.8 13.1	5.4 4.0	27 10	6.1 3.5	61.9 47.7	62 29
25	25.00	6	AV5	18.3	7.0	16	5.0	53.5	98
			STD MAX	7.8 25.8	2.7 9.1	9 28	1.2 6.5	6.8 65.1	39 126
			MIN	3.7	1.6	1	3.1	46.2	19
32	26.00	7	AV5	22.1	8.1	21	5.3	50.9	112
			STD MAX	2.2 24.7	1.1 9.4	3 25	0.5 6.0	2.2 54.3	16 136
			MIN	18.8	6.6	17	4.6	48.0	94
53	27.00	21	AV17	25.1	15.8	20	6.3	47.3	239
			STD MAX	3.3 29.8	4.9 21.3	4 26	0.8 7.6	3.4 55.0	67 303
			MIN	17.5	6.3	10	4.5	42.7	103
77	28.00	24	AV24 STD	26.2 1.0	20.2 0.8	21 2	6.8 0.3	45.1 0.8	291
			MAX	27.7	22.0	25	0.3 7.5	46.7	15 314
			MIN	23.6	18.5	18	6.3	43.1	263
97	29.00	20	AV20 STD	25.4 1.2	17.4 1.6	21 2	6.6 0.4	45.9 1.3	250 19
			MAX	27.2	20.0	25	7.2	48.4	280
			MIN	22.8	14.3	16	5.9	44.0	216
114	30.00	17	AV17 STD	24.4 0.9	13.4 0.7	21 1	6.4 0.2	46.6 0.8	212 8
			MAX	26.6	14.7	23	6.8	48.0	230
			MIN	22.5	12.4	18	6.0	45.2	201

GRL Engineers, Inc. Case Method & iCAP® Results

STH 96 over Fox River (B-5-381) - Pier 3 #38 - EOID OP: AZ

Page 2 of 2 PDIPLOT Ver. 2014.1 - Printed: 11-Dec-2014

APE D25-42, HP 12 x 53

OP: AZ								Test date: 9-	Dec-2014
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
end	ft	bl/ft		ksi	ksi	k-ft	ft	**	kips
134	31.00	20	AV20	25.7	14.4	24	6.8	45.3	249
			STD	1.3	0.6	2	0.3	1.0	11
			MAX	28.1	15.3	27	7.3	47.4	266
			MIN	23.6	13.0	20	6.1	43.7	226
155	32.00	21	AV21	27.2	15.9	24	6.8	45.3	264
			STD	1.1	0.5	1	0.3	0.8	8
			MAX	29.6	16.8	27	7.1	47.0	283
			MIN	25.0	14.9	21	6.3	44.1	249
183	32.42	67	AV25	27.6	17.9	23	7.0	44.6	322
			STD	1.3	3.7	1	0.3	1.0	63
			MAX	31.6	29.9	26	7.9	46.4	505
			MIN	25.5	15.4	20	6.4	42.1	276
192	32.49	120	AV9	36.8	36.3	30	8.8	39.9	604
			STD	1.3	2.0	1	0.3	0.7	16
			MAX	38.9	39.4	33	9.4	41.0	629
			MIN	34.4	32.1	27	8.3	38.7	575
			Average	25.5	16.1	22	6.5	46.6	255
			Std. Dev.	5.1	6.8	5	1.0	4.6	119
			Maximum	38.9	39.4	34	9.4	69.0	629
			Minimum	0.0	0.0	0	2.7	38.7	0
				Total www	مصيده الماكم سمطمه	analyzady 470			

Total number of blows analyzed: 176

BL# depth (ft) Comments

3 17.00 Reference Elevation EL 573.5

Time Summary

Drive 6 minutes 38 seconds

4:10:38 PM - 4:17:16 PM (12/9/2014) BN 1 - 193

GRL Engineers, Inc. - Case Method & iCAP® Results

PDIPLOT Ver. 2014.1 - Printed: 11-Dec-2014

Test date: 10-Dec-2014

STH 96 over Fox River (B-5-381) - Pier 3 #38 - BOR APE D25-42, HP 12 x 53 GRL Engineers, Inc. Case Method & iCAP® Results Page 1 of 1 PDIPLOT Ver. 2014.1 - Printed: 11-Dec-2014

STH 96 over Fox River (B-5-381) - Pier 3 #38 - BOR

APE D25-42, HP 12 x 53

							r	1 L D 2 3 4 2, 1	11 12 × 55
OP: AZ								Test date: 10-	Dec-2014
AR:	15.50 in^2							SP: (0.492 k/ft3
LE:	72.50 ft							EM: 30	0,000 ksi
WS: 1	6,807.9 f/s							JC:	1.00
CSX:	Max Measured C	Compr. Stress	6			EM	X: Max Transfe	rred Energy	
CSB:	Compression Str	ess at Bottor	n			BPN	I: Blows per M	inute	
STK:	O.E. Diesel Ham	mer Stroke				RX9): Max Case M	ethod Capacity	/ (JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
end	ft	bl/ft		ksi	ksi	ft	k-ft	**	kips
10	32.56	160	AV9	40.4	43.4	9.4	35	39	655
			STD	2.3	2.3	0.8	4	1	28
			MAX	43.8	45.4	10.9	40	41	691
			MIN	36.1	37.9	8.5	28	36	597
			Average	40.4	43.4	9.4	35	39	655
			Std. Dev.	2.3	2.3	0.8	4	1	28
			Maximum	43.8	45.4	10.9	40	41	691
			Minimum	36.1	37.9	8.5	28	36	597
				Total nu	umber of blows	analyzed: 9			

Time Summary

Drive 14 seconds

9:47:57 AM - 9:48:11 AM (12/10/2014) BN 1 - 10

STH 96 over Fox River (B-5-381); Pile: Pier 3 #1 - EOID	Test:							
APE D25-42, HP 12 x 53; Blow: 167								
GRL Engineers, Inc.								
About the CAPWAP Results								

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts STH 96 over Fox River (B-5-381); Pile: Pier 3 #1 - EOIDTest: 09-Dec-2014 15:56APE D25-42, HP 12 x 53; Blow: 167CAPWAP(R) 2014GRL Engineers, Inc.OP: AZno liability whatsoever of any kind for the analysis solution and/or the applicationof the analysis result.

STH 96 over Fox River (B-5-381); Pile: Pier 3 #1 - EOID Test: 09-Dec-2014 15:56 APE D25-42, HP 12 x 53; Blow: 167 GRL Engineers, Inc.

CAPWAP(R) 2014 OP: AZ

			CAPWAP SUMM	ARY RESULT	S				
Total CAPWAP	Capacity:	477.0;	along Shaft	47.0;	at Toe	430.0 k	ips		
Soil	Dist.	Depth	Ru	Force	Su	ım	Unit		Unit
Sgmnt	Below	Below		in Pile	c	of Res	ist.	Re	esist
No.	Gages	Grade			H	Ru (De	pth)	(Area
	ft	ft	kips	kips	kip	os kip	s/ft		ksi
				477.0					
1	46.1	5.1	5.0	472.0	5.	.0	0.97		0.2
2	52.7	11.7	5.0	467.0	10.	.0	0.76		0.1
3	59.3	18.3	5.0	462.0	15.	.0	0.76		0.19
4	65.9	24.9	16.0	446.0	31.	.0	2.43		0.63
5	72.5	31.5	16.0	430.0	47.	.0	2.43		0.63
Avg. Shaf	t		9.4				1.49		0.38
Тое			430.0					4	436.3
Soil Model Pa	arameters/E	xtensions			Shaft	Тое			
Smith Damping	g Factor				0.29	0.05			
Quake		(in)			0.10	0.08			
Case Damping	Factor				0.49	0.78			
Damping Type					Viscous	Viscous			
Unloading Qua	ake	(% of	loading quak	e)	100	34			
Reloading Lev	vel	(% of	Ru)		100	0			
Unloading Lev	vel	(% of	Ru)		59				
Resistance Ga	ap (included	l in Toe	Quake) (in)			0.00			
CAPWAP match	quality	= .	3.27	(Wave Up M	atch) ; R	SA = 0			
Observed: Fin	nal Set	=	0.06 in; 1	Blow Count	=	192 b/1	Et		
Computed: Fin	nal Set	=	0.03 in; 1	Blow Count	=	468 b/1	Et		
Transducer			RF: 0.98; F4(F5 RF: 1.02; A4(K2		93.8; RF: (332; RF: 1				
max. Top Com	p. Stress	= .	30.0 ksi	(T= 45.5	ms, max=	1.155 x 1	lop)		
max. Comp. St	tress	=	34.7 ksi	(Z= 72.5	ft, T=	40.6 ms)			
max. Tens. St	tress	= -:	3.88 ksi	(Z= 46.1	ft, T=	56.1 ms)			
max. Energy	(EMX)	= :	18.8 kip-ft;	max. Meas	ured Top	Displ. (DM	1X)= (0.86	in

STH 96 over Fox River (B-5-381); Pile: Pier 3 #1 - EOID Test: 09-Dec-2014 15:56 APE D25-42, HP 12 x 53; Blow: 167 GRL Engineers, Inc.

CAPWAP(R) 2014 OP: AZ

max	max.	max.	max.	max.	min.	max.	Dist.	Pile
Displ	Veloc.	Trnsfd.	Tens.	Comp.	Force	Force	Below	Sgmnt
		Energy	Stress	Stress			Gages	No.
i	ft/s	kip-ft	ksi	ksi	kips	kips	ft	
0.8	13.9	18.8	-1.60	30.0	-24.8	465.5	3.3	1
0.8	13.8	18.3	-1.72	30.1	-26.6	466.7	6.6	2
0.8	13.8	17.8	-1.91	29.8	-29.5	462.5	9.9	3
0.7	13.7	17.4	-2.05	29.6	-31.8	459.5	13.2	4
0.7	13.7	17.0	-2.17	29.6	-33.6	458.8	16.5	5
0.7	13.6	16.5	-2.55	29.7	-39.5	460.2	19.8	6
0.6	13.5	15.9	-3.08	29.1	-47.7	451.7	23.1	7
0.6	13.5	15.4	-3.27	28.2	-50.7	437.8	26.4	8
0.6	13.4	14.9	-3.33	28.3	-51.6	439.5	29.7	9
0.5	13.3	14.4	-3.40	28.6	-52.8	442.9	33.0	10
0.5	13.2	13.8	-3.47	28.5	-53.8	442.0	36.3	11
0.5	13.1	13.1	-3.52	30.1	-54.5	466.2	39.5	12
0.4	12.8	12.3	-3.69	30.5	-57.2	472.3	42.8	13
0.4	12.6	11.7	-3.88	30.6	-60.2	473.9	46.1	14
0.4	12.3	10.5	-3.59	30.4	-55.7	471.7	49.4	15
0.3	12.0	9.7	-3.67	31.3	-56.9	484.6	52.7	16
0.3	11.8	8.5	-3.40	32.8	-52.6	508.2	56.0	17
0.2	11.4	7.8	-3.46	33.0	-53.7	511.3	59.3	18
0.2	10.9	6.7	-3.17	32.7	-49.1	506.9	62.6	19
0.2	10.3	5.9	-3.24	32.8	-50.2	509.3	65.9	20
0.1	9.4	4.8	-2.50	31.6	-38.8	490.1	69.2	21
0.1	7.1	4.4	-2.54	34.7	-39.4	537.8	72.5	22
40.6 ms	(T =			34.7			72.5	olute
56.1 ms	(Т =		-3.88				46.1	

	ver Fox Ri 42, HP 12	•		110. 110	1 5 #1			Test: 09		(R) 2014
GRL Engi	neers, Inc									OP: AZ
				CAS	E METHOD	1				
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
RP	574.4	530.7	487.1	443.4	399.7					
RX	616.0	579.4	543.9	511.0	495.7	485.0	474.3	470.4	469.5	468.7
RU	601.3	558.6	515.9	473.3	430.6					
RAU =	440.0 (ki	.ps); RA	2 = 4	87.0 (ki	ps)					
Current (CAPWAP Ru	= 477.0	(kips);	Correspo	nding J(RP)= 0.4	5; J(RX)	= 1.15		
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
14.0	35.88	376.9	415.8	454.3	0.86	0.06	0.06	19.0	493.5	5383

PILE PROFILE AND PILE MODEL

	Depth	Area	E-Modulus	Spec. Weight	Perim.
	ft	in^2	ksi	lb/ft ³	ft
	0.0	15.5	29992.2	492.000	3.97
	72.5	15.5	29992.2	492.000	3.97
Toe Area		141.9	in ²		

Top Segment Length 3.30 ft, Top Impedance 28 kips/ft/s

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c 8.6 ms Total volume: 7.804 ft³; Volume ratio considering added impedance: 1.000

STH 96 over Fox River (B-5-381); Pile: Pier 3 #1 - BOR	Test: 10-Dec-2014 09:37
APE D25-42, HP 12 x 53; Blow: 5	CAPWAP(R) 2014
GRL Engineers, Inc.	OP: AZ
About the CAPWAP Results	

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts STH 96 over Fox River (B-5-381); Pile: Pier 3 #1 - BORTest: 10-Dec-2014 09:37APE D25-42, HP 12 x 53; Blow: 5CAPWAP(R) 2014GRL Engineers, Inc.OP: AZno liability whatsoever of any kind for the analysis solution and/or the applicationof the analysis result.

STH 96 over Fox River (B-5-381); Pile: Pier 3 #1 - BOR APE D25-42, HP 12 x 53; Blow: 5 GRL Engineers, Inc. Test: 10-Dec-2014 09:37 CAPWAP(R) 2014 OP: AZ

			CAPWAP SUMM	ARY RESULTS	3		
Total CAPWA	P Capacity:	592.0;	along Shaft	57.0;	at Toe	535.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.
No.	Gages	Grade			Ru	(Depth)	(Area)
	ft	ft	kips	kips	kips	kips/ft	ksf
				592.0			
1	46.1	5.2	7.0	585.0	7.0	1.35	0.34
2	52.7	11.8	8.0	577.0	15.0	1.21	0.31
3	59.3	18.4	8.0	569.0	23.0	1.21	0.31
4	65.9	25.0	17.0	552.0	40.0	2.58	0.65
5	72.5	31.5	17.0	535.0	57.0	2.58	0.65
Avg. Sha	aft		11.4			1.81	0.46
Toe	9		535.0				542.96
Soil Model	Parameters/E	xtensions			Shaft	Тое	
Smith Dampi	ng Factor				0.29	0.10	
Quake		(in)			0.05	0.09	
Case Dampin	g Factor				0.60	1.93	
Damping Typ	e				Viscous V	/iscous	
Unloading Q	uake	(% of	loading quak	e)	82	30	
Unloading L	evel	(% of	Ru)		73		
Resistance	Gap (include	d in Toe Ç	Quake) (in)			0.01	
CAPWAP matc	h quality	= 2	.80	(Wave Up Ma	atch) ; RSA	A = 0	
Observed: F	inal Set	= 0	.10 in;	Blow Count	=	120 b/ft	
Computed: F	inal Set	= 0	.06 in;	Blow Count	=	207 b/ft	
Transducer	F3(F523) CA	AL: 93.8; H	RF: 1.00; F4(H0	83) CAL: 9	4.4; RF: 1.	00	
	A3(K2214) C2	AL: 332; 1	RF: 1.03; A4(K9	74) CAL:	305; RF: 1.	03	
max. Top Co	mp. Stress	= 3	6.5 ksi	(T= 45.3	ms, max= 1	L.147 x Top)	
max. Comp.	Stress	= 4	1.9 ksi	(Z= 72.5	ft, T= 40).4 ms)	
max. Tens.	Stress	= -6	.65 ksi	(Z= 52.7	ft, T= 55	5.9 ms)	
max. Energy	(EMX)	= 2	6.6 kip-ft;	max. Measu	ared Top Di	ispl. (DMX)=	1.02 in

STH 96 over Fox River (B-5-381); Pile: Pier 3 #1 - BOR APE D25-42, HP 12 x 53; Blow: 5 GRL Engineers, Inc.

Test: 10-Dec-2014 09:37 CAPWAP(R) 2014 OP: AZ

				REMA TABLE	EXTR			
max	max.	max.	max.	max.	min.	max.	Dist.	Pile
Displ	Veloc.	Trnsfd.	Tens.	Comp.	Force	Force	Below	Sgmnt
		Energy	Stress	Stress			Gages	No.
ir	ft/s	kip-ft	ksi	ksi	kips	kips	ft	
1.01	16.9	26.6	-1.76	36.5	-27.3	566.4	3.3	1
0.98	16.8	26.1	-1.95	36.0	-30.3	558.5	6.6	2
0.94	16.8	25.6	-2.14	36.3	-33.2	562.2	9.9	3
0.91	16.8	25.0	-2.31	36.6	-35.7	566.9	13.2	4
0.87	16.7	24.3	-2.48	35.9	-38.5	556.6	16.5	5
0.83	16.6	23.5	-2.65	34.9	-41.1	541.8	19.8	6
0.79	16.6	22.8	-2.82	34.7	-43.7	538.5	23.1	7
0.76	16.5	22.2	-2.98	35.1	-46.1	543.7	26.4	8
0.72	16.4	21.5	-3.13	34.4	-48.6	533.7	29.7	9
0.68	16.4	20.6	-3.24	33.8	-50.3	524.1	33.0	10
0.63	16.3	19.6	-4.02	36.1	-62.4	560.3	36.3	11
0.58	16.0	18.4	-4.54	37.8	-70.3	585.7	39.5	12
0.54	15.7	17.5	-5.58	38.1	-86.6	590.1	42.8	13
0.50	15.3	16.6	-6.48	37.4	-100.4	580.1	46.1	14
0.45	14.9	14.6	-6.36	36.6	-98.7	567.9	49.4	15
0.40	14.5	13.4	-6.65	39.3	-103.1	609.7	52.7	16
0.35	14.1	11.1	-6.22	40.6	-96.5	629.9	56.0	17
0.30	13.6	9.9	-6.31	41.2	-97.9	638.4	59.3	18
0.25	12.8	8.1	-5.84	39.9	-90.6	618.2	62.6	19
0.20	11.3	7.0	-6.10	39.4	-94.5	610.9	65.9	20
0.16	9.0	5.3	-5.12	39.2	-79.3	607.2	69.2	21
0.12	5.7	4.8	-5.20	41.9	-80.6	649.8	72.5	22
40.4 ms)	(T =			41.9			72.5	solute
55.9 ms)	(Т =		-6.65				52.7	

STH	96 ov	er Fox Ri	ver (B-5	-381); P	ile: Pie	r 3 #1 -	BOR		Test: 10	-Dec-201	4 09:37
APE	D25-4	2, HP 12	x 53; Bl	ow: 5						CAPWAP	R) 2014
GRL	Engin	eers, Inc	· ·								OP: AZ
					CAS	E METHOD					
J =		0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
RP		752.7	707.6	662.6	617.5	572.5					
RX		757.2	718.0	683.4	654.7	631.2	611.2	600.0	589.2	582.9	579.8
RU		755.2	710.7	666.1	621.6	577.0					
RAU	=	571.8 (ki	.ps); RA	.2 = 6	38.0 (ki	ps)					
Curi	cent C	APWAP Ru	= 592.0	(kips);	Correspo	nding J(RP)= 0.73	1; J(RX)	= 1.35		
	VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
	ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
	16.9	35.88	466.4	511.6	577.1	1.02	0.09	0.10	27.4	587.5	6688

PILE PROFILE AND PILE MODEL

	Depth	Area	E-Modulus	Spec. Weight	Perim.
	ft	in ²	ksi	lb/ft ³	ft
	0.0	15.5	29992.2	492.000	3.97
	72.5	15.5	29992.2	492.000	3.97
Toe Area		141.9	in ²		

Top Segment Length 3.30 ft, Top Impedance 28 kips/ft/s

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c 8.6 ms Total volume: 7.804 ft³; Volume ratio considering added impedance: 1.000

STH 96 over Fox River (B-5-381); Pile: Pier 3 #38 - EOID	Test: 09-Dec-2014 16:17
APE D25-42, HP 12 x 53; Blow: 192	CAPWAP(R) 2014
GRL Engineers, Inc.	OP: AZ
About the CAPWAP Results	

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts STH 96 over Fox River (B-5-381); Pile: Pier 3 #38 - EOIDTest: 09-Dec-2014 16:17APE D25-42, HP 12 x 53; Blow: 192CAPWAP(R) 2014GRL Engineers, Inc.OP: AZno liability whatsoever of any kind for the analysis solution and/or the applicationof the analysis result.

STH 96 over Fox River (B-5-381); Pile: Pier 3 #38 - EOID Test: 09-Dec-2014 16:17 APE D25-42, HP 12 x 53; Blow: 192 GRL Engineers, Inc.

		Match	Quality	Poor - Resu	lts May	Be Unreli	able!!!		
				CAPWAP SUMM	ARY RESU	JLTS			
Total CA	PWAP Capa	city:	586.0;	along Shaft	46.	0; at Toe	540.0	kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith	Quake
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping	
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor	
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft	in
				586.0					
1	46.1	6.1	0.0	586.0	0.0	0.00	0.00	0.00	0.15
2	52.7	12.7	5.0	581.0	5.0	0.76	0.19	0.29	0.15
3	59.3	19.3	5.0	576.0	10.0	0.76	0.19	0.29	0.15
4	65.9	25.9	10.0	566.0	20.0	1.52	0.38	0.29	0.15
5	72.5	32.5	26.0	540.0	46.0	3.94	0.99	0.29	0.11
Avg. Sh	naft		9.2			1.42	0.36	0.29	0.13
Тс	be		540.0				548.03	0.04	0.06
Soil Mod	el Parame	eters/Exte	ensions			Shaft	Тое	1	
Case Dam	ping Fact	or				0.48	0.78	ł	
Damping	Туре					Viscous	Viscous	1	
Unloading	g Quake		(% of	loading quak	e)	100	52	1	
Unloading	g Level		(% of	Ru)		36			
Soil Plu	g Weight		(kips)				0.027		
CAPWAP m	atch qual	.ity	= 5	.68	(Wave Up	Match) ;	RSA = 0		
Observed	: Final S	Set	= 0	.10 in; 1	Blow Cou	int =	120 ł	o/ft	
Computed	: Final S	let	= 0	.10 in; 1	Blow Cou	int =	119 k	o/ft	
Transducer	r F3(F	523) CAL:	93.8; F	F: 0.98; F4(H0	83) CAL	: 94.4; RF:	0.98		
	A3(K	2214) CAL:	332; F	F: 1.02; A4(K9	74) CAL	: 305; RF:	1.02		
max. Top	Comp. St	ress	= 3	9.0 ksi	(T= 45	.3 ms, max	= 1.157 >	Top)	
max. Com	p. Stress	5	= 4	5.2 ksi	(Z= 72	.5 ft, T=	40.4 ms)	1	
max. Ten	s. Stress	5	= -7	.94 ksi	(Z= 52	2.7 ft, T=	59.2 ms)	1	
max. Ene	rgy (EMX)	I	= 2	9.8 kip-ft;	max. Me	asured Top	Displ. (DMX)= 1.1	.6 in

STH 96 over Fox River (B-5-381); Pile: Pier 3 #38 - EOID Test: 09-Dec-2014 16:17 APE D25-42, HP 12 x 53; Blow: 192 GRL Engineers, Inc.

CAPWAP(R) 2014 OP: AZ

max	max.	max.	max.	max.	min.	max.	Dist.	Pile
Displ	Veloc.	Trnsfd.	Tens.	Comp.	Force	Force	Below	Sgmnt
		Energy	Stress	Stress			Gages	No.
i	ft/s	kip-ft	ksi	ksi	kips	kips	ft	
1.1	16.3	29.8	-3.03	39.0	-47.0	605.2	3.3	1
1.0	16.2	29.0	-4.09	39.3	-63.4	608.7	6.6	2
1.0	16.2	28.2	-5.00	39.4	-77.6	610.5	9.9	3
0.9	16.1	27.5	-5.79	39.1	-89.8	606.6	13.2	4
0.9	16.1	26.8	-6.46	38.8	-100.2	601.2	16.5	5
0.9	16.0	26.0	-6.85	38.7	-106.2	600.6	19.8	6
0.8	16.0	25.1	-7.02	38.6	-108.8	599.2	23.1	7
0.8	15.9	24.1	-7.12	37.6	-110.3	583.6	26.4	8
0.7	15.8	23.3	-7.23	38.4	-112.1	594.7	29.7	9
0.7	15.8	22.4	-7.35	38.4	-113.9	595.4	33.0	10
0.6	15.7	21.3	-7.44	37.8	-115.4	586.6	36.3	11
0.6	15.6	20.1	-7.55	39.4	-117.1	611.5	39.5	12
0.5	15.5	18.8	-7.63	39.7	-118.4	615.4	42.8	13
0.5	15.3	17.6	-7.74	39.6	-120.0	614.7	46.1	14
0.4	15.0	16.3	-7.83	39.8	-121.4	617.7	49.4	15
0.4	14.7	15.0	-7.94	41.5	-123.2	643.7	52.7	16
0.3	14.3	13.2	-7.61	43.1	-118.0	667.8	56.0	17
0.3	14.0	12.0	-7.72	43.1	-119.8	668.7	59.3	18
0.2	13.5	10.5	-7.38	42.7	-114.5	661.8	62.6	19
0.2	12.8	9.7	-7.42	43.0	-115.0	666.5	65.9	20
0.2	10.9	8.2	-6.60	42.0	-102.3	651.8	69.2	21
0.1	7.4	7.7	-6.58	45.2	-102.1	700.2	72.5	22
40.4 ms	(T =			45.2			72.5	olute
59.2 ms	(т =		-7.94				52.7	

		er Fox Ri 2, HP 12	•		ile: Pie	r 3 #38	- EOID		Test: 09		4 16:17 R) 2014
		eers, Inc	-	0						C111 //11 (OP: AZ
					CAS	E METHOD					
J =		0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
RP		734.8	691.4	647.9	604.5	561.0					
RX		734.8	692.9	665.1	648.1	631.1	614.7	607.1	601.9	599.1	597.5
RU		736.1	692.9	649.7	606.5	563.3					
RAU	=	585.9 (ki	.ps); RA	.2 = 6	12.4 (ki	ps)					
Curr	ent C	APWAP Ru	= 586.0	(kips);	Correspo	nding J(RP)= 0.69	9; match	es RX20	within 5	8
	VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
	ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
	16.7	35.88	462.1	489.9	596.9	1.16	0.10	0.10	30.8	589.0	9804

	PILE PROF	ILE AND PILE MODI	EL	
Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in²	ksi	lb/ft ³	ft
0.0	15.5	29992.2	492.000	3.97
72.5	15.5	29992.2	492.000	3.97
Toe Area	141.9	in²		
Top Segment Length	3.30 ft, Top Impe	edance 28 b	kips/ft/s	

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c 8.6 ms

Total volume: 7.804 ft^{3;} Volume ratio considering added impedance: 1.000

STH 96 over Fox River (B-5-381); Pile: Pier 3 #38 - BOR	Test: 10-Dec-2014 09:48
APE D25-42, HP 12 x 53; Blow: 5	CAPWAP(R) 2014
GRL Engineers, Inc.	OP: AZ
About the CAPWAP Results	

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts STH 96 over Fox River (B-5-381); Pile: Pier 3 #38 - BORTest: 10-Dec-2014 09:48APE D25-42, HP 12 x 53; Blow: 5CAPWAP(R) 2014GRL Engineers, Inc.OP: AZno liability whatsoever of any kind for the analysis solution and/or the applicationof the analysis result.

STH 96 over Fox River (B-5-381); Pile: Pier 3 #38 - BOR APE D25-42, HP 12 x 53; Blow: 5 GRL Engineers, Inc. Test: 10-Dec-2014 09:48 CAPWAP(R) 2014 OP: AZ

			CAPWAP SUMM	ARY RESULTS	S		
Total CAPWA	P Capacity:	599.0;	along Shaft	69.0;	at Toe	530.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	. Unit	Unit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.
No.	Gages	Grade			Ru	(Depth)	(Area)
	ft	ft	kips	kips	kips	kips/ft	ksf
				599.0			
1	46.1	6.2	5.0	594.0	5.0	0.81	0.20
2	52.7	12.8	7.0	587.0	12.0	1.06	0.27
3	59.3	19.3	7.0	580.0	19.0	1.06	0.27
4	65.9	25.9	15.0	565.0	34.0	2.28	0.57
5	72.5	32.5	35.0	530.0	69.0	5.31	1.34
Avg. Sha	ft		13.8			2.12	0.53
Тое			530.0				537.88
Soil Model 1	Parameters/E	tensions			Shaft	Тое	
Smith Dampin	ng Factor				0.32	0.10	
Quake	-	(in)			0.13	0.15	
Case Damping	g Factor				0.80	1.92	
Damping Type	9				Viscous V	/iscous	
Unloading Qu	ıake	(% of	loading quak	e)	100	104	
Unloading Le	evel	(% of	Ru)		60		
Resistance (Sap (included	l in Toe 🤇	Quake) (in)			0.04	
CAPWAP match	n quality	= 3	.97	(Wave Up Ma	atch) ; RSA	A = 0	
Observed: F:	inal Set	= 0	.08 in;	Blow Count	=	160 b/ft	
Computed: F:	inal Set	= 0	.04 in;	Blow Count	=	287 b/ft	
Transducer	F3(F523) CA A3(K2214) CA		RF: 1.00; F4(H0 RF: 1.09; A4(K9		94.4; RF: 1. 305; RF: 1.		
max. Top Cor	mp. Stress	= 4	1.0 ksi	(T= 45.3	ms, max= 1	L.094 x Top)	
max. Comp. s	Stress	= 4	4.8 ksi	(Z= 72.5	ft, T= 40).4 ms)	
max. Tens. S	Stress	= -7	.23 ksi	(Z= 52.7	ft, T= 57	7.1 ms)	
max. Energy	(EMX)	= 3	3.6 kip-ft;	max. Measu	ured Top Di	ispl. (DMX)=	1.15 in

STH 96 over Fox River (B-5-381); Pile: Pier 3 #38 - BOR Test: 10-Dec-2014 09:48 APE D25-42, HP 12 x 53; Blow: 5 GRL Engineers, Inc.

CAPWAP(R) 2014 OP: AZ

			EXTI	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.3	635.1	-43.6	41.0	-2.81	33.6	18.7	1.18
2	6.6	633.1	-46.4	40.8	-2.99	32.8	18.6	1.14
3	9.9	639.0	-48.6	41.2	-3.13	32.1	18.6	1.10
4	13.2	645.9	-51.1	41.7	-3.30	31.4	18.6	1.06
5	16.5	639.5	-53.0	41.2	-3.42	30.5	18.5	1.02
6	19.8	626.6	-54.7	40.4	-3.53	29.6	18.5	0.98
7	23.1	612.4	-56.1	39.5	-3.62	28.5	18.4	0.93
8	26.4	612.6	-57.5	39.5	-3.71	27.7	18.4	0.89
9	29.7	618.9	-59.1	39.9	-3.81	26.8	18.3	0.85
10	33.0	615.6	-60.5	39.7	-3.90	25.7	18.2	0.80
11	36.3	608.3	-67.6	39.2	-4.36	24.5	18.2	0.75
12	39.5	633.4	-78.9	40.9	-5.09	23.1	18.0	0.70
13	42.8	640.5	-89.4	41.3	-5.77	21.7	17.6	0.64
14	46.1	640.8	-98.8	41.3	-6.37	20.5	17.3	0.59
15	49.4	635.5	-103.9	41.0	-6.70	18.3	16.9	0.54
16	52.7	660.3	-112.1	42.6	-7.23	16.9	16.5	0.49
17	56.0	675.1	-109.2	43.5	-7.04	14.5	15.9	0.44
18	59.3	683.3	-111.5	44.1	-7.19	13.1	15.3	0.39
19	62.6	672.8	-105.3	43.4	-6.79	11.0	14.4	0.33
20	65.9	674.2	-106.6	43.5	-6.88	9.6	12.7	0.28
21	69.2	664.9	-92.9	42.9	-5.99	7.3	10.1	0.23
22	72.5	694.6	-93.7	44.8	-6.04	5.8	6.6	0.18
Absolute	72.5			44.8			(T =	40.4 ms)
	52.7				-7.23		(T =	57.1 ms)

	over Fox Ri -42, HP 12	•		Pile: Pie	r 3 #38	- BOR		Test: 10		L4 09:48 (R) 2014
	ineers, Inc									OP: AZ
				CAS	E METHOD					
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
RP	830.0	782.5	735.0	687.5	640.0					
RX	830.0	786.0	742.4	700.7	663.5	647.8	632.2	622.2	615.7	610.9
RU	835.6	789.2	742.8	696.4	650.0					
RAU =	571.7 (ki	lps); RA	.2 = 6	57.1 (ki	ps)					
Current	CAPWAP Ru	= 599.0	(kips);	Correspo	nding J(RP)= 0.00	0; match	es RX20	within 5	5%
VM	IX TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/	s ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
18.	4 35.88	508.2	559.4	638.5	1.15	0.08	0.08	34.4	675.7	4926

PILE PROFILE AND PILE MODEL									
Depth	Area	E-Modulus	Spec. Weight	Perim.					
ft	in ²	ksi	lb/ft ³	ft					
0.0	15.5	29992.2	492.000	3.97					
72.5	15.5	29992.2	492.000	3.97					
Toe Area	141.9	in^2							
Top Segment Length	3.30 ft, Top Im	pedance 28 1	kips/ft/s						

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c 8.6 ms

Total volume: 7.804 ft^{3;} Volume ratio considering added impedance: 1.000
GRL Engineers, Inc.

1540 E. Dundee Road, Suite 102 Palatine, IL 60074 USA Phone: (847) 221-2750 Fax: (847) 221-2752

TRANSMITTAL

To: Mr. Wade Hamacher	From: Mark Rawlings				
Company: Lunda Construction Company	No. of Sheets: 29				
E-mail:whamacher@lundaconstruction.com	Date: October 27, 2014				

RE: Dynamic Testing Results – Pier 4 WisDOT Contract B-5-381 – STH 96 over Fox River Wrightstown, Wisconsin

On October 23, 2014, Pier 4 #7 and Pier 4 #28 at the above structure were dynamically tested during initial driving. The 75.3 foot long HP 12 x 53 H-piles were driven with an APE D25-42 hammer operated on fuel setting 3. Plans indicate the piles in Pier 4 have a required driving resistance or ultimate capacity of 410 kips, and an estimated length of 45 feet.

Pier 4 #7 was driven to a depth of 40.0 feet below the excavated ground surface at EI. 580.5, which corresponds to a pile tip elevation of EI. 540.5. The blow count over the final increment of driving was 5 blows for 1 inch of penetration at an average hammer stroke of 8.6 feet. Pier 4 #28 was driven to a depth of 39.8 feet below the ground surface at the same elevation, which corresponds to a tip elevation of EI. 540.7. The blow count over the final increment of driving was also 5 blows for 1 inch of penetration at an average hammer stroke of 8.9 feet. Restrike testing was conducted on both piles on October 24. The blow count at the beginning of restrike of Pier 4 #7 was 5 blows for 5% inch of penetration at an average hammer stroke of 9.0 feet. The blow count at the beginning of restrike of Pier 4 #28 was 5 blows for 1½ inch of penetration at an average hammer stroke of 9.0 feet.

For the 410 kip piles driven with the APE D25-42 hammer in Pier 4 of the STH 96 bridge over the Fox River we recommend using the following criteria:

Field Observed	Recommended Minimum
Hammer Stroke	Blow Count
(feet)	(blows per inch)
7.0	8
7.5	6
8.0	5
8.5	4
9.0	4
9.5	4
10.0	4

We recommended the above blow count at the corresponding hammer stroke be maintained for

two inches of driving. Driving may be terminated immediately if the blow count reaches 10 blows per inch or greater at an average hammer stroke of 8.0 feet.

We anticipate the production piles will terminate at depths very similar to those of the test piles near El. 540. If a blow count of 10 blows per inch at an associated stroke of 8.0 feet is achieved above approximately El. 542 driving should be halted and we should be contacted for consultation.

Please contact us if there are any problems meeting the recommended criterion or if you have any questions on these recommendations.

GRL Engineers, Inc.

Marke A. Rawlings

Mark Rawlings

Travis Coleman, P.E.

cc: Steve Seymour – <u>steve.seymour@omnni.com</u> Jeff Horsfall –<u>jeffrey.horsfall@dot.wi.gov</u>

Attachments:

Dynamic Test Results	-	(Pages 3 – 14)
CAPWAP Analysis Results	-	(Pages 15 – 29)

Test date: 23-Oct-2014

STH 96 over Fox River - PIER 4 #7 - EOID APE D25-42, HP 12 x 53

Page 1 of 3 PDIPLOT Ver. 2014.1 - Printed: 23-Oct-2014

APE D25-42, HP 12 x 53

STH 96 over Fox River - PIER 4 #7 - EOID OP: RF AR: 15.50 in^2

LE: 72.30 ft

lest da	ate: 2	3-Oct-2	2014
	SP:	0.492	k/ft3
	EM: 3	30,000	ksi
	. ~		

WS: 1	16,807.9 f/s								1.20
	Max Measured Co					EMX:	Max Transfer	red Energy	
	Max F1 or F2 Com						Blows per Mi	nute	
	O.E. Diesel Hamm					RX9:		ethod Capacity	
BL#	depth	BLC	TYPE	CSX	CSI	STK	EMX	BPM	RX9
end 3	ft 12.00	bl∕ft 3	AV2	ksi	ksi	ft 3.8	k-ft		kips
3	12.00	3	STD	13.2 0.6	13.4 0.5	3.0 0.0	17 0	59 0	0 0
			MAX	13.8	13.9	3.8	17	60	0
			MIN	12.6	12.9	3.8	17	59	Õ
6	13.00	3	AV3	12.2	12.4	3.6	14	61	0
			STD	0.3	0.3	0.1	0	0	0
			MAX MIN	12.5 11.7	12.7 11.9	3.7 3.6	15 14	61 60	0 0
9	14.00	3	AV3	13.6	13.9	3.9	16	59	0
			STD	0.5	0.5	0.1	0	1	0
			MAX MIN	14.3 13.2	14.6 13.4	4.0 3.8	17 16	60 58	0 0
									0
11	15.00	2	AV2	15.1	15.5	4.1	19	58	0
			STD	0.4	0.3	0.1	1	0	0
			MAX	15.5	15.8	4.1	20	58	0
			MIN	14.7	15.2	4.0	17	57	0
15	16.00	4	AV4	10.6	10.7	3.4	11	62	0
			STD	0.4	0.4	0.1	0	1	0
			MAX	11.2	11.4	3.5	12 11	63	0 0
			MIN	10.3	10.4	3.4		62	
18	17.00	3	AV3	13.9	14.2	3.9	17	59	0
			STD	1.5	1.6	0.3	2	2	0
			MAX MIN	15.4 11.8	15.9 12.0	4.2 3.5	19 14	62 57	0 0
04	40.00	0							
21	18.00	3	AV3 STD	16.7 0.2	17.2 0.3	4.3 0.0	19 1	56 0	0 0
			MAX	17.1	17.6	4.3	20	56	0
			MIN	16.5	16.9	4.3	18	56	Ő
24	19.00	3	AV3	16.9	17.4	4.4	20	56	0
			STD	1.1	1.2	0.2	1	1	0
			MAX	17.8	18.3	4.6	21	57	0
			MIN	15.4	15.7	4.1	19	55	0
26	20.00	2	AV2	15.5	15.8	4.1	19	58	0
			STD	2.6	2.8	0.4	3	2	0
			MAX	18.1	18.6	4.4	22	60 55	0 0
			MIN	13.0	13.0	3.7	16		
29	21.00	3	AV3	15.5	15.8	4.2	18	57	0
			STD MAX	2.6 17.8	2.7 18.1	0.4 4.5	2 20	3 61	0 0
			MIN	11.9	12.0	4.5 3.6	20 15	55	0
22	22.00	4							
33	22.00	4	AV4 STD	17.7 0.3	18.0 0.3	4.4 0.0	20 1	55 0	0 0
			MAX	18.1	18.4	0.0 4.5	21	56	0
			MIN	17.3	17.6	4.4	19	55	Õ
37	23.00	4	AV4	18.8	19.2	4.7	21	54	0
			STD	0.2	0.3	0.0	1	0	0
			MAX	19.0	19.6	4.7	22	54	0
			MIN	18.6	18.8	4.6	20	54	0

STH 96 over Fox River - PIER 4 #7 - EOID

Page 2 of 3 PDIPLOT Ver. 2014.1 - Printed: 23-Oct-2014

APE D25-42, HP 12 x 53

OP: RF	DVEL FOX RIVEL -	FIER 4 #1 - EV	OID					Test date: 23	
BL#	depth	BLC	TYPE	CSX	CSI	STK	EMX	BPM	RX9
end	ft	bl/ft		ksi	ksi	ft	k-ft	**	kips
40	24.00	3	AV3	19.0	19.4	4.7	22	54	0
			STD	0.5	0.6	0.1	0	0	0
			MAX	19.7	20.2	4.7	23	55	0
			MIN	18.5	18.9	4.6	22	54	0
43	25.00	3	AV3	17.1	17.3	4.3	18	56	16
			STD	1.6	1.6	0.3	3	2	11
			MAX	19.1	19.3	4.7	21	58	26
			MIN	15.1	15.4	4.0	15	54	2
47	26.00	4	AV4	18.6	18.8	4.6	20	54	14
			STD	2.1	2.1	0.4	2	2	15
			MAX	20.4	20.6	5.0	23	58	39
			MIN	15.1	15.4	4.0	16	53	4
50	27.00	3	AV3	18.0	18.1	4.5	21	55	6
			STD	2.1	2.2	0.4	4	2	6
			MAX	20.0	20.4	4.9	25	58	14
			MIN	15.1	15.1	3.9	16	53	0
52	28.00	2	AV2	19.1	19.2	4.7	24	54	10
			STD	0.7	0.8	0.1	1	1	6
			MAX MIN	19.9 18.4	19.9 18.4	4.8 4.5	24 23	55 53	16 4
56	29.00	4	AV4	19.2	19.4	4.7	21	54	34
			STD	0.9	0.9	0.2	0	1	9
			MAX MIN	20.7 18.1	20.9 18.5	5.0 4.5	21 20	55 52	48 28
60	30.00	4	AV4	19.8	20.2	4.8	21	53	43
			STD MAX	0.4 20.2	0.6 20.7	0.1 4.9	0 22	0 54	5 49
			MIN	19.2	19.4	4.9	22	53	49 34
64	21.00	4							
64	31.00	4	AV4 STD	20.2 1.0	20.5 1.1	4.9 0.2	23 1	53 1	40 3
			MAX	21.2	21.8	5.0	23	54	44
			MIN	18.5	18.7	4.6	21	52	38
67	32.00	3	AV3	20.4	20.6	4.9	24	53	42
07	52.00	5	STD	0.2	0.2	0.1	1	0	9
			MAX	20.8	20.9	5.0	25	53	52
			MIN	20.2	20.4	4.8	23	52	30
70	33.00	3	AV3	20.5	21.2	5.0	25	52	44
10	00.00	Ũ	STD	1.0	1.2	0.2	2	1	7
			MAX	21.6	22.1	5.2	27	54	52
			MIN	19.1	19.4	4.7	23	51	35
74	34.00	4	AV4	21.0	21.4	5.0	23	52	61
			STD	1.1	1.1	0.2	2	1	4
			MAX	22.3	22.7	5.3	25	53	65
			MIN	19.6	19.9	4.8	22	51	55
78	35.00	4	AV4	22.2	22.5	5.4	25	51	81
			STD	0.3	0.4	0.1	1	1	11
			MAX	22.6	23.0	5.5	26	51	99
			MIN	21.7	21.9	5.2	25	50	71
82	36.00	4	AV4	22.3	22.7	5.4	24	51	94
			STD	1.0	1.1	0.3	2	1	2
			MAX	23.3	23.7	5.6	25	53	96
			MIN	20.7	20.9	4.9	21	50	91
86	37.00	4	AV4	21.9	22.3	5.3	23	51	95
			STD	0.9	0.9	0.2	1	1	3
			MAX	23.3	23.8	5.6	25	52 50	99
			MIN	21.0	21.4	5.1	21	50	93

STH 96 over Fox River - PIER 4 #7 - EOID

APE D25-42, HP 12 x 53

	Ver Fux River -	FIER4#1-E		AFE 020-42, NF 12 X 00					
OP: RF								Test date: 23	-Oct-2014
BL#	depth	BLC	TYPE	CSX	CSI	STK	EMX	BPM	RX9
end	ft	bl/ft		ksi	ksi	ft	k-ft	**	kips
92	38.00	6	AV6	24.0	24.5	5.8	21	49	177
			STD	2.2	2.3	0.6	1	2	74
			MAX	27.2	27.9	6.6	23	52	289
			MIN	21.0	21.5	5.0	20	46	94
102	39.00	10	AV10	30.6	31.5	7.7	29	43	384
			STD	0.6	0.7	0.2	2	1	9
			MAX	31.8	33.2	8.3	32	43	401
			MIN	29.8	30.6	7.4	26	41	371
123	39.92	23	AV17	30.9	31.3	7.8	27	42	411
			STD	1.6	1.8	0.5	3	1	31
			MAX	34.0	35.2	8.9	34	44	476
			MIN	28.4	28.8	7.0	20	40	375
127	39.98	60	AV4	33.5	34.4	8.6	30	40	546
			STD	0.8	0.8	0.2	4	1	22
			MAX	34.5	35.5	8.9	34	41	576
			MIN	32.5	33.4	8.3	25	40	518
			Average	21.6	22.0	5.4	22	51	133
			Std. Dev.	6.4	6.6	1.5	5	6	176
			Maximum	34.5	35.5	8.9	34	63	576
			Minimum	10.3	10.4	3.4	11	40	0
				Total nun	abor of blows a	nolyzod 122			

Total number of blows analyzed: 122

BL# depth (ft) Comments

Reported Reference EL 580.5

Time Summary

2

Drive 3 minutes 41 seconds

11.67

1:51:05 PM - 1:54:46 PM (10/23/2014) BN 1 - 128

Test date: 24-Oct-2014

STH 96 over Fox River - Pier 4 #7 Restrike APE D25-42, HP 12 x 53

GRL Engineers, Inc. Case Method & iCAP® Results PDIPLOT Ver. 2014.1 - Printed: 27-Oct-							age 1 of 1 -Oct-2014		
STH 9 OP: M	96 over Fox Riv 1R	ver - Pier 4	#7 Restrike					PE D25-42, ⊢ Test date: 24	
AR: LE:	15.50 in^2 72.30 ft							EM: 30).492 k/ft3),000 ksi
WS: 16,807.9 f/s JC: 1.20 CSX: Max Measured Compr. Stress STK: O.E. Diesel Hammer Stroke CSB: Compression Stress at Bottom BPM: Blows per Minute							<u>1.20</u> e		
	Max Transfer						Max Case Met		/ (JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
end	ft	bl/ft		ksi	ksi	k-ft	ft	**	kips
5	40.05	96	AV4	33.2	35.2	29	9.0	39.9	546
			STD	3.4	6.0	7	1.4	3.3	62
			MAX	36.3	41.7	37	10.3	45.0	602
			MIN	27.5	25.5	19	6.9	37.0	442
			Average	33.2	35.2	29	9.0	39.9	546
			Std. Dev.	3.4	6.0	7	1.4	3.3	62
			Maximum	36.3	41.7	37	10.3	45.0	602
			Minimum	27.5	25.5	19	6.9	37.0	442
				Total nu	mber of blows	analyzed: 4			

Time Summary

Drive 6 seconds

9:33:37 AM - 9:33:43 AM (10/24/2014) BN 1 - 5

Test date: 23-Oct-2014

STH 96 over Fox River - PIER 4 #28 - EOID APE D25-42, HP 12 x 53

STH 96 over Fox River - PIER 4 #28 - EOID <u>OP: RF</u> AR: 15.50 in^2

APE D25-42, HP 12 x 53 Test date: 23-Oct-2014 SP: 0.492 k/ft3

AR: LE: WS: 1	15.50 in^2 72.30 ft 16,807.9 f/s								0.492 k/ft3 0,000 ksi 1.20
CSX: CSI:	Max Measured Con	or. Stress					EMX: Max Transfer BPM: Blows per Mi RX9: Max Case M	red Energy nute	
BL#	depth	BLC	TYPE	CSX	CSI	STK	EMX	BPM	RX9
end	ft	bl/ft		ksi	ksi	ft	k-ft	**	kips
3	12.00	1	AV1 MAX MIN	22.6 22.6 22.6	22.7 22.7 22.7	5.5 5.5 5.5	31 31 31	50 50 50	0 0 0
3	13.00	1	AV1 MAX MIN	15.4 15.4 15.4	15.6 15.6 15.6	3.7 3.7 3.7	16 16 16	60 60 60	0 0 0
6	15.00	1	AV1 MAX MIN	23.2 23.2 23.2	24.5 24.5 24.5	5.4 5.4 5.4	31 31 31	51 51 51	0 0 0
8	16.00	2	AV2 STD MAX MIN	12.3 3.5 15.8 8.8	12.6 3.5 16.1 9.1	3.4 0.3 3.7 3.1	13 4 17 9	62 3 65 60	0 0 0 0
11	18.00	2	AV2 STD MAX MIN	20.9 2.4 23.3 18.5	21.3 2.5 23.8 18.9	4.9 0.6 5.6 4.3	27 6 33 21	53 3 56 50	0 0 0 0
13	19.00	2	AV2 STD MAX MIN	9.0 1.6 10.6 7.4	9.1 1.6 10.7 7.5	3.2 0.1 3.3 3.0	10 2 12 8	65 1 66 64	0 0 0 0
15	20.00	2	AV1 MAX MIN	25.0 25.0 25.0	25.4 25.4 25.4	5.8 5.8 5.8	30 30 30	49 49 49	0 0 0
18	21.00	3	AV3 STD MAX MIN	16.2 2.4 18.9 13.1	16.6 2.5 19.4 13.3	4.0 0.3 4.4 3.7	18 3 22 14	58 2 60 55	0 0 0 0
20	22.00	2	AV2 STD MAX MIN	14.2 0.5 14.7 13.7	14.5 0.6 15.1 13.9	3.8 0.1 3.9 3.7	17 1 18 17	59 1 60 59	0 0 0 0
22	23.00	2	AV2 STD MAX MIN	14.4 0.6 15.0 13.8	14.9 0.9 15.7 14.0	3.9 0.1 4.1 3.8	18 0 18 18	59 1 60 58	0 0 0
24	24.00	2	AV2 STD MAX MIN	17.4 0.9 18.3 16.5	17.6 0.8 18.4 16.8	4.4 0.1 4.5 4.3	23 1 24 22	56 1 56 55	0 0 0
26	25.00	2	AV2 STD MAX MIN	18.2 1.2 19.4 17.0	19.5 0.5 20.0 19.0	4.4 0.2 4.6 4.2	22 2 24 20	55 1 57 54	0 0 0 0
29	26.00	3	AV3 STD MAX MIN	17.7 1.6 19.3 15.4	18.2 1.7 19.8 15.9	4.4 0.2 4.6 4.1	20 1 20 18	55 1 57 54	0 0 0 0
32	27.00	3	AV3 STD MAX MIN	17.0 0.7 17.9 16.2	18.0 0.9 19.2 17.2	4.2 0.2 4.4 4.0	18 1 19 17	57 1 58 56	1 1 3 0

STH 96 over Fox River - PIER 4 #28 - EOID OP: RF

Page 2 of 3 PDIPLOT Ver. 2014.1 - Printed: 23-Oct-2014

APE D25-42, HP 12 x 53 Test date: 23-Oct-2014

OP: RF								Test date: 23	
BL#	depth	BLC	TYPE	CSX	CSI	STK	EMX	BPM	RX9
end 35	ft 28.00	bl/ft 3	AV3	ksi 17.6	ksi 18.5	ft 4.4	k-ft 19	56	kips 3
			STD	1.7	1.6	0.3	3	2	3
			MAX MIN	19.6 15.4	20.6 16.6	4.6 4.0	21 15	58 54	8 0
40	29.00	5	AV5	17.1	18.2	4.5	13	54 56	21
40	29.00	5	STD	3.5	3.7	0.6	4	3	12
			MAX	21.6	22.9	5.2	23	60	35
10		<u> </u>	MIN	12.8	13.5	3.7	12	51	0
43	30.00	3	AV3 STD	19.1 0.1	19.6 0.6	4.7 0.0	22 0	54 0	18 9
			MAX	19.2	20.4	4.7	22	54	26
			MIN	19.0	19.2	4.6	21	54	6
46	31.00	3	AV3 STD	18.3 0.5	19.2 0.6	4.6 0.1	21 1	54 0	21 9
			MAX	18.9	19.8	4.7	22	55	29
			MIN	17.6	18.5	4.5	20	54	8
51	32.00	5	AV5 STD	18.2 0.5	19.8 0.5	4.6 0.1	18 1	54 1	44 9
			MAX	18.9	20.4	4.8	19	55	57
			MIN	17.7	19.2	4.5	17	54	34
55	33.00	4	AV4	19.1	20.4	4.9	21	53	48
			STD MAX	0.5 19.7	0.5 20.8	0.0 4.9	0 21	0 53	7 58
			MIN	18.5	19.5	4.9	21	53	38
59	34.00	4	AV4	19.7	21.7	5.0	22	52	53
			STD MAX	0.4 20.5	1.0 23.0	0.1 5.2	1 22	1 53	14 62
			MIN	19.4	20.5	4.9	21	51	29
63	35.00	4	AV4	19.6	22.0	4.8	20	53	49
			STD MAX	0.8 20.8	0.8 23.3	0.1 5.0	1 23	1 54	7 57
			MIN	18.6	21.2	4.6	19	52	39
68	36.00	5	AV5	20.7	23.8	5.0	20	52	68
			STD MAX	0.9 22.4	1.3 25.7	0.1 5.1	1 20	1 53	5 78
			MIN	19.6	21.8	4.8	19	52	62
74	37.00	6	AV6	20.7	23.5	5.3	21	51	78
			STD MAX	1.4 22.5	1.9 26.0	0.1 5.4	1 22	0 52	4 85
			MIN	18.4	21.2	5.1	19	50	72
79	38.00	5	AV5	21.6	24.1	5.3	23	51	78
			STD MAX	1.0 23.4	0.9 25.5	0.2 5.6	1 25	1 53	5 84
			MIN	20.2	22.7	4.9	23	50	70
85	39.00	6	AV6	25.8	27.6	6.5	23	46	239
			STD	2.7 29.4	2.5	0.8	3	3	74
			MAX MIN	29.4	30.6 24.6	7.8 5.5	28 18	50 42	316 112
102	39.72	24	AV16	29.6	30.6	7.6	26	43	357
			STD	1.2	1.1 33.0	0.4	2 29	1	56
			MAX MIN	31.8 27.1	29.1	8.6 6.9	29 23	45 40	445 268
106	39.78	60	AV4	33.2	34.2	8.9	31	40	523
			STD MAX	1.5 35.7	1.4 36.3	0.5 9.7	2 35	1 41	17 552
			MIN	35.7 31.7	36.3 32.5	9.7 8.4	35 29	41 38	552
			Average	21.2	22.6	5.4	22	52	115
			Std. Dev. Maximum	5.7 35.7	5.9 36.3	1.5 9.7	5 35	6 66	154 552
			Minimum	7.4	7.5	3.0	8	38	0
				Total nu	mber of blows a	nalvzed: 100			

Total number of blows analyzed: 100

GRL Engir Case Meth	neers, Inc. nod & iCAP® Resul	ts	Page 3 of 3 PDIPLOT Ver. 2014.1 - Printed: 23-Oct-2014			
STH 96 ov OP: RF	er Fox River - PIER	4 #28 - EOID	APE D25-42, HP 12 x 53 Test date: 23-Oct-2014			
BL#	depth (ft)	Comments				
3	13.00	Reported Reference EL 580.5				
Time Sum	mary					

Drive 3 minutes 47 seconds

2:10:34 PM - 2:14:21 PM (10/23/2014) BN 1 - 107

PDIPLOT Ver. 2014.1 - Printed: 27-Oct-2014

STH 96 over Fox River - Pier 4 #28 Restrike APE D25-42, HP 12 x 53

Test date: 24-Oct-2014

GRL Engineers, Inc. Page Case Method & iCAP® Results PDIPLOT Ver. 2014.1 - Printed: 27-Oct-							age 1 of 1 ·Oct-2014		
STH 9 OP: M	96 over Fox Riv 1R	ver - Pier 4 a	#28 Restrike					PE D25-42, H Test date: 24-	
AR: LE: WS: 1	15.50 in^2 72.30 ft 6,807.9 f/s							EM: 30).492 k/ft3),000 ksi 1.20
CSB:	Max Measure Compression Max Transferr	Stress at B				BPM: E	D.E. Diesel Ha Blows per Min Max Case Met	ute	-
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
end	ft	bl/ft		ksi	ksi	k-ft	ft	**	kips
5	39.88	120	AV4	36.5	39.7	34	9.7	38.5	566
			STD	4.9	6.1	6	1.4	3.2	57
			MAX	41.2	45.5	40	10.7	43.9	610
			MIN	28.8	29.4	24	7.2	36.3	468
			Average	36.5	39.7	34	9.7	38.5	566
			Std. Dev.	4.9	6.1	6	1.4	3.2	57
			Maximum	41.2	45.5	40	10.7	43.9	610
			Minimum	28.8	29.4	24	7.2	36.3	468
				Total nur	mber of blows	analyzed: 4			

Time Summary

Drive 7 seconds

9:17:20 AM - 9:17:27 AM (10/24/2014) BN 1 - 5

CAPWAP(R) 2014 Licensed to GRL Engineers, Inc.

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result.

			CAPW	AP SUMMARY	RESULTS			
Total C	APWAP Capacit	cy: 511	.0; along	Shaft	46.0; at 1	Toe 465.0	kips	
Soil	L Dist.	Depth	Ru	Force	Sum	Unit	Unit	Quake
Sgmnt	t Below	Below		in Pile	of	Resist.	Resist.	
No	Gages	Grade			Ru	(Depth)	(Area)	
	ft	ft	kips	kips	kips	kips/ft	ksf	in
				511.0				
	L 39.4	7.1	8.0	503.0	8.0	1.13	0.28	0.15
3	2 46.0	13.7	8.0	495.0	16.0	1.22	0.31	0.1
	52.6	20.2	6.0	489.0	22.0	0.91	0.23	0.1
4	4 59.2	26.8	6.0	483.0	28.0	0.91	0.23	0.15
!	5 65.7	33.4	6.0	477.0	34.0	0.91	0.23	0.15
	5 72.3	40.0	12.0	465.0	46.0	1.83	0.46	0.14
Avg.	Shaft		7.7			1.15	0.29	0.15
	Toe		465.0				471.91	0.3
Soil Mo	del Parameter	s/Extensi	ons		S	haft To	e	
Smith D	amping Factor	c				0.30 0.1	1	
	mping Factor					0.50 1.8	5	
Damping					Vis	cous Smit	h	
	ng Quake	(%	of loading	ng quake)		53 3	0	
	ng Level		of Ru)	đ đ.		81		
Resista	nce Gap (inc]	Luded in T	oe Quake)	(in)		0.1	.2	
Soil Pl	ug Weight	(k	ips)			0.00	8	
CAPWAP	match quality	/ =	4.17	(Wa	ve Up Match	a); $RSA = 0$		
Observe	d: Final Set		0.20 in	n; Blo	w Count	= 60	b/ft	
Compute	d: Final Set	=	0.16 in	n; Blo	w Count	= 77	b/ft	
Transducer	F3 (F523)	CAL: 93.8;	RF: 1.00; F4	(H083) CAL:	94.4; RF: 1.00			
	A3 (K2214)	CAL: 332;	RF: 1.01; A4	(K974) CAL:	305; RF: 1.01			
max. To	p Comp. Stres	ss =	35.3 k	si (T	= 45.9 ms,	max= 1.070	x Top)	
max. Co	mp. Stress	=	37.8 k	si (Z:	= 72.3 ft,	T= 42.0 ms	3)	
max. Te	ns. Stress	=	-9.08 k	si (Z:	= 29.6 ft,	T= 58.3 ms	5)	
max Er	ergy (EMX)	=	34.1 k	ip-ft; mag	k. Measured	Top Displ.	(DMX) = 1	24 in

Test: 23-Oct-2014 13:54 CAPWAP(R) 2014 OP: RF

				EMA TABLE	EXTR				
max.	max.	max.	max.	max.	min.	max.	Dist.	Pile	
Displ.	Veloc.	Trnsfd.	Tens.	Comp.	Force	Force	Below	Sgmnt	
		Energy	Stress	Stress			Gages	No.	
in	ft/s	kip-ft	ksi	ksi	kips	kips	ft		
1.27	17.7	34.1	-2.23	35.3	-34.6	546.8	3.3	1	
1.25	17.7	33.7	-2.91	35.8	-45.1	554.4	6.6	2	
1.21	17.6	33.2	-3.98	35.8	-61.7	555.6	9.9	3	
1.17	17.6	32.4	-5.02	35.7	-77.8	553.8	13.1	4	
1.14	17.6	31.7	-6.03	35.7	-93.5	553.6	16.4	5	
1.10	17.5	31.0	-7.08	35.6	-109.8	551.4	19.7	6	
1.06	17.5	30.2	-7.82	35.2	-121.2	545.2	23.0	7	
1.02	17.5	29.4	-8.58	34.8	-133.0	540.0	26.3	8	
0.97	17.4	28.5	-9.08	34.6	-140.8	536.6	29.6	9	
0.93	17.2	27.6	-9.02	34.5	-139.9	535.1	32.9	10	
0.89	16.9	26.7	-8.76	34.1	-135.8	528.8	36.2	11	
0.84	16.5	25.8	-8.39	34.5	-130.1	534.6	39.4	12	
0.80	16.2	22.7	-7.06	34.6	-109.4	536.7	42.7	13	
0.75	15.9	21.6	-6.70	35.5	-103.9	550.0	46.0	14	
0.71	15.8	18.8	-5.58	35.3	-86.6	547.6	49.3	15	
0.66	15.5	17.8	-6.52	35.3	-101.0	547.4	52.6	16	
0.62	14.9	15.6	-5.78	35.1	-89.7	544.3	55.9	17	
0.57	14.4	14.7	-5.66	36.0	-87.7	558.5	59.2	18	
0.53	14.3	12.8	-4.65	35.9	-72.0	556.8	62.4	19	
0.49	16.2	12.0	-4.14	36.5	-64.2	565.6	65.7	20	
0.45	15.4	10.6	-2.62	36.7	-40.6	569.5	69.0	21	
0.41	12.4	9.7	-1.91	37.8	-29.7	585.3	72.3	22	
42.0 ms)	(T =			37.8			72.3	olute	Abso
58.3 ms)	(T =		-9.08				29.6		

	CASE METHOD											
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8		
RP	659.8	588.0	516.1	444.3	372.4							
RX	666.9	629.1	601.7	591.0	580.4	569.8	559.2	548.5	537.9	528.5		
RU	659.8	588.0	516.1	444.3	372.4							

RAU = 466.4 (kips); RA2 = 609.5 (kips)

Current CAPWAP Ru = 511.0 (kips); Corresponding J(RP)= 0.41; matches RX20 within 5%

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
17.8	35.98	493.7	525.4	533.7	1.24	0.20	0.20	35.0	582.0	1860

DTTE	PROFILE	AND	DTTE	MODET

Depth	Area	E-Modulus	Spec. Weight	Perim
ft	in ²	ksi	lb/ft ³	ft
0.0	15.5	29992.2	492.000	3.97
72.3	15.5	29992.2	492.000	3.97
Toe Area	141.9	in ²		
Top Segment Length	3.29 ft, Top	Impedance 28	kips/ft/s	
Wave Speed: Pile Top	16807.9, Elastic	c 16807.9, Overall	16807.9 ft/s	

Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c 8.6 ms Total volume: 7.782 ft^{3;} Volume ratio considering added impedance: 1.000

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result.

2			CAPWAP SUM	MARY RESULT	s		
Total CAPWAP	Capacity:	557.0;	along Shaft	72.0;	at Toe	485.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	u Unit	Unit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.
No.	Gages	Grade			Ru	(Depth)	(Area)
	ft	ft	kips	kips	kips	kips/ft	ksf
				557.0			
1	39.4	7.2	8.0	549.0	8.0	1.11	0.28
2	46.0	13.8	8.0	541.0	16.0	1.22	0.31
3	52.6	20.3	10.0	531.0	26.0	1.52	0.38
4	59.2	26.9	12.0	519.0	38.0	1.83	0.46
5	65.7	33.5	14.0	505.0	52.0	2.13	0.54
6	72.3	40.0	20.0	485.0	72.0	3.04	0.77
Avg. Shaf	t		12.0			1.80	0.45
Toe			485.0				492.21
Soil Model Pa	arameters/Ex	tensions			Shaft	Toe	
Smith Damping	g Factor				0.33	0.25	
Quake		(in)			0.11	0.25	
Case Damping	Factor				0.86	4.38	
Damping Type					Viscous	Smith	
Unloading Qua	ake	(% of	loading qual	ke)	30	68	
Reloading Lev	vel	(% of	Ru)		100	100	
Unloading Lev	vel	(% of	Ru)		89		
Resistance Ga	ap (included	d in Toe	Quake) (in)			0.10	
Soil Plug We:	ight	(kips)			0.018	
CAPWAP match	quality	=	3.08	(Wave Up M	latch) ; RS	A = 0	
Observed: Fin	nal Set	=	0.12 in;	Blow Count	. =	96 b/ft	
Computed: Fin	nal Set	=	0.07 in;	Blow Count		179 b/ft	
max. Top Com	p. Stress	=	35.9 ksi	(T= 45.6	ms, max= :	1.091 x Top)	
max. Comp. St	tress	=	39.2 ksi	(Z= 72.3	ft, T= 43	1.6 ms)	
max. Tens. St	tress	= -	8.11 ksi	(Z= 39.4	ft, T= 58	8.1 ms)	
max. Energy	(EMX)	=	33.9 kip-ft;	max. Meas	ured Top D:	ispl. (DMX) =	1.16 in

Test: 24-Oct-2014 09:33 CAPWAP(R) 2014 OP: MR

				EXT	REMA TABLE				
-	Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
	Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
	No.	Gages			Stress	Stress	Energy		
-		ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
	1	3.3	557.4	-26.6	35.9	-1.71	33.9	17.8	1.18
	2	6.6	566.3	-28.4	36.5	-1.83	33.3	17.7	1.14
	3	9.9	559.6	-29.7	36.1	-1.92	32.7	17.7	1.11
	4	13.1	556.2	-39.7	35.9	-2.56	32.0	17.7	1.07
	5	16.4	542.1	-52.7	35.0	-3.40	31.2	17.6	1.03
	6	19.7	545.2	-65.3	35.2	-4.21	30.4	17.6	0.99
	7	23.0	538.3	-76.2	34.7	-4.92	29.6	17.5	0.95
	8	26.3	533.8	-87.5	34.4	-5.64	28.8	17.5	0.91
	9	29.6	542.5	-96.5	35.0	-6.23	27.8	17.4	0.87
	10	32.9	557.8	-106.2	36.0	-6.85	26.8	17.1	0.82
	11	36.2	567.9	-115.7	36.6	-7.46	25.6	16.7	0.77
	12	39.4	566.7	-125.7	36.6	-8.11	24.6	16.3	0.72
	13	42.7	576.9	-119.0	37.2	-7.67	21.5	15.9	0.68
	14	46.0	582.6	-123.3	37.6	-7.95	20.4	15.5	0.63
	15	49.3	581.6	-107.7	37.5	-6.94	17.6	15.1	0.58
	16	52.6	592.0	-110.5	38.2	-7.13	16.4	14.6	0.53
	17	55.9	587.2	-98.1	37.9	-6.33	13.5	14.1	0.48
	18	59.2	596.7	-102.2	38.5	-6.59	12.3	13.7	0.43
	19	62.4	597.1	-79.7	38.5	-5.14	9.7	13.8	0.39
	20	65.7	603.8	-74.4	38.9	-4.80	8.6	15.1	0.34
	21	69.0	589.6	-44.8	38.0	-2.89	6.3	14.6	0.30
	22	72.3	608.0	-40.0	39.2	-2.58	5.0	11.1	0.25
Abso	olute	72.3			39.2			(T =	41.6 ms)
		39.4				-8.11		(T =	58.1 ms)

	CASE METHOD											
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9		
RP	760.9	734.4	708.0	681.5	655.1	628.7	602.2	575.8	549.3	522.9		
RX	765.7	741.0	716.8	694.6	672.3	657.2	643.3	629.4	615.6	602.1		
RU	747.6	719.8	692.0	664.3	636.5	608.7	581.0	553.2	525.4	497.7		

RAU = 535.0 (kips); RA2 = 614.8 (kips)

Current CAPWAP Ru = 557.0 (kips); Corresponding J(RP)= 0.77;

RMX requires higher damping; see PDA-W

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
17.6	35.78	485.7	539.5	562.7	1.16	0.12	0.12	34.2	640.4	3233

	PILE PROP	FILE AND PILE MOD	EL	
Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in ²	ksi	lb/ft ³	ft
0.0	15.5	29992.2	492.000	3.97
72.3	15.5	29992.2	492.000	3.97
Toe Area	141.9	in ²		
Top Segment Length	3.29 ft, Top Imp	bedance 28 1	kips/ft/s	

Wave Speed: File Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s File Damping 1.00 %, Time Incr 0.196 ms, 2L/c 8.6 ms Total volume: 7.782 ft³: Volume ratio considering added impedance: 1.000

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result.

STH 96 over Fox River; Pile: Pier 4 #28 Restrike Test: 24-Oct-2014 09:17 APE D25-42, HP 12 x 53; Blow: 4 GRL Engineers, Inc.

CAPWAP (R) 2014 OP: MR

8			CAPWAP SUMM	ARY RESULT	'S		
Total CAPWAP	Capacity:	572.0;	along Shaft	84.0;	at Toe	488.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.
No.	Gages	Grade			Ru	(Depth)	(Area)
	ft	ft	kips	kips	kips	kips/ft	ksf
				572.0			
1	39.4	7.0	4.0	568.0	4.0	0.57	0.14
2	46.0	13.6	7.0	561.0	11.0	1.07	0.27
3	52.6	20.1	8.0	553.0	19.0	1.22	0.31
4	59.2	26.7	10.0	543.0	29.0	1.52	0.38
5	65.7	33.3	10.0	533.0	39.0	1.52	0.38
6	72.3	39.9	45.0	488.0	84.0	6.85	1.72
Avg. Shaf	it		14.0			2.11	0.53
Toe			488.0				495.26
Soil Model Pa	arameters/E	xtensions	1		Shaft	Тое	
Smith Damping	g Factor				0.31	0.13	
Quake		(in)			0.16	0.30	
Case Damping	Factor				0.94	2.29	
Damping Type					Viscous	Smith	
Unloading Qua	ake	(% of	loading quak	e)	88	35	
Reloading Le	vel	(% of	Ru)		100	100	
Resistance G	ap (include	d in Toe	Quake) (in)			0.07	
CAPWAP match	quality	.= .	3.69	(Wave Up M	latch) ; RSA	A = 0	
Observed: Fin	nal Set	=	0.10 in;	Blow Count	. =	120 b/ft	
Computed: Fin	nal Set	=	0.05 in;	Blow Count	: =	218 b/ft	
max. Top Com	p. Stress	= :	35.2 ksi	(T= 45.2	ms, max= 1	.154 x Top)	
max. Comp. S	tress	=	40.6 ksi	(Z= 72.3	ft, T= 41	.8 ms)	
max. Tens. S	tress	= -:	8.99 ksi	(Z= 39.4	ft, T= 56	.1 ms)	

 max. Tens. Stress
 = -8.99 ksi
 (Z= 39.4 ft, T= 56.1 ms)

 max. Energy (EMX)
 = 35.6 kip-ft; max. Measured Top Displ. (DMX)= 1.25 in

					EMA TABLE	010110000				
max	max.	nax.		max.	max.	min.	max.		Dis	Pile
Disp	eloc.		Trns	Tens.	Comp.	Force	Force	ow	Bel	Sgmnt
		ergy		Stress	Stress				Gag	No.
	ft/s	p-ft	kip	ksi	ksi	kips	kips	ft		
1.2	17.4	35.6	3	-2.58	35.2	-40.1	545.2	.3	3	1
1.2	17.4	35.1	3	-2.76	36.2	-42.9	560.9	.6	6	2
1.1	17.4	34.4	3	-2.96	36.7	-45.9	569.3	.9	9	3
1.1	17.3	33.7	3	-3.45	36.6	-53.5	567.4	.1	13	4
1.0	17.3	32.9	3	-4.69	36.4	-72.7	563.8	.4	16	5
1.0	17.3	32.1	3	-5.99	36.7	-92.9	569.2	.7	19	6
1.0	17.2	31.3	3	-7.19	36.5	-111.4	566.2	.0	23	7
0.9	17.2	30.5	3	-8.14	36.0	-126.2	558.1	.3	26	8
0.9	17.1	29.6	2	-8.71	35.2	-135.0	546.4	.6	29	9
0.8	16.9	28.7	2	-8.69	35.2	-134.8	545.6	.9	32	10
0.8	16.7	27.6	2	-8.57	35.7	-132.8	553.8	.2	36	11
0.5	16.4	26.6		-8.99	36.3	-139.3	562.5		39	12
0.5	16.0	24.4		-8.49	37.1	-131.7	575.1		42	13
0.0	15.7	23.2		-8.59	37.7	-133.2	585.2		46	14
0.0	15.3	20.6		-7.51	38.1	-116.4	590.7		49	15
0.5	14.8	19.4		-7.42	39.0	-115.1	605.3		52	16
0.5	14.2	16.8		-6.51	38.9	-101.0	603.7		55	10
0.4	13.7	15.6		-6.73	40.0	-101.0	620.8		59	18
0.4	13.4	13.1		-5.67	39.8	-88.0	616.5		62	19
0.4	13.4	12.0						.7		20
0.3	12.3	9.9		-5.98	39.7 39.7	-92.6 -76.6	615.8 615.7			20
0.3	9.4	9.9 7.0		-4.94 -5.08	40.6	-78.8	628.8	.0 .3		21
				5.00		70.0	020.0			
41.8 ms					40.6				72	bsolute
56.1 ms		(Т		-8.99				.4	39	
					E METHOD	CAS				
0.	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0.0	J =
529	553.5	577.5	601.5	625.5	649.5	673.5	697.6	721.6	745.6	RP
606	617.6	629.9	642.6	655.5	668.4	686.0	709.4	733.1	756.7	xx
540	563.9	587.3	610.8	634.2	657.6	681.1	704.5	727.9	751.4	र บ
					ps)	602.0 (ki	RA2 =	ps);	43.3 (ki	AU = 54
				0.9;	uires J >	RMX req	0 (kips);	= 572.	WAP Ru	Current CAL
					Method	tter Case	y be a be	RA2 ma	PDA-W;	Check with
ĸ	QUS	EMX	SET	DFN	DMX	FMX	FT1	VT1*2	TVP	VMX
kips/:	kips	kip-ft	in	in	in	kips	kips	kips	ms	ft/s
	642.0	36.0	0.10	0.10	1.25	550.2		477.1	35.98	17.2

PILE	PROFILE	AND	PILE	MODEL	

Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in ²	ksi	lb/ft ³	ft
0.0	15.5	29992.2	492.000	3.97
72.3	15.5	29992.2	492.000	3.97
Toe Area	141.9	in ²		
Top Segment Length	3.29 ft, Top I	mpedance 28	kips/ft/s	

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c 8.6 ms Total volume: 7.782 ft³: Volume ratio considering added impedance: 1.000

GRL Engineers, Inc.

1540 E. Dundee Road, Suite 102 Palatine, IL 60074 USA Phone: (847) 221-2750 Fax: (847) 221-2752

TRANSMITTAL

To: Mr. Wade Hamacher	From: Al Ziai			
Company: Lunda Construction Company	No. of Sheets: 34			
E-mail: whamacher@lundaconstruction.com	Date: October 9, 2014			

RE: Dynamic Testing Results – Pier 5
 WisDOT Contract B-5-381 – STH 96 over Fox River
 Wrightstown, Wisconsin

On October 7, 2014, Pier 5 #1 and Pier 5 #34 at the above structure were dynamically tested during initial driving. The piles were tested during restrike on October 8. The 75.4 foot long HP 12 x 53 H-piles equipped with driving shoes were driven with an APE D25-42 hammer operated on fuel setting four. Plans indicate the piles in Pier 5 have a required driving resistance or ultimate capacity of 400 kips, and an estimated length of 50 feet.

Pier 5 #1 was driven to a depth of 46.0 feet below the excavated ground surface at EL 582.5, which corresponds to a pile tip elevation of EL 536.5. The blow count over the final increment of driving was 5 blows for $\frac{3}{6}$ inch of penetration at an average hammer stroke of 8.9 feet. The transition in driving resistance was very rapid at the end of driving as the pile was driven to bedrock. Prior to the final five blow set the blow count was 12 blows per foot at an average hammer stroke of 6.0 feet. The blow count at the beginning of restrike of Pier 5 #1 was 5 blows for $\frac{1}{4}$ inch of penetration at an average hammer stroke of 9.8 feet

Pier 5 #34 was driven to a depth of 46.0 feet below the excavated ground surface at EL 582.5, which corresponds to a pile tip elevation of EL 536.5. The blow count over the final increment of driving was 5 blows for ½ inch of penetration at an average hammer stroke of 9.8 feet. Prior to the final five blow set the blow count was 9 blows per foot at an average hammer stroke of 7.6 feet. The blow count at the beginning of restrike of Pier 5 #34 was 5 blows for ¼ inch of penetration at an average hammer stroke of 9.4 feet

Pier 5 #1 approached the maximum driving stress limit during initial driving and restrike and Pier 5 #34 slightly exceeded the driving stress limit during both driving sequences. We recommend reducing the fuel setting to three for production driving. If the stroke still exceeds 9.0 feet at the end of driving we recommend further reducing the fuel setting.

For the 400 kip piles, driven with the APE D25-42 hammer, in Pier 5 of the STH 96 bridge over the Fox River we recommend using the following criteria:

Field Observed	Recommended Minimum
Hammer Stroke	Blow Count
(feet)	(blows per inch)
7.5	5
8.0	4
8.5	4
9.0	3

We recommended the above blow count at the corresponding hammer stroke be maintained for <u>three consecutive inches</u> of driving. Driving may be terminated if production piles exceed 10 blows over an increment of one inch or less at hammer strokes of 9.0 feet. After splicing or any other delays, we recommend not applying the criteria until at least two feet of driving has occurred beyond the termination depth associated with the delay.

Please contact us if there are any problems meeting the recommended criterion or if you have any questions on these recommendations.

GRL Engineers, Inc.

their

Al Ziai

1a/lu

Travis Coleman, P.E.

Cc: Steve Seymour - steve.seymour@omnni.com Jeff Horsfall - Jeffrey.Horsfall@dot.wi.gov

Test date: 7-Oct-2014

STH 96 over Fox River - Pier 5 #1 - EOID **APE D25-42, HP 12 x 53**

STH 96 over Fox River - Pier 5 #1 - EOID OP: AZ

APE D25-42, HP 12 x 53

 Test date:
 7-Oct-2014

 SP:
 0.492 k/ft3

 EM:
 30,000 ksi

	72.40 ft								,000 KSI 1.00
CSX: CSB:	Compression	d Compr. Stress Stress at Bottom lammer Stroke				BPM:	Max Transfer Blows per Mi Max Case M	red Energy	1.00
BL# end 1	depth ft 20.00	BLC bl/ft 1	TYPE AV1 MAX MIN	CSX ksi 16.1 16.1 16.1	CSB ksi 4.3 4.3 4.3	STK ft **	EMX k-ft 34 34 34	BPM ** ** **	RX9 kips 0 0
2	21.00	1	AV1 MAX MIN	20.5 20.5 20.5	4.1 4.1 4.1	5.0 5.0 5.0	34 34 34	52 52 52	0 0 0
4	22.00	2	AV2 STD MAX MIN	16.6 0.1 16.6 16.5	3.9 0.0 4.0 3.9	4.1 0.0 4.2 4.1	23 0 23 22	57 0 58 57	0 0 0 0
7	23.00	3	AV3 STD MAX MIN	16.1 1.2 17.7 14.6	3.9 0.1 3.9 3.8	4.1 0.2 4.2 3.8	20 1 22 19	58 1 59 57	0 0 0 0
10	24.00	3	AV3 STD MAX MIN	16.9 1.0 18.3 16.1	4.1 0.2 4.4 4.0	4.2 0.2 4.4 4.0	21 1 23 19	57 1 58 56	0 0 0 0
13	25.00	3	AV3 STD MAX MIN	17.8 0.5 18.4 17.2	4.3 0.1 4.5 4.2	4.3 0.1 4.5 4.2	23 1 24 22	56 1 57 55	0 0 0 0
16	26.00	3	AV3 STD MAX MIN	18.1 1.2 19.2 16.4	4.4 0.2 4.6 4.2	4.4 0.2 4.6 4.2	23 1 25 22	56 1 57 55	0 0 0 0
19	27.00	3	AV3 STD MAX MIN	17.3 1.4 18.8 15.5	4.2 0.3 4.5 3.8	4.3 0.2 4.4 3.9	22 2 24 18	56 1 58 55	1 2 4 0
22	28.00	3	AV3 STD MAX MIN	18.4 0.4 18.9 18.1	4.4 0.1 4.5 4.3	4.4 0.1 4.5 4.4	24 1 25 23	55 0 56 55	0 0 0 0
26	29.00	4	AV4 STD MAX MIN	18.8 0.9 20.1 17.8	4.6 0.1 4.7 4.5	4.4 0.1 4.6 4.3	21 1 22 21	55 1 56 54	11 6 17 1
29	30.00	3	AV3 STD MAX MIN	18.1 0.8 18.9 17.1	4.6 0.2 4.9 4.3	4.3 0.2 4.6 4.2	22 2 24 21	56 1 57 55	4 5 11 0
33	31.00	4	AV4 STD MAX MIN	19.5 0.7 20.7 18.7	4.8 0.1 5.0 4.8	4.6 0.1 4.8 4.4	23 1 24 23	55 1 55 53	19 7 28 10
37	32.00	4	AV4 STD MAX MIN	19.5 0.2 19.7 19.2	4.9 0.1 5.0 4.9	4.6 0.0 4.6 4.5	23 0 23 23	55 0 55 54	36 7 43 27
41	33.00	4	AV4 STD MAX MIN	20.0 0.4 20.3 19.4	5.0 0.1 5.1 4.9	4.7 0.1 4.7 4.5	24 0 24 23	54 1 55 54	40 12 49 20

STH 96 over Fox River - Pier 5 #1 - EOID OP: AZ

Page 2 of 3 PDIPLOT Ver. 2014.1 - Printed: 8-Oct-2014

APE D25-42, HP 12 x 53

OP: AZ								Test date: 7-0	
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
end 45	ft 34.00	bl/ft 4	AV4	ksi 20.0	ksi 5.0	ft 4.6	k-ft 23	** 54	kips 52
45	34.00	4	STD	0.4	0.1	0.1	1	0	6
			MAX	20.5	5.1	4.7	24	55	60
			MIN	19.6	5.0	4.6	22	54	45
49	35.00	4	AV4	20.2	5.2	4.7	23	54	61
			STD MAX	0.4 20.7	0.0 5.2	0.1 4.8	1 24	0 54	11 72
			MIN	19.7	5.1	4.6	23	53	48
53	36.00	4	AV4	19.9	5.2	4.6	22	54	68
			STD	0.1	0.1	0.0	1	0	3
			MAX MIN	20.0 19.7	5.3 5.1	4.7 4.6	23 21	55 54	73 64
58	37.00	5	AV5	21.2	5.5	4.9	23	53	75
50	57.00	5	STD	0.5	0.0	0.1	0	0	3
			MAX	21.6	5.6	5.0	23	53	80
			MIN	20.3	5.4	4.8	23	52	71
62	38.00	4	AV4 STD	20.8 0.7	5.5 0.1	4.8 0.1	23 1	53 1	68 4
			MAX	21.5	5.6	5.0	25	54	72
			MIN	19.6	5.4	4.7	22	52	63
67	39.00	5	AV5	20.1	5.5	4.7	21	54	75
			STD MAX	0.8 21.1	0.1 5.6	0.2 5.0	1 22	1 55	3 79
			MIN	18.8	5.4	4.5	19	52	71
72	40.00	5	AV5	20.4	5.4	4.8	21	53	75
			STD	0.2	0.1	0.1	1	0	2
			MAX MIN	20.7 20.1	5.6 5.2	4.8 4.7	22 20	54 53	78 73
78	41.00	6	AV6	20.5	5.5	4.8	20	53	80
			STD	0.8	0.1	0.2	1	1	2
			MAX MIN	21.3 19.0	5.7 5.4	5.0 4.5	21 19	55 52	83 77
83	42.00	5	AV5	20.0	5.6	4.7	20	54	78
00	42.00	0	STD	0.5	0.1	0.1	1	1	2
			MAX MIN	20.5 19.1	5.8 5.5	4.8 4.5	21 18	55 53	81 75
00	42.00	C	AV6	20.1				53 54	
89	43.00	6	STD	20.1	5.7 0.1	4.7 0.1	19 1	54 1	81 3
			MAX	20.8	5.8	4.9	20	54	85
			MIN	19.6	5.5	4.6	19	53	76
95	44.00	6	AV6 STD	20.5 0.4	5.7 0.1	4.8 0.1	20 1	53 1	81 1
			MAX	21.0	5.8	4.9	21	54	83
			MIN	19.7	5.5	4.6	19	53	79
101	45.00	6	AV6	20.0	5.7	4.7	19	54	86
			STD MAX	0.4 20.5	0.1 5.8	0.1 4.8	1 21	0 55	5 93
			MIN	19.2	5.5	4.5	18	53	78
113	46.00	12	AV12	26.2	21.0	6.0	19	49	329
			STD	6.3	13.6	1.5	6	5	205
			MAX MIN	38.5 19.8	43.2 5.7	8.9 4.7	32 11	54 40	630 97
118	46.03	160	AV5	41.0	44.8	8.9	32	40	689
-	-	-	STD	2.6	3.0	0.4	4	1	31
			MAX MIN	43.3 36.2	46.7 38.9	9.5 8.2	36 26	41 38	715 633
				00.2	00.0	0.2	20	00	000

Page 3 of 3 PDIPLOT Ver. 2014.1 - Printed: 8-Oct-2014

STH 96 o OP: AZ	over Fox River - Pi	er 5 #1 - EOID				A	PE D25-42, H Test date: 7-	
			CSX	CSB	STK	EMX	BPM	RX9
			ksi	ksi	ft	k-ft	**	kips
		Average	21.1	8.4	4.9	22	53	104
		Std. Dev.	5.3	10.1	1.1	4	4	166
		Maximum	43.3	46.7	9.5	36	59	715
		Minimum	14.6	3.8	3.8	11	38	0
			Total num	nber of blows a	analyzed: 118	3		
BL#	depth (ft)	Comments						
1	20.00	Reported Referen	nce EL 582.5					

Time Summary

Drive 3 minutes 31 seconds 2:01:07 PM - 2:04:38 PM (10/7/2014) BN 1 - 118

Test date: 8-Oct-2014

STH 96 over Fox River - Pier 5 #1 - BOR APE D25-42, HP 12 x 53
Page 1 of 1 PDIPLOT Ver. 2014.1 - Printed: 8-Oct-2014

STH 96 over Fox River - Pier 5 #1 - BOR OP: AZ AB: 15 50 in/2

APE D25-42, HP 12 x 53 Test date: 8-Oct-2014

<u>UP.</u> P	~							Test date.	0-001-2014
AR:	15.50 in^2							SP:	0.492 k/ft3
LE:	72.40 ft							EM: 3	30,000 ksi
WS:	16,807.9 f/s							JC:	1.00
CSX:	Max Measured	Compr. Stre	ess			EMX:	Max Transferr	ed Energy	
CSB:	Compression S	Stress at Bot	tom			BPM:	Blows per Min	ute	
STK:	O.E. Diesel Ha	mmer Strok	e			RX9:	Max Case Me	thod Capac	ity (JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
end	ft	bl/ft		ksi	ksi	ft	k-ft	**	kips
5	46.05	240	AV5	40.3	44.5	9.8	35	38	674
			STD	3.1	4.1	0.6	4	1	33
			MAX	43.7	47.9	10.3	38	40	705
			MIN	35.6	36.6	8.7	28	37	611
			Average	40.3	44.5	9.8	35	38	674
			Std. Dev.	3.1	4.1	0.6	4	1	33
			Maximum	43.7	47.9	10.3	38	40	705
			Minimum	35.6	36.6	8.7	28	37	611
				Total nu	mber of blows	analyzed: 5			

Total number of blows analyzed: 5

Time Summary

Drive 6 seconds

10:08:15 AM - 10:08:21 AM (10/8/2014) BN 1 - 5

STH 96 over Fox River - Pier 5 #34 - EOID APE D25-42, HP 12 x 53

Test date: 7-Oct-2014

STH 96 over Fox River - Pier 5 #34 - EOID OP: AZ AR:

Page 1 of 3 PDIPLOT Ver. 2014.1 - Printed: 8-Oct-2014

APE D25-42, HP 12 x 53 Test date: 7-Oct-2014

OP: A	Z							lest date: 7.	Oct-2014
AR: LE: WS: ²	15.50 in^2 72.40 ft 16,807.9 f/s								.492 k/ft3 ,000 ksi 1.00
	Max Measured (Compr. Stres	s			EMX:	Max Transferr		
	Compression St						Blows per Min		
	O.E. Diesel Han					RX9:		thod Capacity	(JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
end	ft	bl/ft		ksi	ksi	ft	k-ft	**	kips
1	20.00	1	AV1	16.8	3.6	**	31	**	0
			MAX	16.8	3.6	**	31	**	0
			MIN	16.8	3.6	**	31	**	0
4	21.00	3	AV3	14.7	3.4	3.9	17	59	0
-	21.00	5	STD	4.2	0.5	0.7	6	4	0
			MAX	20.0	4.0	4.8	25	64	0
			MIN	9.7	2.8	3.2	10	54	Ő
8	22.00	4	AV4		3.2	3.5	13	60	0
0	22.00	4	STD	12.0 2.4	0.5	0.3	2	62 2	0 0
			MAX	15.1	3.9	3.9	17	65	0
			MIN	9.3	2.7	3.2	10	59	0
		0							-
11	23.00	3	AV3	13.5	3.5	3.6	15	61	0
			STD	1.4	0.3	0.2	1	1	0
			MAX MIN	15.1 11.6	3.9 3.1	3.8 3.4	17 13	62 59	0 0
									0
13	24.00	2	AV2	12.6	3.2	3.5	17	62	0
			STD	1.4	0.2	0.2	2	1	0
			MAX	14.0	3.3	3.7	18	63	0
			MIN	11.2	3.0	3.4	15	60	0
16	25.00	3	AV3	13.6	3.6	3.7	16	60	0
			STD	1.9	0.3	0.2	2	2	0
			MAX	15.3	3.9	3.9	19	63	0
			MIN	11.0	3.2	3.4	14	59	0
19	26.00	3	AV3	14.8	3.5	3.8	16	60	0
-		-	STD	1.0	0.2	0.1	1	1	0
			MAX	16.3	3.7	3.9	17	61	0
			MIN	13.9	3.3	3.6	15	59	0
22	27.00	3	AV3	13.4	3.5	3.6	16	61	0
	21.00	U	STD	1.6	0.4	0.2	2	2	0
			MAX	15.4	3.9	3.9	17	63	Ő
			MIN	11.4	3.0	3.4	13	59	0
25	28.00	3	AV3	15.0	3.7	3.8	17	59	0
20	20.00	5	STD	0.6	0.1	0.1	0	1	0
			MAX	15.6	3.8	4.0	17	60	0
			MIN	14.3	3.6	3.7	17	58	0
20	20.00	2			3.8				
28	29.00	3	AV1 MAX	15.3 15.3	3.8 3.8	3.8 3.8	17 17	59 59	0 0
			MIN	15.3	3.8	3.8	17	59	0
		_							
31	30.00	3	AV3	14.8	3.5	3.8	17	60	0
			STD	0.8	0.3	0.1	1	1	0
			MAX	15.4	3.7	3.8	18 16	61 50	0
			MIN	13.7	3.2	3.6		59	0
35	31.00	4	AV4	15.6	3.9	3.9	16	59	0
			STD	0.7	0.1	0.1	1	1	0
			MAX	16.2	4.0	4.0	17	60	0
			MIN	14.3	3.8	3.7	15	58	0
38	32.00	3	AV3	13.0	3.2	3.6	14	61	0
			STD	1.3	0.1	0.2	1	1	0
			MAX	14.5	3.3	3.8	15	63	0
			MIN	11.3	3.1	3.3	12	60	0
41	33.00	3	AV3	16.3	4.0	4.0	19	58	0
			STD	0.5	0.0	0.1	0	1	0
			MAX	16.8	4.0	4.1	19	59	0
			MIN	15.6	3.9	3.9	18	57	0

STH 96 over Fox River - Pier 5 #34 - EOID OP: AZ

Page 2 of 3 PDIPLOT Ver. 2014.1 - Printed: 8-Oct-2014

APE D25-42, HP 12 x 53

OP: AZ		51 - FICI J #J4						Test date: 7-	
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
end	ft	bl/ft	11/0	ksi	ksi	ft	k-ft	**	kips
43	34.00	2	AV2	16.6	3.5	4.0	20	58	0
			STD MAX	0.5 17.2	0.1 3.6	0.1 4.1	2 22	1 59	0 0
			MIN	16.1	3.4	3.9	18	57	0
46	35.00	3	AV3	14.3	3.5	3.7	17	60	0
			STD	0.3	0.0	0.0	1	0	0
			MAX	14.7	3.5	3.7	18	61	0
			MIN	13.9	3.4	3.6	15	60	0
49	36.00	3	AV3	17.6	4.2	4.2	21	56	0
			STD MAX	0.6 18.4	0.2 4.4	0.1 4.4	1 22	1 57	0 0
			MIN	17.0	3.9	4.1	19	56	0 0
53	37.00	4	AV4	16.3	4.2	4.0	18	58	0
			STD	0.5	0.1	0.1	1	1	0
			MAX	17.0	4.3	4.2	19	59	0
		_	MIN	15.5	4.2	3.9	17	57	0
56	38.00	3	AV3 STD	16.8 0.6	4.0 0.2	4.1 0.1	20 1	57 1	0
			MAX	17.4	4.2	4.2	21	58	0 0
			MIN	16.0	3.8	4.0	20	57	0
60	39.00	4	AV4	16.0	4.3	4.0	17	58	3
			STD	0.6	0.1	0.1	0	1	4
			MAX MIN	17.0 15.5	4.4 4.1	4.2 3.9	18 17	59 57	10 0
60	40.00	2				4.2			
63	40.00	3	AV3 STD	16.2 0.9	4.1 0.1	4.2 0.2	20 1	57 1	0 0
			MAX	17.1	4.3	4.3	21	59	0 0
			MIN	14.9	4.0	3.9	19	56	0
67	41.00	4	AV4	16.7	4.6	4.3	19	56	4
			STD	1.9	0.2	0.3	2 21	2 57	2 7
			MAX MIN	19.6 15.0	5.0 4.3	4.7 4.1	21 17	57 54	0
71	42.00	4	AV4	17.7	4.8	4.4	20	55	16
• •			STD	1.0	0.1	0.2	1	1	9
			MAX	19.4	4.9	4.7	21	56	24
			MIN	16.7	4.7	4.3	19	54	0
74	43.00	3	AV3	16.9	4.6	4.3	21	56	6
			STD MAX	0.8 17.8	0.2 4.8	0.2 4.5	2 23	1 57	1 7
			MIN	15.8	4.3	4.1	19	55	4
78	44.00	4	AV4	18.0	5.0	4.5	21	55	35
			STD	0.7	0.1	0.1	1	0	8
			MAX	18.5	5.1	4.6	22	56	43
	45.00		MIN	16.8	4.9	4.4	20	54	23
82	45.00	4	AV4 STD	17.8 0.7	5.0 0.2	4.5 0.2	21 1	55 1	33 9
			MAX	18.7	5.3	4.8	22	56	44
			MIN	17.2	4.9	4.4	20	53	18
91	46.00	9	AV6	32.6	29.1	7.6	29	44	435
			STD	10.0	17.6	2.2	7	7	276
			MAX MIN	44.8 18.6	47.3 5.3	10.2 4.8	40 21	53 37	693 56
96	46.04	120	AV4	44.9	47.0	9.8	38	38	731
30	40.04	120	STD	44.9 0.5	47.0	9.8 0.3	30	30 1	8
			MAX	45.7	49.4	10.3	41	39	738
			MIN	44.4	44.9	9.5	34	37	723

STH 96 over Fox River - Pier 5 #34 - EOID OP: AZ Page 3 of 3 PDIPLOT Ver. 2014.1 - Printed: 8-Oct-2014

APE D25-42, HP 12 x 53

OP: AZ							Test date: 7-Oct-201		
			CSX	CSB	STK	EMX	BPM	RX9	
			ksi	ksi	ft	k-ft	**	kips	
		Average	18.0	7.6	4.5	20	56	66	
		Std. Dev.	7.9	11.5	1.6	6	6	193	
		Maximum	45.7	49.4	10.3	41	65	738	
		Minimum	9.3	2.7	3.2	10	37	0	
			Total nur	mber of blows	analyzed: 90				
BL#	depth (ft)	Comments							

1 20.00 Reported Reference EL 582.5

Time Summary

Drive 2 minutes 22 seconds

2:17:53 PM - 2:20:15 PM (10/7/2014) BN 1 - 97

Test date: 8-Oct-2014

STH 96 over Fox River - Pier 5 #34 - BOR APE D25-42, HP 12 x 53

Page 1 of 1 PDIPLOT Ver. 2014.1 - Printed: 8-Oct-2014

STH 96 over Fox River - Pier 5 #34 - BOR OP: AZ

APE D25-42, HP 12 x 53 Test date: 8-Oct-2014

OP: A	~							lest date:	8-0ct-2014
AR:	15.50 in^2							SP:	0.492 k/ft3
LE:	72.40 ft							EM: 3	30,000 ksi
<u>WS:</u> ′	16,807.9 f/s							JC:	1.00
CSX:	Max Measured	Compr. Stre	ess			EMX:	Max Transferr	ed Energy	
CSB:	Compression S	Stress at Bot	tom			BPM:	Blows per Min	ute	
STK:	O.E. Diesel Ha	ammer Strok	е			RX9:	Max Case Me	thod Capac	ity (JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
end	ft	bl/ft		ksi	ksi	ft	k-ft	**	kips
5	46.06	240	AV5	42.2	44.3	9.4	36	39	704
			STD	2.5	5.1	0.6	4	1	36
			MAX	45.5	48.2	9.9	40	41	738
			MIN	38.1	34.7	8.3	30	38	638
			Average	42.2	44.3	9.4	36	39	704
			Std. Dev.	2.5	5.1	0.6	4	1	36
			Maximum	45.5	48.2	9.9	40	41	738
			Minimum	38.1	34.7	8.3	30	38	638
				Total nu	mber of blows	analyzed: 5			

Time Summary

Drive 6 seconds

10:20:29 AM - 10:20:35 AM (10/8/2014) BN 1 - 5

800

2.00

2.40

STH 96 over Fox River; Pile: Pier 5 #1 - EOID APE D25-42, HP 12 x 53; Blow: 117 GRL Engineers, Inc.

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. STH 96 over Fox River; Pile: Pier 5 #1 - EOID APE D25-42, HP 12 x 53; Blow: 117 GRL Engineers, Inc.

			CAPWAP SUMMA	ARY RESULT	'S		
Iotal CAPWA	P Capacity:	694.0;	along Shaft	64.0	; at Toe	630.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.
No.	Gages	Grade			Ru	(Depth)	(Area)
	ft	ft	kips	kips	kips	kips/ft	ksf
				694.0			
1	32.9	6.5	5.0	689.0	5.0	0.77	0.19
2	39.5	13.1	6.0	683.0	11.0	0.91	0.23
3	46.1	19.7	6.0	677.0	17.0	0.91	0.23
4	52.7	26.3	8.0	669.0	25.0	1.22	0.31
5	59.2	32.9	11.0	658.0	36.0	1.67	0.42
6	65.8	39.4	11.0	647.0	47.0	1.67	0.42
7	72.4	46.0	17.0	630.0	64.0	2.58	0.65
Avg. Sha	ft		9.1			1.39	0.35
Тое	1		630.0				639.37
Soil Model	Parameters/E	xtensions	8		Shaft	Тое	
Smith Dampi	ng Factor				0.28	0.09	
Quake	-	(in)			0.20	0.21	
Case Dampin	g Factor				0.65	2.05	
Damping Typ	e				Viscous	Smith	
Unloading Q	uake	(% of	loading quak	e)	85	49	
Unloading L	evel	(% of	Ru)		88		
Resistance	Gap (include	d in Toe	Quake) (in)			0.13	
Soil Plug W	eight	(kips)				0.009	
CAPWAP matc	h quality	= 3	.17	Wave Up M	latch) ; RSA	. = 0	
Observed: F		= 0		Blow Count		160 b/ft	
Computed: F	inal Set		•	Blow Count		287 b/ft	
Transducer	F3(F523) CAL		: 1.00; F4(H083)				
	A3(K974) CAL	.: 305; RF	: 1.00; A4(K2214) CAL: 332	2; RF: 1.00		
max. Top Co	mp. Stress	= 4	2.8 ksi	(T= 45.4	ms, max= 1	037 x Top)	
max. Comp.	Stress	= 4	4.4 ksi	(Z= 72.4	ft, T= 40).5 ms)	
max. Tens.	Stress	= -9	.34 ksi	(Z= 19.7	ft, T= 57	.0 ms)	
max. Energy	(EMX)	= 3	4.6 kip-ft;	max. Meas	ured Top Di	(DMX) =	1.24 in

STH 96 over Fox River; Pile: Pier 5 #1 - EOID APE D25-42, HP 12 x 53; Blow: 117 GRL Engineers, Inc. Test: 07-Oct-2014 14:04 CAPWAP(R) 2014 OP: AZ

					REMA TABL	15				
Pile			max.	min.	max.	max		nax.	max.	max
Sgmnt			orce	Force	Comp.	Tens			Veloc.	Displ
No.	-		leine	kips	Stress ksi	Stres		ergy p-ft	fr /a	
		IC .	kips	kips	KSI	ks	51 KI]	p-IC	ft/s	i
1			63.5	-54.5	42.8	-3.5		34.6	17.9	1.2
2			62.8	-75.7	42.7	-4.8		33.9	17.9	1.2
3			63.0	-92.7	42.8	-5.9		33.2	17.9	1.1
4			55.6	-118.9	42.3	-7.6		32.4	17.9	1.1
5			45.0	-139.4	41.6	-8.9		31.6	17.8	1.0
6			38.1	-144.8	41.2	-9.3		30.7	17.8	1.0
7			34.4	-142.0	40.9	-9.1		29.8	17.8	1.0
8			27.2	-135.1	40.5	-8.7		28.8	17.6	0.9
9			17.9	-129.1	39.9	-8.3		27.7	17.4	0.9
10			23.3	-125.8	40.2	-8.1		26.5	17.1	0.8
11			32.1	-117.5	40.8	-7.5		23.9	16.9	0.8
12			32.0	-139.2	40.8	-8.9		22.7	16.6	0.7
13			25.8	-128.3	40.4	-8.2		20.1	16.3	0.7
14			42.7	-122.4	41.5	-7.8		18.8	16.1	0.6
15			56.3	-102.9	42.3	-6.6		16.2	15.8	0.6
16			55.9	-98.0	42.3	-6.3		14.8	15.4	0.5
17			42.6	-92.3	41.4	-5.9		12.2	15.0	0.4
18			67.2	-99.6	43.0	-6.4		10.7	14.7	0.4
19			74.1	-78.8	43.5	-5.0		7.9	14.6	0.3
20			68.9	-71.7	43.1	-4.6		6.4	14.0	0.3
21			55.2	-39.9	42.3	-2.5		4.2	11.3	0.2
22	2 72	.4 6	87.8	-32.6	44.4	-2.1	.0	3.2	6.9	0.2
Absolute	72				44.4			()	: =	40.5 ms
	19	•7				-9.3	34	()	' =	57.0 ms
				CAS	SE METHOD					
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.
RP	791.5	746.1	700.6	655.2	609.8					
RX	811.3	776.5	746.6	730.8	720.5	710.2	700.0	690.5	681.3	672.
RU	787.7	741.5	695.3	649.1	602.9					
RAU =	539.9 (k:	ips); R	A2 =	698.9 (1	kips)					
Current Ci					ponding J	$(\mathbf{RP}) = 0$				
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	
ft/s	ms	kips	kips	kips	in	in		kip-ft		kips/i
17.8	36.03	491.4	527.2	671.8	1.24	0.08	0.08	35.2	642.7	787
			PI	LE PROFII	LE AND PI	LE MODEI				
	Depth			ea	E-Modu		Spec. I	-		Perim
	ft		ir			ksi		o/ft ³		f
	0.0 72.4			5.5 5.5	2999 2999			92.000 92.000		3.9 3.9
oe Area			141	L.9	in^2					

Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c 8.6 ms

Total volume: 7.793 ft^{3;} Volume ratio considering added impedance: 1.000

90 ms

72.4 ft

46.0 ft

141.9 in²

3.97 ft

29992 ksi

16808 ft/s

16808 ft/s

43.0 ksi

44.8 ksi

-8.22 ksi

0.14 in

0.14 in

0.31 s/ft

0.15 s/ft

2.01

492.0 lb/ft3

15.5 in²

12 L/c

шш'шнш

STH 96 over Fox River; Pile: Pier 5 #1 - BOR APE D25-42, HP 12 x 53; Blow: 4 GRL Engineers, Inc.

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. STH 96 over Fox River; Pile: Pier 5 #1 - BOR APE D25-42, HP 12 x 53; Blow: 4 GRL Engineers, Inc.

			CAPWAP SUMMA	ARY RESULT	S		
Total CAPWA	P Capacity:	694.0;	along Shaft	94.0	; at Toe	600.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.
No.	Gages	Grade			Ru	(Depth)	(Area)
	ft	ft	kips	kips	kips	kips/ft	ksf
				694.0			
1	32.9	6.5	5.0	689.0	5.0	0.77	0.19
2	39.5	13.1	7.0	682.0	12.0	1.06	0.27
3	46.1	19.7	7.0	675.0	19.0	1.06	0.27
4	52.7	26.3	11.0	664.0	30.0	1.67	0.42
5	59.2	32.9	11.0	653.0	41.0	1.67	0.42
6	65.8	39.4	18.0	635.0	59.0	2.73	0.69
7	72.4	46.0	35.0	600.0	94.0	5.32	1.34
Avg. Sha	ft		13.4			2.04	0.51
Тое	2		600.0				608.92
Soil Model	Parameters/E	xtensions	8		Shaft	Тое	
Smith Dampi	ng Factor				0.31	0.15	
Juake	-	(in)			0.14	0.14	
Case Dampin	g Factor				1.05	3.25	
Damping Typ	e				Viscous	Smith	
Unloading Q	uake	(% of	loading quak	e)	78	34	
Unloading L	evel	(% of	Ru)		99		
Resistance	Gap (include	d in Toe	Quake) (in)			0.08	
Soil Plug W	eight	(kips))			0.052	
CAPWAP matc	h quality	= 2	2.01	(Wave Up M	atch) ; RSA	. = 0	
Observed: F	inal Set	= 0	0.05 in; H	Blow Count	=	240 b/ft	
Computed: F	inal Set	= C).06 in; H	Blow Count	=	196 b/ft	
Transducer	F3(H083) CAL	: 94.4; RF	: 1.00; F4(F523)	CAL: 93.8	; RF: 1.00		
	A3(K2214) CAI	.: 332; RF	: 1.00; A4(K974)	CAL: 305	; RF: 1.00		
max. Top Co	mp. Stress	= 4	3.0 ksi	(T= 45.0	ms, max= 1	.041 x Top)	
max. Comp.	Stress	= 4	4.8 ksi	(Z= 72.4	ft, T= 40).5 ms)	
max. Tens.	Stress	= -8	3.22 ksi	(Z= 39.5	ft, T= 55	5.6 ms)	
max. Energy	(EMX)	= 3	86.6 kip-ft;	max. Meas	ured Top Di	spl. (DMX)=	1.21 in

STH 96 over Fox River; Pile: Pier 5 #1 - BOR APE D25-42, HP 12 x 53; Blow: 4 GRL Engineers, Inc. Test: 08-Oct-2014 10:08 CAPWAP(R) 2014 OP: AZ

					EMA TABL	E.				
Pile			ux.	min.	max.	max		max.	max.	max
Sgmnt	Belo		ce	Force	Comp.	Tens			Veloc.	Displ
No.	Gage				Stress	Stres		ergy		
	f	t ki	ps	kips	ksi	ks.	i kij	p-ft	ft/s	i
1	3.	3 666	5.6	-28.3	43.0	-1.8	3.	36.6	18.7	1.2
2		6 655	5.3	-31.6	42.3	-2.0	4	35.8	18.7	1.1
3	9.	9 656	5.1	-36.1	42.3	-2.3	3.	35.0	18.6	1.1
4	13.	2 656	5.5	-51.3	42.3	-3.3	1.	34.1	18.6	1.0
5	16.	5 651	6	-62.4	42.0	-4.0	2 .	33.1	18.6	1.0
6	19.	7 637	.5	-83.3	41.1	-5.3	7	32.1	18.5	0.9
7	23.	0 632	2.5	-99.8	40.8	-6.4	4 .	31.2	18.4	0.9
8	26.	3 628	3.2	-105.3	40.5	-6.7	9.	30.0	18.2	0.9
9	29.	6 632	2.5	-105.0	40.8	-6.7	7	28.8	17.9	0.8
10	32.			-103.6	41.7	-6.6		27.6	17.6	0.7
11	36.			-105.3	41.3	-6.7		25.1	17.2	0.7
12	39.			-127.5	41.1	-8.2		23.7	16.9	0.6
13				-125.1	42.5	-8.0		20.7	16.5	0.6
14				-126.1	43.3	-8.1		19.1	16.0	0.5
15	49.			-110.9	43.1	-7.1		16.4	15.5	0.5
16	52.			-108.9	42.3	-7.0		15.1	15.1	0.4
17	55.			-84.3	43.6	-5.4		11.9	14.6	0.4
18	59.			-85.7	44.6	-5.5		10.3	14.0	0.3
19	62.			-65.4	43.5	-4.2		7.7	13.6	0.3
20	65.			-67.2	42.8	-4.3		6.2	12.7	0.2
21	69.			-34.1	42.6	-2.2		3.7	9.8	0.20
22	72.	4 693	5.9	-34.9	44.8	-2.2	5	2.5	4.9	0.1
Absolute	72.	4			44.8			(]	: =	40.5 ms
	39.	5				-8.2	2	(]	: =	55.6 ms
J =	0.0	0.2	0.4	CAS	E METHOD 0.8	1.0	1.2	1.4	1.6	5 1.1
RP	867.7		783.8	741.8	699.9					
RX	867.7	825.7	786.3	747.4	716.0	691.1	671.6	655.0	640.9	629.
RU	867.3	825.3	783.3	741.3	699.3					
RAU = 5	82 1 (bi	ps); RA2	> _	717.4 (k	ing)					
Current CA		-				(RP)= 0.	83; J(F	(x) = 0.1	97	
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	S KE
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	s kips/i
18.7	36.03	518.0	559.4	670.4	1.21	0.05	0.05	37.2	710.1	1000
			БТТ	E PROFIL		IE MODEL				
	Donth				E-Modu			Vioight		Perim
	Depth ft		in	2 2		ksi	Spec. 1	b/ft ³		f
	0.0									
	0.0			.5	2999 2999			92.000 92.000		3.9
				- 7	2999	2.2	4	92.000		3.9
Ioe Area	72.4		141		in ²					
Toe Area Top Segmen	72.4	3 3	141			28 F	ips/ft/	's		

Total volume: 7.793 ft^{3;} Volume ratio considering added impedance: 1.000

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. STH 96 over Fox River; Pile: Pier 5 #34 - EOID Test: 07-Oct-2014 14:20 APE D25-42, HP 12 x 53; Blow: 96 GRL Engineers, Inc.

otal Capi	WAP Capaci	+	0.0; alon	AP SUMMARY : a Shaft	60.0; at	Тор 67	0.0 kips		
Soil	Dist.	•		Force	Sum	<u>Unit</u>	Unit	-	Juake
Sonnt	Below	Depth Below	Ru	in Pile	of	Resist.	Resist.	ç	luake
-				IN PILE	Ru				
No.	Gages ft	Grade ft	kips	kips	kips	(Depth) kips/ft	(Area) ksf		ir
	LC	LC	KIPS	KIPS	KIPS	KIPS/IC	KSL		11
				730.0					
1	32.9	6.6	6.0	724.0	6.0	0.92	0.23		0.30
2	39.5	13.1	6.0	718.0	12.0	0.91	0.23		0.30
3	46.1	19.7	6.0	712.0	18.0	0.91	0.23		0.30
4	52.7	26.3	7.0	705.0	25.0	1.06	0.27		0.30
5	59.2	32.9	9.0	696.0	34.0	1.37	0.34		0.30
6	65.8	39.5	12.0	684.0	46.0	1.82	0.46		0.30
7	72.4	46.0	14.0	670.0	60.0	2.13	0.54		0.28
Avg. Sh	aft		8.6			1.30	0.33		0.29
То	e		670.0				679.96		0.28
oil Mode	l Paramete	ers/Extens	ions		Sh	aft 1	loe		
mith Dam	ping Facto	r			0	.24 0.	10		
	ing Factor						42		
amping Ty	-				Visc				
nloading		(%	of loadi	ng quake)		100	38		
nloading			of Ru)			83			
-		luded in		e) (in)		0.	16		
APWAP mat	tch qualit	.y =	4.94	(Wav	e Up Match); RSA =	0		
bserved:	Final Set	- =	0.10 i	n; Blow	Count	= 12	0 b/ft		
omputed:	Final Set	: =	0.01 i	n; Blow	Count	= 104	2 b/ft		
ransducer	F3(F523			; F4(H083) CA	L: 94.4; RF:				
	A3(K974) CAL: 30	5; RF: 1.00;	; A4(K2214) CA	L: 332; RF:	1.00			
ax. Top (Comp. Stre	ess =	45.4 k	si (T=	45.4 ms,	max= 1.05	7 x Top)		
ax. Comp	-	=	48.0 k	•	72.4 ft,				
ax. Tens		=	-10.01 k		19.7 ft,				
	gy (EMX)	=		ip-ft; max			-		

STH 96 over Fox River; Pile: Pier 5 #34 - EOID APE D25-42, HP 12 x 53; Blow: 96 GRL Engineers, Inc. Test: 07-Oct-2014 14:20 CAPWAP(R) 2014 OP: AZ

				EXTR	REMA TABL	Е				
Pi			max.	min.	max.	max		nax.	max.	max
Sgm			orce	Force	Comp.	Tens			Veloc.	Displ
N	o. Ga	ges			Stress	Stres		ergy		
		ft	kips	kips	ksi	ks	i kij	p-ft	ft/s	iı
	1	3.3 7	04.4	-66.2	45.4	-4.2	7 4	40.4	19.6	1.3
	2	6.6 7	10.3	-92.1	45.8	-5.9	4	39.7	19.6	1.33
	3	9.97	10.0	-120.2	45.8	-7.7	5 .	38.9	19.6	1.29
	4 1	3.2 6	99.2	-144.8	45.1	-9.3	4 :	38.1	19.5	1.25
	5 1	6.5 6	86.9	-154.4	44.3	-9.9	6	37.2	19.5	1.21
	6 1	9.76	83.9	-155.2	44.1	-10.0	1 :	36.3	19.5	1.16
	7 2	3.0 6	77.9	-148.0	43.7	-9.5	5 .	35.2	19.5	1.12
	8 2	6.3 6	68.3	-136.7	43.1	-8.8	2 :	34.2	19.3	1.07
	9 2	9.6 6	55.8	-126.4	42.3	-8.1	5	33.1	19.1	1.02
	10 3	2.9 6	48.5	-124.5	41.8	-8.0	3	31.9	18.8	0.97
:	11 3	6.2 6	51.7	-110.7	42.0	-7.1	4 :	28.8	18.6	0.92
			61.3	-129.4	42.7	-8.3		27.5	18.3	0.87
			62.6	-115.7	42.7	-7.4		24.6	18.1	0.82
			72.2	-106.9	43.4	-6.9		23.1	17.9	0.76
			88.6	-93.0	44.4	-6.0		20.2	17.6	0.70
			99.3	-104.2	45.1	-6.7		18.5	17.4	0.64
			98.9	-101.8	45.1	-6.5		15.6	17.1	0.59
			17.0	-105.2	46.2	-6.7		14.0	16.8	0.53
			31.4	-84.2	47.2	-5.4		11.1	16.7	0.47
			37.2	-75.0	47.5	-4.8		9.3	15.8	0.41
			32.6	-39.1	47.3	-2.5		6.5	13.2	0.35
			44.6	-26.3	48.0	-1.6		5.4	8.2	0.29
Absolute		2.4 9.7			48.0	-10.0	1			40.5 ms) 57.0 ms)
				CAS	SE METHOD					
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
RP	853.9	804.2	754.4	704.7	654.9					
RX	856.4	810.6	781.9	764.9	747.9	730.9	715.8	711.4	708.9	706.3
RU	854.6	805.0	755.4	705.7	656.1					
RAU =	679.7 ()	(ips); F	2A2 =	759.2 (1	(ips)					
	CAPWAP Ru				_	(RP)= 0.	50; J(R	ex) = 1.	01	
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEE
ft/s		kips	kips	kips	in	in	in	kip-ft		kips/in
19.2		532.0	570.7	700.0	1.31	0.10	0.10	40.8	-	-
			PI	LE PROFII	LE AND PI	LE MODEL	l			
	Dept	h		rea	E-Modu	lus	Spec. W	-		Perim.
	f	t	iı	n ²		ksi	11	o∕ft³		ft
	0.			5.5	2999	2.2		92.000		3.97
	72.	4	15	5.5	2999	2.2	49	92.000		3.97
Toe Area			141	1.9	in^2					
	ent Lengt	-h ?		Top Impe		20 1	ips/ft/	' a		

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c 8.6 ms Total volume: 7.793 ft^{3;} Volume ratio considering added impedance: 1.000

Force Msd

uu'uuu

Length b. Sensors

End Bearing Area

Top Spec. Weight

Max Compr. Stress

Max Tension Stress

Avg. Shaft Quake

Avg. Shaft Smith Dpg.

Toe Smith Damping

Toe Quake

Top Perimeter

Top E-Modulus

Top Wave Spd.

Overall W.S.

Match Quality Top Compr. Stress

Embedment

Top Area

Velocity Msd

90 ms

72.4 ft

46.0 ft

15.5 in²

141.9 in²

3.97 ft

29992 ksi

16808 ft/s

16808 ft/s

3.24

42.9 ksi

47.4 ksi

-8.21 ksi

0.14 in

0.15 in

0.31 s/ft

0.14 s/ft

492.0 lb/ft3

12 L/c

STH 96 over Fox River; Pile: Pier 5 #34 - BOR APE D25-42, HP 12 x 53; Blow: 3 GRL Engineers, Inc.

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. STH 96 over Fox River; Pile: Pier 5 #34 - BOR APE D25-42, HP 12 x 53; Blow: 3 GRL Engineers, Inc.

			CAPWAP SUMM	ARY RESULT	ſS		
Total CAPWA	P Capacity:	676.0;	along Shaft	76.0	; at Toe	600.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.
No.	Gages	Grade			Ru	(Depth)	(Area)
	ft	ft	kips	kips	kips	kips/ft	ksf
				676.0			
1	32.9	6.5	4.0	672.0	4.0	0.61	0.15
2	39.5	13.1	4.0	668.0	8.0	0.61	0.15
3	46.1	19.7	5.0	663.0	13.0	0.76	0.19
4	52.7	26.3	5.0	658.0	18.0	0.76	0.19
5	59.2	32.8	12.0	646.0	30.0	1.82	0.46
6	65.8	39.4	19.0	627.0	49.0	2.89	0.73
7	72.4	46.0	27.0	600.0	76.0	4.10	1.03
Avg. Sha	aft		10.9			1.65	0.42
Тое	2		600.0				608.92
Soil Model	Parameters/E	xtensions			Shaft	Тое	
Smith Dampi	ng Factor				0.31	0.14	
Quake		(in)			0.14	0.15	
Case Dampin	g Factor				0.85	3.04	
Damping Typ	e				Viscous	Smith	
Unloading Q	uake	(% of	loading quak	ce)	65	30	
Unloading L	evel	(% of)	Ru)		88		
Resistance	Gap (include	d in Toe	Quake) (in)			0.05	
CAPWAP matc	h quality	= 3	.24	(Wave Up M	Match) ; RSA	. = 0	
Observed: F		= 0	.05 in; 1	Blow Count	: =	240 b/ft	
Computed: F	'inal Set	= 0	.03 in; 1	Blow Count	: =	446 b/ft	
Transducer	F3(F523) CAI	.: 93.8; RF:	: 0.97; F4(H083)) CAL: 94.	4; RF: 0.97		
	A3(K974) CAI	.: 305; RF:	: 1.03; A4(K2214	4) CAL: 33	2; RF: 1.03		
max. Top Co	mp. Stress	= 4	2.9 ksi	(T= 44.8	8 ms, max= 1	.106 x Top)	
max. Comp.	Stress	= 4	7.4 ksi	(Z= 65.8	3 ft, T= 41	5 ms)	
max. Tens.	Stress	= -8	.21 ksi	(Z= 39.5	5 ft, T= 55	5.6 ms)	
	(EMX)	= 3	9.1 kip-ft;				1.22 in

STH 96 over Fox River; Pile: Pier 5 #34 - BOR APE D25-42, HP 12 x 53; Blow: 3 GRL Engineers, Inc. Test: 08-Oct-2014 10:20 CAPWAP(R) 2014 OP: AZ

	-									
Pile			max.	min. Roman	max.	max		max.	max.	max Dianl
Sgmnt No.	Bel Gage		orce	Force	Comp. Stress	Tens Stres		sfd.	Veloc.	Displ
NO.	-		kips	kips	ksi	ks		ergy p-ft	ft/s	iı
1	3	.3 6	64.5	-27.9	42.9	-1.8	30	39.1	19.0	1.2
2	6	.6 6	69.0	-31.3	43.2	-2.0)2	38.3	19.0	1.2
3	9	.9 6	70.8	-34.6	43.3	-2.2	23	37.5	19.0	1.1
4	13	.2 6	69.3	-39.4	43.2	-2.5	54	36.6	18.9	1.1
5	16	.5 6	54.5	-56.0	42.2	-3.6	51 .	35.5	18.9	1.0
6	19	.7 6	40.9	-76.1	41.3	-4.9		34.6	18.9	1.0
7	23	.0 6	38.4	-87.5	41.2	-5.6	55	33.6	18.8	0.9
8		.3 6	34.5	-93.5	40.9	-6.0)3 .	32.5	18.4	0.9
9	29	.6 6	26.3	-97.3	40.4	-6.2	28	31.3	18.0	0.8
10	32	.96	44.3	-100.0	41.6	-6.4	15	30.1	17.8	0.84
11	36		46.6	-103.9	41.7	-6.7	70	27.7	17.5	0.79
12		.5 6	49.8	-127.3	41.9	-8.2	21	26.3	17.3	0.74
13			64.2	-121.9	42.8	-7.8		23.8	16.9	0.69
14			87.7	-121.6	44.4	-7.8		22.2	16.6	0.63
15			90.4	-112.1	44.5	-7.2		19.5	16.3	0.57
16	52		93.9	-108.8	44.8	-7.0		17.8	15.8	0.51
17			95.5	-96.0	44.9	-6.1		15.4	15.1	0.45
18			34.0	-98.9	47.3	-6.3		13.7	14.3	0.40
19	62		29.2	-77.3	47.0	-4.9		10.7	13.6	0.34
20			34.9	-77.7	47.4	-5.0		8.9	13.2	0.28
21			19.0	-41.4	46.4	-2.6		6.0	10.8	0.22
22	72	.4 7	24.1	-42.7	46.7	-2.7	/5	4.7	6.5	0.17
Absolute	65	.8			47.4			(т =	41.5 ms)
	39	.5				-8.2	21	(т =	55.6 ms)
					SE METHOD					
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.	6 1.8
RP RX	870.8 873.8	826.8 831.6	782.8 789.3	738.8 747.1	694.8 716.5	695.5	681.5	670.9	661.	5 653.6
RU	874.4	831.1	787.9	747.1	701.3	095.5	001.3	0/0.3	001.	5 055.0
	504.9 (ki			744.8 (1						
Current CA					-	(RP) = 0	.89: J(F	(x) = 1	30	
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX		s kei
ft/s	ms	kips	kips	kips	in	in		kip-ft		s kips/in
18.9	35.83		568.6	658.0	1.22	0.05	0.05			
	Depth			LE PROFII	LE AND PI E-Modu		Spec. 1	Weight		Perim
	ft			n ²		ksi	-	b/ft ³		ft
	0.0			5.5	2999			92.000		3.9
	72.4			5.5	2999	4.4	4	92.000		3.9
loe Area			14:	1.9	in^2					

Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c 8.6 ms

Total volume: 7.793 ft^{3;} Volume ratio considering added impedance: 1.000

GRL Engineers, Inc.

1540 E. Dundee Road, Suite 102 Palatine, IL 60074 USA Phone: (847) 221-2750 Fax: (847) 221-2752

TRANSMITTAL

To: Mr. Wade Hamacher	From: Al Ziai				
Company: Lunda Construction Company	No. of Sheets: 32				
E-mail:whamacher@lundaconstruction.com	Date: October 2, 2014				

RE: Dynamic Testing Results – Pier 6
WisDOT Contract B-5-381 – STH 96 over Fox River
Wrightstown, Wisconsin

On October 1, 2014, Pier 6 #9 and Pier 6 #30 at the above structure were dynamically tested during initial driving and tested during restrike on October 2. The 75.3 foot long HP 12 x 53 H-piles equipped with driving shoes were driven with an APE D25-42 hammer operated on fuel setting four. Plans indicate the piles in Pier 6 have a required driving resistance or ultimate capacity of 350 kips, and an estimated length of 45 feet.

Pier 6 #9 was driven to a depth of 48.3 feet below the excavated ground surface at EL 582.5, which corresponds to a pile tip elevation of EL 534.2 The blow count over the final increment of driving was 10 blows for 1½ inch of penetration at an average hammer stroke of 8.8 feet. The blow count at the beginning of restrike of Pier 6 #9 was 10 blows for 3¼ inch of penetration at an average hammer stroke of 9.2 feet

Pier 6 #30 was driven to a depth of 48.8 feet below the excavated ground surface at EL 582.5, which corresponds to a pile tip elevation of EL 533.8 The blow count over the final increment of driving was 10 blows per inch at an average hammer stroke of 9.5 feet. The blow count at the beginning of restrike of Pier 6 #30 was 10 blows per inch at an average hammer stroke of 10.1 feet

For the 350 kip piles, driven with the APE D25-42 hammer, in Pier 6 of the STH 96 bridge over the Fox River we recommend using the following criteria:

Field Observed	Recommended Minimum
Hammer Stroke	Blow Count
(feet)	(blows per inch)
7.5	8
8.0	6
8.5	5
9.0	4
9.5	4

We recommended the above blow count at the corresponding hammer stroke be maintained for three consecutive inches of driving. Driving may be terminated if production piles exceed 10

Lunda Construction Company GRL Job No. 147057-1 Page 2

blows over an increment of one inch or less at hammer strokes of 9.0 feet or more. After splicing or any other delays, we recommend not applying the criteria until at least two feet of driving has occurred beyond the termination depth associated with the delay.

Please contact us if there are any problems meeting the recommended criterion or if you have any questions on these recommendations.

GRL Engineers, Inc.

n

Al Ziai

Travis Coleman, P.E.

Cc: Steve Seymour – Omnni Associates steve.seymour@omnni.com

1 - Surface Reference Elevation EL 582.50

CSX (ksi) 🗕 EMX (k-ft) RX9 (kips) 🗕 Max Measured Compr. Stress Max Transferred Energy Max Case Method Capacity (JC=0.9) Ρ e n е t r а t i n f 45 t CSB (ksi) 🗕 STK (ft) BLC (blows/ft) Compression Stress at Bottom O.E. Diesel Hammer Stroke **Blow Count**

STH 96 over Fox River - Pier 6 #9 - EOID APE D25-42, HP 12 x 53

STH 96 over Fox River - Pier 6 #9 - EOID OP: RF AR: 15.50 in^ LE: 72.33 ft WS: 16.807.9 f/s 15.50 in^2

Page 1 of 2 PDIPLOT Ver. 2014.1 - Printed: 2-Oct-2014

APE D25-42, HP 12 x 53 Test date: 1-Oct-2014

SP: 0.492 k/ft3 EM: 30,000 ksi JC: 1.00

<u>WS: 1</u>	16,807.9 f/s							JC:	1.00
CSB:	Max Measured Co Compression Stres	ss at Bottom				BPM	O.E. Diesel H : Blows per Mi	nute	
-	Max Transferred E						Max Case M		
BL#	depth	BLC	TYPE	csx	CSB	EMX	STK	BPM	RX9
end	ft	bl/ft	A) (4	ksi	ksi	k-ft	ft		kips
3	26.30	3	AV1 MAX	21.2 21.2	6.7 6.7	27 27	4.9 4.9	52.7 52.7	9
			MIN	21.2	6.7	27	4.9	52.7	9 9
5	27.30	3	AV2	20.1	5.8	24	4.8	53.3	0
			STD	0.1	0.2	2	0.1	0.4	0
			MAX	20.2	6.0	26	4.9	53.7	0 0
			MIN	20.0	5.6	23	4.7	53.0	
7	28.30	2	AV2	20.2	6.0	24	4.7	53.5	19
			STD	0.2	0.2	1	0.0	0.3	6
			MAX	20.4	6.2	25	4.8	53.8	24
			MIN	20.1	5.8	23	4.7	53.3	13
9	29.30	2	AV2	18.5	6.0	20	4.4	55.3	47
			STD	0.3	0.3	0	0.1	0.4	6
			MAX	18.8	6.4	20	4.5	55.7	53
			MIN	18.2	5.7	20	4.4	55.0	41
15	30.30	6	AV4	18.9	6.0	17	4.6	54.7	52
			STD	1.2	0.3	1	0.2	1.3	9
			MAX	20.2	6.4	18	4.9	56.4	59
			MIN	17.4	5.7	16	4.3	53.0	37
22	32.30	4	AV3	20.8	6.2	23	4.9	52.6	22
			STD	0.8	0.1	0	0.1	0.5	12
			MAX	21.5	6.4	24	5.1	53.3	33
			MIN	19.7	6.1	23	4.8	52.0	6
26	33.30	4	AV4	20.4	6.0	22	4.9	52.7	23
			STD	1.4	0.3	2	0.3	1.4	5
			MAX MIN	22.2 18.8	6.5 5.7	23 20	5.3 4.6	54.1 51.0	31 19
30	34.30	4	AV2	21.1	6.0	22	4.9	52.6	37
			STD MAX	0.1 21.2	0.0 6.0	2 23	0.0 5.0	0.1 52.7	9 46
			MIN	21.2	6.0	23	4.9	52.7	40 28
00	05.00	0							
33	35.30	3	AV3 STD	20.1 1.1	6.1 0.5	23 1	4.9 0.2	52.6 0.9	16 13
			MAX	21.0	0.5 6.5	25	0.2 5.2	53.8	34
			MIN	18.5	5.5	22	4.7	51.5	4
26	26.20	3	AV1	19.9	5.8	25			
36	36.30	3	MAX	19.9	5.8	25 25	4.9 4.9	52.7 52.7	20 20
			MIN	19.9	5.8	25	4.9	52.7	20
40	27.20	4	AV4		6.2				
40	37.30	4	AV4 STD	20.9 0.6	6.2 0.1	23 2	5.1 0.2	52.0 0.8	40 5
			MAX	21.5	6.3	24	5.3	53.1	45
			MIN	20.2	6.0	20	4.8	51.0	33
44	38.30	4	AV4	19.9	6.0	21	4.8	53.2	43
44	30.30	4	STD	1.4	0.0	2	4.8 0.4	1.9	43 7
			MAX	22.0	6.3	24	5.4	55.4	, 51
			MIN	18.2	5.7	18	4.4	50.3	34
49	39.30	5	AV4	20.8	5.9	22	5.0	52.2	56
-10	00.00	0	STD	1.9	0.2	2	0.4	2.1	7
			MAX	23.0	6.2	24	5.5	55.1	67
			MIN	18.1	5.5	19	4.5	49.9	48
53	40.30	4	AV4	20.0	6.0	21	4.8	53.2	59
		-	STD	1.2	0.2	2	0.3	1.5	10
			MAX	20.9	6.2	24	5.2	55.6	70
			MIN	17.9	5.8	19	4.4	51.5	46

STH 96 over Fox River - Pier 6 #9 - EOID	
OP: RF	

Page 2 of 2 PDIPLOT Ver. 2014.1 - Printed: 2-Oct-2014

APE D25-42, HP 12 x 53

DP: RF			012					Test date: 1	
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
end	ft	bl/ft		ksi	ksi	k-ft	ft	**	kips
58	41.30	5	AV5	21.2	6.2	21	5.1	52.1	64
		-	STD	1.5	0.2	3	0.4	1.8	7
			MAX	23.5	6.5	26	5.7	54.5	76
			MIN	19.1	5.9	18	4.6	49.3	59
63	42.30	5	AV5	21.0	6.2	21	5.0	52.4	70
00	12.00	Ũ	STD	1.1	0.2	1	0.3	1.2	7
			MAX	22.9	6.5	23	5.4	53.8	83
			MIN	19.7	5.9	19	4.7	50.3	63
77	43.30	14	AV10	23.6	7.4	22	5.5	49.9	109
			STD	1.1	1.0	2	0.3	1.2	25
			MAX	25.7	9.7	26	6.1	51.8	160
			MIN	21.9	6.4	19	5.1	47.6	78
87	44.30	10	AV10	27.5	11.7	27	6.4	46.5	166
07	44.00	10	STD	0.7	0.8	2	0.2	0.6	10
			MAX	28.5	12.6	29	6.8	47.5	184
			MIN	26.5	10.3	24	6.1	45.3	154
98	45.30	11	AV11	28.3	14.2	28	6.7	45.6	208
30	40.00		STD	0.8	0.9	20	0.3	43.0 0.9	200
			MAX	29.3	15.6	31	7.2	47.1	218
			MIN	26.4	12.2	25	6.2	43.8	189
114	46.30	16	AV16	28.0	14.0	28	6.7	45.5	212
114	40.00	10	STD	0.7	0.8	20	0.2	0.6	13
			MAX	29.4	15.6	33	7.0	46.7	232
			MIN	26.7	12.9	26	6.3	44.4	190
131	47.30	17	AV17	28.3	15.5	27	6.7	45.5	232
101	47.50	17	STD	1.2	2.2	2	0.4	1.2	29
			MAX	30.5	19.8	30	7.3	48.6	283
			MIN	25.5	12.9	21	5.8	43.7	183
164	48.18	38	AV30	30.7	23.0	29	7.4	43.3	351
101	10.10	00	STD	0.9	3.1	1	0.2	0.7	49
			MAX	33.5	29.5	32	8.1	44.9	469
			MIN	29.1	18.4	26	6.9	41.4	293
174	48.30	80	AV10	34.0	36.4	33	8.8	40.0	563
17 4	40.00	00	STD	1.3	1.5	3	0.3	0.7	26
			MAX	35.5	38.5	39	9.4	41.2	607
			MIN	32.0	34.5	27	8.2	38.6	525
			Average	26.2	14.2	26	6.3	47.5	199
			Std. Dev.	4.7	8.7	4	1.2	4.4	155
			Maximum	35.5	38.5	39	9.4	56.4	607
			Minimum	17.4	5.5	16	4.3	38.6	007
						analyzed: 154	4.0	00.0	0

Total number of blows analyzed: 154

BL# depth (ft) Comments

3 26.63 Surface Reference Elevation EL 582.50

Time Summary

Drive 4 minutes 58 seconds

3:43:04 PM - 3:48:02 PM (10/1/2014) BN 1 - 174

Test date: 2-Oct-2014

STH 96 over Fox River - Pier 6 #9 - BOR APE D25-42, HP 12 x 53

Page 1 of 1 PDIPLOT Ver. 2014.1 - Printed: 2-Oct-2014

STH 96 over Fox River - Pier 6 #9 - BOR OP: AZ APE D25-42, HP 12 x 53

OP: AZ	<u>Z</u>							Test date: 2	-Oct-2014
AR:	15.50 in^2							SP:	0.492 k/ft3
LE:	72.33 ft							EM: 3	0,000 ksi
WS: 10	6,807.9 f/s							JC:	1.00
CSX:	Max Measured C	compr. Stress				EM	K: Max Transfe	rred Energy	
CSB:	Compression Str	ess at Bottom	1			BPN	I: Blows per M	inute	
STK:	O.E. Diesel Ham	mer Stroke				RX9	: Max Case M	ethod Capacit	y (JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
end	ft	bl/ft		ksi	ksi	ft	k-ft	**	kips
10	58.06	160	AV9	35.5	37.8	9.2	36	39	599
			STD	0.6	0.8	0.4	4	1	23
			MAX	36.1	39.0	9.8	39	40	618
			MIN	34.2	36.7	8.7	26	38	540
			Average	35.5	37.8	9.2	36	39	599
			Std. Dev.	0.6	0.8	0.4	4	1	23
			Maximum	36.1	39.0	9.8	39	40	618
			Minimum	34.2	36.7	8.7	26	38	540
				Total nu	umber of blows	analyzed: 9			

Time Summary

Drive 14 seconds

8:59:56 AM - 9:00:10 AM (10/2/2014) BN 1 - 10

Test date: 1-Oct-2014

STH 96 over Fox River - Pier 6 #30 - EOID APE D25-42, HP 12 x 53

STH 96 over Fox River - Pier 6 #30 - EOID

APE D25-42. HP 12 x 53 4

56

54

56

0

56

55

55

0

55

54

13

0 4 5

11

0 2

3

6

0

STH 96 over Fox River - Pier 6 #30 - EOID OP: RF							1	APE D25-42, H Test date: 1		
AR:	15.50 in^2 72.33 ft							SP: (0.492 k/ft3 0,000 ksi	
	807.9 f/s							JC:	1.00	
	lax Measured Co ompression Stre				EMX: Max Transferred Energy BPM: Blows per Minute					
STK: O	.E. Diesel Hamn	ner Stroke				RX9	: Max Case N	lethod Capacity	/ (JC=0.9)	
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9	
end	ft	bl/ft		ksi	ksi	ft	k-ft	**	kips	
3	23.00	3	AV2	16.5	4.8	4.0	20	58	9	
			STD	0.9	0.0	0.2	0	1	9	
			MAX MIN	17.4 15.6	4.8 4.8	4.1 3.8	20 19	60 57	19 0	
-	04.00									
7	24.00	4	AV4 STD	16.1 0.7	4.7 0.2	4.0	17	58	15	
			MAX	17.1	0.2 5.0	0.1 4.1	1 18	1 59	11 29	
			MIN	15.0	4.4	3.8	10	57	23	
11	25.00	4								
11	25.00	4	AV2 STD	16.1 0.2	4.7 0.1	4.1 0.0	17 0	58 0	12 2	
			MAX	16.3	4.8	4.1	17	58	13	
			MIN	16.0	4.5	4.0	17	57	10	
14	26.00	3	AV2	16.1	4.3	4.0	20	58	0	
••	20.00	Ū.	STD	0.5	0.1	0.1	1	1	Õ	
			MAX	16.6	4.4	4.1	21	58	0	
			MIN	15.6	4.2	3.9	20	57	0	
17	27.00	3	AV3	18.3	5.0	4.5	22	55	0	
			STD	0.4	0.0	0.0	0	0	0	
			MAX	18.7	5.1	4.5	22	55	0	
			MIN	17.8	5.0	4.4	22	55	0	
21	28.00	4	AV4	17.6	4.8	4.3	20	56	0	
			STD	0.5	0.0	0.1	1	0	0	
			MAX MIN	18.1 16.9	4.9 4.8	4.3 4.2	20 19	57 56	1 0	
05	20.00	4								
25	29.00	4	AV4 STD	16.7 0.7	4.8 0.1	4.2 0.1	18 1	57 1	4 4	
			MAX	17.8	4.9	4.4	20	58	9	
			MIN	16.1	4.7	4.0	17	56	0	
29	30.00	4	AV4	17.6	4.8	4.3	19	56	3	
			STD	0.3	0.1	0.0	0	0	5	
			MAX	17.9	5.0	4.4	20	56	12	
			MIN	17.1	4.7	4.3	19	56	0	
32	31.00	3	AV3	17.5	4.6	4.2	21	57	0	
			STD	0.7	0.1	0.1	1	1	0	
			MAX	18.4	4.7	4.4	22	58	0	
			MIN	16.9	4.5	4.0	20	56	0	
35	32.00	3	AV3	18.6	4.9	4.5	21	55	0	
			STD	0.4	0.2	0.0	1	0	0	
			MAX MIN	19.0 18.1	5.1 4.6	4.5 4.4	22 20	55 55	0 0	
20	22.00	Λ	AV3	17.4	4.9	4.3	18	56		
39	33.00	4	STD	1.4	4.9 0.2	4.3 0.2	10	56 1	3 4	
			MAX	19.2	5.0	4.5	20	58	4 9	
			MIN	15.8	4.5	4.0	16	55	0	
43	34.00	4	AV2	18.4	5.0	4.5	19	55	7	
-		-	STD	1.4	0.2	0.2	0	1	7	
			MAX	10.7	51	17	10	56	12	

MAX

MIN

AV3

STD

MAX

MIN

AV3

STD

MAX

MIN

3

3

46

49

35.00

36.00

19.7

17.0

18.0

0.2

18.3

17.9

18.6

0.5

19.2

18.1

5.1

4.8

4.6

0.1

4.7

4.5

4.8

0.1

4.9

4.8

4.7

4.3

4.4

0.0

4.5

4.3

4.5

0.1

4.6

4.5

19

19

20

1

21

19

21

0

22

21
GRL Engineers, Inc. Case Method & iCAP® Results

STH 96 over Fox River - Pier 6 #30 - EOID
OP: RF

Page 2 of 3 PDIPLOT Ver. 2014.1 - Printed: 2-Oct-2014

APE D25-42, HP 12 x 53

OP: RF								Test date: 1	-Oct-2014
BL# end	depth ft	BLC bl/ft	TYPE	CSX ksi	CSB ksi	STK ft	EMX k-ft	BPM	RX9 kips
54	37.00	5	AV5	19.5	5.5	4.7	20	54	22
			STD MAX	1.1 20.6	0.2 5.8	0.2 4.9	2 22	1 56	15 42
			MIN	18.0	5.2	4.9	17	53	42
58	38.00	4	AV3	19.0	5.4	4.5	19	55	29
			STD MAX	0.4 19.5	0.2 5.8	0.1 4.6	1 20	0 55	10 43
			MIN	18.7	5.2	4.5	18	54	20
62	39.00	4	AV3	19.5	5.5	4.7	22	54	22
			STD MAX	0.6 20.1	0.3 5.7	0.1 4.8	0 22	1 55	5 27
			MIN	18.7	5.0	4.5	21	53	15
66	40.00	4	AV4 STD	19.7 1.2	5.6 0.2	4.7 0.3	21 2	54 1	31 8
			MAX	21.7	5.8	5.1	24	56	43
	44.00		MIN	18.5	5.3	4.4	19	52	24
70	41.00	4	AV4 STD	19.6 0.8	5.8 0.1	4.7 0.1	21 1	54 1	36 4
			MAX MIN	21.0 18.7	5.9 5.6	4.9 4.5	23 20	55 53	42 30
74	42.00	4	AV4	19.8	5.8	4.8	20	54	43
	12100		STD	0.6	0.1	0.1	0	0	8
			MAX MIN	20.4 18.9	6.0 5.6	4.9 4.6	22 21	54 53	50 29
79	43.00	5	AV5	20.5	5.9	4.9	21	53	65
			STD MAX	0.3 21.1	0.2 6.1	0.0 4.9	0 22	0 53	3 69
			MIN	20.1	5.6	4.8	20	53	62
84	44.00	5	AV5 STD	20.6 1.0	6.0 0.2	4.8 0.2	21 1	53 1	65 5
			MAX	22.3	6.2	5.1	23	55	73
	1= 00	_	MIN	19.6	5.6	4.6	20	52	57
89	45.00	5	AV4 STD	19.8 0.7	6.1 0.1	4.7 0.1	19 1	54 1	66 2
			MAX MIN	20.4 18.6	6.2 5.9	4.9 4.5	20 19	55 53	68 62
94	46.00	5	AV5	21.7	6.3	4.5 5.1	23	55 52	73
04	40.00	0	STD	0.8	0.2	0.2	1	1	7
			MAX MIN	22.4 20.2	6.5 6.1	5.3 4.8	24 22	54 51	79 61
102	47.00	8	AV8	23.1	8.0	5.3	23	51	107
			STD MAX	1.0 24.2	1.2 9.3	0.2 5.6	1 24	1 53	16 125
			MIN	20.9	6.3	4.9	20	50	83
113	48.00	11	AV11	24.6	9.7	5.7	23	49	142
			STD MAX	0.7 25.7	0.7 10.6	0.2 5.9	1 24	1 50	6 150
			MIN	23.3	8.4	5.4	20	48	133
131	48.67	27	AV15 STD	30.1 2.8	20.7 8.3	7.1 0.8	28 4	44 2	336 120
			MAX	35.6	37.5	8.6	35	48	574
	40.75	100	MIN AV10	25.6 42.2	9.7 46.8	6.0	22	40	178
141	48.75	120	STD	3.3	3.2	9.5 0.3	39 3	38 1	713 46
			MAX MIN	46.8 37.3	51.8 42.2	9.8 8.8	42 32	40 38	776 640
			Average	22.7	10.9	5.4	23	52	131
			Std. Dev. Maximum	7.1 46.8	11.9 51.8	1.5 9.8	6 42	6 60	203 776
			Minimum	15.0	4.2	3.8	16	38	0
				Iotal nui	mber of blows a	analyzed: 128			

Surface Reference Elevation EL 582.50

Comments

GRL Engineers, Inc. Case Method & iCAP® Results

STH 96 over Fox River - Pier 6 #30 - EOID OP: RF Page 3 of 3 PDIPLOT Ver. 2014.1 - Printed: 2-Oct-2014 APE D25-42, HP 12 x 53 Test date: 1-Oct-2014

Time Summary

Drive 3 minutes 20 seconds

4:04:10 PM - 4:07:30 PM (10/1/2014) BN 1 - 141

Test date: 2-Oct-2014

STH 96 over Fox River - Pier 6 #30 - BOR APE D25-42, HP 12 x 53

GRL Engineers, Inc. Case Method & iCAP® Results

Page 1 of 1 PDIPLOT Ver. 2014.1 - Printed: 2-Oct-2014

STH 96 over Fox River - Pier 6 #30 - BOR

APE D25-42, HP 12 x 53

2143	6 over Fox River	- Pier 6 #30 -	BOR				F	APE D25-42, F	HP 12 X 53
OP: A	Z							Test date: 2	2-Oct-2014
AR:	15.50 in^2							SP:	0.492 k/ft3
LE:	72.33 ft							EM: 3	0,000 ksi
WS: 1	6,807.9 f/s							JC:	1.00
CSX:	Max Measured C	compr. Stress				EM)	K: Max Transfe	rred Energy	
CSB:	Compression Str	ess at Bottom	า			BPN	1: Blows per M	inute	
STK:	O.E. Diesel Ham	mer Stroke				RX9	: Max Case M	ethod Capacit	y (JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
end	ft	bl/ft		ksi	ksi	ft	k-ft	**	kips
10	48.83	120	AV10	39.7	44.2	10.1	38	37	684
			STD	1.6	1.6	0.3	3	0	21
			MAX	41.2	46.2	10.4	41	38	711
			MIN	36.2	40.4	9.5	31	37	644
			Average	39.7	44.2	10.1	38	37	684
			Std. Dev.	1.6	1.6	0.3	3	0	21
			Maximum	41.2	46.2	10.4	41	38	711
			Minimum	36.2	40.4	9.5	31	37	644
				Total nu	mber of blows a	analyzed: 10			

Time Summary

Drive 15 seconds

8:40:26 AM - 8:40:41 AM (10/2/2014) BN 1 - 10

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result.

			CAPWAP SUMM	ARY RESULTS	3		
Total CAPWAR	Capacity:	575.0;	along Shaft	64.0;	at Toe	511.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.
No.	Gages	Grade			Ru	(Depth)	(Area)
	ft	ft	kips	kips	kips	kips/ft	ksf
				575.0			
1	32.9	8.8	1.0	574.0	1.0	0.11	0.03
2	39.5	15.4	5.0	569.0	6.0	0.76	0.19
3	46.0	22.0	5.0	564.0	11.0	0.76	0.19
4	52.6	28.6	8.0	556.0	19.0	1.22	0.31
5	59.2	35.1	8.0	548.0	27.0	1.22	0.31
6	65.8	41.7	8.0	540.0	35.0	1.22	0.31
7	72.3	48.3	29.0	511.0	64.0	4.41	1.11
Avg. Shaf	Et		9.1			1.33	0.33
Тое			511.0				518.60
Soil Model F	Parameters/E	xtensions			Shaft	Тое	
Smith Dampir	ng Factor				0.24	0.08	
Quake		(in)			0.30	0.32	
Case Damping	J Factor				0.56	1.48	
Damping Type	•			•	Viscous	Smith	
Unloading Qu	lake	(% of	loading quak	ce)	30	30	
Unloading Le	evel	(% of	Ru)		52		
Soil Plug We	aight	(kips)				0.031	
CAPWAP match	n quality	= 4	.48	(Wave Up Ma	atch) ; RSA	= 0	
Observed: Fi	nal Set	= 0	.15 in;	Blow Count	=	80 b/ft	
Computed: Fi	nal Set	= 0	.02 in;	Blow Count	=	782 b/ft	
Transducer			: 1.01; F4(F523 : 0.99; A4(K974		; RF: 1.01 ; RF: 0.99		
max. Top Com	mp. Stress	= 3	6.1 ksi	(T= 46.2	ms, max= 1	.115 x Top)	
max. Comp. S	Stress	= 4	0.2 ksi	(Z= 72.3	ft, T= 42	.1 ms)	
max. Tens. S	Stress	= -8	.65 ksi	(Z= 29.6	ft, T= 58	1.1 ms)	
	(EMX)	= 3	7.6 kip-ft;				

					REMA TABL					
Pile			IX.	min.	max.	maz		nax.	max.	max
Sgmnt			ce	Force	Comp.	Tens		sfd.	Veloc.	Displ
No.	Gage		ps	kips	Stress ksi	Stres ks		ergy p-ft	ft/s	i
1			-					-	18.0	1.2
2				-34.2 -45.7	36.1 36.4	-2.2		37.6		
3				-59.6	36.4	-2.2		37.1 36.5	17.9 17.9	1.2
4				-76.1	36.4	-4.9		35.8	17.9	1.1
- 5				-95.3	36.5	-4.1		35.1	17.8	1.1
6				-113.3	36.4	-7.3		34.3	17.8	1.0
5				-113.3	36.0	-8.1		33.4	17.8	1.0
8				-120.5	35.6	-8.6		32.5	17.7	0.9
9					35.0	-8.6		31.6	17.6	0.9
				-134.1						
10				-130.9	35.3	-8.4		30.6	17.4	0.9
11				-124.7	35.2	-8.0		29.3	17.1	0.8
12				-123.2	35.9	-7.9		28.3	16.9	0.8
13				-113.3	36.4	-7.3		26.0	16.7	0.7
14				-108.4	37.0	-6.9		24.9	16.3	0.7
15				-102.9	37.0	-6.6		22.7	16.0	0.6
16				-105.3	38.2	-6.7		21.6	15.7	0.6
17				-90.8	38.4	-5.8		19.1	15.3	0.5
18				-91.7	38.9	-5.9		18.0	15.0	0.5
19				-78.1	38.4	-5.0		15.8	14.8	0.48
20				-74.2	39.2	-4.7		14.7	15.6	0.4
21				-55.5	39.4	-3.5		12.8	15.7	0.3
22	72.	3 623	3.2	-51.1	40.2	-3.3	30 3	10.7	13.7	0.3
Absolute	72.				40.2			(т =	42.1 ms
	29.	6				-8.6	55	(т =	58.1 ms
J =	0.0	0.2	0.4	0.6	SE METHOD 0.8	1.0	1.2	1.4	1.6	1.8
RP	647.6		492.6	415.1	337.6	1.0	1.2	±•7	1.0	±••
RX	698.5		651.8	632.6	616.5	607.2	602.4	597.6	5 592.8	588.3
RU	647.6		492.6	415.1	337.6	007.2	002.1	597.0	5 552.0	500.
		ps); RA2		658.9 (1						
Current CA	PWAP Ru	= 575.0 ((kips);	Corres	ponding J	(RP)= 0	.19; mat	ches RI	K20 withi	.n 5%
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	c QUS	KE
ft/s	ms	kips	kips	kips	in	in		kip-ft		kips/i
18.2	35.80		531.7	547.2	1.29	0.15	0.15	38.4	£ 640.4	
	Depth			ea	LE AND PI E-Modu		Spec. N	Voight		Perim
	ft		in			ksi	-	o/ft ³		ferim
	0.0		15	.5	2999	2.2		92.000		3.9
	72.3			.5	2999			92.000		3.9
loe Area			141	.9	in²					

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c 8.6 ms

Total volume: 7.786 ft^{3;} Volume ratio considering added impedance: 1.000

2.40

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result.

			CAPWAP SUMMA	ARY RESULT	s		
Total CAPWAR	P Capacity:	596.0;	along Shaft	116.0	; at Toe	480.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.
No.	Gages	Grade			Ru	(Depth)	(Area)
	ft	ft	kips	kips	kips	kips/ft	ksf
				596.0			
1	36.2	12.1	7.0	589.0	7.0	0.58	0.15
2	43.4	19.4	10.0	579.0	17.0	1.38	0.35
3	50.6	26.6	12.0	567.0	29.0	1.66	0.42
4	57.9	33.8	12.0	555.0	41.0	1.66	0.42
5	65.1	41.1	14.0	541.0	55.0	1.94	0.49
6	72.3	48.3	61.0	480.0	116.0	8.43	2.12
Avg. Sha:	Et		19.3			2.40	0.60
Тое			480.0				487.14
Soil Model H	Parameters/E	xtensions	l		Shaft	Тое	
Smith Dampir	ng Factor				0.28	0.10	
Quake	-	(in)			0.30	0.30	
Case Damping	g Factor				1.17	1.74	
Damping Type	3				Viscous	Smith	
Unloading Qu	ıake	(% of	loading quak	e)	79	30	
Unloading Le	evel	(% of	Ru)		67		
Resistance (Sap (include	d in Toe	Quake) (in)			0.12	
Soil Plug We	eight	(kips)				0.091	
CAPWAP match	n quality	= 2	.56	Wave Up M	Match) ; RSA	. = 0	
Observed: Fi	inal Set	= 0	.08 in; H	low Count	: =	160 b/ft	
Computed: Fi	inal Set	= 0	.11 in; H	Blow Count	: =	106 b/ft	
Transducer			: 0.99; F4(F523) : 1.01; A4(K974)		B; RF: 0.99 5; RF: 1.01		
max. Top Con	mp. Stress	= 3	6.7 ksi	(T= 45.8	ms, max= 1	.072 х Тор)	
max. Comp. S	Stress	= 3	9.3 ksi	(Z= 72.3	ft, T= 42	2.0 ms)	
max. Tens. S	Stress	= -8	.55 ksi	(Z= 36.2	ft, T= 58	3.1 ms)	
					ured Top Di		

				EMA TABLE	EXTR			
max.	max.	max.	max.	max.	min.	max.	Dist.	Pile
Displ.	Veloc.	Trnsfd.	Tens.	Comp.	Force	Force	Below	Sgmnt
		Energy	Stress	Stress			Gages	No.
in	ft/s	kip-ft	ksi	ksi	kips	kips	ft	
1.27	18.5	38.1	-3.26	36.7	-50.6	568.5	3.6	1
1.23	18.4	37.4	-4.42	36.9	-68.5	571.6	7.2	2
1.19	18.4	36.6	-5.66	36.7	-87.8	568.8	10.8	3
1.15	18.4	35.7	-6.76	36.8	-104.8	570.8	14.5	4
1.10	18.3	34.8	-7.56	36.8	-117.2	570.4	18.1	5
1.05	18.3	33.7	-8.08	36.5	-125.3	565.5	21.7	6
1.00	18.2	32.6	-8.41	36.0	-130.4	558.1	25.3	7
0.95	18.0	31.5	-8.55	36.2	-132.5	561.6	28.9	8
0.90	17.7	30.3	-8.50	36.8	-131.8	570.5	32.5	9
0.85	17.3	29.1	-8.55	37.1	-132.6	575.0	36.2	10
0.79	16.8	26.0	-7.82	37.7	-121.3	584.4	39.8	11
0.74	16.4	24.6	-7.88	38.3	-122.2	594.2	43.4	12
0.68	15.8	21.2	-6.83	38.1	-105.9	591.2	47.0	13
0.63	15.4	19.8	-6.93	38.5	-107.5	596.8	50.6	14
0.57	14.9	16.5	-5.70	38.3	-88.3	594.1	54.2	15
0.52	14.5	15.2	-5.89	39.1	-91.4	605.9	57.9	16
0.47	14.0	12.3	-4.85	38.3	-75.1	593.3	61.5	17
0.41	13.6	11.0	-5.04	39.2	-78.2	607.4	65.1	18
0.36	13.5	8.6	-3.87	38.5	-60.0	597.2	68.7	19
0.31	11.0	5.4	-4.00	39.3	-62.0	609.6	72.3	20
42.0 ms)	(T =			39.3			72.3	Absolute
58.1 ms)	(T =		-8.55				36.2	

				CAS	E METHOD)				
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
RP	723.7	655.1	586.4	517.8	449.1					
RX	731.1	701.4	673.3	646.7	621.8	612.1	602.3	592.5	582.7	573.0
RU	723.7	655.1	586.4	517.8	449.1					
RAU =	527.5 (k	ips); R	A2 =	668.8 (k	ips)					
Current	CAPWAP Ru	= 596.0	(kips);	; Corresp	onding 3	J(RP)= 0.	.37; J(R	x) = 1.3	3	

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
18.6	35.93	515.4	551.6	555.5	1.26	0.08	0.08	38.6	693.1	2667

PILE PROFILE AND PILE MODEL

Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in²	ksi	lb/ft ³	ft
0.0	15.5	29992.2	492.000	3.97
72.3	15.5	29992.2	492.000	3.97
Toe Area	141.9	in ²		
Top Segment Length	3.62 ft, Top I	mpedance 28	8 kips/ft/s	
Wave Speed: Pile Top 1	.6807.9, Elastic	16807.9, Overall	16807.9 ft/s	
Pile Damping 1.00 %,		•		

Total volume: 7.786 ft^{3;} Volume ratio considering added impedance: 1.000

2.00

2.40

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result.

			-	AP SUMMARY	-				
otal CAPV	WAP Capaci	ty: 70	0.0; alon	ıg Shaft	90.0; at	Toe 6	10.0 kips		
Soil	Dist.	Depth	Ru	Force	Sum	Unit	: Unit	:	Quake
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.		
No.	Gages	Grade			Ru	(Depth)	(Area)		
	ft	ft	kips	kips	kips	kips/ft	: ksf		ir
				700.0					
1	32.9	9.3	5.0	695.0	5.0	0.54			0.25
2	39.5	15.9	8.0	687.0	13.0	1.22	2 0.31	-	0.25
3	46.0	22.4	8.0	679.0	21.0	1.22	2 0.31		0.25
4	52.6	29.0	10.0	669.0	31.0	1.52		6	0.25
5	59.2	35.6	12.0	657.0	43.0	1.82	2 0.46	;	0.25
6	65.8	42.2	12.0	645.0	55.0	1.82	2 0.46	;	0.25
7	72.3	48.7	35.0	610.0	90.0	5.32	1.34	•	0.24
Avg. Sha	aft		12.9			1.85	5 0.47	,	0.25
То	e		610.0				619.07	,	0.27
oil Model	l Paramete	ers/Extens	ions		Sh	aft	Тое		
mith Dam	ping Facto	or			0	.24	0.10		
ase Damp	ing Factor	:			0	.78 :	2.20		
amping Ty	ype				Visc	ous Si	nith		
Inloading	Quake	(%	of loadi	.ng quake)		92	30		
Inloading	Level	(%	of Ru)			63			
esistance	e Gap (inc	luded in	Toe Quake	e) (in)		(0.12		
APWAP mat	tch qualit	.v =	4.33	(Wav	e Up Match) : RSA =	: 0		
	Final Set	-	0.10 i	•	Count		20 b/ft		
	Final Set		0.06 i	•	Count		.98 b/ft		
ransducer				; F4(F523) CA	L: 93.8; RF:				
	A3(K221	4) CAL: 332	2; RF: 1.00;	; A4(K974) CA	L: 305; RF:	1.00			
ax. Top (Comp. Stre	ess =	44.4 k	si (T=	45.4 ms,	max= 1.0)17 x Top)		
max. Comp.	. Stress	=	45.2 k	si (Z=	72.3 ft,	T= 41.9) ms)		
ax. Tens.	. Stress	=	-8.79 k	si (Z=	19.7 ft,	T= 56.9) ms)		
	JY (EMX)	=	40 6 1	ip-ft; max	Maagumad	Ton Dias		1 20	in

Pile	Dist		max.	min.	max.	max		max.	max.	max
Sgmnt	Belo		orce	Force	Comp.	Tens		sfd.	Veloc.	Displ
No.	Gage		kips	kips	Stress ksi	Stres ks		ergy p-ft	ft/s	i
1			88.6	-56.9	44.4	-3.6		40.6	20.1	1.3
2			93.9	-81.3	44.8	-5.2		40.0	20.0	1.2
3			94.9	-101.6	44.8	-6.5		39.2	20.0	1.2
4	13		81.7	-119.5	44.0	-7.7		38.4	20.0	1.2
5	16		78.4	-133.9	43.8	-8.6		37.6	19.9	1.1
6	19		73.7	-136.3	43.5	-8.7		36.7	19.9	1.1
7	23		66.7	-130.3	43.0	-8.4		35.7	19.8	1.0
8	26		54.6	-125.3	42.2	-8.0		34.6	19.7	1.0
9	29		44.6	-123.1	41.6	-7.9		33.6	19.4	0.9
10	32		42.3	-123.7	41.4	-7.9		32.4	19.1	0.9
11	36		31.4	-120.1	40.7	-7.7		29.8	18.8	0.8
12	39		41.4	-134.7	41.4	-8.6		28.5	18.4	0.8
13	42		41.0	-118.6	41.3	-7.6		25.3	18.1	0.7
14	46		52.4	-112.7	42.1	-7.2		23.9	17.7	0.7
15	49		52.7	-94.1	42.1	-6.0		20.8	17.3	0.6
16	52		68.3	-96.3	43.1	-6.2		19.2	17.0	0.6
17	55		65.3	-93.1	42.9	-6.0		16.1	16.5	0.5
18	59		82.2	-98.9	44.0	-6.3		14.5	16.1	0.5
19	62		83.0	-82.7	44.1	-5.3		11.6	16.2	0.4
20	65		93.1	-77.0	44.7	-4.9		10.0	16.3	0.3
21	69		91.0	-51.3	44.6	-3.3		7.5	14.6	0.3
22	72		00.2	-48.4	45.2	-3.1		6.1	10.2	0.2
Absolute	72	.3			45.2			((T =	41.9 ms
	19	.7				-8.7	9		(T =	56.9 ms
J =	0.0	0.2	0.4	CAS 0.6	E METHOD	1.0	1.2	1.4	4 1.	6 1.3
RP	864.4	806.8	749.2	691.6	634.0	1.0	1.2	т.	т I.	0 I.
RX	876.3	829.3	808.8	795.2	781.5	771.1	761.6	752.	0 742.	5 735.
RU	868.3	811.5	754.7	697.9	641.0	//エ・エ	/01.0	152.0	/12.	5 755.
	22.8 (ki			828.7 ()						
Current CA				•	- /	(RP)= 0.	57; mat	ches R	X20 with	in 5%
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EM		
ft/s	ms	kips	kips	kips	in	in		kip-f		s kips/i
20.0	35.99		600.3	-		0.10		41.0	_	0 406
	Denth			LE PROFII						
	Depth ft			rea n²	E-Modu	lus ksi	Spec. 1	weight b/ft ³		Perim f
	0.0			5.5	2999			92.000		3.9
	72.3			5.5 1.9	2999	4.4	4	92.000		3.9
					in^2					

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c 8.6 ms

Total volume: 7.786 ft^{3;} Volume ratio considering added impedance: 1.000

Pile Force

at Ru

700.0

800.0

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result.

		CAPW	AP SUMMARY	RESULTS			
WAP Capaci	ty: 61	6.0; alor	ng Shaft	126.0; at	Toe 490	.0 kips	
Dist.	Depth	Ru	Force	Sum	Unit	Unit	Quake
Below	Below		in Pile	of	Resist.	Resist.	
Gages	Grade			Ru	(Depth)	(Area)	
ft	ft	kips	kips	kips	kips/ft	ksf	in
			616.0				
32.9	9.3	5.0	611.0	5.0	0.54	0.13	0.30
39.5	15.9	7.0	604.0	12.0	1.06	0.27	0.30
46.0	22.5	10.0	594.0	22.0	1.52	0.38	0.30
52.6	29.1	12.0	582.0	34.0	1.82	0.46	0.30
59.2	35.6	12.0	570.0	46.0	1.82	0.46	0.30
65.8	42.2	25.0	545.0	71.0	3.80	0.96	0.30
72.3	48.8	55.0	490.0	126.0	8.36	2.11	0.21
aft		18.0			2.58	0.65	0.26
e		490.0				497.29	0.21
l Paramete	ers/Extens	ions		Sł	naft T	oe	
oing Facto	or			(0.27 0.	10	
				1	L.23 1.	77	
/pe				Visc	cous Smi	th	
Quake	(%	of loadi	ng quake)		82	30	
Level	(%	of Ru)			89		
e Gap (ind	luded in '	Toe Quake	e) (in)		0.	09	
Weight	(k	ips)			0.1	08	
ch qualit		3.09	(War	ve Up Match); RSA = ()	
Final Set	; =	0.10 i	n; Blow	7 Count	= 120) b/ft	
Final Set	: =	0.09 i	n; Blow	7 Count	= 134	b/ft	
Comp. Stre	ess =	40.1 k	si (T=	45.4 ms,	max= 1.05	9 x Top)	
. Stress	=	42.5 k	si (Z=	65.8 ft,	T= 41.7 1	ns)	
. Stress	=	-8.40 k	si (Z=	32.9 ft,	T= 57.5 1	ns)	
	Dist. Below Gages ft 32.9 39.5 46.0 52.6 59.2 65.8 72.3 aft e L Paramete ping Factor ype Quake Level a Gap (ind Weight tch qualit Final Set F3(H083 A3(K221 Comp. Stress	Dist. Depth Below Below Gages Grade ft ft 32.9 9.3 39.5 15.9 46.0 22.5 52.6 29.1 59.2 35.6 65.8 42.2 72.3 48.8 aft e L Parameters/Extens ping Factor ing Factor ype Quake (% Level (% e Gap (included in Weight (k tch quality = Final Set = F3(H083) CAL: 94.4 A3(K2214) CAL: 33 Comp. Stress = Stress =	VAP Capacity: $616.0;$ alor Dist. Depth Ru Below Below Gages Gages Grade ft ft ft kips 32.9 9.3 5.0 39.5 15.9 7.0 46.0 22.5 10.0 52.6 29.1 12.0 59.2 35.6 12.0 65.8 42.2 25.0 72.3 48.8 55.0 aft 18.0 e 490.0 Parameters/Extensions 9.0 Parameters/Extensions 9.0 Parameters/Extensions 9.0 Quake (% of loadi Level (% of Ru) a Gap (included in Toe Quake Weight (kips) ctch quality = 3.09 Final Set = 0.10 i Final Set = 0.09 j F3(H083) CAL: 332; RF: 1.01 Comp. Stress = 42.5 k	WAP Capacity: 616.0; along Shaft Dist. Depth Ru Force Below Below in Pile Gages Grade in Pile Gages Grade ft ft ft ft kips kips 616.0 32.9 9.3 5.0 611.0 39.5 15.9 7.0 604.0 46.0 22.5 10.0 594.0 52.6 29.1 12.0 582.0 59.2 35.6 12.0 570.0 65.8 42.2 25.0 545.0 70.0 65.8 42.2 25.0 545.0 72.3 48.8 55.0 490.0 490.0 490.0 490.0 Parameters/Extensions	Dist. Depth Ru Force Sum Below Below in Pile of Gages Grade Ru ft ft kips kips 616.0 32.9 9.3 5.0 611.0 5.0 39.5 15.9 7.0 604.0 12.0 46.0 22.5 10.0 594.0 22.0 52.6 29.1 12.0 582.0 34.0 59.2 35.6 12.0 570.0 46.0 65.8 42.2 25.0 545.0 71.0 72.3 48.8 55.0 490.0 126.0 aft 18.0 18.0 126.0 126.0 aft 18.0 126.0 126.0 126.0 gende (% of loading quake) Visc 126.0 Quake (% of Ru)	WAP Capacity: 616.0; along Shaft 126.0; at Toe 490 Dist. Depth Ru Force Sum Unit Below Below in Pile of Resist. Gages Grade Ru (Depth) ft ft kips kips kips kips/ft 616.0 32.9 9.3 5.0 611.0 5.0 0.54 39.5 15.9 7.0 604.0 12.0 1.06 46.0 22.5 10.0 594.0 22.0 1.52 52.6 29.1 12.0 582.0 34.0 1.82 59.2 35.6 12.0 570.0 46.0 1.82 65.8 42.2 25.0 545.0 71.0 3.80 72.3 48.8 55.0 490.0 126.0 8.36 aft 18.0 2.58 9 9 9 9 9 9 9 9 9 9 9 9 9	WAP Capacity: 616.0; along Shaft 126.0; at Toe 490.0 kips Dist. Depth Ru Force Sum Unit Unit Below Below in Pile of Resist. Resist. Resist. Gages Grade Ru (Depth) (Area) ft ft kips kips kips kips/ft ksf 616.0 32.9 9.3 5.0 611.0 5.0 0.54 0.13 39.5 15.9 7.0 604.0 12.0 1.06 0.27 46.0 22.5 10.0 594.0 22.0 1.52 0.38 52.6 29.1 12.0 582.0 34.0 1.82 0.46 65.8 42.2 25.0 545.0 71.0 3.80 0.96 72.3 48.8 55.0 490.0 126.0 8.36 2.11 aft 18.0 2.58 0.65 0.27 0.10 0.97

Test: 02-Oct-2014 08:40 CAPWAP(R) 2014 OP: AZ

		L								
Pile			max.	min. Forgo	max.	max.		ax.	max.	max
Sgmnt No.			orce	Force	Comp. Stress	Tens. Stress			Veloc.	Displ
NO.	-		kips	kips	ksi	ksi			ft/s	iı
1			_				-			
1			21.2	-47.8	40.1	-3.08		8.6	18.9	1.2
2			24.8 22.7	-67.1	40.3	-4.32		7.9 7.1	18.9 18.8	1.21
4			13.1	-83.3 -97.4	40.2 39.5	-5.37 -6.28		6.3	18.8	1.1
			07.9	-110.9	39.2	-7.15		5.4	18.8	1.09
6			07.9	-122.4	39.2	-7.90		4.5	18.7	1.04
7			00.2	-128.2	38.7	-8.27		3.4	18.6	1.00
8			95.3	-129.8	38.4	-8.37		2.4	18.4	0.95
9			94.3	-129.6	38.3	-8.36		1.3	18.2	0.9
10			97.8	-130.2	38.6	-8.40		0.1	17.9	0.8
11			97.0 07.1	-123.0	39.2	-7.94		7.5	17.5	0.8
12			20.7	-128.2	40.0	-8.27		6.2	17.1	0.75
13			20.3	-116.6	40.0	-7.52		3.4	16.7	0.70
14			24.0	-116.5	40.2	-7.52		2.1	16.2	0.65
15			22.2	-100.1	40.1	-6.46		9.0	15.7	0.6
16			37.6	-101.6	41.1	-6.55		7.6	15.3	0.54
10			31.8	-82.5	40.8	-5.32		4.5	14.8	0.49
18			37.3	-88.2	41.1	-5.69		3.1	14.1	0.44
10			44.2	-75.6	41.5	-4.88		0.6	13.4	0.38
20			58.2	-79.5	42.5	-5.13		9.3	13.1	0.3
20			33.6	-55.7	40.9	-3.59		6.6	12.1	0.29
22			37.5	-57.3	41.1	-3.70		4.6	9.3	0.24
Absolute	65				42.5					41.7 ms)
absoluce	32				12.5	-8.40)	-		57.5 ms
								•		
				CAS	E METHOD					
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
RP	833.0	783.6	734.3	685.0	635.7					
RX	834.3	789.0	743.7	713.7	692.2	672.3	656.0	639.8	625.0	618.
ิสม	843.6	796.4	749.2	702.0	654.8					
RAU = 5	550 .9 (ki	lps); R	A2 =	708.6 ()	ips)					
Current CA	APWAP Ru	= 616.0	(kips)	; Corresp	onding J	(RP)= 0.8	38; J(R)	K) = 1.8	38	
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEI
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/i
18.9	35.99	523.6	555.9	627.6	1.24	0.10	0.10	39.0	696.4	4083
			דס	LE PROFII	דם תואג די					
	Depth			rea	E-Modu		Speg W	eight		Perim
	ft			1 ²		ksi	-	ec. Weight lb/ft ³		ft
	0.0			5.5	2999			492.000		3.9'
	72.3			5.5	2999			2.000		3.9
[oe Area			141	L.9	in ²					
.se nrea			T.47							

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c 8.6 ms Total volume: 7.786 ft^{3;} Volume ratio considering added impedance: 1.000

GRL Engineers, Inc.

1540 E. Dundee Road, Suite 102 Palatine, IL 60074 USA Phone: (847) 221-2750 Fax: (847) 221-2752

TRANSMITTAL

To: Mr. Wade Hamacher	From: Travis Coleman
Company: Lunda Construction Company	No. of Sheets: 36
E-mail: whamacher@lundaconstruction.com	Date: January 2, 2015

RE: Dynamic Testing Results – Pier 7
WisDOT Contract B-5-381 – STH 96 over Fox River
Wrightstown, Wisconsin

On December 22, 2014, Pier 7 #1 and Pier 7 #30 at the above structure were dynamically tested during initial driving. The piles were tested during restrike on December 23. The approximately 78 foot long HP 12 x 53 H-piles equipped with driving shoes were driven with an APE D25-42 hammer operated on fuel setting four. Plans indicate the piles in Pier 7 have a required driving resistance, or ultimate capacity, of 380 kips, and an estimated length of 55 feet.

Pier 7 #1 was driven to a depth of 50.0 feet below the excavated ground surface at EL 592.5, which corresponds to a pile tip elevation of EL 542.5. The blow count over the final increment of driving was 10 blows for 3 ¼ inch of penetration at an average hammer stroke of 7.7 feet. The blow count at the beginning of restrike of Pier 7 #1 was 10 blows for 1 ½ inch of penetration at an average hammer stroke of 8.0 feet

Pier 7 #30 was driven to a depth of 53.6 feet below the excavated ground surface at EL 592.5, which corresponds to a pile tip elevation of EL 538.9. The blow count over the final increment of driving was 10 blows for 2 inches of penetration at an average hammer stroke of 8.0 feet. The blow count at the beginning of restrike of Pier 7 #30 was 10 blows for $\frac{3}{4}$ inch of penetration at an average hammer stroke of 8.0 feet

For the 380 kip piles, driven with the APE D25-42 hammer, in Pier 7 of the STH 96 bridge over the Fox River we recommend using the following criteria:

Recommended Minimum
Blow Count
(blows per inch)
8
6
5
5
4
4

We recommended the above blow count at the corresponding hammer stroke be maintained for <u>three consecutive inches</u> of driving. Driving may be terminated if production piles exceed 10 blows over an increment of one inch or less at an average hammer stroke of 9.0 feet or higher. After splicing or any other delays, we recommend not applying the criteria until at least two feet of driving has occurred beyond the termination depth associated with the delay.

Please contact us if there are any problems meeting the recommended criterion or if you have any questions on these recommendations.

GRL Engineers, Inc.

Travis Coleman, P.E.

Benjamin White

Cc: Steve Seymour - steve.seymour@omnni.com Jeff Horsfall - Jeffrey.Horsfall@dot.wi.gov

Attachments:

Dynamic Test Results	-	(Pages 3 – 16)
CAPWAP Analysis Results	-	(Pages 17 – 36)

GRL Engineers, Inc. - PDIPLOT2 Ver 2014.2.48.0 - Case Method & iCAP® Results

Printed: 02-January-2015

Test started: 22-December-2014

1 - Pile Driven from EL 592.5

GRL Engineers, Inc.	
Case Method & iCAP® Results	

Р	age 1
PDIPLOT2 2014.2.48.0 - Printed 02-January-2	2015

<u>OP: AZ</u> AR: LE:	15.50 in² 74.40 ft	iver (B-5-83	31) - Pier 7 #	#1 - EOID				025-42, HP 22-Decembr SP: 0.4 EM: 30,0	<u>er-2014</u> 492 k/ft³ 000 ksi
CSX: M CSB: C	5 <u>,807.9 f/s</u> Max Measure Compression D.E. Diesel H	Stress at E	Bottom		BF	MX: Max Tra PM: Blows p	er Minute	nergy	.00 []
BL#	depth	BLC	TYPE	CSX	CSB	<u>X9: Max Ca</u> STK	EMX	BPM	RX9
	ft	bl/ft		ksi	ksi	ft	k-ft	bpm	kips
60	25.00	4	AV60	20.8	4.6	4.6	22	54.6	39
			STD MAX	4.8 28.4	0.9	0.7 6.2	7	4.5 68.5	25
			MIN	28.4 5.3	6.6 2.2	2.8	35 4	47.2	79 0
62	26.00	2	AV2	24.3	6.2	5.2	27	51.5	80
			STD	1.1	0.4	0.2	0	0.8	0
			MAX	25.4	6.6	5.3	28	52.2	81
			MIN	23.2	5.8	5.0	27	50.7	80
64	27.00	2	AV2	21.7	5.6	4.7	23	54.1	79
			STD	1.2	0.2	0.2	2	1.1	1
			MAX	22.9	5.7	4.9	25	55.2	79
			MIN	20.5	5.4	4.5	21	53.0	78
66	28.00	2	AV2	22.3	5.8	4.8	24	53.5	73
			STD	1.2	0.0	0.3	1	1.3	0
			MAX	23.6	5.8	5.0	25	54.8	73
			MIN	21.1	5.8	4.5	23	52.1	73
68	29.00	2	AV2	24.1	5.8	5.1	28	51.9	81
			STD	1.4 25.5	0.4	0.2	1	1.2 53.0	2
			MAX MIN	25.5 22.7	6.2 5.4	5.3 4.9	29 26	53.0 50.7	82 79
70	30.00	2	AV2	22.3	5.9	4.8	23	53.2	79
			STD MAX	0.2 22.5	0.3 6.2	0.1 4.9	2 24	0.3 53.5	1 80
			MIN	22.1	5.6	4.8	24	52.9	77
75	31.00	5	AV5	21.5	5.6	4.8	20	53.6	84
		-	STD	3.7	0.6	0.7	7	3.6	5
			MAX	26.3	6.4	5.7	29	58.2	91
			MIN	17.1	4.9	4.0	12	49.1	76
80	32.00	5	AV5	23.2	6.0	5.0	23	52.3	91
			STD	0.8	0.1	0.1	1	0.7	1
			MAX MIN	24.6 22.4	6.2 5.8	5.2 4.9	25 21	53.0 51.1	91 90
6.4	22.22	4							
84	33.00	4	AV4 STD	23.2 0.5	6.1 0.1	5.0 0.1	22 1	52.4 0.4	91 2
			MAX	23.9	6.2	5.1	24	52.8	94
			MIN	22.6	5.9	4.9	22	51.7	90
89	34.00	5	AV5	23.6	6.1	5.1	22	51.9	95
			STD	1.0	0.2	0.2	2	1.0	2

GRL Engineers, Inc. Case Method & iCAP® Results

Page 2	
PDIPLOT2 2014.2.48.0 - Printed 02-January-2015	

STH 96 over Fox River (B-5-831) - Pier 7 #1 - EOID OP: AZ								025-42, HP 22-Decembe	
BL#	depth ft	BLC bl/ft	TYPE MAX MIN	CSX ksi 25.4 22.6	CSB ksi 6.5 5.8	STK ft 5.4 4.9	EMX k-ft 26 20	BPM bpm 53.0 50.2	RX9 kips 98 91
94	35.00	5	AV5 STD MAX MIN	24.5 1.3 26.9 23.1	6.3 0.2 6.6 6.1	5.3 0.2 5.8 5.1	25 2 27 22	51.0 1.1 51.9 48.9	97 1 98 96
99	36.00	5	AV5 STD MAX MIN	24.7 0.8 25.4 23.4	6.5 0.2 6.7 6.2	5.3 0.2 5.5 5.1	26 2 27 22	50.7 0.7 52.0 50.1	99 1 100 98
104	37.00	5	AV5 STD MAX MIN	23.8 1.5 25.7 21.6	6.5 0.2 6.8 6.2	5.1 0.3 5.5 4.7	23 2 25 20	51.8 1.3 53.8 50.1	99 2 101 97
109	38.00	5	AV5 STD MAX MIN	24.1 0.8 24.7 22.7	6.6 0.2 6.8 6.2	5.2 0.1 5.3 4.9	23 1 25 22	51.4 0.7 52.6 50.7	103 1 104 101
114	39.00	5	AV5 STD MAX MIN	24.8 1.1 26.2 23.1	6.8 0.2 7.0 6.5	5.3 0.2 5.6 4.9	24 1 26 23	51.1 1.1 52.9 49.7	105 2 109 102
119	40.00	5	AV5 STD MAX MIN	26.3 1.5 28.4 23.8	9.7 2.4 12.6 6.6	5.6 0.3 6.1 5.0	25 1 27 23	49.6 1.4 52.1 47.7	125 15 142 105
125	41.00	6	AV6 STD MAX MIN	27.2 1.5 28.7 24.3	10.6 0.9 11.8 9.1	5.8 0.3 6.2 5.2	25 3 29 20	48.6 1.4 51.3 47.1	130 11 143 114
130	42.00	5	AV5 STD MAX MIN	26.1 1.0 27.6 25.0	8.8 1.1 10.0 7.3	5.6 0.2 5.9 5.4	24 2 27 21	49.7 0.9 50.6 48.3	122 6 133 117
136	43.00	6	AV6 STD MAX MIN	25.8 1.1 27.5 24.2	8.5 0.5 9.1 7.8	5.5 0.2 5.9 5.2	24 2 27 22	49.9 1.0 51.2 48.2	120 5 126 109
142	44.00	6	AV6 STD MAX MIN	27.7 0.5 28.5 27.1	10.4 0.5 11.1 9.4	5.9 0.1 6.1 5.8	26 1 27 24	48.3 0.4 48.8 47.7	140 3 145 136

GRL Engineers, Inc. Case Method & iCAP® Results

Page 3	
PDIPLOT2 2014.2.48.0 - Printed 02-January-2015	

) 25-42, HP 2-Decembe	
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
	ft	bl/ft		ksi	ksi	ft	k-ft	bpm	kips
148	45.00	6	AV6	30.2	13.7	6.5	28	46.3	191
			STD	1.3	1.0	0.4	2	1.2	18
			MAX	32.4	14.8	7.0	31	47.6	208
			MIN	28.8	11.9	6.1	26	44.6	158
156	46.00	8	AV8	30.6	15.5	6.6	27	45.9	223
			STD	1.0	0.6	0.3	2	0.9	6
			MAX	32.2	16.5	7.1	31	47.5	235
			MIN	28.8	14.6	6.1	24	44.3	215
168	47.00	12	AV12	31.2	16.6	6.8	27	45.2	235
			STD	0.9	0.5	0.3	2	0.8	9
			MAX	32.1	17.5	7.1	32	46.8	248
			MIN	29.6	15.7	6.3	25	44.2	222
185	48.00	17	AV17	31.8	17.6	7.0	28	44.6	254
			STD	1.0	0.7	0.3	2	0.9	10
			MAX	33.4	18.7	7.5	32	45.8	271
			MIN	30.3	16.4	6.6	25	43.2	237
201	49.00	16	AV16	30.5	14.9	6.7	26	45.7	225
			STD	1.1	1.0	0.3	2	0.9	9
			MAX	32.3	16.8	7.1	29	48.0	244
			MIN	27.6	13.5	6.0	23	44.1	209
217	49.73	22	AV16	32.5	20.6	7.2	27	43.9	332
			STD	1.3	3.5	0.4	3	1.3	50
			MAX	34.2	25.5	8.0	33	46.0	395
			MIN	30.1	14.6	6.5	24	41.8	232
227	50.00	37	AV10	33.2	25.1	7.7	29	42.6	397
			STD	2.8	2.4	0.3	5	0.9	17
			MAX	36.2	27.4	8.4	33	44.2	416
			MIN	25.4	18.2	7.1	16	40.9	352
			Average Std. Dev.	26.2 5.3	10.6 6.3	5.7 1.1	25 5	49.6 4.8	149 106
			laximum	36.2	27.4	8.4	35	4.0 68.5	416
			Minimum	5.3	27.4	2.8	4	40.9	410
		•		umber of blo			•		Ŭ

BL# Sensors

1-227 F3: [F523] 93.8 (1.00); F4: [H083] 94.4 (1.00); A3: [K2214] 332.0 (1.10); A4: [K1020] 307.0 (1.10)

BL# Comments

Pile Driven from EL 592.5 1

226 CW

GRL Engineers, Inc. Case Method & iCAP® Results Page 4 PDIPLOT2 2014.2.48.0 - Printed 02-January-2015

STH 96 over Fox River (B-5-831) - Pier 7 #1 - EOID OP: AZ

APE D25-42, HP 12 x 53 Date: 22-December-2014

Time Summary

Drive 6 minutes 2 seconds 3:39 PM - 3:45 PM BN 1 - 227

1 - One strain gage slipped. Gage shut off for remainder or restrike

GRL Engineers, Inc. Case Method & iCAP® Results		Page 1 PDIPLOT2 2014.2.48.0 - Printed 31-December-2014						
STH 96 over Fox River (B-5-831) - Pier 7 #1 - OP: TC	APE D25-42, HP 12 x 53 Date: 23-December-2014							
AR: 15.50 in ²		SP: 0.492 k/ft ³						
LE: 74.40 ft WS: 16,807.9 f/s					JC:),000 ksi 1.00 []		
CSX: Max Measured Compr. Stress			EMX: Max	Transferred E				
CSB: Compression Stress at Bottom				s per Minute				
STK: O.E. Diesel Hammer Stroke				Case Method				
	CSX	CSB	STK	EMX	BPM	RX9		
ft bl/ft	ksi	ksi	ft	k-ft	bpm	kips		
	34.8	27.6	8.0	27	41.9	425		
STD	5.8	4.1	0.8	7	2.3	65		
MAX	41.7	30.7	9.3	34	47.9	479		
MIN	20.7	16.7	6.0	9	38.8	239		
11 50.14 80 AV1	35.1	27.7	7.7	21	42.6	361		
STD	0.0	0.0	0.0	0	0.0	0		
	35.1	27.7	7.7	21	42.6	361		
	35.1	27.7	7.7	21	42.6	361		
	34.8	27.7	8.0	26	42.0	419		
Std. Dev.	5.5	3.9	0.8	7	2.2	65		
	41.7	30.7	9.3	34	47.9	479		
	20.7	16.7	6.0	9	38.8	239		

Total number of blows analyzed: 11

BL# Sensors

1-1 F3: [H083] 94.4 (1.00); F4: off; ; A3: [K1020] 307.0 (1.05); A4: [K2214] 332.0 (1.05)

2-2 F3: [H083] 94.4 (1.00); F4: [F523] 93.8 (1.00); A3: [K1020] 307.0 (1.06); A4: [K2214] 332.0 (1.06)

3-11 F3: [H083] 94.4 (1.00); F4: off; ; A3: [K1020] 307.0 (1.05); A4: [K2214] 332.0 (1.05)

BL# Comments

2 CW

Time Summary

Drive 14 seconds 9:24 AM - 9:24 AM BN 1 - 11

GRL Engineers, Inc. - PDIPLOT2 Ver 2014.2.48.0 - Case Method & iCAP® Results

STH 96 over Fox River (B-5-831) - Pier 7 #30 - EOID APE D25-42, HP 12 x 53 OP: AZ Date: 22-December-2014									
AR: 15.50 in² SP: 0.49 LE: 75.90 ft EM: 30,00									492 k/ft ³
WS: 16,807.9 f/sCSX: Max Measured Compr. StressCSB: Compression Stress at BottomEMX: Max Transferred ErBPM: Blows per Minute							nergy		
STK: (D.E. Diesel H	ammer Stro	oke		R)	(9: Max Ca	se Method	Capacity (J	C=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
	ft	bl/ft		ksi	ksi	ft	k-ft	bpm	kips
24	20.00	5	AV24	19.5	4.6	4.5	18	56.3	60
21	20.00	Ũ	STD	5.9	0.6	1.2	11	6.8	14
			MAX	27.2	5.8	6.4	32	65.8	83
			MIN	10.3	3.3	3.0	3	46.6	27
07	04.00		A. 10	47.0	5.0	4.0	10	F7 0	70
27	21.00	3	AV3	17.2	5.2	4.2	18	57.6	70
			STD	5.8	1.1	0.9	9	6.3	5
			MAX	23.5	6.5	5.3	28	66.1	74
			MIN	9.4	3.8	3.0	5	50.9	64
30	22.00	3	AV3	19.6	5.5	4.6	16	54.9	71
			STD	3.4	0.5	0.7	6	3.7	3
			MAX	23.5	6.2	5.4	24	59.6	75
			MIN	15.1	4.8	3.8	9	50.5	68
				15.1	4.0	5.0	5	50.5	00
33	23.00	3	AV3	15.6	4.9	3.3	15	63.1	70
55	23.00	5							
			STD	5.4	0.8	0.1	13	1.1	12
			MAX	23.2	6.0	3.5	33	64.2	87
			MIN	11.1	4.1	3.2	4	62.0	59
		_							
36	24.00	3	AV3	21.4	5.8	5.0	21	52.8	75
			STD	4.4	0.6	0.8	9	4.3	4
			MAX	26.2	6.4	5.9	32	58.7	80
			MIN	15.7	5.1	3.9	10	48.4	73
41	25.00	5	AV5	17.2	5.4	4.2	13	57.0	75
••	_0.00	· ·	STD	2.8	0.4	0.5	4	2.8	5
			MAX	20.9	5.8	4.9	18	60.5	81
			MIN	13.0	4.7	3.7	7	52.9	68
				15.0	4.7	5.7	,	52.5	08
46	26.00	5	AV5	21.0	5.9	4.9	20	53.1	82
40	20.00	5		3.1			6	3.1	
			STD		0.4	0.6			6
			MAX	24.1	6.3	5.5	26	58.5	88
			MIN	15.7	5.1	3.9	11	50.0	71
- 4	07.00	-	A.) (F	17.0	- 4	4.0	4 5	0	70
51	27.00	5	AV5	17.8	5.4	4.2	15	57.9	79
			STD	6.1	1.0	1.2	12	6.7	12
			MAX	26.6	6.7	6.2	29	64.4	96
			MIN	10.8	4.2	3.2	3	47.3	66
56	28.00	5	AV5	17.1	5.5	4.2	11	57.8	85
			STD	4.5	0.7	0.9	7	5.3	6
			MAX	24.6	6.6	5.7	24	63.5	95
			MIN	12.8	4.7	3.3	4	49.0	77
63	29.00	7	AV7	17.6	5.6	4.3	13	56.9	92
			STD	5.7	1.0	1.0	9	6.1	11
				5			•	2	• •

GRL Engineers, Inc. Case Method & iCAP® Results

Page 1 PDIPLOT2 2014.2.48.0 - Printed 31-December-2014

GRL Engineers, Inc. Case Method & iCAP® Results

Page 2
PDIPLOT2 2014.2.48.0 - Printed 31-December-2014

STH 96 over Fox River (B-5-831) - Pier 7 #30 - EOID OP: AZ					APE D25-42, HP 12 x 53 Date: 22-December-2014				
BL#	depth ft	BLC bl/ft	TYPE MAX MIN	CSX ksi 25.1 9.6	CSB ksi 7.1 4.0	STK ft 5.7 3.1	EMX k-ft 25 3	BPM bpm 65.7 49.1	RX9 kips 109 78
69	30.00	6	AV6 STD MAX MIN	19.2 5.8 25.8 10.2	5.9 1.1 7.1 4.2	4.6 1.0 5.9 3.2	16 9 27 3	55.3 6.1 64.3 48.4	98 10 109 79
74	31.00	5	AV5 STD MAX MIN	20.5 2.0 24.0 18.8	6.2 0.3 6.8 5.9	4.7 0.4 5.5 4.4	16 4 22 12	53.8 2.1 55.7 50.1	92 4 99 86
79	32.00	5	AV5 STD MAX MIN	18.9 1.5 21.6 16.9	5.9 0.3 6.4 5.4	4.5 0.3 5.0 4.1	14 4 22 10	55.0 1.6 57.3 52.3	93 6 105 90
89	33.00	10	AV10 STD MAX MIN	20.2 3.2 25.2 15.7	6.2 0.4 6.7 5.6	4.8 0.6 5.9 3.9	14 5 21 8	53.8 3.3 58.4 48.5	98 8 113 89
94	34.00	5	AV5 STD MAX MIN	22.5 3.8 27.1 17.2	6.6 0.6 7.3 5.8	5.2 0.8 6.2 4.1	21 8 30 11	51.8 4.1 57.6 47.1	102 8 112 91
99	35.00	5	AV5 STD MAX MIN	19.4 2.8 22.2 15.2	6.1 0.5 6.6 5.5	4.6 0.5 5.2 3.8	15 5 20 8	54.8 3.1 59.6 51.5	100 7 107 90
104	36.00	5	AV5 STD MAX MIN	22.5 2.4 25.8 19.3	6.8 0.3 7.1 6.3	5.1 0.5 5.9 4.4	19 5 27 14	51.9 2.5 55.4 48.4	103 3 109 100
114	37.00	10	AV9 STD MAX MIN	22.7 1.5 25.9 20.9	6.9 0.2 7.3 6.6	5.1 0.3 5.9 4.8	18 2 24 15	51.7 1.5 53.5 48.3	108 5 115 100
123	38.00	9	AV4 STD MAX MIN	24.8 2.0 26.9 21.6	7.2 0.3 7.5 6.7	5.6 0.4 6.1 4.9	22 3 26 17	49.6 1.9 52.6 47.7	119 3 123 114
132	39.00	9	AV9 STD MAX MIN	22.6 1.9 25.5 18.8	7.0 0.3 7.5 6.5	5.1 0.4 5.7 4.3	18 3 23 11	51.9 1.9 56.0 49.1	110 6 120 99

STH 96 over Fox River (B-5-831) - Pier 7 #30 - FOID

GRL Engineers, Inc. Case Method & iCAP® Results

Page 3	
PDIPLOT2 2014.2.48.0 - Printed 31-December-2014	

STH 96 over Fox River (B-5-831) - Pier 7 #30 - EOID OP: AZ					APE D25-42, HP 12 x 53 Date: 22-December-2014				
BL# 142	depth ft 40.00	BLC bl/ft 10	TYPE AV10 STD MAX MIN	CSX ksi 23.3 2.0 26.0 18.8	CSB ksi 7.1 0.2 7.4 6.5	STK ft 5.3 0.4 5.9 4.3	EMX k-ft 20 3 25 14	BPM bpm 51.2 2.1 56.0 48.4	RX9 kips 118 7 127 106
152	41.00	10	AV10 STD MAX MIN	24.3 1.4 26.3 22.6	7.4 0.2 7.7 7.0	5.4 0.3 5.9 5.1	22 2 25 19	50.3 1.3 51.9 48.3	123 4 129 118
163	42.00	11	AV11 STD MAX MIN	24.3 1.0 25.6 22.5	7.4 0.2 7.8 7.2	5.5 0.2 5.9 5.1	22 1 24 20	50.0 1.1 51.8 48.5	125 3 129 121
173	43.00	10	AV10 STD MAX MIN	24.0 1.4 25.7 20.6	7.6 0.2 7.9 7.0	5.4 0.3 5.8 4.7	22 2 25 17	50.6 1.4 53.6 48.9	127 2 131 124
184	44.00	11	AV11 STD MAX MIN	23.4 1.0 24.7 21.1	7.7 0.2 8.0 7.4	5.3 0.2 5.6 4.8	20 1 22 18	50.9 1.0 53.1 49.5	129 2 131 126
194	45.00	10	AV10 STD MAX MIN	23.9 0.7 25.0 22.2	7.8 0.2 8.1 7.4	5.4 0.2 5.7 5.0	21 2 23 17	50.4 0.7 52.2 49.3	131 2 135 128
204	46.00	10	AV10 STD MAX MIN	24.6 1.0 26.0 22.3	8.0 0.1 8.1 7.6	5.5 0.3 6.0 5.0	21 2 24 18	49.8 1.1 52.2 48.0	132 2 136 129
218	47.00	14	AV14 STD MAX MIN	24.9 0.9 26.7 23.4	8.2 0.2 8.7 7.8	5.5 0.2 6.1 5.2	21 1 23 18	49.8 1.0 51.5 47.7	134 4 139 127
235	48.00	17	AV17 STD MAX MIN	27.2 1.9 30.3 24.1	11.0 2.2 16.3 8.2	6.0 0.5 6.8 5.3	24 3 28 19	48.0 1.7 50.9 45.1	162 30 222 128
259	49.00	24	AV24 STD MAX MIN	30.7 1.0 32.4 29.0	17.1 1.8 22.1 14.7	6.8 0.3 7.3 6.3	27 2 30 23	45.2 0.9 46.8 43.6	243 32 331 214
288	50.00	29	AV29 STD MAX	32.4 1.1 35.5	21.5 1.7 24.4	7.4 0.4 8.4	30 2 34	43.5 1.0 45.2	317 26 362

STH 96 over Fox River (B-5-831) - Pier 7 #30 - FOID
GRL Engineers, Inc. Case Method & iCAP® Results

Page 4	
PDIPLOT2 2014.2.48.0 - Printed 31-December-2014	

STH 96 OP: AZ		iver (B-5-8	31) - Pier 7 #	#30 - EOID				025-42, HP 22-Decembe	
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
22/1	ft	bl/ft		ksi	ksi	ft	k-ft	bpm	kips
		Durte	MIN	30.5	19.7	6.8	26	40.7	287
				00.0	10.7	0.0	20	10.7	207
335	51.00	47	AV47	32.8	24.7	7.6	30	42.8	376
			STD	1.3	0.8	0.3	2	0.9	12
			MAX	35.5	26.9	8.4	34	44.7	395
			MIN	30.3	22.8	6.9	25	40.8	348
				00.0	22.0	0.0	20	10.0	010
372	52.00	37	AV37	32.8	22.6	7.5	30	43.0	352
			STD	1.1	1.2	0.3	2	0.7	14
			MAX	35.0	24.7	8.2	33	44.3	380
			MIN	31.0	20.1	7.1	26	41.3	325
411	53.00	39	AV39	32.8	21.9	7.6	30	42.9	367
			STD	1.0	1.5	0.3	2	0.8	24
			MAX	35.2	24.4	8.4	34	44.3	401
			MIN	31.0	19.0	7.1	26	40.9	320
451	53.43	92	AV40	33.1	21.8	7.6	29	42.8	384
			STD	0.8	0.7	0.2	2	0.6	13
			MAX	34.8	23.9	8.1	32	44.0	413
			MIN	31.6	20.7	7.2	25	41.4	361
461	53.60	60	AV10	33.4	24.1	8.0	30	41.7	418
			STD	3.1	2.2	0.3	5	0.7	31
			MAX	36.2	26.4	8.5	34	42.7	442
			MIN	24.7	18.9	7.6	16	40.6	350
			Average	27.3	14.5	6.3	24	47.8	229
			Std. Dev.	6.2	7.9	1.4	7	5.7	129
			laximum	36.2	26.9	8.5	34	66.1	442
			Vinimum	9.4	3.3	3.0	3	40.6	27
				umber of blo			-		

Total number of blows analyzed: 455

BL# Sensors

1-461 F3: [H083] 94.4 (1.00); F4: [F523] 93.8 (1.00); A3: [K1020] 307.0 (1.09); A4: [K2214] 332.0 (1.09)

BL# Comments

1 Pile Driven from EL 592.5 458 CW

Time Summary Drive 11 minutes 40 seconds 4:12 PM - 4:23 PM BN 1 - 461

GRL Engineers, Inc. - PDIPLOT2 Ver 2014.2.48.0 - Case Method & iCAP® Results

Test started: 23-December-2014

Case Method & iCAP® Res	ults		PDIPLOT2 2014.2.48.0 - Printed 02-January-						
STH 96 over Fox River (B-5 OP: TC	-831) - Pier 7 ‡	#30 - BOR				025-42, HP 23-Decemb			
AR: 15.50 in ²						SP: 0.	.492 k/ft ³		
LE: 75.90 ft						EM: 30,	,000 ksi		
<u>WS: 16,807.9 f/s</u>						JC:	1.00 []		
CSX: Max Measured Comp	r. Stress		EI	MX: Max Tra	ansferred E	nergy			
CSB: Compression Stress a	at Bottom		BI	PM: Blows p	oer Minute				
STK: O.E. Diesel Hammer	Stroke		R	X9: Max Ca	se Method	Capacity (JC=0.9)		
BL# depth BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9		
ft bl/ft		ksi	ksi	ft	k-ft	bpm	kips		
10 53.63 160	AV10	32.9	27.7	8.0	26	41.8	425		
	STD	3.4	2.8	0.7	7	1.9	53		
	MAX	36.6	30.8	9.0	34	45.9	467		
	MIN	24.7	20.6	6.6	11	39.4	279		
	Average	32.9	27.7	8.0	26	41.8	425		
	Std. Dev.	3.4	2.8	0.7	7	1.9	53		
	Maximum	36.6	30.8	9.0	34	45.9	467		
	Minimum	24.7	20.6	6.6	11	39.4	279		

Page 1

Total number of blows analyzed: 10

BL# Sensors

GRL Engineers, Inc.

1-3 F3: [F523] 93.8 (1.00); F4: [H083] 94.4 (1.00); A3: [K2214] 332.0 (1.06); A4: [K1020] 307.0 (1.06)

4-4 F3: [F523] 93.8 (1.00); F4: [H083] 94.4 (1.00); A3: [K2214] 332.0 (1.06); A4: off 5-10 F3: [F523] 93.8 (1.00); F4: [H083] 94.4 (1.00); A3: [K2214] 332.0 (1.06); A4: [K1020] 307.0 (1.06)

BL# Comments

4 CW

Time Summary

Drive 12 seconds 9:04 AM - 9:04 AM BN 1 - 10

Force Msd

- Velocity Msd

95 ms

74.4 ft

50.0 ft

15.5 in²

141.9 in²

3.97 ft

29992 ksi

16808 ft/s

16808 ft/s

2.59

34.6 ksi

35.4 ksi

-6.29 ksi

0.13 in

0.56 in

0.23 s/ft

0.08 s/ft

492.0 lb/ft3

13 L/c

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result.

STH 96 over Fox River (B-5-831); Pile: Pier 7 #1 - EOID Test: 22-Dec-2014 15:45 APE D25-42, HP 12 x 53; Blow: 226 GRL Engineers, Inc.

CAPWAP (R) 2014-1 OP: AZ

			CAPWAP SUMM	ARY RESULTS	5			
Total CAPWA	P Capacity:	376.0;	along Shaft	81.0;	at Toe	295.0 k	ips	
Soil	Dist.	Depth	Ru	Force	Su	ım	Unit	Uni
Sgmnt	Below	Below		in Pile	c	of Res	ist.	Resist
No.	Gages	Grade			F	Ru (De	pth)	(Area
	ft	ft	kips	kips	kip	os kip	s/ft	ks
				376.0				
1	33.8	9.4	2.0	374.0	2.	0	0.21	0.0
2	40.6	16.2	5.0	369.0	7.	0	0.74	0.1
3	47.3	22.9	10.0	359.0	17.	0	1.48	0.3
4	54.1	29.7	12.0	347.0	29.	0	1.77	0.4
5	60.9	36.4	12.0	335.0	41.	0	1.77	0.4
6	67.6	43.2	18.0	317.0	59.	0	2.66	0.6
7	74.4	50.0	22.0	295.0	81.	0	3.25	0.8
Avg. Sha	lft		11.6				1.62	0.4
Тое			295.0					299.3
Soil Model	Parameters/E	tensions			Shaft	Toe		
Smith Dampi	ng Factor				0.23	0.08		
Quake		(in)			0.13	0.56		
Case Dampin	g Factor				0.67	0.85		
Damping Typ	e				Viscous	Sm+Visc		
Unloading Q	uake	(% of	loading quak	e)	100	48		
Reloading L	evel	(% of	Ru)		100	100		
Unloading L	evel	(% of	Ru)		32			
Resistance	Gap (included	d in Toe Q	uake) (in)			0.12		
Soil Plug W	eight	(kips)				0.068		
CAPWAP matc	h quality	= 2	. 59	(Wave Up Ma	atch) ; R	SA = 0		
Observed: F	inal Set	= 0	.33 in;	Blow Count	=	37 b/1	Et	
Computed: F	inal Set	= 0	.31 in;	Blow Count	=	38 b/1	Et	
Fransducer	F1 (F523) CAL:	93.8; RF: 1	.00; F2 (H083) CA	L: 94.4; RF: :	1.00	1		
	A1 (K2214) CAL:	332; RF: 1	.10; A2(K1020) CA	L: 307; RF: 3	1.10			
max. Top Co	mp. Stress	= 3	4.6 ksi	(T= 36.0	ms, max=	1.023 x 1	lop)	
max. Comp.	Stress	= 3	5.4 ksi	(Z= 40.6	ft, T= 3	38.2 ms)		
max. Tens.	Stress	= -6	.29 ksi	(Z= 54.1	ft, T=	62.2 ms)		
max. Energy	(EMX)	= 3	5.0 kip-ft;	max. Measu	red Top	Displ. (DM	(X) = 1	.29 in

STH 96 over Fox River (B-5-831); Pile: Pier 7 #1 - EOID Test: 22-Dec-2014 15:45 APE D25-42, HP 12 x 53; Blow: 226 GRL Engineers, Inc.

CAPWAP (R) 2014-1 OP: AZ

Pile	D	ist.		nax.	min.	max.	max.		ax.	max.	max
Sgmnt		elow		orce	Force	Comp.	Tens.			Veloc.	Displ
No.		ages	-	JICE	FOICE	Stress	Stress		rgy	veroc.	Dispi
	0.	ft	1	cips	kips	ksi	ksi		o-ft	ft/s	i
1		3.4	53	36.7	-14.7	34.6	-0.95	3	5.0	18.4	1.2
2		6.8	53	37.1	-22.1	34.6	-1.43	3	4.9	18.4	1.2
3	к	10.1	5:	37.5	-28.2	34.7	-1.82	3	4.7	18.3	1.2
4		13.5	53	38.0	-34.4	34.7	-2.22	3	4.3	18.3	1.2
5		16.9	53	38.6	-43.6	34.7	-2.81	3	4.0	18.2	1.1
6		20.3	5:	39.1	-51.2	34.8	-3.30	3	3.6	18.2	1.1
7	3	23.7	53	39.8	-58.2	34.8	-3.75	3	3.1	18.1	1.1
8		27.1	54	11.1	-64.3	34.9	-4.15	3	2.7	18.1	1.1
9	6 E	30.4	54	14.0	-70.7	35.1	-4.56	3	2.2	17.9	1.0
10		33.8	54	17.2	-78.7	35.3	-5.08	3	1.6	17.8	1.0
11		37.2	54	43.1	-84.0	35.0	-5.41	3	0.5	17.6	1.0
12		10.6	54	19.0	-90.0	35.4	-5.80	2	9.9	17.3	0.9
13	i 9	44.0	53	35.1	-91.1	34.5	-5.88	2	8.1	16.9	0.9
14	3	17.3	54	13.5	-96.5	35.1	-6.23	2	7.6	16.6	0.
15	. 3	50.7	50	07.8	-93.0	32.8	-6.00	2	4.8	16.1	0.8
16	1	54.1	5:	L6.7	-97.6	33.3	-6.29	2	4.3	15.8	0.8
17		57.5	4	72.7	-92.5	30.5	-5.97	2	1.3	15.7	0.8
18		50.9	48	33.3	-95.0	31.2	-6.12	2	0.9	15.0	0.
19	4	54.3	4	13.6	-85.3	28.6	-5.50	1	8.2	14.4	0.
20		57.6	4:	38.7	-85.5	28.3	-5.52	1	7.8	16.8	0.
21	8	71.0	4:	1.2	-71.3	26.5	-4.60	1	4.4	18.9	0.0
22	2	74.4	4:	L4.0	-71.1	26.7	-4.59	1	1.3	19.0	0.0
osolute		10.6				35.4				T =	38.2 m
	3	54.1					-6.29	(T =	62.2 m
					64553	SE METHOD					
=	0.0		0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.0	61
5	507.5		7.4	287.2	177.1	67.0					
x	569.8		5.2	469.0	443.8	422.8	412.7	402.6	393.0	390.3	1 387
U	507.5	39	7.4	287.2	177.1	67.0					
AU = 3	26.8 (kips)	RA	2 =	465.1 (k:	ips)					

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
19.1	36.02	528.5	529.7	529.7	1.29	0.37	0.33	35.6	529.3	670
19.1	30.02	528.5	529.1	529.1	1.29	0.37	0.33	35.6	529.3	

PILE	PROFILE	AND	PILE	MODEL	
------	---------	-----	------	-------	--

Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in ²	ksi	lb/ft ³	ft
0.0	15.5	29992.2	492.000	3.97
74.4	15.5	29992.2	492.000	3.97
Toe Area	141.9	in ²		
Top Segment Length	3.38 ft, Top Imp	edance 28 b	kips/ft/s	
Wave Speed: Pile Top	16807.9, Elastic 16	807.9, Overall 16	6807.9 ft/s	
Pile Damping 1.00 %	, Time Incr 0.201	ms, 2L/c 8.9 ms	5.	

STH 96 over Fox	River (B-5-831); Pile: Pier 7 #1 - EOID	Test: 22-Dec-2014 15:45
APE D25-42, HP 1	2 x 53; Blow: 226	CAPWAP(R) 2014-1
GRL Engineers, I	inc.	OP: AZ

Total volume: 8.008 ft^{3;} Volume ratio considering added impedance: 1.000

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result.

STH 96 over Fox River (B-5-831); Pile: Pier 7 #1 - BOR Test: 23-Dec-2014 09:24 APE D25-42, HP 12 x 53; Blow: 2 GRL Engineers, Inc.

CAPWAP (R) 2014-1 OP: TC

			CAPWAP SUMM	ARY RESULT	s		
Total CAPWA	P Capacity:	386.0;	along Shaft	171.0;	at Toe	215.0 kips	
Soil	Dist.	Depth	Ru	Force	Su	m Unit	Unit
Sgmnt	Below	Below		in Pile	c	f Resist.	Resist.
No.	Gages	Grade			R	u (Depth)	(Area)
24	ft	ft	kips	kips	kip	s kips/ft	ksf
				386.0			
1	27.1	2.7	6.0	380.0	6.	0 2.24	0.56
2	33.8	9.4	8.0	372.0	14.	0 1.18	0.30
3	40.6	16.2	12.0	360.0	26.	0 1.77	0.45
4	47.3	23.0	18.0	342.0	44.	0 2.66	0.67
5	54.1	29.7	21.0	321.0	65.	0 3.10	0.78
6	60.9	36.5	28.0	293.0	93.	0 4.14	1.04
7	67.6	43.3	38.0	255.0	131.	0 5.62	1.41
8	74.4	50.0	40.0	215.0	171.	0 5.91	1.49
Avg. Sha	aft		21.4			3.42	0.86
Тое	5		215.0				218.20
Soil Model	Parameters/E	xtensions	3		Shaft	Toe	
Smith Dampi	ng Factor				0.28	0.11	
Quake		(in)			0.13	0.14	
Case Dampin	g Factor				1.73	0.85	
Damping Typ	e				Viscous	Sm+Visc	
Unloading Q	uake	(% of	loading quak	ce)	100	63	
Reloading L	evel	(% of	Ru)		100	100	
Unloading L	evel	(% of	Ru)		75		
Resistance	Gap (included	d in Toe	Quake) (in)			0.02	
Soil Plug W	leight	(kips)				0.114	
CAPWAP matc	h quality	=	L.79	(Wave Up M	latch) : R	SA = 0	
Observed: F			0.15 in;	Blow Count	2010-1010-1010 (1210 - 1140)	80 b/ft	
Computed: F			Survey and the second	Blow Count		104 b/ft	
max. Top Co	mp. Stress	= :	25.5 ksi	(T= 35.8	ms, max=	1.061 x Top)	
max. Comp.	Stress	= :	27.1 ksi	(Z= 27.1	ft, T= 3	37.4 ms)	
max. Tens.	Stress	= -0	0.51 ksi	(Z= 27.1	ft, T= 8	35.3 ms)	
max. Energy	(EMX)	= :	17.3 kip-ft;	max. Meas	ured Top I	Displ. (DMX) =	0.80 in

STH 96 over Fox River (B-5-831); Pile: Pier 7 #1 - BOR Test: 23-Dec-2014 09:24 APE D25-42, HP 12 x 53; Blow: 2 GRL Engineers, Inc.

CAPWAP (R) 2014-1 OP: TC

Pil	o Die	-	mow	min						max
Sgmn			max. orce	min. Force	max. Comp.	max		nax. sfd. '	max. Veloc.	max Displ
No			OICE	FOICe	Stress	Tens			veroc.	DISPI
NO	್		kips	kips	ksi	ks		ergy p-ft	ft/s	i
			96.0	-4.3	25.5	-0.2		17.3	12.8	0.7
			96.8	-4.3 -4.7	25.5	-0.2		16.9	12.8	0.7
	3 10		97.6	-5.0	25.6	-0.3		16.5	12.7	0.7
	4 13		99.0	-5.3	25.7	-0.3		16.0	12.6	0.7
	5 16		00.9	-5.7	25.9	-0.3		15.5	12.5	0.6
	6 20		06.0	-6.3	26.2	-0.4		15.0	12.4	0.6
	7 23		13.3	-7.1	26.7	-0.4		14.5	12.1	0.6
	8 27		20.3	-7.9	27.1	-0.5		14.0	11.9	0.5
	9 30		03.4	-4.1	26.0	-0.2		12.9	11.6	0.5
1			12.7	-5.1	26.6	-0.3		12.4	11.2	0.5
1			96.0	-0.7	25.5	-0.0		11.1	10.8	0.4
1			04.1	-7.2	26.1	-0.4		10.6	10.4	0.4
1			83.2	0.0	24.7	0.0		9.2	9.9	0.4
1			87.3	-3.6	25.0	-0.2		8.8	9.4	0.3
1			65.1	0.0	23.5	0.0		7.2	8.9	0.3
1			69.5	0.0	23.8	0.0		6.8	8.3	0.3
1			46.3	0.0	22.3	0.0		5.5	7.7	0.2
1			46.8	0.0	22.4	0.0		5.1	7.1	0.2
1			16.9	0.0	20.4	0.0		3.9	6.5	0.2
2			21.2	0.0	20.7	0.0		3.6	5.9	0.2
2			84.5	0.0	18.4	0.0		2.5	6.2	0.1
2			83.5	0.0	18.3	0.0		1.7	6.0	0.1
Absolute	27	1			27.1			(r =	37.4 ms
	27					-0.5	1	12		85.3 ms
								~~~		
				CAS	E METHOD					
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.
RP	518.8	494.3	469.9	445.5	421.0	396.6	372.2	347.7	323.3	298.
RX.	522.0	497.9	473.8	450.6	427.8	405.2	398.3	393.2	388.2	383.
RU	518.8	494.3	469.9	445.5	421.0	396.6	372.2	347.7	323.3	298.
RAU =	93.2 (ki	ps); RA	A2 =	404.7 (ki	.ps)					
Current C	APWAP Ru	= 386.0	(kips);	Correspo	nding J(H	RP)= 0.54	; J(RX)	= 0.84		
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KE
ft/s	ms	kips	kips	kips	in	in	in	kip-ft		kips/i
12.8	35.61	354.1	409.0	410.1	0.80	0.15	0.15	17.7		179
	Depth		2011	ea	E AND PI	2011	Spec. I	Joight		Perim
	ft		ir			ksi	THE REPORT OF THE REPORT OF	o/ft ³		ferin
	0.0	Ê.	15	i.5	2999	2.2	4	92.000		3.9
	74.4		15	.5	2999	2.2	4	92.000		3.9
loe Area			141	9	in ²					
lop Segme	1.00	2	38 ft, 5				os/ft/s			

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.201 ms, 2L/c 8.9 ms

 STH 96 over Fox River (B-5-831); Pile: Pier 7 #1 - BOR
 Test: 23-Dec-2014 09:24

 APE D25-42, HP 12 x 53; Blow: 2
 CAPWAP(R) 2014-1

 GRL Engineers, Inc.
 OP: TC

Total volume: 8.008 ft^{3;} Volume ratio considering added impedance: 1.000

95 ms

13 L/c

75.9 ft

53.6 ft

15.5 in²

141.9 in²

3.97 ft

29992 ksi

16808 ft/s

16808 ft/s

3.06

31.9 ksi

33.2 ksi

-3.67 ksi

0.13 in

0.44 in

0.25 s/ft

0.07 s/ft

492.0 lb/ft3

umm



#### About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result.

STH 96 over Fox River (B-5-831); Pile: Pier 7 #30 - EOID Test: 22-Dec-2014 16:23 APE D25-42, HP 12 x 53; Blow: 458 GRL Engineers, Inc.

CAPWAP (R) 2014-1 OP: AZ

Total CAPWAN	? Capacity:	419.0;	along Shaft	74.0;	at Toe	345.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Uni
Sgmnt	Below	Below		in Pile	of	Resist.	Resist
No.	Gages	Grade			Ru	(Depth)	(Area
	ft	ft	kips	kips	kips	kips/ft	ks
				419.0			
1	29.7	7.3	5.0	414.0	5.0	0.68	0.1
2	36.3	13.9	4.0	410.0	9.0	0.61	0.1
3	42.9	20.5	9.0	401.0	18.0	1.36	0.3
4	49.5	27.1	8.0	393.0	26.0	1.21	0.3
5	56.1	33.8	8.0	385.0	34.0	1.21	0.3
6	62.7	40.4	10.0	375.0	44.0	1.52	0.3
7	69.3	47.0	15.0	360.0	59.0	2.27	0.5
8	75.9	53.6	15.0	345.0	74.0	2.27	0.5
Avg. Sha	ft		9.3			1.38	0.3
Toe			345.0				350.1
Soil Model H	Parameters/Ex	tensions			Shaft	Toe	
Smith Dampin	g Factor				0.25	0.07	
Duake	-9	(in)			0.13	0.44	
Case Damping	Factor				0.67	0.87	
Damping Type					Viscous S	m+Visc	
Unloading Qu		(% of ]	loading quak	e)	94	91	
Reloading Le		(% of 1			100	100	
al an shara na sa an ar	Gap (included	d in Toe Q	uake) (in)			0.04	
Soil Plug We	aight	(kips)			0.100		
CAPWAP match	mality	= 3	.06	(Wave Up Ma	atch) : BS	A = 0	
Observed: Fi				Blow Count	=	60 b/ft	
Computed: Fi			STREE Frank B	Blow Count	=	75 b/ft	
fransducer	F3 (H083) CAL:			L: 93.8; RF: 0	0.97		
	A3 (K1020) CAL:	307; RF: 1.	08; A4(K2214) CA	L: 332; RF: 3	1.08		
nax. Top Cor	mp. Stress		1.9 ksi			1.041 x Top)	
max. Comp. S		N N N	3.2 ksi		ft, T= 37	for order and the second se	
max. Tens. S	Stress	= -3	.67 ksi	(Z= 42.9	ft, T= 61	L.8 ms)	
max. Energy	(EMX)	= 30	0.9 kip-ft;	max. Measu	ired Top Di	ispl. (DMX) =	1.15 in

STH 96 over Fox River (B-5-831); Pile: Pier 7 #30 - EOID Test: 22-Dec-2014 16:23 APE D25-42, HP 12 x 53; Blow: 458 GRL Engineers, Inc.

CAPWAP (R) 2014-1 OP: AZ

max.	max.	max.	max.	min.	max.	Dist.	Pile
Veloc.	Trnsfd.	Tens.	Comp.	Force	Force	Below	Sgmnt
	Energy	Stress	Stress			Gages	No.
ft/s	kip-ft	ksi	ksi	kips	kips	ft	
16.9	30.9	-1.61	31.9	-25.0	494.9	3.3	1
16.9	30.7	-1.64	31.9	-25.4	495.2	6.6	2
16.7	30.0	-1.70	32.1	-26.4	496.9	13.2	4
16.7	29.6	-1.76	32.1	-27.3	498.4	16.5	5
16.6	29.1	-1.98	32.2	-30.7	499.8	19.8	6
16.5	28.6	-2.49	32.5	-38.6	503.6	23.1	7
16.2	28.1	-2.93	32.9	-45.4	510.2	26.4	8
16.0	27.6	-3.33	33.2	-51.6	515.3	29.7	9
15.8	25.8	-3.02	32.0	-46.8	496.4	33.0	10
15.5	25.2	-3.35	32.5	-52.0	504.0	36.3	11
15.1	23.8	-3.28	31.9	-50.8	495.0	39.6	12
14.8	23.2	-3.67	32.4	-56.9	502.4	42.9	13
14.5	20.9	-3.01	30.3	-46.7	469.7	46.2	14
14.2	20.3	-3.35	30.7	-52.0	476.7	49.5	15
13.9	18.3	-2.80	29.0	-43.4	449.7	52.8	16
13.6	17.8	-3.10	29.5	-48.0	457.8	56.1	17
13.2	16.0	-2.58	28.0	-40.0	433.5	59.4	18
12.8	15.5	-2.84	28.8	-44.1	446.9	62.7	19
12.0	13.6	-2.14	27.9	-33.2	432.3	66.0	20
13.7	13.1	-2.40	28.3	-37.2	438.4	69.3	21
15.5	10.9	-1.30	26.9	-20.2	416.6	72.6	22
15.3	9.4	-1.63	27.2	-25.2	421.0	75.9	23
(T =			33.2			29.7	solute
(T =		-3.67				42.9	
37	ft/s 16.9 16.7 16.7 16.6 16.5 16.2 16.0 15.8 15.5 15.1 14.8 14.5 14.2 13.9 13.6 13.2 12.8 12.0 13.7 15.5 15.3 (T = 37	Energy kip-ft ft/s 30.9 16.9 30.7 16.9 30.0 16.7 29.6 16.7 29.1 16.6 28.6 16.5 28.1 16.2 27.6 16.0 25.8 15.8 25.2 15.5 23.8 15.1 23.2 14.8 20.9 14.5 20.3 14.2 18.3 13.9 17.8 13.6 16.0 13.2 15.5 12.8 13.6 12.0 13.1 13.7 10.9 15.5 9.4 15.3	Stress         Energy           ksi         kip-ft         ft/s           -1.61         30.9         16.9           -1.64         30.7         16.9           -1.70         30.0         16.7           -1.76         29.6         16.7           -1.98         29.1         16.6           -2.49         28.6         16.5           -2.93         28.1         16.2           -3.33         27.6         16.0           -3.02         25.8         15.8           -3.35         25.2         15.5           -3.28         23.8         15.1           -3.67         23.2         14.8           -3.01         20.9         14.5           -3.35         20.3         14.2           -2.80         18.3         13.9           -3.10         17.8         13.6           -2.58         16.0         13.2           -2.84         15.5         12.8           -2.14         13.6         12.0           -2.40         13.1         13.7           -1.63         9.4         15.3	StressEnergy ksiksikip-ftft/s $31.9$ -1.61 $30.9$ $16.9$ $31.9$ -1.64 $30.7$ $16.9$ $32.1$ -1.70 $30.0$ $16.7$ $32.1$ -1.76 $29.6$ $16.7$ $32.2$ -1.98 $29.1$ $16.6$ $32.5$ -2.49 $28.6$ $16.5$ $32.9$ -2.93 $28.1$ $16.2$ $33.2$ -3.33 $27.6$ $16.0$ $32.0$ -3.02 $25.8$ $15.8$ $32.5$ -3.35 $25.2$ $15.5$ $31.9$ -3.28 $23.8$ $15.1$ $32.4$ -3.67 $23.2$ $14.8$ $30.3$ -3.01 $20.9$ $14.5$ $30.7$ -3.35 $20.3$ $14.2$ $29.0$ -2.80 $18.3$ $13.9$ $29.5$ -3.10 $17.8$ $13.6$ $28.0$ -2.58 $16.0$ $13.2$ $28.8$ -2.84 $15.5$ $12.8$ $27.9$ -2.14 $13.6$ $12.0$ $28.3$ -2.40 $13.1$ $13.7$ $26.9$ -1.30 $10.9$ $15.5$ $27.2$ -1.63 $9.4$ $15.3$ $33.2$ (T = 37)	StressStressEnergy kipskipsksiksikip-ftft/s-25.0 $31.9$ -1.61 $30.9$ $16.9$ -25.4 $31.9$ -1.64 $30.7$ $16.9$ -26.4 $32.1$ -1.70 $30.0$ $16.7$ -27.3 $32.1$ -1.76 $29.6$ $16.7$ -30.7 $32.2$ -1.98 $29.1$ $16.6$ -38.6 $32.5$ -2.49 $28.6$ $16.5$ -45.4 $32.9$ -2.93 $28.1$ $16.2$ -51.6 $33.2$ -3.33 $27.6$ $16.0$ -46.8 $32.0$ -3.02 $25.8$ $15.8$ -52.0 $32.5$ -3.35 $25.2$ $15.5$ -50.8 $31.9$ -3.28 $23.8$ $15.1$ -56.9 $32.4$ -3.67 $23.2$ $14.8$ -46.7 $30.3$ -3.01 $20.9$ $14.5$ -52.0 $30.7$ -3.35 $20.3$ $14.2$ -43.4 $29.0$ -2.80 $18.3$ $13.9$ -48.0 $29.5$ -3.10 $17.8$ $13.6$ -40.0 $28.0$ -2.58 $16.0$ $13.2$ -44.1 $28.8$ -2.84 $15.5$ $12.8$ -33.2 $27.9$ -2.14 $13.6$ $12.0$ -37.2 $28.3$ -2.40 $13.1$ $13.7$ -20.2 $26.9$ -1.30 $10.9$ $15.5$ -25.2 $27.2$ $-1.63$ $9.4$ $15.3$	kipskipsksistressEnergy ksi $494.9$ -25.0 $31.9$ -1.61 $30.9$ $16.9$ $495.2$ -25.4 $31.9$ -1.64 $30.7$ $16.9$ $496.9$ -26.4 $32.1$ -1.70 $30.0$ $16.7$ $498.4$ -27.3 $32.1$ -1.76 $29.6$ $16.7$ $499.8$ -30.7 $32.2$ -1.98 $29.1$ $16.6$ $503.6$ -38.6 $32.5$ -2.49 $28.6$ $16.5$ $510.2$ -45.4 $32.9$ -2.93 $28.1$ $16.2$ $515.3$ -51.6 $33.2$ -3.33 $27.6$ $16.0$ $496.4$ -46.8 $32.0$ -3.02 $25.8$ $15.8$ $504.0$ -52.0 $32.5$ -3.35 $25.2$ $15.5$ $495.0$ -50.8 $31.9$ -3.28 $23.8$ $15.1$ $502.4$ -56.9 $32.4$ -3.67 $23.2$ $14.8$ $469.7$ -46.7 $30.3$ -3.01 $20.9$ $14.5$ $476.7$ -52.0 $30.7$ -3.35 $20.3$ $14.2$ $449.7$ -43.4 $29.0$ -2.80 $18.3$ $13.9$ $457.8$ -48.0 $29.5$ -3.10 $17.8$ $13.6$ $433.5$ -40.0 $28.0$ -2.58 $16.0$ $13.2$ $446.9$ -44.1 $28.8$ -2.84 $15.5$ $12.8$ $432.3$ -33.2 $27.9$ -2.14 $13.6$ $12.0$ $438.4$ -37.2 $28.3$ -2.40 $13.1$ $13.7$ </td <td>GagesStressStressEnergyftkipskipsksiksikip-ft$3.3$494.9-25.0$31.9$-1.61$30.9$$16.9$$6.6$495.2-25.4$31.9$-1.64$30.7$$16.9$$13.2$496.9-26.4$32.1$$-1.70$$30.0$$16.7$$16.5$498.4-27.3$32.1$$-1.76$29.6$16.7$$19.8$499.8-30.7$32.2$$-1.98$29.1$16.6$$23.1$$503.6$$-38.6$$32.5$$-2.49$28.6$16.5$$26.4$$510.2$$-45.4$$32.9$$-2.93$28.1$16.2$$29.7$$515.3$$-51.6$$33.2$$-3.33$$27.6$$16.0$$33.0$$496.4$$-46.8$$32.0$$-3.02$$25.8$$15.8$$36.3$$504.0$$-52.0$$32.5$$-3.35$$25.2$$15.5$$39.6$$495.0$$-50.8$$31.9$$-3.28$$23.8$$15.1$$42.9$$502.4$$-56.9$$32.4$$-3.67$$23.2$$14.8$$46.2$$469.7$$-46.7$$30.3$$-3.01$$20.9$$14.5$$49.5$$476.7$$-52.0$$30.7$$-3.35$$20.3$$14.2$$52.8$$449.7$$-43.4$$29.0$$-2.80$$18.3$$13.9$$56.1$$457.8$$-48.0$$29.5$$-3.10$$17.8$$13.6$$59.4$$433.5$$-40.0$</td>	GagesStressStressEnergyftkipskipsksiksikip-ft $3.3$ 494.9-25.0 $31.9$ -1.61 $30.9$ $16.9$ $6.6$ 495.2-25.4 $31.9$ -1.64 $30.7$ $16.9$ $13.2$ 496.9-26.4 $32.1$ $-1.70$ $30.0$ $16.7$ $16.5$ 498.4-27.3 $32.1$ $-1.76$ 29.6 $16.7$ $19.8$ 499.8-30.7 $32.2$ $-1.98$ 29.1 $16.6$ $23.1$ $503.6$ $-38.6$ $32.5$ $-2.49$ 28.6 $16.5$ $26.4$ $510.2$ $-45.4$ $32.9$ $-2.93$ 28.1 $16.2$ $29.7$ $515.3$ $-51.6$ $33.2$ $-3.33$ $27.6$ $16.0$ $33.0$ $496.4$ $-46.8$ $32.0$ $-3.02$ $25.8$ $15.8$ $36.3$ $504.0$ $-52.0$ $32.5$ $-3.35$ $25.2$ $15.5$ $39.6$ $495.0$ $-50.8$ $31.9$ $-3.28$ $23.8$ $15.1$ $42.9$ $502.4$ $-56.9$ $32.4$ $-3.67$ $23.2$ $14.8$ $46.2$ $469.7$ $-46.7$ $30.3$ $-3.01$ $20.9$ $14.5$ $49.5$ $476.7$ $-52.0$ $30.7$ $-3.35$ $20.3$ $14.2$ $52.8$ $449.7$ $-43.4$ $29.0$ $-2.80$ $18.3$ $13.9$ $56.1$ $457.8$ $-48.0$ $29.5$ $-3.10$ $17.8$ $13.6$ $59.4$ $433.5$ $-40.0$

J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8		
RP	501.5	405.8	310.0	214.3	118.6							
RX	557.1	515.1	479.8	455.2	436.8	429.3	421.8	414.4	406.9	400.0		
RU	501.5	405.8	310.0	214.3	118.6							

RAU = 322.9 (kips); RA2 = 475.5 (kips)

Current CAPWAP Ru = 419.0 (kips); Corresponding J(RP)= 0.17; J(RX) = 1.28

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
17.1	35.93	472.9	507.2	507.2	1.15	0.20	0.20	31.0	551.2	863

PILE PROFILE AND PILE MODEL									
Depth	Area	E-Modulus	Spec. Weight	Perim.					
ft	in ²	ksi	lb/ft ³	ft					
0.0	15.5	29992.2	492.000	3.97					
75.9	15.5	29992.2	492.000	3.97					
Toe Area	141.9	in ²							

STH 96 over Fox River (B-5-831); Pile: Pier 7 #30 - EOID Test: 22-Dec-2014 16:23 APE D25-42, HP 12 x 53; Blow: 458 GRL Engineers, Inc.

Segmnt	egmnt Dist. Impedance		pedance Imped.		Tension Compression			Perim.	Wave	Soil
Number	B.G.		B.G.	.G. Change Slack Eff. Sl	Slack	Slack Eff.		Speed	Plug	
	ftkips/ft/s		8			in		ft	ft/s	kips
1	3.3	27.67	0.00	0.00	0.000	-0.00	0.000	3.97	16807.9	0.000
22	72.6	27.67	0.00	0.00	0.000	-0.00	0.000	3.97	16807.9	0.040
23	75.9	27.67	0.00	0.00	0.000	-0.00	0.000	3.97	16807.9	0.060

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c 9.0 ms Total volume: 8.170 ft^{3;} Volume ratio considering added impedance: 1.000



#### About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result.

STH 96 over Fox River (B-5-831); Pile: Pier 7 #30 - BOR Test: 23-Dec-2014 09:04 APE D25-42, HP 12 x 53; Blow: 4 GRL Engineers, Inc.

CAPWAP (R) 2014-1 OP: TC

otal CAPWAP			.0; along		113.0; at			kips		
	ist.	Depth	Ru	Force	Sun		Unit	Unit		Quake
Sgmnt B	elow	Below		in Pile	of		sist.	Resist.	0.1	
No. G	ages	Grade			Ru		epth)	(Area)	5	
	ft	ft	kips	kips	kips	ki ki	ps/ft	ksf	:	i
				413.0						
	29.7	7.4	7.0	406.0	7.0		0.95	0.24		0.12
2	36.3	14.0	10.0	396.0	17.0	l.	1.52	0.38	\$	0.1
3	42.9	20.6	11.0	385.0	28.0		1.67	0.42	2	0.12
4	49.5	27.2	12.0	373.0	40.0		1.82	0.46	5	0.12
5	56.1	33.8	11.0	362.0	51.0	i.	1.67	0.42	2	0.12
6	62.7	40.4	15.0	347.0	66.0	6	2.27	0.57	,	0.12
7	69.3	47.0	22.0	325.0	88.0	(	3.33	0.84	1	0.11
8	75.9	53.6	25.0	300.0	113.0		3.79	0.95	5	0.0
Avg. Shaft			14.1				2.11	0.53	3	0.1
Toe			300.0					304.46	5	0.24
Soil Model Pa	rameters	/Extensi	ons			Shaft	To	e		
Smith Damping	Factor					0.30	0.0	8		
Case Damping	Factor					1.23	0.8	7		
Damping Type					Vi	scous	Sm+Vis	C		
Reloading Lev	el	(%	of Ru)			100	10	0		
Soil Plug Wei	ght	(k	ips)				0.08	0		
CAPWAP match	quality	<b></b>	1.75	(Wa	ve Up Mato	ch) ; F	RSA = 0			
Observed: Fin	al Set	=	0.08 in	n; Blo	w Count	=	160	b/ft		
Computed: Fin	al Set	=	0.11 in	n; Blo	w Count	=	106	b/ft		
nax. Top Comp	. Stress	. =	31.4 k	si (I	'= 36.1 ms	, max=	1.063	х Тор)		
max. Comp. St	ress	=	33.3 k	si (Z	= 29.7 ft	:, T=	37.7 ms	)		
max. Tens. St	ress		-1.09 k	si (Z	= 29.7 ft	;, T=	57.7 ms	)		
				2000 and 2000		States and States and				

STH 96 over Fox River (B-5-831); Pile: Pier 7 #30 - BOR Test: 23-Dec-2014 09:04 APE D25-42, HP 12 x 53; Blow: 4 GRL Engineers, Inc.

CAPWAP (R) 2014-1 OP: TC

Pile	e Dist	:. n	ax.	min.	max.	max	. 1	max.	max.	max
Sgmnt	: Belo	w Fo	rce	Force	Comp.	Tens	. Trn	sfd. Y	Veloc.	Displ
No	. Gage	s			Stress	Stres	s En	ergy		
	f	ft k	ips	kips	ksi	ks	i kij	p-ft	ft/s	i
<u>i</u>		3 48	6.3	-10.2	31.4	-0.6	6	24.2	16.2	0.9
2			7.2	-10.4	31.4	-0.6		23.9	16.1	0.90
4			9.3	-10.6	31.6	-0.6		23.2	16.0	0.84
			0.5	-10.7	31.6	-0.6		22.7	16.0	0.8
	5 19.		1.9	-11.3	31.7	-0.7		22.2	15.9	0.78
•			7.3	-12.4	32.1	-0.8		21.8	15.7	0.75
8			7.2	-13.4	32.7	-0.8		21.3	15.3	0.72
	29.		7.0	-16.9	33.3	-1.0		20.8	15.0	0.68
10			1.5	-9.4	31.7	-0.6		19.0	14.5	0.65
11			2.9	-15.5	32.4	-1.0		18.5	14.1	0.62
12			4.3	-2.3	29.9	-0.1		16.4	13.6	0.59
13			6.3	-7.8	30.7	-0.5		15.9	13.1	0.55
14			5.8	0.0	28.1	0.0		14.0	12.6	0.52
15			7.6	-0.0	28.9	-0.0		13.5	12.2	0.49
10			4.0	0.0	26.1	0.0		11.6	11.8	0.46
17			6.2	0.0	26.8	0.0		11.1	11.3	0.43
18			3.3	0.0	24.7	0.0		9.6	10.8	0.40
19			9.9	0.0	25.8	0.0		9.2	10.2	0.36
20			1.6	0.0	24.0	0.0		7.6	9.6	0.34
21			1.9	0.0	24.6	0.0		7.2	9.6	0.30
22			3.2	0.0	22.8	0.0		5.5	10.4	0.28
23	3 75.	9 35	4.0	0.0	22.8	0.0	0	4.2	10.0	0.25
bsolute	29.	7			33.3			(!	r =	37.7 ms)
	29.	7				-1.0	9	(!	r =	57.7 ms)
				CAS	SE METHOD					
τ =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	586.4	550.7	515.0	479.3	443.6	407.9	372.2	336.5	300.8	
x	589.0	554.1	519.2	490.3	476.0	461.8	447.6	433.3	419.1	404.9
RU	586.4	550.7	515.0	479.3	443.6	407.9	372.2	336.5	300.8	265.1
AU =	289.8 (kip	os); RA2	2 = 4	189.8 (ki	lps)					
Current CA	APWAP Ru =	= 413.0	(kips);	Correspo	onding J(H	RP)= 0.4	9; J(RX)	= 0.84		
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEE
ft/s		kips	kips	kips	in	in	in	kip-ft	100 C 10	kips/in
15.9	ms 35.93	440.8	502.7	502.7	0.90	0.08	0.08	24.3	597.1	
10.0	00.00	110.0	502.7	002.1	0.00	0.00	0.00	21.0		1200
			PII	LE PROFII	LE AND PI	LE MODEL				
	Depth			ea	E-Modu	lus	Spec.	Weight		Perim.
	ft in ²		2		ksi	11	o/ft ³		ft	
	0.0		15	.5	2999	2.2	4	92.000		3.97
	75.9 15.5		.5	29992.2			92.000		3.97	
oe Area			141	. 9	in ²					

EXTREMA TABLE

Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c 9.0 ms

STH 96 over Fox River (B-5-831); Pile: Pier	7 #30 - BOR Test: 23-Dec-2014 09:04
APE D25-42, HP 12 x 53; Blow: 4	CAPWAP(R) 2014-1
GRL Engineers, Inc.	OP: TC

Total volume: 8.170 ft^{3;} Volume ratio considering added impedance: 1.000

# **GRL Engineers**, Inc.

1540 E. Dundee Road, Suite 102 Palatine, IL 60074 USA Phone: (847) 221-2750 Fax: (847) 221-2752

# **TRANSMITTAL**

To: Mr. Wade Hamacher	From: Al Ziai				
Company: Lunda Construction Company	No. of Sheets: 32				
E-mail: whamacher@lundaconstruction.com	Date: January 23, 2015				

RE: Dynamic Testing Results – Pier 8 WisDOT Contract B-5-381 – STH 96 over Fox River Wrightstown, Wisconsin

On January 21, 2015, Pier 8 #6 and Pier 8 #27 at the above structure were dynamically tested during initial driving. The piles were tested during restrike on January 22. The 75.3 foot long HP 12 x 53 H-piles were equipped with driving shoes and were driven with an APE D25-42 hammer operated on fuel setting three. Plans indicate the piles in Pier 8 have a required driving resistance or ultimate capacity of 360 kips, and an estimated length of 60 feet.

Pier 8 #6 was driven to a depth of 56.0 feet below the excavated ground surface at EL 594.5, which corresponds to a pile tip elevation of EL 538.5. The blow count over the final increment of driving was 10 blows for 3 inches of penetration at an average hammer stroke of 7.7 feet. The blow count at the beginning of restrike of Pier 8 #6 was 10 blows for 2 inches of penetration at an average hammer stroke of 8.1 feet.

Pier 8 #27 was driven to a depth of 57.0 feet below the excavated ground surface at EL 594.5, which corresponds to a pile tip elevation of EL 537.5. The blow count over the final increment of driving was 10 blows for 3 inches of penetration at an average hammer stroke of 7.4 feet. The blow count at the beginning of restrike of Pier 8 #27 was 10 blows for 2 inches of penetration at an average hammer stroke of 8.2 feet.

For the 360 kip piles, driven with the APE D25-42 hammer, in Pier 8 of the STH 96 Bridge over the Fox River we recommend using the following criteria:

Field Observed	Recommended Minimum
Hammer Stroke	Blow Count
(feet)	(blows per foot)
6.5	59
7.0	48
7.5	40
8.0	40

We recommended the above blow count at the corresponding hammer stroke be maintained for two full feet of driving. Driving may be terminated if production piles exceed 10 blows over

an increment of one inch or less at hammer strokes of 8.0 feet. After splicing or any other delays, we recommend not applying the criteria until at least two feet of driving has occurred beyond the termination depth associated with the delay.

Please contact us if there are any problems meeting the recommended criterion or if you have any questions on these recommendations.

GRL Engineers, Inc.

*Al Ziai* 

1jille

Travis Coleman, P.E.

cc: Steve Seymour - steve.seymour@omnni.com Jeff Horsfall - jeffrey.horsfall@dot.wi.gov

Attachments:

Dynamic Results	(Pages 3 – 16)
CAPWAP Results	(Pages 17 – 32)



1 - Excavated ground surface at El. 594.5

	)6 over Fox Ri	ver (B-5-83	31) - Pier 8 i	#6				)25-42, HP	
<u>OP: A</u>			-				Date	e: 21-Janua	
AR: LE:	15.50 in ²								492 k/ft ³
	72.33 ft 6,807.9 f/s							EM: 30, JC: 1	000 ksi
	Max Measure	d Compr. S	Stress		S	TK: O.E. Die	esel Hamm		.00 []
	Compression					PM: Blows p			
EMX:	Max Transfer					X9: Max Ca		Capacity (	JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
0	ft	bl/ft	A) (O	ksi	ksi	k-ft	ft	bpm	kips
3	21.00	3	AV2 MAX	11.8 12.5	3.8 4.0	14 16	3.5 3.5	62.1 62.3	33
			MIN	12.5	4.0 3.6	10	3.5 3.4	61.9	41 24
				11.0	0.0	12	0.4	01.5	27
7	22.00	4	AV4	19.8	4.8	23	4.5	55.1	58
			MAX	21.4	5.0	24	4.7	56.0	60
			MIN	18.5	4.6	22	4.3	53.7	57
10	23.00	3	AV3	19.4	4.8	23	4.5	55.2	47
10	23.00	5	MAX	19.4	4.8 5.0	23	4.5	55.4	53
			MIN	19.0	4.7	22	4.4	55.0	44
14	24.00	4	AV4	19.0	4.6	22	4.5	55.2	57
			MAX	20.6	4.8	24	4.7	56.5	58
			MIN	17.3	4.5	20	4.2	53.8	57
18	25.00	4	AV4	21.6	5.1	27	4.9	52.8	66
	_0.00	·	MAX	22.5	5.2	29	5.0	53.4	75
			MIN	20.6	4.9	25	4.8	52.1	59
22	20.00	4	A \ / A	00 F	<b>F</b> 4	24	47	54.0	70
22	26.00	4	AV4 MAX	20.5 21.8	5.4	24	4.7	54.0 55.1	70
			MIN	21.8 19.4	5.5 5.1	26 21	5.0 4.5	55.1 52.5	77 65
				10.4	0.1	21	ч.0	02.0	00
27	27.00	5	AV5	19.9	5.1	22	4.7	54.0	80
			MAX	22.7	5.4	26	5.2	59.8	85
			MIN	13.9	4.3	13	3.7	51.4	74
30	28.00	3	AV3	22.6	6.0	28	5.1	51.6	83
50	20.00	5	MAX	23.8	6.4	30	5.4	52.9	96
			MIN	21.3	5.6	27	4.9	50.3	76
34	29.00	4	AV4	22.0	5.8	26	5.1	52.0	85
			MAX	24.6	6.2	31	5.6	56.1	96 70
			MIN	18.1	5.4	21	4.3	49.5	79
38	30.00	4	AV4	20.8	6.0	23	4.9	52.8	83
			MAX	22.0	6.1	25	5.2	54.3	88
			MIN	19.7	5.9	22	4.6	51.3	79
42	21.00	A	A \ / A	00 F	6 1	29	E /		70
42	31.00	4	AV4 MAX	23.5 24.9	6.1 6.3	29 32	5.4 5.6	50.5 52.1	79 85
			MIN	24.9	0.3 5.6	26	5.0	49.4	72
					0.0		0.0		
47	32.00	5	AV5	22.4	5.7	24	5.1	51.9	83
			MAX	24.0	5.9	27	5.4	52.9	93
			MIN	21.2	5.7	22	4.9	50.6	78

GRL Engineers, Inc. Case Method & iCAP® Results

Page 1 PDIPLOT2 2014.2.48.1 - Printed 22-January-2015

GRL Engineers, Inc. Case Method & iCAP® Results

F	Page 2
PDIPLOT2 2014.2.48.1 - Printed 22-January-	2015

STH 96 over Fox River (B-5-831) - Pier 8 #6

APE D25-42,	HP 12 x 53
Data: 01 la	

OP: AN		vei (D-5-63	51) - Fiel 01	40				e: 21-Janua	
BL#	depth ft	BLC bl/ft	TYPE	CSX ksi	CSB ksi	EMX k-ft	STK ft	BPM bpm	RX9 kips
52	33.00	5	AV5 MAX MIN	22.8 24.2 19.2	5.9 6.1 5.6	25 27 21	5.2 5.4 4.6	51.6 54.1 50.4	88 100 82
56	34.00	4	AV4 MAX MIN	22.1 23.3 21.3	6.0 6.0 5.8	24 25 21	5.0 5.3 4.9	52.2 53.0 50.7	91 99 80
61	35.00	5	AV5 MAX MIN	21.8 23.8 17.9	6.1 6.4 5.4	23 26 17	5.0 5.4 4.3	52.5 55.9 50.5	94 100 86
66	36.00	5	AV5 MAX MIN	22.7 23.5 21.5	6.1 6.3 5.8	24 26 21	5.1 5.2 4.8	51.8 53.3 51.3	97 105 87
72	37.00	6	AV6 MAX MIN	21.7 23.9 19.6	6.0 6.2 5.6	21 24 19	4.9 5.4 4.5	52.7 54.8 50.5	99 102 94
78	38.00	6	AV6 MAX MIN	22.0 23.6 20.2	6.2 6.3 6.0	22 24 20	5.0 5.3 4.6	52.6 54.5 50.8	100 104 93
84	39.00	6	AV6 MAX MIN	22.0 23.0 21.0	6.2 6.3 6.1	22 25 20	5.0 5.2 4.7	52.5 53.7 51.2	101 102 99
89	40.00	5	AV5 MAX MIN	22.6 24.5 20.6	6.2 6.5 6.1	23 26 20	5.1 5.5 4.7	51.8 53.8 49.9	100 102 99
95	41.00	6	AV6 MAX MIN	22.5 24.5 21.7	6.3 6.5 6.1	22 25 19	5.1 5.5 4.8	51.9 53.1 50.1	102 105 100
101	42.00	6	AV6 MAX MIN	23.0 24.2 21.9	6.4 6.6 6.3	24 25 21	5.2 5.4 4.9	51.5 52.7 50.2	104 106 102
106	43.00	5	AV5 MAX MIN	22.9 23.7 22.2	6.5 6.6 6.3	24 25 22	5.2 5.5 5.1	51.1 51.8 50.1	104 106 100
112	44.00	6	AV6 MAX MIN	23.6 25.0 22.3	6.6 6.7 6.4	25 28 22	5.4 5.7 5.1	50.6 51.8 49.2	106 110 99
117	45.00	5	AV5 MAX MIN	23.8 24.7 22.9	6.6 6.9 6.3	25 26 24	5.4 5.6 5.2	50.4 51.4 49.5	110 112 105

GRL Engineers, Inc. Case Method & iCAP® Results

	Page 3
PDIPLOT2 2014.2.48.1 - Printed 22-Januar	y-2015

STH 96 over Fox River (B-5-831) - Pier 8 #6

APE D25-42,	HP 12 x 53
D-1 01 1-	001F

			40					
	BLC	TYPE	CSX	CSB	EMX			RX9
								kips
		AV5						114
		MAX		7.0		5.7	52.2	117
		MIN	22.4	6.3	21	5.0	49.3	112
47.00	0	A) (C	04.4	07	05		50.0	
47.00	6							114 115
								115
			20.0	0.4	22	0.0	40.0	
48.00	6	AV6	23.7	6.8	24	5.3	50.7	115
								117
		MIN	22.8	6.6	23	5.2	49.3	113
49.00	7	AV7	23.6	7.1	24	5.3	50.8	116
				7.4				120
		MIN	21.0	6.5	19	4.7	48.9	114
50.00	6	۸\/6	24.2	7.0	23	54	50 /	117
50.00	0							119
								115
51.00	7							122
								126
		IVIIIN	22.8	7.3	22	5.2	49.3	119
52.00	6	AV6	25.0	8.5	26	5.7	49.3	132
		MAX	26.5	8.9	27	5.9	50.4	135
		MIN	23.8	8.1	24	5.4	48.2	129
53.00	10	AV10	27.3	11.5	26	6.2	47.3	168
								193
		MIN	25.0	9.0	24	5.6	45.6	141
54 00	12	۵\/12	20.0	1/1 8	28	67	15.6	219
54.00	12							245
		MIN	27.1	13.0	25	6.3	43.9	197
	47	A) /1 7	20 F	10.4	20	7.0		202
55.00	17							282 344
								344 241
			20.0	10.7	20	0.5	42.0	241
55.75	23	AV15	32.6	25.9	31	7.7	42.7	375
								410
		MIN	30.5	23.0	27	/.1	39.9	341
56.00	40	AV9	32.7	26.9	31	7.7	42.6	396
		MAX	35.3	28.8	35	8.8	45.1	421
			29.8	25.1	23	6.8	39.9	374
								152
								421 24
	ſ					5.4	29.9	24
	depth ft 46.00 47.00 48.00 50.00 51.00 51.00 52.00 53.00 54.00 55.00 55.75	depth ft       BLC bl/ft         46.00       5         47.00       6         48.00       6         49.00       7         50.00       6         51.00       7         52.00       6         53.00       10         54.00       12         55.75       23         56.00       40	depth ft         BLC bl/ft         TYPE           46.00         5         AV5 MAX MIN           47.00         6         AV6 MAX MIN           48.00         6         AV6 MAX MIN           49.00         7         AV7 MAX MIN           50.00         6         AV6 MAX MIN           51.00         7         AV7 MAX MIN           52.00         6         AV6 MAX MIN           53.00         10         AV10 MAX MIN           54.00         12         AV12 MAX MIN           55.75         23         AV15 MAX MIN           56.00         40         AV9 MAX MIN	depth ft         BLC bl/ft         TYPE AV5 AV5 24.1 MAX         CSX ksi 24.1 MAX           47.00         6         AV6 24.1 MAX         25.4 MIN           47.00         6         AV6 AV6         24.1 MIN           48.00         6         AV6 AV6         23.7 MAX           48.00         6         AV6 MAX         25.4 MIN           49.00         7         AV7 AV7         23.6 MAX           50.00         6         AV6 AV6         24.2 MAX           51.00         7         AV7 AV7         23.6 MIN           51.00         7         AV7 AV7         24.1 MAX           52.00         6         AV6 AV6         25.0 MIN           53.00         10         AV10 AV10 AX1         27.3 AV8           53.00         12         AV12 AV12         29.0 MAX           54.00         12         AV12 AV17         30.5 MIN           55.75         23         AV15 MAX         32.6 MIN           56.00         40         AV9 AV9         32.7 MAX           MIN         29.8         Average AV47         24.7	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Total number of blows analyzed: 222

GRL Engineers, Inc. Case Method & iCAP® Results Page 4 PDIPLOT2 2014.2.48.1 - Printed 22-January-2015

STH 96 over Fox River (B-5-831) - Pier 8 #6 OP: AM APE D25-42, HP 12 x 53 Date: 21-January-2015

BL# Sensors

1-226 F3: [F523] 93.8 (1.00); F4: [H083] 94.4 (1.00); A3: [K1020] 307.0 (1.10); A4: [K974] 305.0 (1.10)

**BL#** Comments

2 Excavated ground surface at El. 594.5

Time Summary

Drive 5 minutes 14 seconds 12:44 PM - 12:49 PM BN 1 - 226



GRL Engineers, Inc.
Case Method & iCAP® Results

Page 1 PDIPLOT2 2014.2.48.1 - Printed 22-January-2015

STH 9 OP: A		River (B-5-8	831) - Pier 8	#6 Restrike				025-42, HF e: 22-Janu	
AR:	15.50 in ²							SP: 0	.492 k/ft ³
LE:	72.33 ft							EM: 30	,000 ksi
WS: 1	6,807.9 f/s							JC:	1.00 []
CSX:	Max Meas	ured Compr	: Stress		ST	K: O.E. Di	esel Hamm	ner Stroke	
CSB:	Compressi	on Stress a	t Bottom		BF	PM: Blowsp	er Minute		
EMX:	Max Trans	ferred Energ	gy		Rک	(9: Max Ca	se Method	Capacity	(JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
	ft	blows/ft		ksi	ksi	k-ft	ft	bpm	kips
10	56.17	60	AV9	34.2	28.7	29	8.1	41.9	415
			MAX	37.5	31.3	37	9.2	51.1	465
			MIN	23.8	21.3	13	5.2	39.1	316
			Average	34.2	28.7	29	8.1	41.9	415
			Maximum	37.5	31.3	37	9.2	51.1	465
			Minimum	23.8	21.3	13	5.2	39.1	316
			Total	number of bla	ws analy:	od. 0			

Total number of blows analyzed: 9

# BL# Sensors

1-10 F3: [F523] 93.8 (1.00); F4: [H083] 94.4 (1.00); A3: [K1020] 307.0 (1.07); A4: [K974] 305.0 (1.07)

Time Summary

Drive 12 seconds 9:04 AM - 9:04 AM BN 1 - 10



					_				<b>,</b>
STH 96 over Fox River (B-5-831) - Pier 8 #27         APE D25-42, HP 12 x 53           OP: AM         Date: 21-January-2015									
AR:	15.50 in ²						Dail	SP: 0.4	
LE:	72.33 ft							EM: 30,0	
	6,807.9 f/s		<u>.</u>						.00 []
	Max Measure					TK: O.E. Die		er Stroke	
	Compression					PM: Blows p			
	Max Transfer	red Energy				X9: Max Ca			IC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
	ft	bl/ft		ksi	ksi	k-ft	ft	bpm	kips
8	22.50	4	AV1	22.3	4.9	22	5.1	52.0	68
			MAX	22.3	4.9	22	5.1	52.0	68
			MIN	22.3	4.9	22	5.1	52.0	68
							••••	0210	
9	22.75	4	AV1	19.6	4.6	19	4.7	53.9	57
Ū	22.70	•	MAX	19.6	4.6	19	4.7	53.9	57
			MIN	19.6	4.6	19	4.7	53.9	57
			IVIIIN	15.0	4.0	15	ч.7	00.0	57
10	23.00	4	AV1	18.0	4.6	18	4.4	55.6	72
10	20.00	-	MAX	18.0	4.6	18	4.4	55.6	72
			MIN	18.0	4.6	18	4.4	55.6	72
				10.0	4.0	10	4.4	55.0	12
14	24.00	4	AV4	21.7	5.0	23	5.1	52.0	70
14	24.00	4	MAX	24.6	5.3	23	5.8	52.0 54.6	70
			MIN	19.4	4.6	20	4.6	48.9	56
10	25.00	F		20.2	E 1	20	10	F2 2	70
19	25.00	5	AV5	20.3	5.1	20	4.8	53.2	73
			MAX	23.0	5.7	24	5.4	56.5	75
			MIN	17.3	4.8	16	4.2	50.4	71
0.4	00.00	-		00.0	5.0	01	4.0	50.0	
24	26.00	5	AV5	20.9	5.2	21	4.9	52.8	82
			MAX	21.7	5.6	22	5.1	54.1	85
			MIN	19.2	4.9	20	4.6	51.7	79
28	27.00	4	AV4	21.8	5.4	23	5.1	52.0	80
			MAX	24.6	5.5	27	5.7	54.3	88
			MIN	19.3	5.2	19	4.6	49.1	75
32	28.00	4	AV4	23.0	5.5	27	5.4	50.6	84
			MAX	25.3	5.9	31	6.0	53.6	98
			MIN	20.1	5.3	21	4.7	48.0	76
37	29.00	5	AV5	21.2	5.6	22	5.0	52.5	89
			MAX	22.4	5.9	25	5.3	55.0	95
			MIN	18.6	5.3	18	4.5	51.0	80
41	30.00	4	AV4	22.9	5.7	27	5.3	50.9	87
			MAX	25.5	6.0	29	5.8	53.2	92
			MIN	20.5	5.4	23	4.8	48.8	81
46	31.00	5	AV5	22.6	5.9	25	5.3	50.7	95
		-	MAX	23.2	6.1	27	5.6	51.8	104
			MIN	21.3	5.7	23	5.1	49.6	91
				21.0	0.7	20	0.1		0.
50	32.00	4	AV4	22.9	5.9	27	5.4	50.6	82
00	02.00	•	MAX	23.6	6.3	28	5.6	51.8	94
			MIN	21.5	5.7	25	5.1	49.7	74
			IVIIIN	21.0	5.7	25	0.1	чJ.7	/4

GRL Engineers, Inc.
Case Method & iCAP® Results

Page 1 PDIPLOT2 2014.2.48.1 - Printed 22-January-2015

GRL Engineers, Inc. Case Method & iCAP® Results

F	Page 2
PDIPLOT2 2014.2.48.1 - Printed 22-January-	2015

STH 96 over Fox River (B-5-831) - Pier 8 #27 OP: AM

APE D25-42, HP 12 >	c 53
Date: 21- January-2	015

								te: 21-January-2015	
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
	ft	bl/ft		ksi	ksi	k-ft	ft	bpm	kips
55	33.00	5	AV5	23.7	6.0	27	5.6	49.7	96
		C C	MAX	24.9	6.3	28	5.7	50.2	103
			MIN	22.7	5.7	25	5.4	49.1	86
60	34.00	5	AV5	23.5	6.2	27	5.6	49.4	101
		-	MAX	24.4	6.5	28	5.8	49.8	104
			MIN	22.6	5.9	26	5.5	48.6	98
64	35.00	4	AV4	23.2	6.5	26	5.4	50.4	102
			MAX	24.8	6.6	29	5.7	52.9	107
			MIN	21.0	6.3	23	4.9	49.2	93
69	36.00	5	AV5	24.0	6.7	27	5.6	49.5	104
			MAX	25.4	6.9	28	5.9	50.4	108
			MIN	22.8	6.5	26	5.4	48.4	94
75	37.00	6	AV6	22.7	6.5	23	5.3	50.8	109
			MAX	23.7	6.8	25	5.5	52.3	112
			MIN	21.2	6.2	22	5.0	49.8	105
81	38.00	6	AV6	23.3	6.6	24	5.5	50.0	112
			MAX	24.3	6.8	25	5.7	50.7	118
			MIN	22.3	6.4	23	5.3	49.2	106
87	39.00	6	AV6	23.5	6.7	24	5.5	50.2	113
			MAX	24.5	6.9	25	5.7	51.1	117
			MIN	22.3	6.5	23	5.2	49.2	108
93	40.00	6	AV6	23.4	6.7	23	5.4	50.5	114
			MAX	24.6	7.0	25	5.6	52.4	118
			MIN	21.5	6.4	21	5.0	49.6	109
100	41.00	7	AV7	23.2	6.6	21	5.5	50.1	120
			MAX	24.1	7.0	22	5.6	50.8	122
			MIN	22.6	6.5	19	5.3	49.6	118
107	42.00	7	AV7	22.7	6.8	20	5.3	50.9	121
			MAX	24.2	7.2	21	5.6	52.1	124
			MIN	21.5	6.5	18	5.0	49.4	115
114	43.00	7	AV7	22.7	6.9	20	5.3	50.9	122
			MAX	25.3	7.2	24	5.9	54.4	130
			MIN	19.2	6.3	16	4.6	48.3	116
121	44.00	7	AV7	23.8	7.2	21	5.6	49.6	126
			MAX	25.6	7.7	24	6.1	50.9	133
			MIN	22.8	7.0	20	5.3	47.7	124
128	45.00	7	AV7	22.8	7.3	20	5.3	50.7	129
			MAX	24.1	7.7	22	5.6	52.0	133
			MIN	21.4	6.9	18	5.1	49.5	124

GRL Engineers, Inc. Case Method & iCAP® Results

Р	age 3
PDIPLOT2 2014.2.48.1 - Printed 22-January-2	2015

STH 96 over Fox River (B-5-831) - Pier 8 #27

APE D25-42, HP 12 x 53
$AI = D = 0 = 42, III = 12 \times 00$
Data: 21 January 2015

OP: AM								Date: 21-January-2015			
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9		
100	ft	bl/ft	A) (O	ksi	ksi	k-ft	ft	bpm	kips		
136	46.00	8	AV8 MAX	23.0 24.2	7.5 7.8	19 21	5.4 5.7	50.6 51.4	130 134		
			MIN	24.2	7.3	18	5.2	49.2	126		
					7.0	10	0.2	10.2	.20		
144	47.00	8	AV8	22.4	7.4	18	5.2	51.3	130		
			MAX	25.0	7.7	21	5.8	52.6	141		
			MIN	21.0	7.2	15	4.9	48.7	126		
153	48.00	9	AV9	23.7	7.8	19	5.5	50.0	137		
		-	MAX	25.3	8.1	21	5.8	52.3	142		
			MIN	21.2	7.2	16	5.0	48.7	128		
162	49.00	9	AV9	24.0	8.5	19	5.5	49.9	140		
.02	10100	•	MAX	25.6	9.4	21	5.9	51.7	148		
			MIN	22.1	7.9	17	5.1	48.4	134		
172	50.00	10	AV10	24.2	9.0	19	5.6	49.5	143		
172	00.00	10	MAX	26.0	9.5	22	6.0	51.4	154		
			MIN	22.3	8.6	16	5.2	48.0	138		
182	51.00	10	AV10	25.0	10.3	20	5.8	48.8	155		
102	01.00	10	MAX	26.1	11.0	22	6.0	50.1	160		
			MIN	23.6	9.9	18	5.5	47.8	151		
193	52.00	11	AV11	25.5	11.0	20	5.9	48.4	163		
100	02.00		MAX	26.7	11.4	22	6.2	49.2	167		
			MIN	24.7	10.7	17	5.7	47.3	155		
205	53.00	12	AV12	25.9	11.5	20	6.0	48.0	177		
			MAX	27.8	13.4	23	6.4	49.5	198		
			MIN	24.3	10.3	18	5.6	46.4	161		
226	54.00	21	AV21	29.0	19.0	24	6.8	45.2	275		
			MAX	31.3	22.4	27	7.3	47.6	321		
			MIN	26.4	13.7	20	6.1	43.6	218		
253	55.00	27	AV27	29.5	21.0	24	6.9	44.9	292		
			MAX	31.7	23.1	28	7.6	46.1	327		
			MIN	28.0	18.9	22	6.5	42.9	251		
283	56.00	30	AV30	29.7	21.7	24	6.9	44.9	312		
			MAX	32.1	24.0	27	7.5	46.7	352		
			MIN	28.2	18.2	22	6.3	43.1	252		
302	56.75	25	AV17	30.9	24.3	26	7.3	43.7	362		
			MAX	32.6	26.0	30	7.8	45.3	378		
			MIN	28.9	23.0	22	6.8	42.3	323		
312	57.00	40	AV9	31.5	24.4	26	7.4	43.3	358		
			MAX	33.4	25.2	32	8.2	44.1	371		
			MIN	<u>30.2</u> 25.6	<u>22.8</u> 12.3	<u>19</u> 23	<u>7.1</u> 6.0	<u>41.2</u> 48.3	<u> </u>		
			Average Iaximum	25.6 33.4	26.0	23 32	8.2	46.3 56.5	378		
	gineers, Inc ethod & iCA		lts		PDIPLOT	2 2014.2.48	8.1 - Printeo	d 22-Januar	Page 4 y-2015		
-------------------------------------	-----------------------------	-------------	------------------------	------------	---------	-------------	---------------	---------------------------	------------------	--	--
STH 96 OP: AM		iver (B-5-8	331) - Pier 8 <i>‡</i>	<b>#27</b>				025-42, HP e: 21-Janua			
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9		
	ft	bl/ft		ksi	ksi	k-ft	ft	bpm	kips		
			Minimum	17.3	4.6	15	4.2	41.2	56		
Total number of blows analyzed: 302											

# BL# Sensors

1-312 F3: [F523] 93.8 (1.00); F4: [H083] 94.4 (1.00); A3: [K1020] 307.0 (1.10); A4: [K974] 305.0 (1.10)

### **BL#** Comments

8 Excavated ground surface at El. 594.5

# Time Summary

Drive 7 minutes 55 seconds 11:51 AM - 11:59 AM BN 1 - 312



GRL Engineers, Inc.
Case Method & iCAP® Results

Page 1 PDIPLOT2 2014.2.48.1 - Printed 22-January-2015

STH 9 OP: A		River (B-5-	831) - Pier 8 a				025-42, HF e: 22-Janu				
AR:	15.50 in ²							SP: 0	.492 k/ft ³		
LE:	72.33 ft							EM: 30	,000 ksi		
<u>WS: 1</u>	6,807.9 f/s							JC:	1.00 []		
CSX:	Max Measu	ured Comp	r. Stress		S	TK: O.E. Die	esel Hamm	er Stroke			
CSB:	Compressi	on Stress a	at Bottom	BF	PM: Blows p	er Minute					
EMX:	Max Trans	ferred Ener	gy	RX	X9: Max Ca	se Method	Capacity	(JC=0.9)			
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9		
	ft	blows/ft		ksi	ksi	k-ft	ft	bpm	kips		
10	57.17	60	AV9	33.6	28.3	29	8.2	41.7	420		
			MAX	37.3	30.5	38	9.6	50.1	458		
			MIN	24.5	22.6	15	5.5	38.3	375		
			Average	33.6	28.3	29	8.2	41.7	420		
			Maximum	37.3	30.5	38	9.6	50.1	458		
	Minimum 24.5 22.6 15 5.5 38.3 3										
	Total number of blows analyzed: 9										

BL# Sensors

1-10 F3: [F523] 93.8 (1.00); F4: [H083] 94.4 (1.00); A3: [K1020] 307.0 (1.07); A4: [K974] 305.0 (1.07)

Time Summary

Drive 13 seconds 9:24 AM - 9:24 AM BN 1 - 10









### About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. STH 96 over Fox River (B-5-831); Pile: Pier 8 #6 - EOID Test: 21-Jan-2015 12:49 APE D25-42, HP 12 x 53; Blow: 221 GRL Engineers, Inc.

CAPWAP(R) 2014-1 OP: AM

		(	CAPWAP SUMMA	ARY RESULTS			
Total CAPWA	P Capacity:	429.0;	along Shaft	69.0;	at Toe	360.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.
No.	Gages	Grade			Ru	(Depth)	(Area)
	ft	ft	kips	kips	kips	kips/ft	ksf
				429.0			
1	26.3	9.8	6.0	423.0	6.0	0.61	0.15
2	32.9	16.4	7.0	416.0	13.0	1.06	0.27
3	39.5	23.0	7.0	409.0	20.0	1.06	0.27
4	46.0	29.6	7.0	402.0	27.0	1.06	0.27
5	52.6	36.1	8.0	394.0	35.0	1.22	0.31
6	59.2	42.7	8.0	386.0	43.0	1.22	0.31
7	65.8	49.3	11.0	375.0	54.0	1.67	0.42
8	72.3	55.9	15.0	360.0	69.0	2.28	0.57
Avg. Sha	ft		8.6			1.23	0.31
Тое			360.0				365.35
Soil Model :	Parameters/E	Extensions			Shaft	Тое	
Smith Dampin	ng Factor				0.22	0.03	
Quake		(in)			0.28	0.59	
Case Damping	g Factor				0.55	0.39	
Damping Type	e			v	'iscous Sr	n+Visc	
Unloading Q	uake	(% of ]	oading quak	e)	100	38	
Reloading L	evel	(% of F	Ru)		100	0	
Unloading L	evel	(% of F	Ru)		76		
Resistance (	Gap (include	ed in Toe Ç	Quake) (in)			0.01	
CAPWAP matc	h quality	= 2.	.97	Wave Up Ma	tch) ; RSA	. = 0	
Observed: F	inal Set	= 0.	.30 in; H	Blow Count	=	40 b/ft	
Computed: F	inal Set	= 0.	.34 in; H	Blow Count	=	35 b/ft	
Transducer	F3(F523) CA	L: 93.8; RF:	1.00; F4(H083)	CAL: 94.4;	RF: 1.00		
	A3(K1020) CA	L: 307; RF:	1.12; A4(K974)	CAL: 305;	RF: 1.12		
max. Top Con	mp. Stress	= 32	2.2 ksi	(T= 36.0 m	ms, max= 1	.039 x Top)	
max. Comp.	Stress	= 33	3.5 ksi	(Z= 26.3 :	ft, T= 37	7.4 ms)	
max. Tens.	Stress	= -5.	16 ksi	(Z= 39.5 :	ft, T= 61	.6 ms)	
max. Energy	(EMX)	= 33	3.7 kip-ft;	max. Measu	red Top Di	spl. (DMX)=	1.25 in

STH 96 over Fox River (B-5-831); Pile: Pier 8 #6 - EOID Test: 21-Jan-2015 12:49 APE D25-42, HP 12 x 53; Blow: 221 GRL Engineers, Inc.

CAPWAP(R) 2014-1 OP: AM

Pile	Dist		nax.	min.	max.	max		max.	max.	max
Sgmnt	Below		orce	Force	Comp.	Tens			/eloc.	Displ
No.	Gage: fi		ling	luing	Stress ksi	Stres ks		ergy	fr /a	
			kips	kips				p-ft	ft/s	i
1	3.		99.4	-27.3	32.2	-1.7		33.7	16.9	1.2
2	6.		00.1	-34.1	32.3	-2.2		33.2	16.9	1.2
3	9.9		8.00	-40.7	32.3	-2.6		32.8	16.8	1.2
4	13.3		01.6	-47.7	32.4	-3.0		32.5	16.8	1.1
5	16.4		02.6	-54.1	32.4	-3.4		32.3	16.7	1.1
6 7	19. 23.		06.4 12.6	-59.1 -63.4	32.7 33.1	-3.8		32.0 31.7	16.6 16.3	1.1 1.1
8	26.3		19.0	-71.0	33.5	-4.5		31.3	16.1	1.0
9	20.		00.0	-69.6	32.2	-4.4		29.3	15.8	1.0
10	32.		06.5	-76.8	32.2	-4.9		28.8	15.6	1.0
10	36.3		84.0	-74.9	31.2	-4.8		26.7	15.3	0.9
12	39.		90.2	-80.0	31.6	-5.1		26.2	15.1	0.9
13	42.		68.5	-75.0	30.2	-4.8		24.2	14.9	0.9
14	46.0		74.9	-77.2	30.6	-4.9		23.6	14.6	0.8
15	49.		54.6	-68.4	29.3	-4.4		21.6	14.4	0.8
16	52.		61.1	-67.0	29.7	-4.3		21.1	15.3	0.8
17	55.		37.8	-54.8	28.2	-3.5		19.1	16.0	0.7
18	59.3	2 4	45.0	-53.6	28.7	-3.4	6	18.6	15.2	0.7
19	62.	5 4	27.1	-47.3	27.5	-3.0	)5	16.7	15.0	0.7
20	65.8	8 4	34.0	-46.7	28.0	-3.0	)1	16.2	16.7	0.6
21	69.0	0 43	16.6	-37.2	26.9	-2.4	0	14.0	18.6	0.6
22	72.	3 4	10.8	-37.0	26.5	-2.3	39	12.1	18.2	0.6
bsolute	26.	3			33.5			(Т	=	37.4 ms
	39.	5				-5.1	6			61.6 ms
				CAS	SE METHOD					
Γ =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.
RP	462.3	414.2	366.2	318.2	270.2	222.2	174.1	126.1	78.1	. 30.
xx	526.1	506.5	492.4	478.7	465.5	452.3	439.0	426.4	418.0	410.
υ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
RAU = 37	9.9 (kip	ps); R	A2 =	482.2 ()	cips)					
Current CAP	WAP Ru =	= 429.0	(kips);	Corresp	ponding J	(RP)= 0	.14; J(F	ex) = 1.3	86	
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KE
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
16.7	35.80	461.7	504.8	504.8	1.25	0.42	0.30	34.1	528.3	62
			DTT	E DDOETI	LE AND PI					
	Depth			ea	E-Modu		Spec. 1	Weight		Perim
	ft		in			ksi	-	b/ft ³		f
	0.0			.5	2999			92.000		3.9
	72.3		15	.5	2999	2.2	4	92.000		3.9
loe Area			141		$in^2$					

Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c 8.6 ms

Total volume: 7.786 ft³; Volume ratio considering added impedance: 1.000

72.3 ft

56.1 ft

141.9 in²

3.97 ft

29992 ksi

16808 ft/s

16808 ft/s

2.20

35.7 ksi

37.3 ksi

-1.43 ksi

0.23 in

0.40 in

0.30 s/ft

0.04 s/ft

492.0 lb/ft3

15.5 in²









#### About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. STH 96 over Fox River (B-5-831); Pile: Pier 8 #6 Restrike Test: 22-Jan-2015 09:04 APE D25-42, HP 12 x 53; Blow: 7 GRL Engineers, Inc.

CAPWAP(R) 2014-1 OP: AM

			CAPWAP SUMMA	ARY RESULT:	5		
Total CAPWA	P Capacity:	468.0;	along Shaft	100.0;	at Toe	368.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.
No.	Gages	Grade			Ru	(Depth)	(Area)
	ft	ft	kips	kips	kips	kips/ft	ksf
				468.0			
1	19.7	3.5	6.0	462.0	6.0	1.71	0.43
2	26.3	10.1	7.0	455.0	13.0	1.06	0.27
3	32.9	16.7	7.0	448.0	20.0	1.06	0.27
4	39.5	23.2	10.0	438.0	30.0	1.52	0.38
5	46.0	29.8	12.0	426.0	42.0	1.82	0.46
6	52.6	36.4	12.0	414.0	54.0	1.82	0.46
7	59.2	43.0	14.0	400.0	68.0	2.13	0.54
8	65.8	49.5	16.0	384.0	84.0	2.43	0.61
9	72.3	56.1	16.0	368.0	100.0	2.43	0.61
Avg. Sha	ft		11.1			1.78	0.45
Тое			368.0				373.47
Soil Model	Parameters/E	xtensions	8		Shaft	Тое	
Smith Dampin	ng Factor				0.30	0.04	
Quake	-	(in)			0.23	0.40	
Case Damping	g Factor				1.08	0.53	
Damping Type	9				Viscous SI	n+Visc	
Unloading Q	uake	(% of	loading quak	e)	82	66	
Reloading L	evel	(% of	Ru)		100	0	
Unloading L	evel	(% of	Ru)		99		
Resistance (	Gap (include	d in Toe	Quake) (in)			0.01	
CAPWAP matcl	h quality	= 2	2.20	(Wave Up Ma	atch); RSA	. = 0	
Observed: F:	inal Set	= 0	.20 in; H	Slow Count	=	60 b/ft	
Computed: F:	inal Set	= 0	.24 in; H	Blow Count	=	50 b/ft	
Transducer	F3(F523) CAL	: 93.8; RF	: 1.00; F4(H083)	CAL: 94.4	; RF: 1.00		
	A3(K1020) CAI	: 307; RF	: 1.10; A4(K974)	CAL: 305	; RF: 1.10		
max. Top Con	mp. Stress	= 3	5.7 ksi	(T= 36.0	ms, max= 1	L.046 x Top)	
max. Comp.	Stress	= 3	87.3 ksi	(Z= 19.7	ft, T= 37	7.0 ms)	
max. Tens.	Stress	= -1	.43 ksi	(Z= 26.3	ft, T= 58	3.9 ms)	
max. Energy	(EMX)	= 3	4.2 kip-ft;	max. Measu	ired Top Di	ispl. (DMX)=	1.07 in

STH 96 over Fox River (B-5-831); Pile: Pier 8 #6 Restrike APE D25-42, HP 12 x 53; Blow: 7 GRL Engineers, Inc.

Test: 22-Jan-2015 09:04 CAPWAP(R) 2014-1 OP: AM

max. Force kips 553.5 554.4 555.6 560.7 569.5 579.0 551.7 561.6 530.4 542.8 516.2 530.1 491.1 504.5 458.8 472.6 431.8 445.8	min. Force kips -14.1 -14.7 -15.0 -15.2 -15.4 -19.4 -13.9 -22.2 -14.9 -20.0 -11.4 -17.5 -7.1 -12.7 0.0 -3.2 0.0	max. Comp. Stress ksi 35.7 35.8 35.8 36.2 36.7 37.3 35.6 36.2 34.2 35.0 33.3 34.2 31.7 32.5	max Tens Stres ks -0.9 -0.9 -0.9 -0.9 -1.0 -1.2 -0.9 -1.4 -0.9 -1.2 -0.7 -1.2	s. Trns ss Ene si kij 01 : 05 : 00 : 25 : 00 : 25 : 29 : 29 :	max. sfd. V p-ft 34.2 33.9 33.6 33.2 32.7 32.1 29.9 29.3 26.9 26.3	<pre>max. /eloc. ft/s 18.7 18.6 18.5 18.3 18.0 17.6 17.3 16.9 16.5</pre>	max. Displ. ir 1.07 1.04 1.01 0.98 0.95 0.91 0.88
kips 553.5 554.4 555.6 560.7 569.5 579.0 551.7 561.6 530.4 542.8 516.2 530.1 491.1 504.5 458.8 472.6 431.8 445.8	kips -14.1 -14.7 -15.0 -15.2 -15.4 -19.4 -13.9 -22.2 -14.9 -20.0 -11.4 -17.5 -7.1 -12.7 0.0 -3.2	Stress ksi 35.7 35.8 35.8 36.2 36.7 37.3 35.6 36.2 34.2 35.0 33.3 34.2 31.7 32.5	Stres ks -0.9 -0.9 -0.9 -1.0 -1.2 -0.9 -1.4 -0.9 -1.2 -0.9 -1.2 -0.5 -1.2 -0.5 -1.2 -0.5 -1.2 -0.5 -1.2 -0.5 -1.2 -0.5 -1.2 -0.5 -1.2 -0.5 -1.2 -0.5 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 	ss End si kij 21	ergy p-ft 34.2 33.9 33.6 33.2 32.7 32.1 29.9 29.3 26.9	ft/s 18.7 18.6 18.5 18.3 18.0 17.6 17.3 16.9	ir 1.09 1.07 1.04 1.01 0.98 0.99 0.99
553.5 554.4 555.6 560.7 569.5 579.0 551.7 561.6 530.4 542.8 516.2 530.1 491.1 504.5 458.8 472.6 431.8 445.8	$\begin{array}{c} -14.1 \\ -14.7 \\ -15.0 \\ -15.2 \\ -15.4 \\ -19.4 \\ -13.9 \\ -22.2 \\ -14.9 \\ -20.0 \\ -11.4 \\ -17.5 \\ -7.1 \\ -12.7 \\ 0.0 \\ -3.2 \end{array}$	ksi 35.7 35.8 35.8 36.2 36.7 37.3 35.6 36.2 34.2 35.0 33.3 34.2 31.7 32.5	ks -0.9 -0.9 -0.9 -1.0 -1.2 -0.9 -1.4 -0.9 -1.2 -0.7 -1.1	si kij 91	p-ft 34.2 33.9 33.6 33.2 32.7 32.1 29.9 29.3 26.9	18.7 18.6 18.5 18.3 18.0 17.6 17.3 16.9	1.09 1.07 1.04 1.03 0.98 0.99
553.5 554.4 555.6 560.7 569.5 579.0 551.7 561.6 530.4 542.8 516.2 530.1 491.1 504.5 458.8 472.6 431.8 445.8	$\begin{array}{c} -14.1 \\ -14.7 \\ -15.0 \\ -15.2 \\ -15.4 \\ -19.4 \\ -13.9 \\ -22.2 \\ -14.9 \\ -20.0 \\ -11.4 \\ -17.5 \\ -7.1 \\ -12.7 \\ 0.0 \\ -3.2 \end{array}$	35.7 35.8 35.8 36.2 36.7 37.3 35.6 36.2 34.2 35.0 33.3 34.2 31.7 32.5	-0.9 -0.9 -0.9 -1.0 -1.2 -0.9 -1.4 -0.9 -1.2 -0.7 -1.1	1	34.2 33.9 33.6 33.2 32.7 32.1 29.9 29.3 26.9	18.7 18.6 18.5 18.3 18.0 17.6 17.3 16.9	1.09 1.07 1.04 1.05 0.98 0.99 0.99
554.4 555.6 560.7 569.5 579.0 551.7 561.6 530.4 542.8 516.2 530.1 491.1 504.5 458.8 472.6 431.8 445.8	$\begin{array}{c} -14.7 \\ -15.0 \\ -15.2 \\ -15.4 \\ -19.4 \\ -13.9 \\ -22.2 \\ -14.9 \\ -20.0 \\ -11.4 \\ -17.5 \\ -7.1 \\ -12.7 \\ 0.0 \\ -3.2 \end{array}$	35.8 35.8 36.2 36.7 37.3 35.6 36.2 34.2 35.0 33.3 34.2 31.7 32.5	-0.9 -0.9 -1.0 -1.2 -0.9 -1.4 -0.9 -1.4 -0.9 -1.2 -0.7 -1.1	95       97       98       90       25       13       96       29	33.9 33.6 33.2 32.7 32.1 29.9 29.3 26.9	18.6 18.5 18.3 18.0 17.6 17.3 16.9	1.07 1.04 1.01 0.98 0.95 0.93
555.6 560.7 569.5 579.0 551.7 561.6 530.4 542.8 516.2 530.1 491.1 504.5 458.8 472.6 431.8 445.8	$\begin{array}{c} -15.0 \\ -15.2 \\ -15.4 \\ -19.4 \\ -13.9 \\ -22.2 \\ -14.9 \\ -20.0 \\ -11.4 \\ -17.5 \\ -7.1 \\ -12.7 \\ 0.0 \\ -3.2 \end{array}$	35.8 36.2 37.3 35.6 36.2 34.2 35.0 33.3 34.2 31.7 32.5	-0.9 -0.9 -1.0 -1.2 -0.9 -1.4 -0.9 -1.2 -0.7 -1.1	97 98 90 25 13 90 29	33.6 33.2 32.7 32.1 29.9 29.3 26.9	18.5 18.3 18.0 17.6 17.3 16.9	1.04 1.03 0.98 0.95 0.93
560.7 569.5 579.0 551.7 561.6 530.4 542.8 516.2 530.1 491.1 504.5 458.8 472.6 431.8 445.8	$\begin{array}{c} -15.2 \\ -15.4 \\ -19.4 \\ -13.9 \\ -22.2 \\ -14.9 \\ -20.0 \\ -11.4 \\ -17.5 \\ -7.1 \\ -12.7 \\ 0.0 \\ -3.2 \end{array}$	36.2 36.7 37.3 35.6 36.2 34.2 35.0 33.3 34.2 31.7 32.5	-0.9 -1.0 -1.2 -0.9 -1.4 -0.9 -1.2 -0.7 -1.1	98 : 90 : 25 : 90 : 13 : 96 : 29 :	33.2 32.7 32.1 29.9 29.3 26.9	18.3 18.0 17.6 17.3 16.9	1.01 0.98 0.95 0.91 0.88
569.5 579.0 551.7 561.6 530.4 542.8 516.2 530.1 491.1 504.5 458.8 472.6 431.8 445.8	-15.4 $-19.4$ $-13.9$ $-22.2$ $-14.9$ $-20.0$ $-11.4$ $-17.5$ $-7.1$ $-12.7$ $0.0$ $-3.2$	36.7 37.3 35.6 36.2 34.2 35.0 33.3 34.2 31.7 32.5	-1.0 -1.2 -0.9 -1.4 -0.9 -1.2 -0.7 -1.1	90 : 25 : 100 : 13 : 26 : 29 :	32.7 32.1 29.9 29.3 26.9	18.0 17.6 17.3 16.9	0.98 0.95 0.91 0.88
579.0 551.7 561.6 530.4 542.8 516.2 530.1 491.1 504.5 458.8 472.6 431.8 445.8	-19.4 -13.9 -22.2 -14.9 -20.0 -11.4 -17.5 -7.1 -12.7 0.0 -3.2	37.3 35.6 36.2 34.2 35.0 33.3 34.2 31.7 32.5	-1.2 -0.9 -1.4 -0.9 -1.2 -0.7 -1.1	25 20 13 26 29	32.1 29.9 29.3 26.9	17.6 17.3 16.9	0.95 0.91 0.88
551.7 561.6 530.4 542.8 516.2 530.1 491.1 504.5 458.8 472.6 431.8 445.8	-13.9 -22.2 -14.9 -20.0 -11.4 -17.5 -7.1 -12.7 0.0 -3.2	35.6 36.2 34.2 35.0 33.3 34.2 31.7 32.5	-0.9 -1.4 -0.9 -1.2 -0.7 -1.1	00 2 13 2 06 2 29 2	29.9 29.3 26.9	17.3 16.9	0.91 0.88
561.6 530.4 542.8 516.2 530.1 491.1 504.5 458.8 472.6 431.8 445.8	-22.2 -14.9 -20.0 -11.4 -17.5 -7.1 -12.7 0.0 -3.2	36.2 34.2 35.0 33.3 34.2 31.7 32.5	-1.4 -0.9 -1.2 -0.7 -1.1	13 : 16 : 19 :	29.3 26.9	16.9	0.88
530.4 542.8 516.2 530.1 491.1 504.5 458.8 472.6 431.8 445.8	-14.9 -20.0 -11.4 -17.5 -7.1 -12.7 0.0 -3.2	34.2 35.0 33.3 34.2 31.7 32.5	-0.9 -1.2 -0.7 -1.1	96 2 29 2	26.9		
542.8 516.2 530.1 491.1 504.5 458.8 472.6 431.8 445.8	-20.0 -11.4 -17.5 -7.1 -12.7 0.0 -3.2	35.0 33.3 34.2 31.7 32.5	-1.2 -0.7 -1.1	9 2		16.5	~ ~ ~ ~
516.2 530.1 491.1 504.5 458.8 472.6 431.8 445.8	-11.4 -17.5 -7.1 -12.7 0.0 -3.2	33.3 34.2 31.7 32.5	-0.7 -1.1		26 3		0.85
530.1 491.1 504.5 458.8 472.6 431.8 445.8	-17.5 -7.1 -12.7 0.0 -3.2	34.2 31.7 32.5	-1.1	3	20.5	16.1	0.81
491.1 504.5 458.8 472.6 431.8 445.8	-7.1 -12.7 0.0 -3.2	31.7 32.5			24.1	15.6	0.78
504.5 458.8 472.6 431.8 445.8	-12.7 0.0 -3.2	32.5	• •	.3 2	23.4	15.1	0.74
458.8 472.6 431.8 445.8	0.0 -3.2		-0.4	6	20.8	14.6	0.70
472.6 431.8 445.8	-3.2		-0.8	32 3	20.2	14.1	0.67
431.8 445.8		29.6	0.0	0 2	L7.5	13.7	0.64
445.8	0 0	30.5	-0.2		L7.0	13.2	0.60
	0.0	27.8	0.0	0 2	L4.6	12.7	0.57
112 0	0.0	28.8	0.0	0 2	L4.0	12.1	0.53
413.8	0.0	26.7	0.0	0 2	11.6	12.2	0.50
422.0	0.0	27.2	0.0	0 2	11.1	13.9	0.47
398.7	0.0	25.7	0.0	0	8.8	14.8	0.43
399.0	0.0	25.7	0.0	0	7.3	14.0	0.40
		37.3			( 7	=	37.0 ms)
		57.5	-1.4	13	-		57.0 ms) 58.9 ms)
		E METHOD					
1 0.2		0.4	0.5	0.6	0.7	0.8	
1 527.3	481.4	435.6	389.8	344.0	298.2	252.4	206.5
3 553.7		511.0	492.2	478.5	468.1	457.7	
1 527.3	481.4	435.6	389.8	344.0	298.2	252.4	206.5
RA2 =	553.4 (k	ips)					
8.0 (kips)	; Corresp	onding J	(RP)= 0	.33; J(R	(x) = 0.7	0	
Z FT1		DMX	DFN	SET	EMX	QUS	
os kips	kips	in	in	in	kip-ft	kips	kips/in
7 560.4	565.6	1.07	0.20	0.20	34.2	647.3	944
PI	LE PROFIL	E AND PI	LE MODEI				
A	rea	E-Modu	lus	Spec. W	Veight		Perim.
				-	-		ft
±	5.5	2999	2.2	40	2.000		3.97
							3.97
1			2.2	43	2.000		5.91
1	1.9	$in^2$					
-	A i 1 1	Area in ² 15.5 15.5 141.9	Area         E-Modu           in²         15.5         2999           15.5         2999         15.5         2999           141.9         in²         3.29 ft, Top Impedance	Area         E-Modulus           in²         ksi           15.5         29992.2           15.5         29992.2           141.9         in²           3.29 ft, Top Impedance         28 J	in ² ksi lk 15.5 29992.2 49 15.5 29992.2 49 141.9 in ² 3.29 ft, Top Impedance 28 kips/ft/	Area         E-Modulus         Spec. Weight           in ² ksi         lb/ft ³ 15.5         29992.2         492.000           15.5         29992.2         492.000           141.9         in ² 3.29 ft, Top Impedance	Area         E-Modulus         Spec. Weight           in ² ksi         lb/ft ³ 15.5         29992.2         492.000           15.5         29992.2         492.000           141.9         in ²

EXTREMA TABLE

Total volume: 7.786 ft^{3;} Volume ratio considering added impedance: 1.000

56.8 ft

30.8 ksi









### About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. STH 96 over Fox River (B-5-831); Pile: Pier 8 #27 APE D25-42, HP 12 x 53; Blow: 305 GRL Engineers, Inc. Test: 21-Jan-2015 11:59 CAPWAP(R) 2014-1 OP: AM

				CAPWAP SUMM	ARY RESULT	s		
Total	CAPWAP	Capacity:	390.0	; along Shaft	80.0	; at Toe	310.0 kips	ł
Se	oil	Dist.	Depth	Ru	Force	Sum	Unit	Unit
Sgi	mnt	Below	Below		in Pile	of	Resist.	Resist.
1	No.	Gages	Grade			Ru	(Depth)	(Area)
		ft	ft	kips	kips	kips	kips/ft	ksf
					390.0			
	1	19.7	4.2	2.0	388.0	2.0	0.47	0.12
	2	26.3	10.8	5.0	383.0	7.0	0.76	0.19
	3	32.9	17.4	5.0	378.0	12.0	0.76	0.19
	4	39.5	23.9	6.0	372.0	18.0	0.91	0.23
	5	46.0	30.5	11.0	361.0	29.0	1.67	0.42
	6	52.6	37.1	11.0	350.0	40.0	1.67	0.42
	7	59.2	43.7	11.0	339.0	51.0	1.67	0.42
	8	65.8	50.2	11.0	328.0	62.0	1.67	0.42
	9	72.3	56.8	18.0	310.0	80.0	2.74	0.69
Ave	g. Shaf	t		8.9			1.41	0.35
	Toe			310.0				314.61
Soil N	Model Pa	arameters/E	xtension	5		Shaft	Тое	
Smith	Damping	g Factor				0.26	0.04	
Quake	-	-	(in)			0.17	0.46	
Case I	Damping	Factor				0.75	0.45	
Dampir	ng Type					Viscous SI	n+Visc	
Unload	ling Qua	ake	(% of	loading quak	e)	100	36	
Reload	ding Le	vel	(% of	Ru)		100	0	
Unload	ding Le	vel	(% of	Ru)		58		
Resist	ance G	ap (include	d in Toe	Quake) (in)			0.01	
Soil H	Plug We	ight	(kips	)			0.015	
CAPWAI	P match	quality	= :	2.20	(Wave Up M	atch) ; RSA	. = 0	
Observ	ved: Fin	nal Set	= (	0.30 in; 1	Blow Count	=	40 b/ft	
Comput	ted: Fin	nal Set	= (	0.34 in; 1	Blow Count	=	35 b/ft	
Transdu	cer	F3(F523) CAI A3(K1020) CAI		F: 1.00; F4(H083) F: 1.14; A4(K974)		; RF: 1.00 ; RF: 1.14		
max. 1	rop Com	p. Stress	= :	30.8 ksi	(T= 35.8	ms, max= 1	.023 x Top)	
	Comp. S	-	= 3	31.5 ksi	•	ft, T= 37		
	Cens. S			4.23 ksi	•	ft, T= 61	•	
	Energy			27.0 kip-ft;	•	-	•	1.06 in
		-				-		

STH 96 over Fox River (B-5-831); Pile: Pier 8 #27 APE D25-42, HP 12 x 53; Blow: 305 GRL Engineers, Inc. Test: 21-Jan-2015 11:59 CAPWAP(R) 2014-1 OP: AM

Pile	Dist		ax.	min.	max.	maz		max.	max.	max
Sgmnt	Below		rce	Force	Comp.	Tens		sfd.	Veloc.	Displ
No.	Gage: fi		ips	kips	Stress ksi	Stres ks		ergy p-ft	ft/s	iı
								-		
1	3.3		3.2	-14.5	30.8	-0.9		27.0	16.0	1.0
2	6.0		3.7	-23.9	30.9	-1.5		26.8	16.0	1.0
3	9.9		9.4	-30.9	30.9	-1.9		26.6	15.9	1.0
4	13.2		0.6	-35.7	31.0	-2.3		26.4	15.8	0.9
5 6	16.4		3.4	-38.4	31.2	-2.4		26.1	15.7	0.9
6 7	19. 23.(		7.2	-44.5 -50.3	31.4 31.2	-2.8		25.8	15.5 15.3	0.94
8	25.0		3.5 9.1	-56.8	31.2	-3.6		25.0 24.7	15.3	0.9
8 9	20.		9.1 1.1	-56.4	30.4	-3.6		24.7 23.2	14.8	0.8
10	32.9		7.3	-59.9	30.4	-3.8		22.7	14.6	0.8
10	36.2		7.3 D.8	-59.9	29.7	-3.8		22./ 21.3	14.0	0.8
12	39.		).8 ).1	-65.5	30.3	-4.2		21.3	14.3	0.80
12	42.		3.6	-63.1	29.3	-4.(		20.9 19.4	13.6	0.75
14	46.0		3.8	-63.7	29.9	-4.1		18.9	13.3	0.72
14	40.0		5.3	-53.5	29.9	-3.4		16.6	12.9	0.68
15	52.0		5.1	-56.0	27.3	-3.6		16.2	12.5	0.65
10	55.9		0.4	-49.3	25.8	-3.1		14.1	12.2	0.63
18	59.2		9.5	-51.1	26.4	-3.2		13.7	11.8	0.60
19	62.		7.0	-41.0	24.3	-2.6		11.8	11.8	0.57
20	65.8		4.2	-39.9	24.8	-2.5		11.4	13.8	0.54
20	69.0		5.4	-29.9	23.6	-1.9		9.7	15.4	0.51
22	72.3		4.0	-29.4	23.5	-1.8		7.9	15.2	0.48
bsolute	26.3	2			31.5				(T =	37.4 ms)
mborace	39.				51.5	-4.2	23		(T =	61.8 ms)
				CAS	E METHOD	,				
<b>Γ</b> =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0	.7 0.	8 0.9
RP	476.5	430.8	385.1	339.4	293.6	247.9	202.2	156	.5 110.	8 65.0
xx	504.1	482.7	461.3	439.9	423.5	409.0	395.3	385	.2 377.	0 368.7
U	476.5	430.8	385.1	339.4	293.6	247.9	202.2	156	.5 110.	8 65.0
	L2.2 (kig			438.4 (k						
Current CAN	WAP Ru =	: 390.0	(kips);	Corresp	onding J	(RP)= 0	.19; J(F	8X) =	0.65	
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET		MX QU	
ft/s	ms	kips	kips	kips	in	in		kip-		s kips/in
16.0	35.60	442.6	491.1	491.1	1.06	0.30	0.30	27	.4 485.	7 689
			PII	E PROFIL	E AND PI	LE MODEI	5			
	Depth			ea	E-Modu	lus	Spec. 1	-	:	Perim
	ft		in	2		ksi	11	b/ft ³		ft
	0.0			.5	2999			92.000		3.9
	72.3		15	.5	2999	2.2	4	92.000		3.9
loe Area			141	.9	$in^2$					

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c 8.6 ms

Total volume: 7.786 ft³; Volume ratio considering added impedance: 1.000

141.9 in²

3.97 ft

29992 ksi

16808 ft/s

16808 ft/s

1.93

29.4 ksi

30.9 ksi

-1.54 ksi

0.09 in

0.18 in

0.32 s/ft

0.06 s/ft

492.0 lb/ft3









### About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. STH 96 over Fox River (B-5-831); Pile: Pier 8 #27 Restrike Test: 22-Jan-2015 09:24 APE D25-42, HP 12 x 53; Blow: 8 GRL Engineers, Inc.

CAPWAP(R) 2014-1 OP: AM

			CAPWAP SUMM	ARY RESULTS			
Total CAPWAP	Capacity:	430.0;	along Shaft	134.0;	at Toe	296.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.
No.	Gages	Grade			Ru	(Depth)	(Area)
	ft	ft	kips	kips	kips	kips/ft	ksf
				430.0			
1	19.7	4.5	6.0	424.0	6.0	1.32	0.33
2	26.3	11.1	6.0	418.0	12.0	0.91	0.23
3	32.9	17.7	6.0	412.0	18.0	0.91	0.23
4	39.5	24.3	6.0	406.0	24.0	0.91	0.23
5	46.0	30.8	16.0	390.0	40.0	2.43	0.61
6	52.6	37.4	16.0	374.0	56.0	2.43	0.61
7	59.2	44.0	18.0	356.0	74.0	2.74	0.69
8	65.8	50.6	25.0	331.0	99.0	3.80	0.96
9	72.3	57.1	35.0	296.0	134.0	5.32	1.34
Avg. Shaf	t		14.9			2.35	0.59
Тое			296.0				300.40
Soil Model P	arameters/E	xtensions			Shaft	Тое	
Smith Dampin	g Factor				0.32	0.06	
Juake	-	(in)			0.09	0.18	
Case Damping	Factor	. ,			1.55	0.64	
Damping Type				v	viscous Sr	n+Visc	
Unloading Qu		(% of	loading quak		79	30	
Unloading Le		(% of		- /	56		
Soil Plug We	ight	(kips)				0.067	
CAPWAP match	quality	= 1	.93	(Wave Up Ma	tch); RSA	. = 0	
Observed: Fi		= 0		Blow Count	=	60 b/ft	
Computed: Fi	nal Set		-	Blow Count	=	75 b/ft	
- Fransducer	F3(F523) CAL	.: 93.8; RF:	: 1.00; F4(H083)	) CAL: 94.4;	RF: 1.00		
	A3(K1020) CAI	.: 307; RF:	: 1.10; A4(K974)	) CAL: 305;	RF: 1.10		
max. Top Com	p. Stress	= 2	9.4 ksi	(T= 36.2 :	ms, max= 1	.050 x Top)	
max. Comp. S	-		0.9 ksi	-	ft, T= 37		
max. Tens. S			.54 ksi	•	ft, T= 204	,	
		= 2		-		•	

STH 96 over Fox River (B-5-831); Pile: Pier 8 #27 Restrike APE D25-42, HP 12 x 53; Blow: 8 GRL Engineers, Inc.

Test: 22-Jan-2015 09:24 CAPWAP(R) 2014-1 OP: AM

	D. J. J.	L -			EMA TABL					
Pile			nax.	min.	max.	maz		max.	max.	max
Sgmnt			orce	Force	Comp.	Tens			Veloc.	Displ
No.	-		kips	kips	Stress ksi	Stres ks		ergy p-ft	ft/s	i
1			56.2	-22.1	29.4	-1.4		21.9	14.5	0.8
2			57.5	-22.6	29.5	-1.4		21.4	14.5	0.8
3			59.2	-22.9	29.6	-1.4		21.0	14.4	0.7
4			64.2	-23.3	29.9	-1.5		20.5	14.2	0.7
5			71.8	-23.6	30.4	-1.5		20.0	13.9	0.7
6 7			79.0	-24.0 -20.7	30.9	-1.5		19.4	13.6	0.6
8			54.5		29.3	-1.3		17.8	13.4	0.6
9			61.5	-21.0	29.8	-1.3		17.3	13.1	0.6
10			38.2 45.0	-17.7 -17.9	28.3 28.7	-1.1 -1.1		15.8 15.3	12.8 12.5	0.5
11			43.0 23.1	-17.9	20.7	-0.9		13.9	12.3	0.5
12			34.2	-14.8	27.3	-0.9		13.4	11.8	0.4
13			22.0	-14.8	28.0	-0.5		12.1	11.2	0.4
14			36.1	-11.5	27.2	-0.7		11.6	10.7	0.4
15			03.5	-2.8	26.0	-0.1		9.7	10.7	0.3
16			06.6	-3.9	26.2	-0.2		9.1	9.6	0.3
17			87.0	0.0	20.2	0.0		7.5	9.0 9.1	0.3
18			87.1	-0.6	25.0	-0.0		7.0	8.5	0.3
19			69 <b>.</b> 7	0.0	23.8	0.0		5.6	7.9	0.2
20			73.6	0.0	24.1	0.0		5.2	7.6	0.2
21			47.4	0.0	22.4	0.0		3.8	8.1	0.2
22			46.8	0.0	22.4	0.0		2.6	7.5	0.1
Absolute	19				30.9			-	[ = ]	37.2 ms
	19	• /				-1.5	71	()	C = 2	204.8 ms)
_					E METHOD					
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7		
RP	578.5	549.8	521.1	492.5	463.8	435.1	406.4	377.7		
RX	578.5	549.8	521.1	492.9	465.4	447.9	436.7	425.4		
RU RAU = 1	578.5 L23.3 (ki	549.8	521.1 A2 =	492.5 449.6 (k	463.8	435.1	406.4	377.7	349.3	1 320.
Current Ci		-				(RP)= 0	.52; J(F	ex) = 0.0	66	
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QU	S KE
ft/s	ms	kips	kips	kips	in	in		kip-ft	-	s kips/i
14.7	35.99	407.0	458.3	458.3	0.86	0.20	0.20	22.3	502.	9 164
			PII	E PROFIL	E AND PI	LE MODEI	5			
	Depth		Ar	ea	E-Modu	lus	Spec.	Weight		Perim
	ft		in	2		ksi	11	b/ft³		fi
	0.0		15	.5	2999	2.2	4	92.000		3.9
	72.3		15	.5	2999	2.2	4	92.000		3.9
Ioe Area			141	.9	$in^2$					
Top Segmen				Top Impe			tips/ft/			

Total volume: 7.786 ft³; Volume ratio considering added impedance: 1.000

# **GRL Engineers, Inc.**

1540 E. Dundee Road, Suite 102 Palatine, IL 60074 USA Phone: (847) 221-2750 Fax: (847) 221-2752

# **TRANSMITTAL**

To: Mr. Wade Hamacher	From: Mark Rawlings
Company: Lunda Construction Company	No. of Sheets: 28
E-mail:whamacher@lundaconstruction.com	Date: September 12, 2014

RE: Dynamic Testing Results – Pier 9
 WisDOT Contract B-5-381 – STH 96 over Fox River
 Wrightstown, Wisconsin

On September 10, 2014, Pier 9 #1 and Pier 9 #15 at the above structure were dynamically tested during initial driving. The 75.4 foot long HP 12 x 53 H-piles were driven with an APE D25-42 hammer. Plans indicate the piles in Pier 9 have a required driving resistance or ultimate capacity of 350 kips, and an estimated length of 55 feet.

Pier 9 #1 was driven to a depth of 66.5 feet below the excavated ground surface at El. 596.5, which corresponds to a pile tip elevation of El. 530. The blow count over the final increment of driving was 5 blows for  $\frac{5}{6}$  inch of penetration at an average hammer stroke of 7.8 feet. Pier 9 #32 was driven to a depth of 66.0 feet below the ground surface at the same elevation, which corresponds to a tip elevation of El. 530.5. The blow count over the final increment of driving was 5 blows for  $\frac{1}{2}$  inch of penetration at an average hammer stroke of 8.8 feet. Restrike testing was conducted on both piles on September 11. The blow count at the beginning of restrike of Pier 9 #1 was 10 blows for  $\frac{7}{6}$  inch of penetration at an average hammer stroke of 9.1 feet. The blow count at the beginning of restrike of Pier 9 #32 was 10 blows for  $\frac{5}{6}$  inch of penetration at an average hammer stroke of 9.1 feet.

For the 350 kip piles driven with the APE D25-42 hammer in Pier 9 of the STH 96 bridge over the Fox River we recommend using the following criteria:

Field Observed	Recommended Minimum
Hammer Stroke	Blow Count
(feet)	(blows per inch)
7.0	8
7.5	6
8.0	5
8.5	4
9.0	4
9.5	4
10.0	4

We recommended the above blow count at the corresponding hammer stroke be maintained for one inch of driving. Driving may be terminated if the blow count is achieved in less than a full inch

We anticipate the production piles will terminate at depths very similar to those of the test piles near EI. 530. Due to the presence of cobbles, boulders or softer bedrock above this approximate elevation we recommend the piles be driven to approximately this elevation before applying the driving criteria. If a blow count of 10 blows per inch at an associated stroke of 8 feet is achieved above approximately EI. 531 driving should be halted and we should be contacted for consultation.

Please contact us if there are any problems meeting the recommended criterion or if you have any questions on these recommendations.

GRL Engineers, Inc.

Mark A. Kawlings

Mark Rawlings

Travis Coleman, P.E.

Cc: Steve Seymour – Omnni Associates steve.seymour@omnni.com

Test date: 10-Sep-2014



STH 96 over Fox River - Pier 9 #1 APE D25-42, HP 12 x 53

Page 1 of 4 PDIPLOT Ver. 2014.1 - Printed: 12-Sep-2014

STH 96 over Fox River - Pier 9 #1 APE D25-42. HP 12 x 53 OP: MR Test date: 10-Sep-2014 SP: 0.492 k/ft3 AR: 15.50 in^2 LE: 71.37 ft EM: 30,000 ksi WS: 16,807.9 f/s 1.00 JC: CSX: Max Measured Compr. Stress STK: O.E. Diesel Hammer Stroke BPM: Blows per Minute CSB: Compression Stress at Bottom EMX: Max Transferred Energy RX9: Max Case Method Capacity (JC=0.9) x 0.95 BLC TYPE CSX CSB EMX STK BL# depth BPM RX9 end ft bl/ft ksi ksi k-ft ft kips 30 3 23.00 3 AV3 22.2 4.6 4.9 53.0 3 STD 2.9 0.1 6 0.7 3.8 5 25.4 MAX 4.7 34 5.7 56.8 10 MIN 18.5 4.4 22 4.2 49.3 0 6 24.00 3 AV3 17.2 4.1 20 4.0 57.8 4 STD 1.0 0.3 1 0.1 0.9 5 18.5 4.4 21 58.9 MAX 4.2 11 MIN 16.2 3.8 20 3.9 56.7 0 3 AV3 17.0 4.1 21 57.6 0 9 25.00 4.1 STD 0.6 0.2 0 0.1 0.6 0 0 MAX 17.8 4.2 21 4.2 58.2 MIN 16.2 3.8 20 4.0 56.8 0 AV3 16.3 19 58.5 0 12 26.00 3 3.8 3.9 0 STD 0.7 0.2 1 0.1 0.5 MAX 17.0 4.0 21 40 59.2 0 MIN 15.3 3.6 18 3.8 58.0 0 3 AV3 16.9 3.8 20 4.0 58.1 0 15 27.00 STD 0.4 0.2 0 0.1 0.5 0 0 MAX 17.4 4.1 21 4.1 58.7 0 MIN 16.5 3.6 20 3.9 57.4 18 28.00 3 AV3 17.1 4.0 21 4.0 57.8 2 3 STD 0.2 0.6 0.1 1 0.7 MAX 17.9 4.2 22 4.2 58.3 7 0 MIN 16.7 3.8 19 4.0 56.8 0 20 29.00 2 AV2 18.2 3.9 24 4.2 56.4 STD 0 0 0.1 0.3 0.1 0.7 MAX 18.5 4.0 25 4.4 57.1 0 4.1 MIN 17.9 3.9 24 55.8 0 0 23 30.00 3 AV3 18.0 4.1 22 4.2 56.6 0.3 STD 0.2 2 0 1.7 1.8 MAX 20.2 4.4 24 4.6 58.7 0 MIN 16.3 3.9 20 3.9 54.4 0 0 26 31.00 3 AV3 19.3 4.5 23 4.4 55.5 STD 0.2 0 0.6 0 0.1 0.4 MAX 20.1 4.6 23 4.5 56.0 0 MIN 18.8 4.3 23 4.3 54.9 0 2 4.2 22 29 32.00 3 AV3 18.0 4.2 56.6 STD 0.2 3 1.0 1 0.2 1.1 MAX 19.1 4.5 24 4.4 57.9 6 0 MIN 16.7 3.9 21 4.0 55.3 9 33 33.00 4 AV4 18.3 4.6 21 4.3 55.9 0.1 STD 2 0.4 1 0.1 0.3 22 MAX 18.8 4.7 4.4 56.3 12 20 MIN 17.9 4.4 4.3 55.4 6 18.6 4.2 4 36 34.00 3 AV3 24 4.5 55.2 STD 0.7 0.1 0.1 0.8 6 1 24 MAX 19.5 4.4 4.6 55.8 12 4.1 MIN 18.0 23 4.4 54.1 0 20 AV4 18.9 4.7 21 4.4 55.4 40 35.00 4 STD 0.8 0.0 0.1 0.6 3 1 23 20.0 22 MAX 4.7 4.6 56.4

MIN

17.8

4.6

20

4.3

54.6

16

STH 96 over Fox River - Pier 9 #1 OP: MR Page 2 of 4 PDIPLOT Ver. 2014.1 - Printed: 12-Sep-2014

> APE D25-42, HP 12 x 53 Test date: 10-Sep-2014

	ver Fox River -	Pier 9 #1						APE D25-42, H	
OP: MR BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	Test date: 10- BPM	-Sep-2014 RX9
end	ft	bl/ft	1166	ksi	ksi	k-ft	ft	DF IVI **	kips
43	36.00	3	AV3	20.4	4.7	25	4.6	54.2	19
	00100	Ũ	STD	0.6	0.2	1	0.1	0.5	5
			MAX	21.2	4.9	26	4.8	54.6	26
			MIN	20.0	4.5	24	4.6	53.5	13
47	37.00	4	AV4	19.5	4.8	21	4.4	55.3	23
-11	07.00	-	STD	0.3	0.1	1	0.1	0.3	3
			MAX	20.0	4.9	22	4.5	55.6	25
			MIN	19.1	4.7	21	4.4	54.8	18
50	38.00	3	AV3	20.7	5.0	25	4.7	54.0	21
	00100	Ũ	STD	0.6	0.2	0	0.1	0.5	11
			MAX	21.3	5.3	26	4.8	54.5	30
			MIN	19.9	4.9	25	4.6	53.4	6
54	39.00	4	AV4	20.6	5.2	23	4.7	54.1	34
			STD	0.3	0.1	1	0.1	0.4	8
			MAX	21.0	5.3	24	4.7	54.6	44
			MIN	20.3	5.1	22	4.6	53.6	26
58	40.00	4	AV4	20.7	5.1	24	4.7	53.7	45
			STD	1.0	0.2	1	0.1	0.7	10
			MAX	21.6	5.4	24	4.8	55.0	56
			MIN	19.1	5.0	22	4.5	53.2	31
62	41.00	4	AV4	20.8	5.2	23	4.7	53.8	50
			STD	0.8	0.0	1	0.1	0.8	7
			MAX	21.8	5.2	24	4.9	55.0	63
			MIN	19.7	5.1	22	4.5	52.9	45
66	42.00	4	AV4	20.9	5.3	24	4.8	53.5	49
			STD	0.6	0.1	1	0.1	0.6	8
			MAX MIN	21.8 20.4	5.4 5.3	25 23	4.9 4.6	54.1 52.6	63 42
71	43.00	5	AV5	20.4	5.2	21	4.7	53.9	61
11	45.00	5	STD	0.3	0.0	0	0.1	0.3	3
			MAX	20.7	5.2	22	4.8	54.3	65
			MIN	20.0	5.2	21	4.6	53.4	59
76	44.00	5	AV5	21.1	5.6	22	4.8	53.4	72
10	11.00	Ũ	STD	1.2	0.2	1	0.2	1.1	2
			MAX	22.2	5.8	23	5.0	55.0	76
			MIN	19.1	5.2	20	4.5	52.1	69
80	45.00	4	AV4	21.0	5.5	24	4.8	53.2	69
			STD	1.0	0.2	2	0.2	0.9	2
			MAX	22.2	5.8	26	5.1	54.1	71
			MIN	19.7	5.2	22	4.6	52.0	65
86	46.00	6	AV6	22.0	5.7	21	5.0	52.3	79
			STD	0.4	0.1	0	0.1	0.4	4
			MAX	22.7	5.8	22	5.1	53.0	86
			MIN	21.4	5.5	21	4.9	51.7	75
90	47.00	4	AV4	23.1	6.0	26	5.2	51.3	75
			STD	0.5	0.1	0	0.1	0.4	2
			MAX MIN	23.8 22.5	6.1 5.9	27 25	5.4 5.1	51.8 50.6	77 73
05	10.00	-							
95	48.00	5	AV5 STD	23.0 0.7	6.1 0.1	24 0	5.2 0.1	51.3 0.5	82 4
			MAX	24.3	6.3	25	5.4	51.7	4 86
			MIN	24.3	5.9	25	5.4	50.3	80 77
101	49.00	6	AV6	22.6	6.2	22	5.1	51.6	87
101	43.00	0	STD	0.8	0.2	1	0.2	0.8	6
			MAX	23.5	6.4	24	5.3	52.7	96
			MIN	21.6	6.0	21	4.9	50.9	79
				-	-		-	-	-

STH 96 over Fox River - Pier 9 #1

Page 3 of 4 PDIPLOT Ver. 2014.1 - Printed: 12-Sep-2014

APE D25-42, HP 12 x 53 Test date: 10-Sep-2014

STH 96 o OP: MR	over Fox River -	Pier 9 #1						APE D25-42	, HP 12 x 53 0-Sep-2014
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
end	ft	bl/ft		ksi	ksi	k-ft	ft	**	kips
106	50.00	5	AV5	22.6	6.3	24	5.1	51.7	86
			STD	0.4	0.1	1	0.1	0.4	4
			MAX	23.1	6.4	25	5.2	52.3	94
			MIN	21.8	6.2	23	5.0	51.2	81
112	51.00	6	AV6	23.7	7.1	24	5.4	50.5	105
			STD	0.7	0.3	1	0.1	0.6	6
			MAX	24.6	7.6	25	5.6	51.3	111
			MIN	22.9	6.6	22	5.2	49.6	93
118	52.00	6	AV6	23.8	7.9	24	5.4	50.3	114
			STD	0.7	0.5	1	0.2	0.7	10
			MAX	25.0	8.5	25	5.7	51.0	126
			MIN	22.9	7.2	23	5.3	49.0	98
127	53.00	9	AV9	25.4	9.2	23	5.8	48.9	133
			STD	0.6	0.8	1	0.1	0.5	6
			MAX MIN	26.3 24.0	11.0 8.3	25 22	6.0 5.5	49.9 47.9	141 126
	= 4 00								
141	54.00	14	AV14	28.3	14.2	25	6.5	46.1	195
			STD MAX	1.1 30.1	2.0	1 27	0.3 7.0	1.0	24
			MIN	25.7	17.6 11.4	27 21	7.0 5.9	48.4 44.5	235 157
163	55.00	22	AV19	31.5	21.5	27	7.4	43.5	293
105	55.00	22	STD	1.7	1.6	3	0.5	43.5	293
			MAX	36.8	23.9	34	8.9	45.2	323
			MIN	29.2	17.8	21	6.8	39.6	250
190	56.00	27	AV27	32.9	22.7	30	7.8	42.4	311
100	00.00	_,	STD	0.7	0.5	2	0.2	0.5	16
			MAX	34.5	23.6	34	8.2	43.5	338
			MIN	31.4	21.7	27	7.4	41.2	284
212	57.00	22	AV22	33.2	22.5	31	7.8	42.2	300
			STD	0.6	0.6	1	0.2	0.4	14
			MAX	34.0	23.6	34	8.1	43.2	321
			MIN	31.9	20.8	28	7.5	41.5	278
231	58.00	19	AV19	32.6	20.6	31	7.7	42.6	270
			STD	0.6	0.4	1	0.2	0.5	4
			MAX MIN	34.0 31.7	21.2 19.7	33 29	8.1 7.4	43.3 41.6	274 261
050	50.00	40							
250	59.00	19	AV19	32.3	20.1	30	7.6	42.7	264
			STD MAX	0.6 33.2	0.3 20.6	1 31	0.2 7.9	0.4 43.7	4 271
			MIN	31.1	19.3	28	7.3	42.1	251
269	60.00	19	AV19	32.2	20.4	29	7.6	42.7	268
200	00.00	10	STD	0.6	0.8	1	0.2	0.5	9
			MAX	33.4	22.0	32	7.9	43.4	291
			MIN	31.4	19.3	28	7.4	41.9	253
297	61.00	28	AV28	32.0	22.9	27	7.6	42.8	315
			STD	0.7	0.5	1	0.2	0.6	14
			MAX	33.4	23.6	31	8.0	43.7	333
			MIN	30.8	22.0	25	7.3	41.7	282
314	62.00	17	AV17	31.0	19.4	27	7.3	43.8	247
			STD	1.0	1.1	2	0.3	0.9	17
			MAX	33.0	21.5	31	7.9	45.2	285
			MIN	29.1	17.8	25	6.8	41.9	227
341	63.00	27	AV27	30.9	21.0	25	7.2	44.0	282
			STD	0.9	1.8	1	0.2	0.7	30
			MAX MIN	33.0	23.3	27 23	7.8 6.8	45.1	319
			IVIIIN	29.4	17.5	23	0.0	42.4	232

STH 96 over Fox River - Pier 9 #1

APE D25-42. HP 12 x 53

OP: MR	over Fox River -							Test date: 10-	
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
	ft		ITE				ft	DFIVI **	
end		bl/ft	A) (O 4	ksi	ksi	k-ft			kips
365	64.00	24	AV24	30.4	20.1	25	7.1	44.2	259
			STD	0.8	0.9	1	0.2	0.6	15
			MAX	31.8	21.4	28	7.5	45.7	286
			MIN	28.4	18.4	22	6.6	43.1	240
388	65.00	23	AV23	30.4	20.5	25	7.2	44.1	257
			STD	0.8	1.2	1	0.2	0.7	23
			MAX	32.0	23.1	27	7.6	45.8	307
			MIN	28.4	19.1	23	6.6	42.8	234
411	66.00	23	AV23	30.4	22.8	24	7.1	44.2	304
			STD	0.9	0.8	1	0.3	0.8	15
			MAX	32.1	23.7	27	7.7	45.9	318
			MIN	28.3	20.9	22	6.6	42.6	267
425	66.45	31	AV14	30.4	20.1	25	7.1	44.2	250
			STD	1.0	2.5	2	0.3	0.9	40
			MAX	32.0	25.4	28	7.7	45.6	342
			MIN	28.9	17.5	22	6.7	42.6	208
430	66.50	96	AV5	32.0	31.3	27	7.8	42.5	444
			STD	2.0	3.4	4	0.7	1.7	58
			MAX	35.2	35.8	32	8.8	44.7	525
			MIN	29.6	26.9	22	6.9	39.8	370
			Average	28.3	16.5	26	6.6	46.4	212
			Std. Dev.	5.2	7.5	3	1.3	5.0	112
			Maximum	36.8	35.8	34	8.9	59.2	525
			Minimum	15.3	3.6	18	3.8	39.6	0

Total number of blows analyzed: 427

BL# depth (ft) Comments

1 22.33 Excavated ground surface at El. 596.5

Time Summary

Drive 14 minutes 7 seconds 4:16:18 PM - 4:30:25 PM (9/10/2014) BN 1 - 430

### PDIPLOT Ver. 2014.1 - Printed: 12-Sep-2014

## STH 96 over Fox River - Pier 9 #1 Restrike APE D25-42, HP 12 x 53



Test date: 11-Sep-2014

GRL Engineers, Inc.       Page         Case Method & iCAP® Results       PDIPLOT Ver. 2014.1 - Printed: 12-Sep									
STH 96 over Fox River - Pier 9 #1 Restrike APE D25-42, OP: MR Test date: 11									
AR: LE:	15.50 in^2 71.37 ft 5,807.9 f/s							SP:	0.492 k/ft3 0,000 ksi 1.00
CSX: Max Measured Compr. Stress       STK: O.E. Diesel Hammer Stroke         CSB: Compression Stress at Bottom       BPM: Blows per Minute         EMX: Max Transferred Energy       RX9: Max Case Method Capacity (JC=0.9) x							0.9) x 0.95		
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
end	ft	bl/ft	=	ksi	ksi	k-ft	ft	**	kips
10	66.57	137	AV9	38.7	39.2	34	9.1	39.5	558
			STD	3.3	3.7	5	0.9	2.3	43
			MAX	41.1	41.8	38	9.8	45.9	597
			MIN	29.8	29.0	22	6.6	37.8	447
			Average	38.7	39.2	34	9.1	39.5	558
			Std. Dev.	3.3	3.7	5	0.9	2.3	43
			Maximum	41.1	41.8	38	9.8	45.9	597
			Minimum	29.8	29.0	22	6.6	37.8	447
				Total n	umber of blows	analyzed: 9			

Time Summary

Drive 14 seconds

7:28:59 AM - 7:29:13 AM (9/11/2014) BN 1 - 10

Test date: 10-Sep-2014



### STH 96 over Fox River - Pier 9 #32 APE D25-42, HP 12 x 53

Page 1 of 4 PDIPLOT Ver. 2014.1 - Printed: 12-Sep-2014

STH 9 OP: M	96 over Fox River - F	Pier 9 #32					201 101 2014	APE D25-42, Test date: 10	HP 12 x 53
AR: LE:	15.50 in^2 72.42 ft 6,807.9 f/s							SP:	0.492 k/ft3 0,000 ksi 1.00
CSX: CSB:	Max Measured Con Compression Stres Max Transferred E	s at Bottom				BPM: Blo	E. Diesel Hamm ws per Minute x Case Method	er Stroke	
BL# end 1	depth ft 12.00	BLC bl/ft 1	TYPE AV1 MAX MIN	CSX ksi 19.6 19.6 19.6	CSB ksi 4.9 4.9 4.9	EMX k-ft 33 33 33	STK ft ** **	BPM ** ** **	RX9 kips 0 0
2	13.00	1	AV1 MAX MIN	21.3 21.3 21.3	7.1 7.1 7.1	35 35 35	5.4 5.4 5.4	50.3 50.3 50.3	0 0 0
3	14.00	1	AV1 MAX MIN	14.0 14.0 14.0	3.8 3.8 3.8	19 19 19	4.1 4.1 4.1	57.2 57.2 57.2	0 0 0
4	15.00	1	AV1 MAX MIN	13.0 13.0 13.0	1.1 1.1 1.1	13 13 13	3.7 3.7 3.7	59.8 59.8 59.8	0 0 0
5	16.00	1	AV1 MAX MIN	17.2 17.2 17.2	1.3 1.3 1.3	18 18 18	3.6 3.6 3.6	61.1 61.1 61.1	0 0 0
6	17.00	1	AV1 MAX MIN	9.9 9.9 9.9	1.3 1.3 1.3	14 14 14	2.8 2.8 2.8	67.9 67.9 67.9	0 0 0
7	18.00	1	AV1 MAX MIN	6.1 6.1 6.1	0.8 0.8 0.8	8 8 8	2.4 2.4 2.4	72.8 72.8 72.8	0 0 0
8	19.00	1	AV1 MAX MIN	20.2 20.2 20.2	2.9 2.9 2.9	23 23 23	** ** **	** ** **	0 0 0
10	20.00	2	AV2 STD MAX MIN	14.5 5.0 19.5 9.5	2.8 0.7 3.6 2.1	21 15 36 6	3.2 0.0 3.2 3.2	64.3 0.0 64.3 64.3	0 0 0 0
13	21.00	3	AV3 STD MAX MIN	17.9 4.3 23.4 12.9	3.4 0.2 3.7 3.1	25 7 34 17	4.3 0.9 5.5 3.4	56.8 5.2 62.4 49.9	0 0 0 0
15	22.00	2	AV2 STD MAX MIN	11.6 0.1 11.7 11.5	2.9 0.1 3.0 2.8	16 1 17 16	3.4 0.0 3.4 3.4	62.7 0.2 62.9 62.5	0 0 0 0
17	23.00	2	AV2 STD MAX MIN	13.0 0.8 13.8 12.2	3.1 0.0 3.2 3.1	20 1 20 19	3.6 0.1 3.6 3.5	61.2 0.5 61.7 60.6	0 0 0 0
19	24.00	2	AV2 STD MAX MIN	14.1 0.2 14.2 13.9	3.1 0.0 3.1 3.0	19 1 19 18	3.7 0.0 3.8 3.7	59.8 0.4 60.2 59.5	0 0 0 0
22	25.00	3	AV3 STD MAX MIN	14.2 0.7 14.7 13.2	3.3 0.2 3.5 3.1	18 0 19 18	3.8 0.1 3.9 3.7	59.5 0.5 60.2 59.0	0 0 0 0
24	26.00	2	AV2 STD MAX MIN	14.9 0.1 15.1 14.8	3.1 0.0 3.2 3.1	20 0 20 20	3.9 0.1 3.9 3.8	59.0 0.6 59.6 58.4	0 0 0 0

STH 96 over Fox River - Pier 9 #32 OP: MR Page 2 of 4 PDIPLOT Ver. 2014.1 - Printed: 12-Sep-2014

> APE D25-42, HP 12 x 53 Test date: 10-Sep-2014

OP: MR	ver Fox River -	Pier 9 #32						APE D25-42, F Test date: 10-	
BL# end	depth ft	BLC bl/ft	TYPE	CSX ksi	CSB ksi	EMX k-ft	STK ft	BPM **	RX9 kips
27	27.00	3	AV3 STD MAX MIN	15.1 0.8 16.0 14.1	3.4 0.1 3.6 3.2	19 0 19 18	3.9 0.1 4.0 3.8	58.7 0.5 59.3 58.1	0 0 0 0
30	28.00	3	AV3 STD MAX MIN	15.9 0.4 16.4 15.5	3.5 0.1 3.6 3.5	19 1 21 18	4.1 0.0 4.2 4.0	57.4 0.3 57.7 57.0	0 0 0
31	29.00	1	AV1 MAX MIN	15.9 15.9 15.9	3.2 3.2 3.2	24 24 24	4.1 4.1 4.1	57.4 57.4 57.4	0 0 0
33	30.00	2	AV2 STD MAX MIN	17.1 0.7 17.7 16.4	3.8 0.0 3.9 3.8	21 1 23 20	4.3 0.2 4.5 4.1	56.1 1.1 57.2 55.0	0 0 0
35	31.00	2	AV2 STD MAX MIN	15.6 1.4 17.0 14.2	3.5 0.3 3.8 3.2	20 2 22 19	4.1 0.2 4.3 3.9	57.6 1.2 58.8 56.4	0 0 0
39	32.00	4	AV4 STD MAX MIN	17.1 0.7 18.2 16.4	4.2 0.3 4.6 3.7	19 0 20 19	4.3 0.1 4.5 4.1	56.0 0.7 57.1 55.1	0 0 0
44	33.00	5	AV5 STD MAX MIN	16.9 1.0 18.6 15.9	4.1 0.2 4.3 3.9	18 2 21 16	4.2 0.2 4.5 4.1	56.7 1.0 57.5 54.9	14 5 17 5
48	34.00	4	AV4 STD MAX MIN	17.0 0.7 17.9 16.2	4.3 0.1 4.5 4.2	18 1 20 16	4.3 0.1 4.4 4.1	56.4 0.8 57.4 55.3	18 7 26 10
54	35.00	6	AV6 STD MAX MIN	17.7 0.7 18.3 16.4	4.6 0.1 4.7 4.5	18 1 19 17	4.4 0.1 4.5 4.2	55.6 0.7 56.7 54.9	29 10 47 21
57	36.00	3	AV3 STD MAX MIN	19.8 0.4 20.3 19.4	5.0 0.1 5.2 4.9	24 1 25 23	4.8 0.1 4.9 4.7	53.4 0.6 53.9 52.6	11 7 18 1
58	37.00	1	AV1 MAX MIN	18.4 18.4 18.4	4.7 4.7 4.7	26 26 26	4.5 4.5 4.5	55.0 55.0 55.0	0 0 0
63	38.00	5	AV5 STD MAX MIN	19.1 0.5 19.9 18.6	5.0 0.0 5.1 5.0	19 1 20 18	4.6 0.1 4.7 4.5	54.5 0.4 54.9 53.9	53 4 58 45
66	39.00	3	AV3 STD MAX MIN	19.9 0.4 20.4 19.3	5.3 0.1 5.4 5.1	23 1 24 22	4.7 0.1 4.9 4.6	53.7 0.5 54.3 53.0	36 7 40 26
67	40.00	1	AV1 MAX MIN	19.0 19.0 19.0	5.1 5.1 5.1	27 27 27	4.5 4.5 4.5	55.2 55.2 55.2	11 11 11
69	41.00	2	AV2 STD MAX MIN	19.1 0.2 19.4 18.9	5.1 0.0 5.1 5.1	23 0 24 23	4.6 0.1 4.7 4.5	54.3 0.5 54.8 53.8	37 4 40 33

STH 96 over Fox River - Pier 9 #32 OP: MR Page 3 of 4 PDIPLOT Ver. 2014.1 - Printed: 12-Sep-2014

APE D25-42, HP 12 x 53 Test date: 10-Sep-2014

	over Fox River -	Pier 9 #32						APE D25-42, H	IP 12 x 53
OP: MR	-l- 4		TV05	001	005		071/	Test date: 10	
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
end	ft	bl/ft	AV2	ksi	ksi	k-ft	ft		kips
71	42.00	2		20.9	5.7	26	4.9	52.9	32
			STD	0.3	0.0	0	0.0	0.1	2
			MAX MIN	21.2 20.6	5.7 5.7	27 26	4.9 4.9	53.0 52.8	34 29
70	42.00	4							
72	43.00	1	AV1 MAX	19.9 19.9	5.5 5.5	30 30	4.7 4.7	54.0 54.0	15 15
			MIN	19.9	5.5	30	4.7	54.0	15
70	44.00	4							
73	44.00	1	AV1	20.3	4.9	25	4.8	53.1	1
			MAX MIN	20.3 20.3	4.9 4.9	25 25	4.8 4.8	53.1 53.1	1 1
74	45.00	4							
74	45.00	1	AV1 MAX	19.6 19.6	5.5 5.5	29 29	4.6 4.6	54.1 54.1	19 19
			MIN	19.6	5.5	29	4.6	54.1	19
78	46.00	4	AV3	19.9	5.6	22	4.7	53.8	
10	40.00	4	STD	0.2	0.1	1	4.7	0.1	59 4
			MAX	20.1	5.7	23	4.7	53.9	65
			MIN	19.8	5.4	21	4.7	53.7	55
90	47.00	12	AV11	22.8	6.6	21	5.2	51.3	97
00	47.00	12	STD	1.4	0.2	2	0.4	1.6	6
			MAX	26.6	6.9	27	6.2	53.5	106
			MIN	20.8	6.3	18	4.8	47.1	84
95	48.00	5	AV5	23.2	6.9	25	5.5	50.1	89
			STD	0.8	0.2	1	0.2	0.9	12
			MAX	24.0	7.0	26	5.6	51.8	102
			MIN	21.7	6.6	25	5.1	49.4	71
99	49.00	4	AV4	22.6	6.9	26	5.3	50.8	78
			STD	0.5	0.2	1	0.1	0.4	4
			MAX	23.1	7.1	27	5.4	51.2	84
			MIN	22.0	6.6	24	5.2	50.2	74
103	50.00	4	AV4	22.7	7.0	26	5.5	50.1	83
			STD	0.8	0.3	2	0.1	0.6	7
			MAX	23.3	7.2	27	5.6	51.1	93
			MIN	21.4	6.5	23	5.2	49.7	72
111	51.00	8	AV8	22.7	7.2	21	5.4	50.2	103
			STD MAX	0.8 23.5	0.2 7.6	1 22	0.2 5.6	0.7 51.6	3 109
			MIN	23.5	7.0	22	5.0	49.5	98
101	50.00	40							
121	52.00	10	AV10 STD	23.2 0.5	7.9 0.6	21 1	5.5 0.1	50.0 0.4	113 5
			MAX	23.9	8.8	22	5.6	50.6	125
			MIN	22.3	6.9	20	5.4	49.4	104
133	53.00	12	AV10	25.2	9.3	23	6.0	48.2	131
155	55.00	12	STD	1.1	9.5 0.5	1	0.0	1.2	8
			MAX	28.0	10.4	26	6.9	49.3	146
			MIN	24.0	8.7	21	5.7	44.9	120
147	54.00	14	AV14	26.2	11.9	23	6.3	47.0	166
	0 1100		STD	0.8	0.8	1	0.2	0.7	15
			MAX	27.6	13.0	24	6.6	48.9	191
			MIN	24.2	10.1	21	5.8	45.9	140
169	55.00	22	AV22	27.3	14.2	23	6.6	45.8	204
			STD	0.9	1.9	1	0.2	0.8	21
			MAX	29.3	18.2	25	7.1	47.4	245
			MIN	25.8	11.9	20	6.1	44.3	172
202	56.00	33	AV33	29.8	21.8	24	7.3	43.8	291
			STD	0.7	1.5	1	0.2	0.7	28
			MAX	31.1	24.2	26	7.8	45.2	332
			MIN	28.3	19.0	22	6.8	42.4	248

STH 96 over Fox River - Pier 9 #32

Page 4 of 4 PDIPLOT Ver. 2014.1 - Printed: 12-Sep-2014

APE D25-42. HP 12 x 53

/er Fox River -							APE D25-42, H	
donth	DI C	TVDE	<u> </u>	COD		OTK		RX9
		TIPE						
								kips
57.00	50							339
								29
								396
		MIN	28.2	20.4	22	6.8	41.5	285
58.00	36	AV34	29.5	21.3	23	7.2	43.9	295
								11
							45.5	315
		MIN	28.1	19.9	21	6.7	41.0	275
59.00	34	AV34	29.6	21.4	23	7.3	43.8	300
		STD	0.7	0.4	1	0.2	0.7	5
		MAX	30.9	22.2	25	7.6	45.2	307
		MIN	28.2	20.5	22	6.8	42.7	286
60.00	34	AV34	29.3	20.7	23	7.2	44.0	297
	•							7
								311
		MIN			21	6.8	42.6	285
61.00	31	۵\/31			23	73	43.6	301
01.00	01							18
								340
								284
62.00	51							349
02.00	54							20
								373
								373
62.00	26							265
03.00	20							18
								299
				17.7		6.9	42.3	237
64.00	24	AV24	29.1	17.5	23	7.2	44.1	230
								4
								236
		MIN	27.5	16.7	20	6.7	43.2	221
65.00	25	AV25	29.2	18.4	23	7.2	44.0	238
		STD	0.7	0.5	1	0.2	0.7	7
		MAX	30.2	19.7	25	7.6	45.4	251
		MIN	27.3	17.7	20	6.7	42.8	224
65.96	32	AV28	30.4	22.6	25	7.6	42.9	304
		STD	1.6	4.8	2	0.5	1.3	77
		MAX	34.3		31	8.8	44.8	460
		MIN	28.4	18.1	21	6.9	39.8	226
66.00	120	AV5	34.1	35.6	29	8.8	39.9	496
	-							13
								513
		MIN	31.6	32.9	26	8.1	39.0	476
		Average	27.3	17.2	23	6.7	46.1	235
		Std. Dev.	4.9	7.4	3	1.2	5.0	117
		Maximum	35.5	36.9	36	9.2	72.8	513
		Minimum	6.1	0.8	6	2.4	39.0	0
	<ul> <li>59.00</li> <li>60.00</li> <li>61.00</li> <li>62.00</li> <li>63.00</li> <li>64.00</li> <li>65.00</li> </ul>	ftbl/ft57.005058.003659.003460.003461.003162.005463.002664.002465.002565.9632	ft         bl/ft           57.00         50         AV50 STD MAX MIN           58.00         36         AV34 STD MAX           59.00         34         AV34 STD MAX           60.00         34         AV34 STD MAX           61.00         31         AV31 STD MAX           61.00         31         AV31 STD MAX           62.00         54         AV54 STD MAX           64.00         26         AV26 STD MAX           64.00         24         AV24 STD MAX           65.00         25         AV25 STD MAX           65.00         25         STD MAX           MIN         65.96         32         AV28 STD MAX           66.00         120         AV5 STD MAX         MIN	ft         bl/ft         ksi           57.00         50         AV50         30.6           STD         1.0         MAX         33.3           MIN         28.2         58.00         36         AV34         29.5           58.00         36         AV34         29.5         STD         0.8           MAX         32.1         MIN         28.1         59.00         34         AV34         29.6           59.00         34         AV34         29.3         STD         0.7         MAX         30.9           MIN         28.2         60.00         34         AV34         29.3         STD         0.9           MAX         30.9         MIN         27.8         61.00         31         AV31         29.6           61.00         31         AV31         29.6         STD         0.9           MAX         31.3         MIN         28.0         62.00         54         AV54         30.7           61.00         26         AV26         29.6         STD         0.7           MAX         31.1         MIN         28.3         64.00         24         AV24         29.1	ft         bl/ft         ksi         ksi         ksi         ksi           57.00         50         AV50         30.6         24.3           57.00         50         STD         1.0         1.6           MAX         33.3         26.9         MIN         28.2         20.4           58.00         36         AV34         29.5         21.3         STD         0.8         0.6           MAX         32.1         22.5         MIN         28.1         19.9           59.00         34         AV34         29.6         21.4         MAX         30.9         22.2           MIN         28.2         20.5         60.00         34         AV34         29.3         20.7           STD         0.9         0.7         0.4         MAX         30.9         21.9           MIN         27.8         19.4         61.00         31         AV31         29.6         20.4           STD         0.9         1.2         MAX         32.7         26.2           MIN         28.0         19.1         20.2         63.00         26         AV26         29.6         19.1           MIN         28.1<	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	

Total number of blows analyzed: 543

BL# depth (ft) 1

Comments 12.00 Excavated ground reference at EI. 596.5

Time Summary

Drive 30 minutes 1 second 5:03:17 PM - 5:33:18 PM (9/10/2014) BN 1 - 552

### PDIPLOT Ver. 2014.1 - Printed: 12-Sep-2014

## STH 96 over Fox River - Pier 9 #32 Restrike APE D25-42, HP 12 x 53



Test date: 11-Sep-2014

GRL Engineers, Inc.       P         Case Method & iCAP® Results       PDIPLOT Ver. 2014.1 - Printed: 12-									
								APE D25-42, H Test date: 11	
AR: LE:	15.50 in^2 72.42 ft ,807.9 f/s							SP:	0.492 k/ft3 0,000 ksi 1.00
CSX:       Max Measured Compr. Stress       STK:       O.E. Diesel Hammer Stroke         CSB:       Compression Stress at Bottom       BPM:       Blows per Minute         EMX:       Max Transferred Energy       RX9:       Max Case Method Capacity (JC=0.9) x							0.9) x 0.95		
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
end	ft	bl/ft		ksi	ksi	k-ft	ft	**	kips
10	66.05	192	AV9	39.4	41.9	39	9.9	37.7	603
			STD	1.0	1.9	1	0.2	0.4	17
			MAX	41.2	44.3	40	10.3	38.3	633
			MIN	37.5	37.4	36	9.6	36.9	571
			Average	39.4	41.9	39	9.9	37.7	603
			Std. Dev.	1.0	1.9	1	0.2	0.4	17
			Maximum	41.2	44.3	40	10.3	38.3	633
			Minimum	37.5	37.4	36	9.6	36.9	571
				Total n	umber of blows	analyzed: 9			

Time Summary

Drive 14 seconds

7:16:30 AM - 7:16:44 AM (9/11/2014) BN 1 - 10










STH 96	over	Fox	Rive	er;	Pile:	Pier	9	#1	EOID	
APE D2	5-42,	HP 3	12 x	53;	Blow:	: 430				
GRL En	gineer	s,	Inc.							

			CAPW	AP SUMMARY	RESULTS			
Total CAP	WAP Capaci	ity: 51	8.0; alor	ng Shaft	93.0; at I	'oe 425	5.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				518.0				
1	10.2	5.3	3.0	515.0	3.0	0.56	0.14	0.160
2	17.0	12.1	3.0	512.0	6.0	0.44	0.11	0.160
3	23.8	18.9	7.0	505.0	13.0	1.03	0.26	0.160
4	30.6	25.7	7.0	498.0	20.0	1.03	0.26	0.160
5	37.4	32.5	8.0	490.0	28.0	1.18	0.30	0.160
6	44.2	39.3	10.0	480.0	38.0	1.47	0.37	0.160
7	51.0	46.1	6.0	474.0	44.0	0.88	0.22	0.160
8	57.8	52.9	14.0	460.0	58.0	2.06	0.52	0.160
9	64.6	59.7	12.0	448.0	70.0	1.77	0.44	0.160
10	71.4	66.5	23.0	425.0	93.0	3.38	0.85	0.160
Avg. Sha	aft		9.3			1.40	0.35	0.160
То	e		425.0				431.32	0.155
Soil Model	l Paramete	ers/Extens	ions		Sha	ft To	be	
Quake		(i:	n)		0.1	50 0.2	76	
Case Damp:	ing Factor	<u>,</u>			0.5	38 2.3	81	
Damping Ty	zpe					Smit	th	
Unloading	Quake	(%	of loadi	ng quake)		73 8	83	
Reloading	Level	(%	of Ru)		1	00 10	00	
Resistance	e Gap (ind	luded in	Toe Quake	e) (in)		0.0	10	
Soil Plug	Weight	(k	ips)			0.0	09	
CAPWAP mat	ch qualit	-y =	3.46	(Way	ve Up Match)	; RSA = 0	)	
Observed:	final set		0.125 i	n; blow	r count	= 96	b/ft	
Computed:	final set	= =	0.086 i	ln; blow	count	= 140	b/ft	
max. Top (	Comp. Stre	ess =	33.5 k	si (T=	35.8 ms, n	nax= 1.028	3 х Тор)	
max. Comp.	. Stress	=	34.4 4	si (Z=	71.4 ft, 1	r= 41.7 r	ns)	
max. Tens	. Stress	=	-5.04 4	si (Z=	44.2 ft, 1	r= 59.2 r	ns)	
max. Energ	JY (EMX)	=	31.6 }	ip-ft; max	. Measured 1	op Displ.	(DMX) = 1	.07 in

STH	96 over	Fox	Riv	er;	Pile:	Pier	9	#1	EOID
APE	D25-42,	HP	12 x	53;	Blow	: 430			
GRL	Engineer	rs,	Inc.						

DID Test: 10-Sep-2014 16:30: CAPWAP(R) 2006-3 OP: MR

			EXTH	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.4	519.0	-32.9	33.5	-2.12	31.63	17.2	1.076
2	6.8	522.0	-36.2	33.7	-2.33	31.16	17.1	1.044
3	10.2	524.7	-39.5	33.8	-2.55	30.64	17.0	1.011
4	13.6	516.8	-42.7	33.3	-2.75	29.44	16.9	0.976
5	17.0	520.9	-51.6	33.6	-3.33	28.80	16.7	0.939
6	20.4	515.8	-56.9	33.3	-3.67	27.51	16.4	0.900
7	23.8	521.6	-65.5	33.6	-4.22	26.82	16.2	0.862
8	27.2	503.1	-63.2	32.4	-4.08	24.94	16.0	0.824
9	30.6	509.5	-71.4	32.9	-4.60	24.19	15.7	0.785
10	34.0	492.1	-69.3	31.7	-4.47	22.31	15.5	0.744
11	37.4	499.8	-76.4	32.2	-4.92	21.48	15.2	0.701
12	40.8	493.9	-72.5	31.9	-4.68	19.50	14.9	0.658
13	44.2	498.6	-78.2	32.2	-5.04	18.64	14.6	0.615
14	47.6	504.5	-69.2	32.5	-4.46	16.63	14.4	0.573
15	51.0	516.3	-73.2	33.3	-4.72	15.72	14.1	0.529
16	54.4	525.7	-68.3	33.9	-4.40	14.25	13.8	0.486
17	57.8	531.7	-71.8	34.3	-4.63	13.38	13.4	0.443
18	61.2	517.0	-60.3	33.3	-3.89	11.50	13.1	0.402
19	64.6	527.4	-65.8	34.0	-4.25	10.63	13.2	0.358
20	68.0	527.0	-56.9	34.0	-3.67	9.12	13.3	0.317
21	71.4	533.5	-59.7	34.4	-3.85	7.97	11.5	0.276
Absolute	71.4			34.4			(т =	41.7 ms)
	44.2				-5.04		(T =	59.2 ms)

	CASE METHOD												
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9			
RP	651.8	615.2	578.6	542.0	505.4	468.8	432.2	395.6	359.0	322.5			
RX	660.5	638.9	625.3	611.7	598.1	585.0	574.3	564.3	554.3	544.2			
RU	651.8	615.2	578.6	542.0	505.4	468.8	432.2	395.6	359.0	322.5			
RAU =	339.6 (k	ips); R	A2 =	613.6 (k	ips)								

Current CAPWAP Ru = 518.0 (kips); Corresponding J(RP)= 0.37; matches RX9 within 5%

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips
17.57	35.59	486.1	531.5	531.5	1.068	0.121	0.125	32.1	646.6

PILE PROFILE AND PILE MODEL											
Depth	Area	E-Modulus	Spec. Weight	Perim.							
ft	in ²	ksi	lb/ft ³	ft							
0.00	15.50	29992.2	492.000	3.971							
71.37	15.50	29992.2	492.000	3.971							
Toe Area	0.985	ft²									
Top Segment Length	3.40 ft, Top 1	Impedance 27.67	kips/ft/s								
Pile Damping 1.0 %	Time Incr 0.20	02 ms, Wave Speed	16807.9 ft/s, 2L/c	8.5 ms							









STH	96 over	For	K R	ive	er;	Pile:	Pier	9	#1	BOR
APE	D25-42,	HP	12	$\mathbf{x}$	53;	Blow	: 3			
GRL	Engineer	rs,	Ind	с.						

			CAP	WAP SUMMARY	RESULTS			
Total CAPW	MAP Capacity	y: 54	5.0; ald	ong Shaft	161.0; at	Toe 384	4.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				545.0				
1	10.2	5.3	11.0	534.0	11.0	2.06	0.52	0.160
2	17.0	12.1	11.0	523.0	22.0	1.62	0.41	0.160
3	23.8	18.9	11.0	512.0	33.0	1.62	0.41	0.160
4	30.6	25.7	11.0	501.0	44.0	1.62	0.41	0.160
5	37.4	32.5	11.0	490.0	55.0	1.62	0.41	0.160
6	44.2	39.3	18.0	472.0	73.0	2.65	0.67	0.160
7	51.0	46.1	19.0	453.0	92.0	2.80	0.70	0.160
8	57.8	52.9	22.0	431.0	114.0	3.24	0.82	0.160
9	64.6	59.7	22.0	409.0	136.0	3.24	0.82	0.160
10	71.4	66.5	25.0	384.0	161.0	3.68	0.93	0.160
Avg. Sha	aft		16.1			2.42	0.61	0.160
Тое	e		384.0				389.71	0.095
Soil Model	Parameter	s/Extens	ions		S	haft T	oe	
Quake		(i	n)		0	.160 0.1	16	
Case Dampi	ng Factor				0	.931 1.3	19	
Reloading	Level	(%	of Ru)			100 1	00	
Unloading	Level	(%	of Ru)			89		
Soil Plug	Weight	(k	ips)			0.	01	
CAPWAP mat	ch quality	=	2.38	(Wa	ve Up Match	n); RSA = (	)	
Observed:	final set	=	0.088	in; blo	w count	= 137	7 b/ft	
Computed:	final set	=	0.065	in; blo	ow count	= 183	3 b/ft	
max. Top C	Comp. Stres	s =	37.1	ksi (1	'= 36.0 ms,	max= 1.03	3 х Тор)	
max. Comp.	Stress	=	38.4	ksi (2	= 10.2 ft,	T= 36.4	ms)	
max. Tens.	Stress	=	-3.29	ksi (2	= 10.2 ft,	т= 84.3	ms)	
max. Energ	JY (EMX)	=	34.2	kip-ft; ma	x. Measured	l Top Displ	(DMX) = 1	.00 in

STH 96 over	Fox River;	Pile: Pier	9	#1	BOR
APE D25-42,	HP 12 x 53	; Blow: 3			
GRL Engineer	s, Inc.				

Test: 11-Sep-2014 07:29: CAPWAP(R) 2006-3 OP: MR

			EXTI	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.4	575.7	-44.1	37.1	-2.84	34.18	18.3	0.995
2	6.8	584.9	-47.7	37.7	-3.08	33.51	18.0	0.957
3	10.2	594.8	-51.0	38.4	-3.29	32.76	17.6	0.918
4	13.6	562.2	-44.3	36.3	-2.86	29.96	17.2	0.878
5	17.0	572.1	-47.7	36.9	-3.08	29.22	16.9	0.839
6	20.4	540.4	-41.3	34.9	-2.66	26.69	16.6	0.800
7	23.8	550.4	-46.1	35.5	-2.98	25.88	16.2	0.758
8	27.2	519.8	-39.7	33.5	-2.56	23.37	15.9	0.716
9	30.6	529.8	-45.6	34.2	-2.94	22.41	15.5	0.670
10	34.0	516.2	-39.7	33.3	-2.56	20.05	15.2	0.625
11	37.4	514.6	-45.1	33.2	-2.91	19.14	14.7	0.581
12	40.8	511.3	-38.8	33.0	-2.51	17.09	14.2	0.538
13	44.2	532.1	-43.6	34.3	-2.82	16.15	13.7	0.493
14	47.6	526.4	-30.1	34.0	-1.94	13.73	13.2	0.450
15	51.0	529.2	-34.1	34.1	-2.20	12.82	12.7	0.406
16	54.4	509.0	-19.8	32.8	-1.28	10.73	12.2	0.364
17	57.8	517.1	-22.8	33.4	-1.47	9.92	11.7	0.322
18	61.2	506.5	-9.6	32.7	-0.62	8.16	11.2	0.283
19	64.6	515.0	-11.6	33.2	-0.75	7.45	10.3	0.244
20	68.0	488.7	-6.7	31.5	-0.43	6.16	8.7	0.208
21	71.4	493.2	-6.9	31.8	-0.45	5.52	6.9	0.171
Absolute	10.2			38.4			(т =	36.4 ms)
	10.2				-3.29		(T =	84.3 ms)

	CASE METHOD											
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9		
RP	789.7	757.6	725.5	693.5	661.4	629.3	597.3	565.2	533.2	501.1		
RX	789.7	759.3	729.0	698.7	668.5	639.3	617.0	599.3	583.2	567.2		
RU	816.2	786.8	757.4	728.0	698.6	669.2	639.8	610.4	581.0	551.6		
RAU =	97.4 (k	ips); R	A2 =	678.1 (k	ips)							

Current CAPWAP Ru = 545.0 (kips); Corresponding J(RP)= 0.76; matches RX9 within 5%

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips
18.77	35.79	519.2	591.1	591.1	0.998	0.084	0.088	34.7	766.6

PILE PROFILE AND PILE MODEL										
Depth	Area	E-Modulus	Spec. Weight	Perim.						
ft	in ²	ksi	lb/ft ³	ft						
0.00	15.50	29992.2	492.000	3.971						
71.37	15.50	29992.2	492.000	3.971						
Toe Area	0.985	ft²								
Top Segment Length	3.40 ft, Top I	Impedance 27.67	kips/ft/s							
Pile Damping 1.0 %	Time Incr 0.20	)2 ms, Wave Speed	16807.9 ft/s, 2L/c	8.5 ms						











STH 96 over Fox River; Pile: Pier 9 #32 EOID APE D25-42, HP 12 x 53; Blow: 552 GRL Engineers, Inc. Test: 10-Sep-2014 17:33: CAPWAP(R) 2006-3 OP: MR

			ESULTS	P SUMMARY	CAPWA			
	0 kips	oe 362.	147.0; at T	g Shaft	9.0; alon	.ty: 50	WAP Capaci	Total CAP
Smit	Unit	Unit	Sum	Force	Ru	Depth	Dist.	Soil
Damping	Resist.	Resist.	of	in Pile		Below	Below	Sgmnt
Facto	(Area)	(Depth)	Ru			Grade	Gages	No.
s/f	ksf	kips/ft	kips 3	kips	kips	ft	ft	
				509.0				
0.16	0.30	1.19	8.0	501.0	8.0	6.7	13.2	1
0.16	0.27	1.06	15.0	494.0	7.0	13.3	19.8	2
0.16	0.31	1.22	23.0	486.0	8.0	19.9	26.3	3
0.16	0.27	1.06	30.0	479.0	7.0	26.5	32.9	4
0.16	0.27	1.06	37.0	472.0	7.0	33.1	39.5	5
0.16	0.27	1.06	44.0	465.0	7.0	39.7	46.1	6
0.16	0.34	1.37	53.0	456.0	9.0	46.2	52.7	7
0.16	0.65	2.58	70.0	439.0	17.0	52.8	59.3	8
0.16	1.26	5.01	103.0	406.0	33.0	59.4	65.8	9
0.16	1.68	6.68	147.0	362.0	44.0	66.0	72.4	10
0.16	0.56	2.23			14.7		aft	Avg. Sh
0.12	367.38				362.0		e	То
	e	Et To	Shaf		ions	rs/Extens	l Paramete	Soil Mode
	4	59 0.17	0.15		a)	(i		Quake
	5	71 1.60	0.87			-	ing Factor	Case Damp:
	h	Smit					-	Damping Ty
	1	10	10	ng quake)	of loadi	(%	Ouake	Unloading
	D	00 10	10	5 1	of Ru)			Reloading
	5	0.00		) (in)		•		Resistance
	5	0.0			ips)			Soil Plug
		• PGA = 0	Up Match)	(Way	2.74	v =	tch qualit	CAPWAP mat
	b/ft	-	- ,	•	0.100 i	-	-	Observed:
	b/ft			-	0.062 i			Computed:
	x Top)	ax= 1.036	36.0 ms, m	si (T=	34.4 k	ss =	Comp. Stre	max. Top (
	3)	= 36.8 ms	13.2 ft, T	•	35.6 k	=	. Stress	max. Comp
	3)	= 86.0 ms	13.2 ft, T	si (Z=	-1.94 k	=	. Stress	max. Tens
1 in	$(\mathbf{D}\mathbf{M}\mathbf{X}) = 0$	op Displ.	Measured T	in-ft max	26 4 1-	=	TT (FMY)	max. Energ

STH 96 over Fox River; Pile: Pier 9 #32 EOID APE D25-42, HP 12 x 53; Blow: 552 GRL Engineers, Inc. Test: 10-Sep-2014 17:33: CAPWAP(R) 2006-3 OP: MR

Pile	Diet			min.						
Sgmnt	Dist Belc		ax.	Force	max.	ma Tor		max. nsfd.	max. Veloc.	max Displ
No.	Gage		.ce .	FOICE	Comp. Stress	Ten Stre		hergy	veroc.	DISPI
10.	-		lps	kips	ksi			ip-ft	ft/s	i
1	3.	.3 533	3.4	-23.7	34.4	-1.	53 2	26.40	17.6	0.91
2	6.	6 539	9.3	-25.7	34.8	-1.	66 2	26.04	17.4	0.89
3	9.	.9 545	5.5	-27.9	35.2	-1.	80 2	25.66	17.2	0.86
4	13.	.2 552	2.5	-30.1	35.6	-1.	94 2	25.24	16.9	0.83
5	16.	.5 528	3.5	-25.2	34.1	-1.	62 2	23.58	16.7	0.80
6	19.	.8 536	5.0	-27.1	34.6	-1.	75 2	23.17	16.4	0.77
7	23.	.0 516	5.6	-24.5	33.3	-1.	58 2	21.66	16.1	0.74
8	26.		3.8	-29.2	33.8	-1.	88 2	21.15	15.9	0.71
9	29.	.6 500		-25.1	32.3	-1.		19.55	15.6	0.68
10	32.			-29.8	32.8	-1.		L9.05	15.4	0.65
11	36.			-26.2	31.5	-1.		17.63	15.2	0.61
12	39.			-29.7	32.0	-1.		17.01	14.9	0.58
13	42.			-25.3	30.8	-1.		15.53	14.7	0.54
14	46.			-28.2	31.4	-1.		14.74	14.4	0.50
15	49.			-23.2	30.5	-1.		13.38	14.1	0.46
16	52.			-24.9	31.2	-1.		12.65	13.7	0.42
17	56.			-17.2	31.8	-1.		11.22	13.3	0.38
18	59.			-19.2	33.6	-1.		L0.42	12.7	0.34
19	62.			-3.9	32.8	-0.		8.71	12.0	0.30
20	65.		2.9	-5.5	33.1	-0.		7.90	12.0	0.26
20	69.			0.0	31.1	0.		5.93	11.8	0.22
22	72.		0.3	0.0	32.3	0.		4.73	9.7	0.19
				0.0		••		1.75	5.7	
Absolute	13.				35.6				(T =	36.8 ms
	13.	. 2				-1.	94		(T =	86.0 ms)
					E METHOI					
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6		.7 0.	
RP	709.6		641.3	607.1	573.0	538.9	504.7			
RX	715.0		649.3	617.4	589.2	575.6	562.1			
RU	728.3	696.1	663.8	631.5	599.3	567.0	534.7	502	.5 470.	2 437.
RAU = 3	23.2 (ki	ps); RA	2 = 5	566.7 (k	ips)					
Current CA	PWAP Ru	= 509.0	(kips);	Corresp	onding d	J(RP)= 0	.59; ma	tches 1	RX9 withi	n 5%
VMX	TVP	VT1*Z	FT	1 E	MX	DMX	DFN	SET	EMX	QU
ft/s	ms	kips	kip	s ki	ps	in	in	in	kip-ft	
18.10	35.84	500.8	550.				0.097	0.100		
			PILE	PROFIL	E AND PI					
	Depth		Are		E-Modu		-	Weight		Perim
	ft		in ²			ksi		lb/ft ³		f
	0.00		15.5	0	2999	92.2	4	<b>192.000</b>		3.97
	72.42		15.5		2999	92.2	4	192.000		3.97
Toe Area			0.98	5	ft²					
Top Segmen	t Length	3.:	29 ft, 1	op Impe	dance	27.67	kips/ft	/s		
Pile Dampi	-	0 %, Time	-				_		21./0 9	.6 ms
TTE Dampi	т.	0 0, IIII	S THCT	0.190 Ш	s, mave	Speed	1000/.9	LU/S,	<u>а</u> ц/с о	.0 115

EXTREMA TABLE









STH	96 over	Fox	Rive	er;	Pile:	Pier	9	#32	BOR
APE	D25-42,	HP 3	12 x	53;	Blow	: 3			
GRL	Engineer	rs, 1	Inc.						

				RESULTS	SUMMARY 1	WAP	CAP			
	kips	432.0	t Toe	157.0; at	Shaft	ong s	9.0; al	: 58	Capacity	tal CAPWA
Smit	Unit	Unit		Sum	Force		Ru	Depth	ist.	Soil
Damping	esist. I	ist. Re	Rea	of	n Pile	i		Below	elow	Sgmnt
Facto	Area)	pth) (	(De	Ru				Grade	ages	No.
s/f	ksf	s/ft	kij	kips	kips		kips	ft	ft	
					589.0					
0.16	0.34	1.33		9.0	580.0		9.0	6.8	13.2	1
0.16	0.34	1.37		18.0	571.0		9.0	13.3	19.8	2
0.16	0.38	1.52		28.0	561.0		10.0	19.9	26.3	3
0.16	0.42	1.67		39.0	550.0		11.0	26.5	32.9	4
0.16	0.42	1.67		50.0	539.0		11.0	33.1	39.5	5
0.16	0.50	1.97		63.0	526.0		13.0	39.7	46.1	6
0.16	0.46	1.82		75.0	514.0		12.0	46.3	52.7	7
0.16	0.88	3.49		98.0	491.0		23.0	52.8	59.3	8
0.16	0.88	3.49		121.0	468.0		23.0	59.4	65.8	9
0.16	1.38	5.47		157.0	432.0		36.0	66.0	72.4	10
0.16	0.60	2.38					15.7			Avg. Shaf
0.10	38.42	4					432.0			Тое
		Тое	Shaft	S			ions	/Extens	arameters	il Model
		0.133	.162	C			.n)	(i		ake
		1.698	.942	C					Factor	se Dampin
		52	100		quake)	ding	of loa	(%	ake	loading Q
		100	100		-	-	of Ru)	(%	vel	loading L
			44				of Ru)	(%	vel	loading L
		0.003			in)	ke) (	Toe Qua	ded in	ap (inclu	sistance
		SA = 0	h) : I	Up Matc	(Wave		2.70	=	quality	PWAP matc
	ft	192 b/:	=	count	•		0.063	=		served: f
		515 b/:	=	count			0.023	=		mputed: f
	Top)	1.039 x	, max	36.0 ms	(T=	ksi	38.0	=	p. Stress	x. Top Co
			-	13.2 ft	-	ksi	39.5	=		x. Comp.
		58.2 ms)	-		(Z=			=		x. Tens.
		30°2 mD/	,	33.3 EC		TOT	-3.75			

STH 96 over Fox River; Pile: Pier 9 #32 BOR APE D25-42, HP 12 x 53; Blow: 3 GRL Engineers, Inc. Test: 11-Sep-2014 07:16: CAPWAP(R) 2006-3 OP: MR

					REMA TAB					
Pile	Dist.			min.	max.	ma		max.	max.	max
Sgmnt	Below		ce	Force	Comp.	Ten		nsfd.	Veloc.	Displ
No.	Gages				Stress			nergy	<b>5</b> . /	
	ft	ki	ps	kips	ksi	k		ip-ft	ft/s	i
1	3.3			-32.9	38.0	-2.		38.93	19.6	1.09
2	6.6			-36.5	38.4			38.20	19.4	1.05
3	9.9			-42.0	38.9			37.49	19.0	1.01
4	13.2			-54.8	39.5			36.73	18.7	0.97
5	16.5			-57.1	37.7			33.95	18.4	0.93
6	19.8			-68.2	38.2	-4.	40	33.02	18.0	0.89
7	23.0		.0	-69.9	36.5		51	30.34	17.7	0.84
8	26.3	575	.7	-79.8	37.1	-5.	15	29.47	17.3	0.80
9	29.6	546	.8	-80.8	35.3		21	26.82	16.9	0.76
10	32.9	556	.8	-88.7	35.9	-5.	72	25.80	16.6	0.71
11	36.2	546	.0	-86.1	35.2	-5.	55	23.12	16.2	0.67
12	39.5	554	.0	-88.9	35.7	-5.	73	22.04	15.8	0.62
13	42.8	558	.8	-83.9	36.0	-5.	41	19.56	15.4	0.57
14	46.1	570	.8	-85.6	36.8	-5.	52	18.47	15.0	0.52
15	49.4	565	.7	-78.2	36.5	-5.	04	16.11	14.6	0.48
16	52.7	574	.9	-79.5	37.1			15.02	14.1	0.43
17	56.0		.1	-73.4	37.3	-4.	73	12.96	13.5	0.38
18	59.3			-74.7	37.9		82	11.86	12.9	0.343
19	62.5			-61.4	36.0			9.64	12.3	0.29
20	65.8			-62.5	36.8			8.69	11.1	0.25
21	69.1			-52.7	35.7			7.11	9.0	0.212
22	72.4			-53.3	36.8			6.12	6.6	0.17
Absolute	13.2 39.5				39.5	-5.	73		(T = (T =	36.6 ms 58.2 ms
				CD	SE METHO					
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.0	5 0.	.7 0.8	3 0.9
			789.3	759.0	728.6	698.3	667.			
			789.3	759.0	728.6	700.5	672.0			
			302.7	773.5	744.3	715.1	685.			
		s); RA2		701.2 (]						
Current CAPW	AP Ru =	589.0 (	kips);	Corres	ponding	J(RP)= (	.86; ma	atches H	XX9 within	n 5%
VMX	TVP	VT1*Z	FI	'1	FMX	DMX	DFN	SET	EMX	QU
ft/s	ms	kips	kip		ips	in	in	in		kip
19.49	35.84	539.2	614.		-		0.060	0.063		
			PILE	E PROFII	LE AND P	LLE MODE	L			
	Depth		Are		E-Mod			Weight		Perim
	ft		in ²			ksi	-	lb/ft ³		f
	0.00		15.5	0	299	92.2		492.000		3.97
	72.42		15.5	0	299	92.2		492.000		3.97
Toe Area			0.98	5	ft²					
					-			,		
Iop Segment	Length	3.2	9 IT, 1	lob Twbe	edance	27.67	kips/ft	C/S		

# **GRL Engineers**, Inc.

1540 E. Dundee Road, Suite 102 Palatine, IL 60074 USA Phone: (847) 221-2750 Fax: (847) 221-2752

## **TRANSMITTAL**

To: Mr. Wade Hamacher	From: Rory Flynn
Company: Lunda Construction Company	No. of Sheets: 36
E-mail: whamacher@lundaconstruction.com	Date: February 4, 2015

RE: Dynamic Testing Results – Pier 10
WisDOT Contract B-5-381 – STH 96 over Fox River
Wrightstown, Wisconsin

On February 2, 2015, Pier 10 #8 and Pier 10 #17 at the above structure were dynamically tested during initial driving. The piles were tested during restrike on February 3. The 12 x 53 H-piles were equipped with driving shoes and were driven with an APE D25-42 hammer operated on fuel setting three. Plans indicate the piles in Pier 10 have a required driving resistance, or ultimate capacity, of 420 kips and an estimated length of 85 feet. We understand the pier was excavated to the required 30 foot pre-boring depth and backfilled.

Pier 10 #8 was driven to a depth of 77.3 feet below the excavated ground surface at EL 614.7, which corresponds to a pile tip elevation of EL 537.4. The blow count over the final increment of driving was 10 blows for  $2^{1}/_{8}$  inch of penetration at an average hammer stroke of 8.7 feet. The blow count at the beginning of restrike of Pier 10 #8 was 10 blows for  $1\frac{1}{4}$  inch of penetration at an average hammer stroke of 9.6 feet.

Pier 10 #17 was driven to a depth of 76.3 feet below the excavated ground surface at EL 614.7, which corresponds to a pile tip elevation of EL 538.4. The blow count over the final increment of driving was 10 blows for  $2^{1}/_{4}$  inch of penetration at an average hammer stroke of 9.0 feet. The blow count at the beginning of restrike of Pier 10 #17 was 10 blows for  $1^{3}/_{4}$  inch of penetration at an average hammer stroke of 9.4 feet.

For the 420 kip piles, driven with the APE D25-42 hammer, in Pier 10 of the STH 96 Bridge over the Fox River we recommend using the following criteria:

Field Observed	Recommended Minimum
Hammer Stroke	Blow Count
(feet)	(blows per inch)
7.5	10
8.0	7
8.5	6
9.0	5

We recommended the above blow count at the corresponding hammer stroke be maintained for

<u>two consecutive inches</u> of driving. Driving may be terminated if production piles exceed 10 blows over an increment of one inch or less at hammer strokes of 8.5 feet. After splicing or any other delays, we recommend not applying the criteria until at least two feet of driving has occurred beyond the termination depth associated with the delay.

Please contact us if there are any problems meeting the recommended criterion or if you have any questions on these recommendations.

GRL Engineers, Inc.

Rory Flynn, E.I.

Travis Coleman, P.E.

cc: Steve Seymour - steve.seymour@omnni.com Jeff Horsfall - jeffrey.horsfall@dot.wi.gov

Attachments:

Dynamic Results	(Pages 3 – 16)
CAPWAP Results	(Pages 17 – 36)



GRL Engineers, Inc.
Case Method & iCAP® Results

Page 1 PDIPLOT2 2014.2.48.1 - Printed 03-February-2015

STH 96 OP: RF	over Fox Riv	ver (B-5-83	1) - PIER 1	0 #8 EOID				025-42, HP : 02-Februa	
AR:	15.50 in ² 105.30 ft						Bato		492 k/ft ³
	6,807.9 f/s								1.00 []
	Max Measure Compression				BF	ИХ: Max Tra PM: Blows p	er Minute	0,	
STK: C	D.E. Diesel Ha	ammer Stro	oke		R)	(9: Max Ca	se Method	Capacity (	JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
-	ft	bl/ft		ksi	ksi	ft **	k-ft	bpm	kips
2	37.00	2	AV2	20.5	7.5	**	14	**	55
			MAX	21.8	8.1	**	17	**	63
			MIN	19.2	6.9		11		48
4	38.00	2	AV2	21.6	7.8	**	17	**	71
			MAX	21.7	7.9	**	17	**	72
			MIN	21.6	7.7	**	17	**	69
7	39.00	3	AV3	21.4	7.5	**	15	**	74
			MAX	22.0	7.8	**	16	**	75
			MIN	21.0	7.2	**	15	**	74
9	40.00	2	AV2	21.1	7.6	**	17	**	64
			MAX	21.1	7.7	**	18	**	70
			MIN	21.0	7.4	**	17	**	58
13	41.00	4	AV4	21.2	7.4	**	17	**	81
			MAX	21.5	7.8	**	22	**	88
			MIN	21.0	7.1	**	14	**	72
17	42.00	4	AV4	23.3	7.5	5.6	22	50.0	81
			MAX	27.8	7.9	7.2	27	56.1	103
			MIN	19.8	7.0	4.3	16	43.8	59
21	43.00	4	AV4	21.8	7.8	5.1	27	51.9	58
			MAX	23.4	8.2	5.4	28	54.1	64
			MIN	19.7	7.3	4.6	25	50.5	50
24	44.00	3	AV3	22.5	8.0	5.2	30	51.1	28
			MAX	23.5	8.5	5.5	31	52.9	41
			MIN	21.6	7.6	4.9	29	50.0	2
28	45.00	4	AV4	22.0	7.9	5.2	26	51.6	54
			MAX	24.1	8.7	5.7	28	55.6	75
			MIN	18.2	7.1	4.4	22	49.2	32
31	46.00	3	AV3	23.8	8.1	5.5	32	49.9	48
			MAX	24.5	8.7	5.7	33	50.8	56
			MIN	23.0	7.6	5.3	31	49.3	42
34	47.00	3	AV3	23.1	7.8	5.5	31	50.0	44
			MAX	24.4	8.3	5.8	34	50.7	47
			MIN	22.0	7.3	5.3	29	48.9	41
37	48.00	3	AV3	24.1	8.4	5.5	31	49.9	49
			MAX	24.6	8.5	5.7	33	50.6	56
			MIN	23.6	8.2	5.4	30	49.0	41

STH 96 over Fox River (B-5-831) - PIER 10 #8 EOID OP: RF								APE D25-42, HP 12 x 53 Date: 02-February-2015			
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9		
	ft	bl/ft		ksi	ksi	ft	k-ft	bpm	kips		
41	49.00	4	AV4	23.1	8.2	5.5	29	49.9	65		
			MAX	23.6	8.4	5.7	30	51.2	79		
			MIN	21.9	8.1	5.2	27	49.2	50		
44	50.00	3	AV3	24.6	8.6	5.9	34	48.5	53		
			MAX	25.4	8.7	6.1	36	49.2	59		
			MIN	23.9	8.5	5.7	34	47.7	46		
47	51.00	3	AV3	24.1	8.8	5.8	34	48.8	63		
			MAX	24.6	8.9	6.0	35	50.0	75		
			MIN	23.4	8.6	5.5	33	47.9	52		
50	52.00	3	AV3	24.6	8.6	5.9	36	48.4	68		
			MAX	25.4	9.0	6.0	36	48.7	69		
			MIN	24.1	8.4	5.8	34	47.9	66		
53	53.00	3	AV3	23.9	8.6	5.5	33	49.9	72		
			MAX	24.9	8.9	5.8	34	50.6	82		
			MIN	23.3	8.5	5.4	32	48.8	62		
57	54.00	4	AV4	24.5	8.7	5.7	32	49.1	100		
			MAX	25.4	9.0	5.9	33	50.0	107		
			MIN	23.4	8.3	5.5	30	48.2	91		
61	55.00	4	AV4	24.0	9.1	5.6	31	49.6	110		
			MAX	24.9	9.2	5.8	32	50.9	119		
			MIN	23.0	8.9	5.3	30	48.8	98		
65	56.00	4	AV4	24.4	9.0	5.7	32	49.3	112		
			MAX	24.5	9.2	5.7	33	49.8	120		
			MIN	24.1	8.8	5.5	32	49.0	102		
69	57.00	4	AV4	24.6	9.4	5.9	33	48.5	118		
			MAX	25.7	9.9	6.1	34	49.0	129		
			MIN	24.2	8.8	5.7	33	47.5	105		
72	58.00	3	AV3	25.2	9.6	5.9	39	48.5	119		
			MAX	25.9	9.9	6.0	41	49.4	128		
			MIN	24.2	9.5	5.6	37	48.0	106		
76	59.00	4	AV4	24.8	9.4	5.8	35	48.9	131		
			MAX	25.8	9.6	5.9	36	49.9	137		
			MIN	23.8	9.1	5.5	32	48.4	127		
80	60.00	4	AV4	24.0	9.3	5.6	33	49.7	122		
			MAX	25.3	9.7	5.9	35	50.6	135		
			MIN	23.2	9.0	5.4	32	48.3	112		
84	61.00	4	AV4	24.3	9.2	5.7	34	49.2	128		
			MAX	25.1	9.4	5.8	35	49.8	132		
			MIN	23.8	8.9	5.5	33	48.6	124		

STH 96 over Fox River (B-5-831) - PIER 10 #8 FOID C

STH 96 over Fox River (B-5-831) - PIER 10 #8 EOID OP: RF								025-42, HP 02-Februa	
BL# 89	depth ft 62.00	BLC bl/ft 5	TYPE AV5 MAX	CSX ksi 24.5 25.1	CSB ksi 9.6 9.8	STK ft 5.7 5.9	EMX k-ft 31 32	BPM bpm 49.1 50.0	RX9 kips 133 139
93	63.00	4	MIN AV4 MAX MIN	23.5 25.2 25.7 24.5	9.3 9.8 10.5 9.5	5.5 5.9 6.0 5.7	30 36 37 34	48.4 48.5 49.0 48.0	128 135 141 130
97	64.00	4	AV4 MAX MIN	25.2 26.0 24.3	9.9 10.2 9.6	5.9 6.0 5.7	35 36 33	48.4 49.0 48.0	132 137 123
100	65.00	3	AV3 MAX MIN	24.4 25.7 23.4	9.6 9.9 9.5	5.7 6.0 5.4	36 41 33	49.2 50.4 47.9	130 139 124
104	66.00	4	AV4 MAX MIN	25.3 26.6 24.1	10.0 10.7 9.4	5.9 6.2 5.7	36 38 33	48.3 49.2 47.3	139 146 133
109	67.00	5	AV5 MAX MIN	24.9 25.8 23.8	9.8 10.2 9.4	5.8 6.0 5.5	32 33 30	48.8 50.0 48.0	145 151 140
114	68.00	5	AV5 MAX MIN	25.6 26.1 25.0	9.7 9.9 9.5	5.9 6.0 5.8	33 34 32	48.3 48.7 48.0	145 149 138
119	69.00	5	AV5 MAX MIN	24.8 25.4 24.3	9.3 9.5 8.9	5.9 6.0 5.7	32 32 30	48.5 49.0 47.8	135 144 130
124	70.00	5	AV5 MAX MIN	25.1 25.6 24.4	9.5 9.7 9.2	5.9 6.1 5.7	31 33 30	48.3 49.1 47.7	137 141 133
129	71.00	5	AV5 MAX MIN	24.2 25.6 22.6	9.4 9.8 8.9	5.6 5.9 5.3	29 32 27	49.5 50.8 48.2	137 139 134
134	72.00	5	AV5 MAX MIN	25.0 26.5 23.5	9.4 9.7 9.1	5.8 6.1 5.4	31 33 29	48.8 50.3 47.4	140 145 131
139	73.00	5	AV5 MAX MIN	25.5 26.6 23.8	9.7 10.4 9.0	5.9 6.1 5.5	32 34 29	48.3 49.8 47.4	141 151 134
151	74.00	12	AV12 MAX MIN	27.6 29.2 25.9	14.6 16.1 11.9	6.6 7.0 5.9	28 31 23	45.7 48.2 44.4	201 228 163
166	75.00	15	AV15	28.5	16.4	6.9	28	44.8	241

STH 96 over Fox River (B-5-831) - PIER 10 #8 EOID

STH 96 OP: RF	over Fox R	APE D25-42, HP 12 x 53 Date: 02-February-2015							
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
	ft	bl/ft		ksi	ksi	ft	k-ft	bpm	kips
			MAX	30.0	18.5	7.4	31	46.4	263
			MIN	26.5	14.9	6.4	24	43.5	221
192	76.00	26	AV26	30.6	22.2	7.5	31	43.2	354
			MAX	33.1	25.7	8.2	35	44.7	415
			MIN	28.5	18.8	6.9	26	41.2	291
236	77.12	39	AV44	32.4	28.1	8.2	34	41.4	455
			MAX	34.3	31.7	9.0	39	43.0	499
			MIN	30.7	24.7	7.5	30	39.5	415
246	77.30	56	AV10	33.5	32.3	8.7	37	40.1	514
			MAX	34.6	33.1	9.1	40	40.9	522
			MIN	32.5	31.5	8.4	34	39.3	503
			Average	27.1	15.4	6.6	31	46.2	223
		N	/laximum	34.6	33.1	9.1	41	56.1	522
			Minimum	18.2	6.9	4.3	11	39.3	2
			Total n	umber of blo	ws analyze	d 246			

Total number of blows analyzed: 246

### BL# Sensors

1-246 F3: [F523] 93.8 (1.00); F4: [H083] 94.4 (1.00); A3: [K974] 305.0 (1.09); A4: [K1020] 307.0 (1.09)

### **BL#** Comments

1 Reported Reference EL 614.72

#### Time Summary

Drive 11 minutes 48 seconds 5:00 PM - 5:12 PM BN 1 - 246



Page 1 PDIPLOT2 2014.2.48.1 - Printed 03-February-2015

STH 9 OP: R		River (B-5-8	331) - PIER 1	0 #8 BOR				025-42, Hl 03-Febru		
AR:	15.50 in ²							SP: (	0.492 k/ft ³	
LE:	105.30 ft							EM: 30	),000 ksi	
WS: 1	16,807.9 f/s							JC:	1.00 []	
CSX:	Max Measu	ured Compr	. Stress		EN	IX: Max Tr	ansferred E	nergy		
CSB: Compression Stress at Bottom BPM: Blows per Minute										
STK: O.E. Diesel Hammer Stroke RX9: Max Case Method Capacity (JC=0.9)										
BL# depth BLC TYPE CSX CSB STK EMX BPM RX9										
	ft	blows/ft		ksi	ksi	ft	k-ft	bpm	kips	
10	77.40	96	AV4	33.2	30.3	9.6	35	38.4	493	
			MAX	34.1	30.7	11.1	36	39.5	511	
			MIN	32.8	29.9	9.0	33	35.6	474	
20	77.50	107	AV8	33.5	31.1	9.3	36	38.8	514	
			MAX	36.0	33.2	10.4	43	40.2	552	
			MIN	31.5	29.3	8.7	31	36.8	460	
			Average	33.4	30.9	9.4	36	38.7	507	
			Maximum	36.0	33.2	11.1	43	40.2	552	
			Minimum	31.5	29.3	8.7	31	35.6	460	
			Total n	umber of blo	ws analyz	≏d· 12				

Total number of blows analyzed: 12

BL# Sensors

1-20 F3: [H083] 94.4 (0.98); F4: [F523] 93.8 (0.98); A3: [K974] 305.0 (1.09); A4: [K1020] 307.0 (1.09)

Time Summary

Drive 2 minutes 26 seconds 9:04 AM - 9:07 AM BN 1 - 20



GRL Engineers, Inc.
Case Method & iCAP® Results

Page 1 PDIPLOT2 2014.2.48.1 - Printed 03-February-2015

STH 96 over Fox River (B-5-831) - PIER 10 #17 EOID     APE D25-42, HP 12 x 53       OP: RF     Date: 02-February-2015									
AR: LE:	15.50 in ² 104.20 ft							EM: 30,	
	16,807.9 f/s Max Measured	d Compr. S	tress		EN	IX: Max Tra	insferred E		.00 []
CSB:	Compression S	Stress at B	ottom		BF	PM: Blows p	er Minute		
<u>SIK:</u> BL#	O.E. Diesel Ha depth	ammer Stro BLC	TYPE	CSX	CSB	<u>(9: Max Ca</u> STK	<u>se Method</u> EMX	Capacity (J BPM	<u>C=0.9)</u> RX9
DL#	ft	bl/ft	TIFE	ksi	ksi	ft	k-ft	bpm	kips
2	38.50	2	AV1	19.8	6.6	5.2	32	51.5	0
			MAX	19.8	6.6	5.2	32	51.5	0
			MIN	19.8	6.6	5.2	32	51.5	0
3	39.00	2	AV1	22.9	6.5	5.8	22	48.7	64
			MAX	22.9	6.5	5.8	22	48.7	64
			MIN	22.9	6.5	5.8	22	48.7	64
7	40.00	4	AV3	19.7	6.6	5.1	23	52.1	25
			MAX	21.1	6.8	5.4	26	54.5	39
			MIN	17.6	6.3	4.6	22	50.6	10
11	41.00	4	AV3	18.5	6.3	4.8	17	53.4	49
			MAX	21.1	6.6	5.4	23	58.4	63
			MIN	14.2	5.6	3.9	10	50.5	25
15	42.00	4	AV4	20.5	6.6	5.1	24	51.7	18
10	12.00	•	MAX	21.3	6.9	5.4	26	52.1	23
			MIN	19.8	6.2	5.0	22	50.5	4
19	43.00	4	AV4	16.7	5.9	4.5	15	55.3	46
10	40.00	т	MAX	20.6	6.6	5.3	22	60.5	67
			MIN	11.6	5.0	3.7	8	51.0	20
22	44.00	3	AV2	17.2	5.3	5.1	14	54.4	46
~~~	44.00	Ū	MAX	25.9	6.8	6.8	24	63.7	58
			MIN	8.5	3.8	3.3	4	45.0	35
25	45.00	3	AV2	11.4	4.6	3.6	8	61.3	52
		· ·	MAX	15.9	6.0	4.0	12	64.8	69
			MIN	6.9	3.3	3.1	3	57.7	34
29	46.00	4	AV4	18.5	6.2	4.9	20	53.2	34
			MAX	21.2	6.7	5.4	24	58.3	61
			MIN	14.0	5.7	4.0	15	50.5	17
33	47.00	4	AV4	15.0	5.8	4.2	12	57.5	54
			MAX	20.9	6.6	5.2	21	62.0	64
			MIN	10.2	4.5	3.5	6	51.2	42
37	48.00	4	AV3	19.7	6.6	5.2	18	52.3	68
•••		•	MAX	26.1	7.1	7.0	24	59.0	72
			MIN	13.8	5.9	3.9	9	44.5	65
40	49.00	3	AV2	18.6	6.1	5.1	18	54.2	60
		Ũ	MAX	27.1	7.8	6.9	30	63.6	74
			MIN	10.2	4.5	3.3	6	44.8	45

)25-42, HP 02-Februai	
BL#	depth ft	BLC bl/ft	TYPE	CSX ksi	CSB ksi	STK ft	EMX k-ft	BPM bpm	RX9 kips
44	50.00	4	AV4 MAX MIN	15.2 19.2 12.4	5.9 6.5 5.3	4.1 4.7 3.7	12 18 9	57.7 60.5 53.7	64 76 54
48	51.00	4	AV4 MAX MIN	19.0 21.0 17.2	6.5 7.0 6.1	4.8 5.3 4.4	20 24 17	53.4 55.3 50.9	48 61 32
51	52.00	3	AV3 MAX MIN	19.7 22.3 17.5	6.4 6.8 6.0	4.9 5.4 4.6	25 28 22	52.7 54.4 50.2	35 45 29
54	53.00	3	AV3 MAX MIN	21.8 22.6 21.3	7.0 7.4 6.8	5.4 5.7 5.3	29 30 28	50.3 51.0 49.3	38 47 25
58	54.00	4	AV4 MAX MIN	20.9 22.2 18.5	6.9 7.3 6.6	5.2 5.4 4.6	25 27 21	51.5 54.3 50.3	51 67 37
62	55.00	4	AV4 MAX MIN	21.5 23.1 20.5	7.3 7.8 6.8	5.3 5.7 5.1	27 28 24	50.8 51.8 49.3	51 61 37
66	56.00	4	AV4 MAX MIN	21.4 22.3 20.1	6.8 7.1 6.2	5.3 5.5 5.1	25 27 23	50.8 52.0 49.9	55 62 45
70	57.00	4	AV4 MAX MIN	20.1 21.7 17.1	6.8 7.3 6.3	5.0 5.4 4.4	22 24 16	52.2 55.3 50.4	48 62 34
74	58.00	4	AV4 MAX MIN	21.2 22.1 20.1	7.0 7.3 6.8	5.3 5.6 5.1	25 26 24	50.8 51.7 49.7	49 60 40
78	59.00	4	AV4 MAX MIN	20.7 21.8 19.3	7.0 7.5 6.7	5.2 5.4 5.0	24 26 22	51.1 52.5 50.2	52 67 34
82	60.00	4	AV4 MAX MIN	21.2 21.6 20.8	6.8 7.0 6.4	5.3 5.4 5.2	25 25 23	50.7 51.2 50.2	57 62 43
86	61.00	4	AV4 MAX MIN	22.0 23.0 21.2	6.8 7.1 6.5	5.6 5.8 5.4	27 29 25	49.6 50.5 48.7	58 60 55
90	62.00	4	AV4 MAX MIN	20.8 21.5 19.9	6.8 6.9 6.6	5.3 5.5 5.1	24 25 22	50.7 51.8 49.8	56 70 49

STH 96 over Fox River (B-5-831) - PIER 10 #17 EOID OP: RF								APE D25-42, HP 12 x 53 Date: 02-February-2015			
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9		
94	ft 63.00	bl/ft 4	AV4 MAX MIN	ksi 21.2 22.9 18.6	ksi 6.7 7.0 6.3	ft 5.5 5.9 4.9	k-ft 25 28 21	bpm 50.2 52.8 48.5	kips 60 67 46		
98	64.00	4	AV4 MAX MIN	20.9 22.5 19.1	6.8 7.0 6.6	5.3 5.7 5.0	24 28 22	50.7 52.5 49.0	63 77 50		
102	65.00	4	AV4 MAX MIN	20.6 22.1 19.7	6.8 6.9 6.7	5.3 5.6 5.1	24 26 22	50.9 51.8 49.4	67 81 56		
106	66.00	4	AV4 MAX MIN	22.3 23.1 21.7	7.4 8.0 6.8	5.5 5.6 5.4	27 30 25	50.0 50.5 49.4	94 110 76		
110	67.00	4	AV4 MAX MIN	22.1 23.1 21.0	7.3 7.4 7.3	5.6 5.9 5.3	27 28 24	49.7 50.7 48.5	89 98 78		
115	68.00	5	AV5 MAX MIN	21.9 22.3 21.1	7.3 7.5 7.1	5.6 5.7 5.3	26 27 24	49.7 50.9 49.2	93 97 84		
119	69.00	4	AV4 MAX MIN	22.9 23.8 22.2	7.5 7.5 7.4	5.8 6.0 5.6	28 28 28	48.9 49.6 47.9	103 104 102		
123	70.00	4	AV4 MAX MIN	22.6 23.2 20.9	7.3 7.6 7.0	5.7 5.9 5.2	27 29 25	49.3 51.1 48.5	98 107 89		
128	71.00	5	AV5 MAX MIN	23.0 24.5 21.2	7.5 8.0 7.0	5.8 6.2 5.4	27 31 24	48.8 50.5 47.3	104 112 90		
132	72.00	4	AV4 MAX MIN	22.1 22.6 21.7	7.1 7.2 7.1	5.6 5.7 5.5	25 26 24	49.5 49.8 49.0	101 107 97		
137	73.00	5	AV5 MAX MIN	23.1 23.8 21.9	7.5 7.8 7.2	5.9 6.1 5.5	28 29 26	48.4 49.8 47.6	102 115 92		
142	74.00	5	AV5 MAX MIN	22.7 23.8 21.4	7.5 7.7 7.2	5.7 6.1 5.5	26 27 25	49.1 49.9 47.7	104 108 96		
147	75.00	5	AV5 MAX MIN	22.8 24.3 21.6	7.4 7.7 7.2	5.7 6.1 5.4	25 27 23	49.0 50.5 47.7	108 111 102		
180	76.12	30	AV33	29.9	25.4	8.1	31	41.7	412		

STH 96 over Fox River (B-5-831) - PIER 10 #17 FOID

STH 96 over Fox River (B-5-831) - PIER 10 #17 EOID APE D25-42, HP 12 x 53										
OP: RF							Date:	02-Februa	ry-2015	
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9	
	ft	bl/ft		ksi	ksi	ft	k-ft	bpm	kips	
			MAX	33.2	31.4	9.5	36	48.7	505	
			MIN	23.3	7.7	5.8	22	38.4	112	
190	76.30	55	AV9	32.2	30.6	9.0	34	39.6	505	
			MAX	33.7	31.3	9.9	36	40.7	520	
			MIN	30.5	29.8	8.4	32	37.7	490	
			Average	22.8	11.4	6.0	25	49.0	150	
		Ν	Maximum	33.7	31.4	9.9	36	64.8	520	
			Minimum	6.9	3.3	3.1	3	37.7	0	
			Total n	umber of blo	ows analyze	d: 182				

BL# Sensors

1-190 F3: [F523] 93.8 (1.00); F4: [H083] 94.4 (1.00); A3: [K974] 305.0 (1.06); A4: [K1020] 307.0 (1.06)

BL# Comments

1 Reported Reference EL 614.72

Time Summary

Drive 6 minutes 10 seconds 6:01 PM - 6:07 PM BN 1 - 190

GRL Engineers, Inc.
Case Method & iCAP® Results

Pag	e 1
PDIPLOT2 2014.2.48.1 - Printed 03-February-20	15

STH 96 over Fox River (B-5-831) - PIER 10 #17 BOR APE D25-42, HP 12 x 53 OP: RF Date: 03-February-2015											
AR:	15.50 in ²							SP:	0.492 k/ft ³		
LE:	104.20 ft							EM: 3	0,000 ksi		
<u>WS: 16,807.9 f/s</u> JC: 1.00 []											
CSX: Max Measured Compr. Stress EMX: Max Transferred Energy											
CSB: Compression Stress at Bottom BPM: Blows per Minute											
STK: O.E. Diesel Hammer Stroke RX9: Max Case Method Capacity (JC=0.9)											
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9		
	ft	blows/ft		ksi	ksi	ft	k-ft	bpm	kips		
10	76.45	69	AV9	34.8	33.7	9.4	35	38.7	498		
			MAX	37.6	35.3	9.8	40	39.9	533		
			MIN	26.5	30.3	8.8	27	37.8	391		
			Average	34.8	33.7	9.4	35	38.7	498		
		1	Maximum	37.6	35.3	9.8	40	39.9	533		
	Minimum 26.5 30.3 8.8 27 37.8 391										
			Total	number of blo	ows analyz	ed: 9					

BL# Sensors

1-10 F3: [H083] 94.4 (1.00); F4: [F523] 93.8 (1.00); A3: [K974] 305.0 (1.09); A4: [K1020] 307.0 (1.09)

Time Summary

Drive 15 seconds 9:25 AM - 9:26 AM BN 1 - 10

600

kips

300

5

0

-300

0

0.00

0.50

1.00

1.50

2.00

2.50

3.00

Displacement (in)

0.18 s/ft

0.07 s/ft

04-Feb-2015

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. STH 96 over Fox River (B-5-831); Pile: PIER 10 #8 EOID Test: 02-Feb-2015 17:12 APE D25-42, HP 12 x 53; Blow: 245 GRL Engineers, Inc.

CAPWAP(R) 2014 OP: RF

	Mat	ch Qualit	y Poor - Res	ults May Be	e Unreliabl	e!!!	
			CAPWAP SUMM	ARY RESULT	'S		
Total CAPWAP	Capacity:	492.0;	along Shaft	84.0;	at Toe	408.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	u Unit	Unit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.
No.	Gages	Grade			Ru	(Depth)	(Area)
	ft	ft	kips	kips	kips	kips/ft	ksf
				492.0			
1	32.9	4.9	3.0	489.0	3.0	0.61	0.15
2	39.5	11.5	4.0	485.0	7.0	0.61	0.15
3	46.1	18.1	4.0	481.0	11.0	0.61	0.15
4	52.7	24.6	4.0	477.0	15.0	0.61	0.15
5	59.2	31.2	4.0	473.0	19.0	0.61	0.15
6	65.8	37.8	5.0	468.0	24.0	0.76	0.19
7	72.4	44.4	7.0	461.0	31.0	1.06	0.27
8	79.0	51.0	8.0	453.0	39.0	1.22	0.31
9	85.6	57.5	8.0	445.0	47.0	1.22	0.31
10	92.1	64.1	10.0	435.0	57.0	1.52	0.38
11	98.7	70.7	12.0	423.0	69.0	1.82	0.46
12	105.3	77.3	15.0	408.0	84.0	2.28	0.57
Avg. Shaf	it		7.0			1.09	0.27
Тое			408.0				414.07
Soil Model Pa	arameters/E	xtensions			Shaft	Тое	
Smith Damping	g Factor				0.18	0.07	
Quake	-	(in)			0.20	0.39	
Case Damping	Factor				0.55	1.03	
Damping Type					Viscous	Smith	
Unloading Qua	ake	(% of	loading quak	ce)	100	30	
Reloading Le	vel	(% of	Ru)		100	0	
Unloading Le	vel	(% of	Ru)		81		
Resistance G	ap (include	d in Toe	Quake) (in)			0.01	
Soil Plug We	ight	(kips)			0.017	
CAPWAP match	quality	=	5.33	(Wave Up M	Match) ; RS	a – 0	
Observed: Fin				Blow Count		56 b/ft	
Computed: Fin			-	Blow Count		69 b/ft	
max. Top Com	p. Stress	=	32.4 ksi	(T= 36.0	ms, max=	L.032 x Top)	
max. Comp. S	_		33.4 ksi	-	-	7.8 ms)	
max. Tens. S			5.86 ksi		-	4.6 ms)	
max. Energy			36.5 kip-ft;		-	ispl. (DMX)=	1.38 in

STH 96 over Fox River (B-5-831); Pile: PIER 10 #8 EOID Test: 02-Feb-2015 17:12 APE D25-42, HP 12 x 53; Blow: 245 GRL Engineers, Inc.

CAPWAP(R) 2014 OP: RF

			EXTI	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.3	502.2	-21.4	32.4	-1.38	36.5	17.3	1.41
2	6.6	502.5	-21.6	32.4	-1.39	36.4	17.2	1.39
4	13.2	503.3	-21.6	32.5	-1.39	35.9	17.2	1.35
6	19.7	504.3	-26.7	32.5	-1.72	35.1	17.1	1.29
8	26.3	506.6	-23.8	32.7	-1.53	34.3	17.0	1.23
10	32.9	518.4	-21.9	33.4	-1.41	33.4	16.5	1.17
12	39.5	512.6	-46.4	33.1	-2.99	31.6	16.2	1.11
14	46.1	499.6	-66.6	32.2	-4.30	29.7	16.1	1.05
16	52.7	491.4	-81.9	31.7	-5.29	27.8	15.8	0.98
18	59.2	484.0	-90.9	31.2	-5.86	25.7	15.5	0.91
20	65.8	478.5	-90.0	30.9	-5.80	23.7	15.1	0.84
22	72.4	472.2	-86.4	30.5	-5.57	21.6	14.6	0.76
23	75.7	454.2	-76.5	29.3	-4.93	19.8	14.4	0.73
24	79.0	460.4	-73.3	29.7	-4.73	19.1	14.1	0.69
25	82.3	454.3	-56.1	29.3	-3.62	17.4	13.9	0.65
26	85.6	457.9	-55.2	29.5	-3.56	16.7	13.7	0.61
27	88.8	452.0	-43.2	29.2	-2.78	15.0	13.4	0.58
28	92.1	461.0	-41.6	29.7	-2.69	14.3	13.1	0.54
29	95.4	458.8	-29.7	29.6	-1.91	12.6	13.2	0.50
30	98.7	466.1	-30.1	30.1	-1.94	12.0	15.1	0.46
31	102.0	456.6	-15.3	29.5	-0.99	10.3	16.2	0.43
32	105.3	469.6	-15.3	30.3	-0.99	9.3	14.8	0.39
Absolute	32.9			33.4			(T =	37.8 ms)
	59.2				-5.86		(T =	64.6 ms)

				CAS	E METHOD					
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
RP	535.5	444.6	353.7	262.8	171.9					
RX	603.7	566.2	543.4	528.1	517.6	507.7	498.5	491.1	490.3	489.4
RU	535.5	444.6	353.7	262.8	171.9					

RAU = 409.2 (kips); RA2 = 565.4 (kips)

Current CAPWAP Ru = 492.0 (kips); Corresponding J(RP)= 0.10; J(RX) = 1.37

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
17.3	35.83	479.3	510.7	510.7	1.38	0.20	0.21	36.5	551.5	1074

PILE PROFILE AND PILE MODEL									
Depth	Area	E-Modulus	Spec. Weight	Perim.					
ft	in²	ksi	lb/ft ³	ft					
0.0	15.5	29992.2	492.000	3.97					
105.3	15.5	29992.2	492.000	3.97					
Toe Area	141.9	in^2							

STH 96 over Fox River (B-5-831); Pile: PIER 10 #8 EOID APE D25-42, HP 12 x 53; Blow: 245 GRL Engineers, Inc.

Test: 02-Feb-2015 17:12 CAPWAP(R) 2014 OP: RF

Segmnt	Dist.	Impedance	Imped.		Tension	Comp	ression	Perim.	Wave
Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed
	ft	kips/ft/s	%	in		in		ft	ft/s
1	3.3	27.67	0.00	0.00	0.000	-0.00	0.000	3.97	16807.9
13	42.8	30.67	10.84	0.00	0.000	-0.00	0.000	3.97	16807.9
14	46.1	27.67	0.00	0.00	0.000	-0.00	0.000	3.97	16807.9
32	105.3	27.67	0.00	0.00	0.000	-0.00	0.000	3.97	16807.9

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c 12.5 ms Total volume: 11.373 ft³, Volume ratio considering added impedance: 1.003

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. STH 96 over Fox River (B-5-831); Pile: PIER 10 #8 BOR Test: 03-Feb-2015 09:04 APE D25-42, HP 12 x 53; Blow: 5 GRL Engineers, Inc.

CAPWAP(R) 2014 OP: RF

			CAPWAP SUMM	ARY RESULT	S		
Total CAPWAP	Capacity:	501.0;	along Shaft	113.0;	at Toe	388.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	u Unit	Unit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist
No.	Gages	Grade			Ru	(Depth)	(Area
	ft	ft	kips	kips	kips	kips/ft	ks
				501.0			
1	32.9	5.0	5.0	496.0	5.0	1.01	0.2
2	39.5	11.5	5.0	491.0	10.0	0.76	0.1
3	46.1	18.1	5.0	486.0	15.0	0.76	0.1
4	52.7	24.7	5.0	481.0	20.0	0.76	0.1
5	59.2	31.3	5.0	476.0	25.0	0.76	0.1
6	65.8	37.9	7.0	469.0	32.0	1.06	0.2
7	72.4	44.4	12.0	457.0	44.0	1.82	0.40
8	79.0	51.0	12.0	445.0	56.0	1.82	0.40
9	85.6	57.6	12.0	433.0	68.0	1.82	0.4
10	92.1	64.2	15.0	418.0	83.0	2.28	0.5
11	98.7	70.8	15.0	403.0	98.0	2.28	0.5
12	105.3	77.4	15.0	388.0	113.0	2.28	0.5
Avg. Shaf	it		9.4			1.46	0.3
Тое			388.0				393.7
Soil Model Pa	arameters/E	xtensions			Shaft	Тое	
Smith Damping	g Factor				0.24	0.09	
Quake	-	(in)			0.20	0.21	
Case Damping	Factor				0.98	1.26	
Damping Type					Viscous	Smith	
Unloading Qu	ake	(% of	loading quak	e)	100	113	
Reloading Le	vel	(% of	Ru)		-100	100	
Unloading Le	vel	(% of	Ru)		67		
Resistance G	ap (include	d in Toe	Quake) (in)			0.03	
Soil Plug We	ight	(kips)			0.147	
CAPWAP match	quality	=	3.46	(Wave Up M	atch) ; RS	A = 0	
Observed: Fi				Blow Count		96 b/ft	
Computed: Fi			-	Blow Count		139 b/ft	
Transducer			0.96; F4(F523) CA			200 2720	
	A3(K974) CAL:		1.09; A4(K1020) CA				
max. Top Com	p. Stress	=	31.3 ksi	(T= 36.0	ms, max= 1	1.032 x Top)	
max. Comp. S	tress	= :	32.3 ksi	(Z= 32.9	ft, T= 3	7.8 ms)	
max. Tens. S	tress	= -:	1.35 ksi	(Z= 59.2	ft, T= 69	9.9 ms)	

STH 96 over Fox River (B-5-831); Pile: PIER 10 #8 BOR APE D25-42, HP 12 x 53; Blow: 5 GRL Engineers, Inc.

Test: 03-Feb-2015 09:04 CAPWAP(R) 2014 OP: RF

			EXTI	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.3	485.8	0.0	31.3	0.00	32.7	16.8	1.26
2	6.6	485.9	0.0	31.3	0.00	32.4	16.8	1.24
4	13.2	486.4	0.0	31.4	0.00	31.7	16.7	1.18
6	19.7	487.1	0.0	31.4	0.00	30.9	16.6	1.12
8	26.3	489.6	0.0	31.6	0.00	29.9	16.5	1.06
10	32.9	501.2	-8.4	32.3	-0.54	28.8	16.0	0.99
12	39.5	489.9	-15.8	31.6	-1.02	26.4	15.5	0.93
14	46.1	478.1	-14.2	30.8	-0.91	24.2	15.0	0.86
16	52.7	466.3	-17.8	30.1	-1.15	22.0	14.6	0.79
18	59.2	455.7	-20.9	29.4	-1.35	19.7	14.2	0.71
20	65.8	451.5	-13.5	29.1	-0.87	17.6	13.6	0.64
22	72.4	455.5	-16.0	29.4	-1.03	15.2	12.8	0.56
23	75.7	443.7	-6.3	28.6	-0.41	13.2	12.4	0.52
24	79.0	441.5	-14.6	28.5	-0.94	12.6	12.0	0.49
25	82.3	437.3	-5.8	28.2	-0.38	10.8	11.6	0.45
26	85.6	453.2	-12.5	29.2	-0.81	10.1	11.3	0.42
27	88.8	440.2	-5.3	28.4	-0.34	8.6	10.9	0.38
28	92.1	442.1	-10.8	28.5	-0.70	8.0	10.5	0.34
29	95.4	422.5	-2.2	27.2	-0.14	6.5	10.0	0.31
30	98.7	440.7	-9.0	28.4	-0.58	5.9	9.7	0.27
31	102.0	421.7	-4.0	27.2	-0.26	4.6	10.5	0.24
32	105.3	425.3	-5.6	27.4	-0.36	4.0	10.1	0.21
Absolute	32.9			32.3			(T =	37.8 ms)
	59.2				-1.35		(T =	69.9 ms)

	CASE METHOD									
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	607.2	571.4	535.5	499.7	463.9	428.1	392.2	356.4	320.6	284.8
RX	607.2	576.9	563.4	550.0	537.3	524.6	511.8	499.1	489.0	481.6
RU	612.8	577.5	542.2	507.0	471.7	436.4	401.2	365.9	330.6	295.4
RAU =	392.2 (ki	.ps); RA	.2 = 5	59.5 (ki	ps)					
Current	CAPWAP Ru	= 501.0	(kips);	Correspo	nding J(RP)= 0.3	0; J(RX)	= 0.69		

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
16.9	35.83	467.5	498.0	498.0	1.23	0.13	0.13	32.8	582.8	2153

	PILE H	PROFILE AND PILE M	IODEL	
Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in ²	ksi	lb/ft ³	ft
0.0	15.5	29992.2	492.000	3.97
105.3	15.5	29992.2	492.000	3.97
Toe Area	141.9	in^2		
Top Segment Length	3.29 ft, Top	Impedance 2	8 kips/ft/s	
Wave Speed: Pile Top	p 16807.9, Elastic	c 16807.9, Overall	16807.9 ft/s	
STH 96 over Fox River (B-5-831); Pile: PIER 10 #8 BOR APE D25-42, HP 12 x 53; Blow: 5 GRL Engineers, Inc.

Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c 12.5 ms Total volume: 11.334 ft³, Volume ratio considering added impedance: 1.000

500

600

STH 96 over Fox River (B-5-831); Pile: PIER 10 ; APE D25-42, HP 12 x 53; Blow: 189 (Test: 02-Feb-2015 18:07:) GRL Engineers, Inc.

2.40

Match Quality Poor - Results May Be Unreliable!!!

Pile Force at Ru 04-Feb-2015

CAPWAP(R) 2014

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. STH 96 over Fox River (B-5-831); Pile: PIER 10 Test: 02-Feb-2015 18:07 APE D25-42, HP 12 x 53; Blow: 189 GRL Engineers, Inc.

GRL Enginee	ers, inc.						OP: RF
	Mat	ch Quali	ty Poor - Rest	ults May B	e Unreliab	le!!!	
			CAPWAP SUMM	ARY RESULT	s		
Total CAPWA	P Capacity:	449.0	; along Shaft	74.0;	at Toe	375.0 kips	
Soil	Dist.	Depth	Ru	Force	Sur	n Unit	Unit
Sgmnt	Below	Below		in Pile	ot	E Resist.	Resist.
No.	Gages	Grade			Ru	ı (Depth)	(Area)
	ft	ft	kips	kips	kips	s kips/ft	ksf
				449.0			
1	30.3	2.3	4.0	445.0	4.0) 1.71	0.43
2	37.0	9.1	3.0	442.0	7.0	0.45	0.11
3	43.7	15.8	4.0	438.0	11.0	0.60	0.15
4	50.4	22.5	4.0	434.0	15.0	0.60	0.15
5	57.1	29.2	3.0	431.0	18.0	0.45	0.11
6	63.9	35.9	3.0	428.0	21.0	0.45	0.11
7	70.6	42.7	5.0	423.0	26.0	0.74	0.19
8	77.3	49.4	5.0	418.0	31.0	0.74	0.19
9	84.0	56.1	7.0	411.0	38.0	1.04	0.26
10	90.8	62.8	7.0	404.0	45.0	1.04	0.26
11	97.5	69.6	12.0	392.0	57.0	1.79	0.45
12	104.2	76.3	17.0	375.0	74.0	2.53	0.64
Avg. Sha	aft		6.2			0.97	0.24
То	e		375.0				380.58
Soil Model	Parameters/E	xtension	IS		Shaft	Тое	
Smith Dampi	ng Factor				0.16	0.08	
Quake	-	(in)			0.18	0.37	
Case Dampin	g Factor				0.43	1.08	
Damping Typ	-				Viscous	Smith	
Unloading Q	uake	(% 0	f loading quak	e)	30	32	
Reloading L	level	(% 0	f Ru)		0	0	
Unloading L	evel	(% 0	f Ru)		73		
Soil Plug W	Neight	(kip	s)		0.070		
CAPWAP mato	h quality	=	6.95	(Wave Up M	Match) ; RS	A = 0	
Observed: F		=		Blow Count		55 b/ft	
Computed: F		=	-	Blow Count		66 b/ft	
max. Top Co	mp. Stress	=	31.5 ksi	(T= 36.2	ms, max=	1.026 х Тор)	
max. Comp.	Stress	=	32.3 ksi	(Z= 30.3	ft, T= 3	7.8 ms)	
max. Tens.	Stress	=	-6.23 ksi	(Z= 63.9	ft, T= 6	5.4 ms)	
max. Energy	(EMX)	=	35.8 kip-ft;	max. Meas	ured Top D	ispl. (DMX)=	1.37 in

STH 96 over Fox River (B-5-831); Pile: PIER 10 APE D25-42, HP 12 x 53; Blow: 189 GRL Engineers, Inc. Test: 02-Feb-2015 18:07 CAPWAP(R) 2014 OP: RF

			EXTI	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.4	487.9	-22.3	31.5	-1.44	35.8	16.8	1.41
2	6.7	488.5	-22.4	31.5	-1.44	35.7	16.8	1.40
4	13.4	489.8	-22.7	31.6	-1.47	35.2	16.7	1.36
6	20.2	491.3	-24.3	31.7	-1.57	34.5	16.6	1.30
8	26.9	497.4	-25.3	32.1	-1.63	33.6	16.4	1.24
10	33.6	488.8	-23.5	31.5	-1.51	31.7	16.2	1.17
12	40.3	484.8	-38.9	31.3	-2.51	29.9	15.9	1.11
14	47.1	477.5	-48.5	30.8	-3.13	28.0	15.7	1.04
16	53.8	469.4	-78.3	30.3	-5.05	26.2	15.4	0.98
18	60.5	465.0	-91.4	30.0	-5.89	24.5	15.2	0.90
20	67.2	462.9	-93.5	29.9	-6.03	22.6	14.9	0.83
21	70.6	467.4	-91.4	30.1	-5.89	21.9	14.7	0.79
22	73.9	454.7	-84.2	29.3	-5.43	20.5	14.6	0.75
23	77.3	460.0	-81.8	29.7	-5.28	19.9	14.4	0.72
24	80.7	456.5	-70.7	29.4	-4.56	18.5	14.1	0.68
25	84.0	463.1	-67.9	29.9	-4.38	17.8	13.7	0.64
26	87.4	462.9	-60.7	29.9	-3.91	16.3	13.4	0.61
27	90.8	476.1	-60.8	30.7	-3.92	15.7	13.1	0.57
28	94.1	478.2	-50.7	30.8	-3.27	14.4	13.0	0.53
29	97.5	489.1	-48.2	31.5	-3.11	13.8	15.1	0.50
30	100.8	476.1	-29.1	30.7	-1.88	12.2	16.4	0.46
31	104.2	482.8	-24.2	31.1	-1.56	11.2	14.9	0.43
Absolute	30.3			32.3			(T =	37.8 ms)
	63.9				-6.23		(T =	65.4 ms)

	CASE METHOD											
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8		
RP	530.0	441.8	353.6	265.4	177.2							
RX	574.8	556.3	537.8	520.0	508.3	501.1	496.6	492.5	488.7	485.2		
RU	530.0	441.8	353.6	265.4	177.2							

RAU = 462.1 (kips); RA2 = 539.8 (kips)

Current CAPWAP Ru = 449.0 (kips); Corresponding J(RP)= 0.18;

RMX requires higher damping; see PDA-W

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
17.1	36.00	472.2	498.9	498.9	1.37	0.21	0.22	35.7	540.4	1014

PILE PROFILE AND PILE MODEL

Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in²	ksi	lb/ft ³	ft
0.0	15.5	29992.2	492.000	3.97
104.2	15.5	29992.2	492.000	3.97
Toe Area	141.9	in^2		

STH 96 over Fox River (B-5-831); Pile: PIER 10 APE D25-42, HP 12 x 53; Blow: 189 GRL Engineers, Inc. Test: 02-Feb-2015 18:07 CAPWAP(R) 2014 OP: RF

Segmnt	Dist.In	pedance	Imped.		Tension	Comp	ression	Perim.	Wave	Soil
Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
	ftki	lps/ft/s	%	in		in		ft	ft/s	kips
1	3.4	27.67	0.00	0.00	0.000	-0.00	0.000	3.97	16807.9	0.000
27	90.8	27.67	0.00	0.00	0.000	-0.00	0.000	3.97	16807.9	0.010
28	94.1	27.67	0.00	0.00	0.000	-0.00	0.000	3.97	16807.9	0.020
29	97.5	27.67	0.00	0.00	0.000	-0.00	0.000	3.97	16807.9	0.010
31	104.2	27.67	0.00	0.00	0.000	-0.00	0.000	3.97	16807.9	0.020

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.200 ms, 2L/c 12.4 ms Total volume: 11.216 ft³; Volume ratio considering added impedance: 1.000

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. STH 96 over Fox River (B-5-831); Pile: PIER 10 #17 BOR Test: 03-Feb-2015 09:26 APE D25-42, HP 12 x 53; Blow: 5 GRL Engineers, Inc.

CAPWAP(R) 2014 OP: RF

			CAPWAP SUM	MARY RESULT	S		
Total CAPWAP	Capacity:	482.0;	along Shaft	102.0;	at Toe	380.0 kips	
Soil	Dist.	Depth	Ru	Force	Su	m Unit	Unit
Sgmnt	Below	Below		in Pile	0	f Resist.	Resist
No.	Gages	Grade			R	u (Depth)	(Area
	ft	ft	kips	kips	kip	s kips/ft	ks
				482.0			
1	30.3	2.4	4.0	478.0	4.	0 1.65	0.4
2	37.0	9.1	3.0	475.0	7.	0 0.45	0.1
3	43.7	15.9	4.0	471.0	11.	0 0.60	0.1
4	50.4	22.6	4.0	467.0	15.	0 0.60	0.1
5	57.1	29.3	3.0	464.0	18.	0 0.45	0.1
6	63.9	36.0	3.0	461.0	21.	0 0.45	0.1
7	70.6	42.8	5.0	456.0	26.	0 0.74	0.1
8	77.3	49.5	11.0	445.0	37.	0 1.64	0.4
9	84.0	56.2	11.0	434.0	48.	0 1.64	0.43
10	90.8	62.9	11.0	423.0	59.	0 1.64	0.43
11	97.5	69.7	18.0	405.0	77.	0 2.68	0.6
12	104.2	76.4	25.0	380.0	102.	0 3.72	0.9
Avg. Shaf	it		8.5			1.34	0.3
Toe			380.0				385.6
Soil Model Pa	arameters/E	xtensions			Shaft	Тое	
Smith Damping	g Factor				0.22	0.08	
Quake		(in)			0.20	0.33	
Case Damping	Factor				0.81	1.10	
Damping Type					Viscous	Smith	
Unloading Qu	ake	(% of	loading qua	ke)	100	30	
Unloading Le [.]	vel	(% of	Ru)		80		
Resistance G	ap (include	d in Toe 🤇	Quake) (in)			0.05	
Soil Plug We	ight	(kips)			0.045		
CAPWAP match	quality	= 3	.36	(Wave Up M	atch) ; R	SA = 0	
Observed: Fi	nal Set	= 0	.18 in;	Blow Count	=	69 b/ft	
Computed: Fi	nal Set	= C	.17 in;	Blow Count	=	71 b/ft	
max. Top Com	p. Stress	= 3	3.7 ksi	(T= 36.2	ms, max=	1.023 ж Тор)	
max. Comp. S	tress	= 3	4.5 ksi	(Z= 30.3	ft, T= 3	37.8 ms)	
max. Tens. S	tress	= -6	.41 ksi	(Z= 63.9	ft, T= 6	53.6 ms)	
max. Energy	(EMY)	= 3	6.3 kip-ft;		unad man T	Displ. (DMX)=	1.40 in

STH 96 over Fox River (B-5-831); Pile: PIER 10 #17 BOR Test: 03-Feb-2015 09:26 APE D25-42, HP 12 x 53; Blow: 5 GRL Engineers, Inc.

CAPWAP(R) 2014 OP: RF

			EXTI	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.4	523.1	-34.9	33.7	-2.25	36.3	18.1	1.38
2	6.7	523.3	-34.8	33.8	-2.24	36.1	18.1	1.36
4	13.4	523.9	-34.5	33.8	-2.22	35.5	18.0	1.31
6	20.2	524.7	-33.5	33.8	-2.16	34.8	18.0	1.25
8	26.9	531.4	-34.4	34.3	-2.22	33.8	17.7	1.19
10	33.6	518.9	-31.9	33.5	-2.06	31.6	17.4	1.12
12	40.3	512.3	-38.9	33.0	-2.51	29.9	17.0	1.06
14	47.1	501.6	-51.7	32.4	-3.33	27.8	16.7	0.99
16	53.8	489.8	-72.8	31.6	-4.70	25.6	16.4	0.92
18	60.5	485.2	-90.9	31.3	-5.86	23.7	16.0	0.85
20	67.2	484.2	-98.1	31.2	-6.33	21.9	15.5	0.77
21	70.6	493.2	-97.4	31.8	-6.28	21.1	15.2	0.73
22	73.9	481.9	-88.0	31.1	-5.68	19.6	14.8	0.70
23	77.3	494.0	-88.6	31.9	-5.72	18.8	14.3	0.66
24	80.7	466.1	-70.6	30.1	-4.56	16.5	13.7	0.62
25	84.0	479.2	-68.6	30.9	-4.42	15.8	13.2	0.58
26	87.4	465.8	-51.1	30.0	-3.30	13.8	12.9	0.54
27	90.8	478.3	-52.5	30.8	-3.38	13.0	12.7	0.50
28	94.1	471.2	-38.8	30.4	-2.50	11.3	12.4	0.46
29	97.5	484.9	-38.7	31.3	-2.50	10.6	14.2	0.42
30	100.8	463.1	-19.5	29.9	-1.26	8.6	14.3	0.39
31	104.2	476.9	-21.2	30.8	-1.37	7.1	12.0	0.35
Absolute	30.3			34.5			(T =	37.8 ms)
	63.9				-6.41		(T =	63.6 ms)

	CASE METHOD											
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8		
RP	627.0	589.1	551.2	513.3	475.3	437.4	399.5	361.6	323.6	285.7		
RX	627.0	594.9	577.0	559.0	542.0	525.2	516.5	509.3	502.1	495.0		
RU	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		

RAU = 427.1 (kips); RA2 = 522.6 (kips)

Current CAPWAP Ru = 482.0 (kips); Corresponding J(RP)= 0.76; matches RX20 within 5%

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
18.1	36.00	499.9	525.3	525.3	1.40	0.18	0.18	36.6	558.6	1357

	PILE	PROFILE AND PILE M	IODEL	
Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in ²	ksi	lb/ft ³	ft
0.0	15.5	29992.2	492.000	3.97
104.2	15.5	29992.2	492.000	3.97
Toe Area	141.9	in ²		

STH 96 over Fox River (B-5-831); Pile: PIER 10 #17 BOR APE D25-42, HP 12 x 53; Blow: 5 GRL Engineers, Inc.

Segmnt	Dist.In	npedance	Imped.	1	Tension	Comp	ression	Perim.	Wave	Soil
Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
	ftki	ips/ft/s	%	in		in		ft	ft/s	kips
1	3.4	27.67	0.00	0.00	0.000	-0.00	0.000	3.97	16807.9	0.000
26	87.4	27.67	0.00	0.00	0.000	-0.00	0.000	3.97	16807.9	0.015
29	97.5	27.67	0.00	0.00	0.000	-0.00	0.000	3.97	16807.9	0.000
31	104.2	27.67	0.00	0.00	0.000	-0.00	0.000	3.97	16807.9	0.000

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.200 ms, 2L/c 12.4 ms Total volume: 11.216 ft³, Volume ratio considering added impedance: 1.000

GRL Engineers, Inc.

1540 E. Dundee Road, Suite 102 Palatine, IL 60074 USA Phone: (847) 221-2750 Fax: (847) 221-2752

TRANSMITTAL

To: Mr. Wade Hamacher	From: Al Ziai			
Company: Lunda Construction Company	No. of Sheets: 32			
E-mail: whamacher@lundaconstruction.com	Date: November 19, 2014			

RE: Dynamic Testing Results – Pier 11
 WisDOT Contract B-5-381 – STH 96 over Fox River
 Wrightstown, Wisconsin

On November 17, 2014, Pier 11 #1 and Pier 11 #32 at the above structure were dynamically tested during initial driving. The piles were tested during restrike on November 18. The 75.4 foot long HP 12 x 53 H-piles were equipped with driving shoes and were driven with an APE D25-42 hammer operated on fuel setting three. Plans indicate the piles in Pier 11 have a required driving resistance, or ultimate capacity, of 380 kips and an estimated length of 50 feet.

Pier 11 #1 was driven to a depth of 54.6 feet below the excavated ground surface at EL 590.5, which corresponds to a pile tip elevation of EL 535.9. The blow count over the final increment of driving was 10 blows for ³/₄ inch of penetration at an average hammer stroke of 9.1 feet. The blow count at the beginning of restrike of Pier 11 #1 was 10 blows for ¹/₂ inch of penetration at an average hammer stroke of 9.3 feet.

Pier 11 #32 was driven to a depth of 54.6 feet below the excavated ground surface at EL 590.5, which corresponds to a pile tip elevation of EL 535.9. The blow count over the final increment of driving was 10 blows for 1¼ inch of penetration at an average hammer stroke of 8.9 feet. The blow count at the beginning of restrike of Pier 11 #32 was 10 blows for ½ inch of penetration at an average hammer stroke of 8.9 feet.

For the 380 kip piles, driven with the APE D25-42 hammer, in Pier 11 of the STH 96 Bridge over the Fox River we recommend using the following criteria:

Field Observed	Recommended Minimum
Hammer Stroke	Blow Count
(feet)	(blows per inch)
7.5	11
8.0	8
8.5	6
9.0	5

We recommended the above blow count at the corresponding hammer stroke be maintained for

two consecutive inches of driving. Driving may be terminated if production piles exceed 10 blows over an increment of one inch or less at hammer strokes of 8.5 feet. After splicing or any other delays, we recommend not applying the criteria until at least two feet of driving has occurred beyond the termination depth associated with the delay.

Please contact us if there are any problems meeting the recommended criterion or if you have any questions on these recommendations.

GRL Engineers, Inc.

Al Ziai Al Ziai

Travis Coleman, P.E.

cc: Steve Seymour - steve.seymour@omnni.com Jeff Horsfall - jeffrey.horsfall@dot.wi.gov

Attachments:

Dynamic Results	(Pages 3 – 12)
CAPWAP Results	(Pages 13 – 32)

PDIPLOT Ver. 2014.1 - Printed: 18-Nov-2014

Test date: 17-Nov-2014

STH 96 over Fox River (B-5-831) - Pier 11 #1 - EOID APE D25-42, HP 12 x 53

STH 9	6 over Fox River (B-5-831) - Pier 11 #1 - EOID
OP: RI	F
AR:	15.50 in^2

Page 1 of 3 PDIPLOT Ver. 2014.1 - Printed: 18-Nov-2014

APE D25-42, HP 12 x 53 Test date: 17-Nov-2014 SP: 0.492 k/ft3

LE:	72.40 ft							EM: 30	0.492 k/ft3 0,000 ksi
	16,807.9 f/s Max Measured Co	ompr. Stress				EMX:	Max Transfe		1.00
	Compression Stre O.E. Diesel Hamr						Blows per M Max Case M	inute lethod Capacity	(JC=0.9)
BL# end 40	depth ft 19.00	BLC bl/ft 3	TYPE AV1 MAX MIN	CSX ksi 12.0 12.0 12.0	CSB ksi 3.5 3.5 3.5 3.5	STK ft 3.6 3.6 3.6	EMX k-ft 8 8 8	BPM ** 61 61 61	RX9 kips 60 60 60
40	20.00	3	AV1 MAX MIN	8.8 8.8 8.8	2.8 2.8 2.8	3.2 3.2 3.2 3.2	5 5 5	64 64 64	45 45 45
40	21.00	3	AV1 MAX MIN	8.8 8.8 8.8	2.7 2.7 2.7	3.2 3.2 3.2	5 5 5	65 65 65	46 46 46
40	22.00	3	AV1 MAX MIN	12.5 12.5 12.5	3.7 3.7 3.7	3.5 3.5 3.5	10 10 10	62 62 62	60 60 60
40	23.00	3	AV1 MAX MIN	21.1 21.1 21.1	4.9 4.9 4.9	4.8 4.8 4.8	21 21 21	53 53 53	46 46 46
40	24.00	3	AV1 MAX MIN	22.0 22.0 22.0	5.1 5.1 5.1	4.9 4.9 4.9	18 18 18	53 53 53	70 70 70
40	25.00	3	AV1 MAX MIN	18.0 18.0 18.0	4.6 4.6 4.6	4.3 4.3 4.3	14 14 14	56 56 56	69 69 69
40	26.00	3	AV1 MAX MIN	16.2 16.2 16.2	4.0 4.0 4.0	4.0 4.0 4.0	14 14 14	58 58 58	54 54 54
40	27.00	3	AV1 MAX MIN	18.9 18.9 18.9	4.3 4.3 4.3	4.4 4.4 4.4	17 17 17	55 55 55	61 61 61
40	28.00	3	AV1 MAX MIN	21.2 21.2 21.2	5.4 5.4 5.4	4.9 4.9 4.9	18 18 18	53 53 53	68 68 68
40	29.00	3	AV1 MAX MIN	19.6 19.6 19.6	5.2 5.2 5.2	4.6 4.6 4.6	17 17 17	54 54 54	69 69 69
40	30.00	3	AV1 MAX MIN	18.4 18.4 18.4	4.6 4.6 4.6	4.3 4.3 4.3	15 15 15	56 56 56	65 65 65
40	31.00	3	AV1 MAX MIN	18.1 18.1 18.1	4.5 4.5 4.5	4.3 4.4 4.4	14 14 14	56 56 56	65 65 65
40	32.00	3	AV1 MAX MIN	16.8 16.8 16.8	4.2 4.2 4.2	4.2 4.2 4.2	15 15 15	57 57 57	57 57 57
42	33.00	3	AV1 MAX MIN	21.7 21.7 21.7	4.9 4.9 4.9	5.1 5.1 5.1	20 20 20	52 52 52	62 62 62
47	34.00	5	AV1 MAX MIN	22.3 22.3 22.3	6.1 6.1 6.1	5.1 5.1 5.1	21 21 21	52 52 52	68 68 68
52	35.00	5	AV1 MAX MIN	21.6 21.6 21.6	5.0 5.0 5.0	5.0 5.0 5.0	18 18 18	52 52 52	68 68 68
57	36.00	5	AV1 MAX MIN	17.0 17.0 17.0	4.4 4.4 4.4	4.2 4.2 4.2	12 12 12	57 57 57	71 71 71

STH 96 over Fox River (B-5-831) - Pier 11 #1 - EOID

Page 2 of 3 PDIPLOT Ver. 2014.1 - Printed: 18-Nov-2014

APE D25-42, HP 12 x 53 Test date: 17-Nov-2014

OP: RF							,	Test date: 17-I	
BL# end	depth ft	BLC bl/ft	TYPE	CSX ksi	CSB ksi	STK ft	EMX k-ft	BPM	RX9 kips
61	37.00	4	AV4 STD MAX MIN	19.5 4.4 24.0 12.6	4.8 0.7 5.6 3.7	4.7 0.8 5.5 3.6	18 6 24 9	54 4 61 50	64 6 68 53
66	38.00	5	AV4 STD MAX MIN	21.2 2.2 23.5 17.6	5.2 0.5 5.8 4.4	4.9 0.5 5.5 4.2	19 3 23 15	53 2 57 50	68 9 77 56
71	39.00	5	AV5 STD MAX MIN	19.5 2.3 22.2 15.6	5.3 0.7 6.4 4.4	4.6 0.4 5.1 3.9	17 3 22 12	55 2 59 52	77 4 82 72
76	40.00	5	AV4 STD MAX MIN	18.3 2.9 22.7 15.6	4.9 0.4 5.4 4.5	4.5 0.5 5.3 4.0	15 3 21 11	55 3 58 51	76 3 79 72
82	41.00	6	AV6 STD MAX MIN	21.3 2.7 24.7 17.5	5.6 0.4 6.4 4.9	5.0 0.6 5.8 4.3	19 3 24 15	52 3 56 49	79 4 85 75
86	42.00	4	AV4 STD MAX MIN	22.6 1.2 24.5 21.3	6.0 0.1 6.2 5.8	5.3 0.3 5.7 5.0	23 2 26 21	51 1 52 49	76 4 82 71
91	43.00	5	AV5 STD MAX MIN	21.6 1.9 24.3 19.1	5.7 0.3 6.2 5.4	5.1 0.4 5.8 4.6	21 3 25 17	52 2 54 49	81 6 87 72
95	44.00	4	AV4 STD MAX MIN	22.7 0.7 23.9 22.1	6.1 0.1 6.2 5.9	5.3 0.2 5.6 5.2	23 1 25 22	51 1 52 50	81 2 84 79
99	45.00	4	AV4 STD MAX MIN	21.6 0.8 22.3 20.2	6.2 0.3 6.6 5.7	5.1 0.2 5.2 4.8	22 2 24 20	52 1 53 51	81 8 89 69
104	46.00	5	AV5 STD MAX MIN	23.1 0.8 24.3 22.3	6.2 0.2 6.4 5.8	5.4 0.2 5.8 5.2	23 1 24 22	50 1 51 49	81 3 86 78
109	47.00	5	AV5 STD MAX MIN	22.5 0.7 23.4 21.4	6.4 0.2 6.6 6.0	5.3 0.2 5.5 5.1	22 1 23 21	51 1 52 50	85 5 92 77
114	48.00	5	AV5 STD MAX MIN	23.1 0.8 24.6 22.2	6.4 0.2 6.7 6.1	5.5 0.2 5.8 5.2	23 1 24 21	50 1 51 49	92 9 108 82
120	49.00	6	AV6 STD MAX MIN	25.3 1.2 27.0 23.6	8.8 0.7 9.7 7.6	5.9 0.3 6.5 5.6	24 1 25 23	48 1 50 46	132 6 140 123
127	50.00	7	AV7 STD MAX MIN	26.9 1.0 28.9 25.6	10.1 0.7 11.3 9.1	6.4 0.3 6.9 6.0	25 1 27 23	47 1 48 45	148 7 157 137
135	51.00	8	AV8 STD MAX MIN	27.3 1.5 29.5 25.4	11.3 0.8 12.8 10.2	6.4 0.4 6.9 5.9	24 1 27 22	47 1 48 45	156 9 171 142

STH 96 over Fox River (B-5-831) - Pier 11 #1 - EOID OP BE

Page 3 of 3 PDIPLOT Ver. 2014.1 - Printed: 18-Nov-2014

APE D25-42, HP 12 x 53

							Test date: 17-	Nov-2014
depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
ft	bl/ft		ksi	ksi	ft	k-ft	**	kips
52.00	9	AV9	27.6	13.1	6.5	24	46	177
		STD	1.0	0.4	0.3		1	9
			29.5	13.7	7.0		48	189
		MIN	25.8	12.2	6.0	20	45	164
53.00	12	AV12	29.0	14.4	6.9	25	45	196
		STD	1.5	0.9	0.4	2	1	9
		MAX	31.9	16.3	7.8	28	47	215
		MIN	26.9	12.8	6.3	22	42	183
54.00	13	AV13	29.6	15.2	6.9	25	45	204
		STD	0.9	0.8	0.2	2	1	13
		MAX	31.4	16.3	7.5	27	46	227
		MIN	28.4	13.9	6.5	21	43	191
54.50	26	AV13	30.3	20.6	7.2	23	44	309
		STD	1.3	5.3	0.5	2	1	95
		MAX	32.2	30.2	8.0	25	46	480
		MIN	27.9	14.5	6.5	19	42	205
54.56	160	AV9	35.4	37.8	9.1	30	39	588
		STD	0.8	1.7	0.4	2	1	14
		MAX	37.0	39.4	9.9	34	41	606
		MIN	34.1	33.6	8.4	28	38	560
		Average	25.0	11.4	6.0	22	49	163
		Std. Dev.	5.4				5	133
		Maximum	37.0	39.4			65	606
		Minimum				5	38	45
	ft 52.00 53.00 54.00 54.50	ftbl/ft52.00953.001254.001354.5026	ft bl/ft 52.00 9 AV9 STD MAX MIN 53.00 12 AV12 STD MAX MIN 54.00 13 AV13 STD MAX MIN 54.50 26 AV13 STD MAX MIN 54.56 160 AV9 STD MAX MIN 54.56 160 AV9 STD MAX MIN	ft bl/ft ksi 52.00 9 AV9 27.6 STD 1.0 MAX 29.5 MIN 25.8 300 12 AV12 29.0 53.00 12 AV12 29.0 STD 1.5 MAX 31.9 MIN 26.9 31.9 54.00 13 AV13 29.6 STD 0.9 54.00 13 AV13 29.6 STD 0.9 54.50 26 AV13 30.3 STD 1.3 MAX 31.4 MIN 28.4 34.1 54.50 26 AV13 30.3 32.2 MIN 27.9 35.4 STD 0.8 MAX 37.0 MIN 34.1 Average 25.0 Std. Dev. 5.4 Maximum 37.0 Minimum 8.8 37.0 37.0	ft bl/ft ksi ksi 52.00 9 AV9 27.6 13.1 STD 1.0 0.4 MAX 29.5 13.7 MIN 25.8 12.2 53.00 12 AV12 29.0 14.4 STD 1.5 0.9 MAX 31.9 16.3 MIN 26.9 12.8 54.00 13 AV13 29.6 15.2 54.00 13 AV13 29.6 15.2 STD 0.9 0.8 MAX 31.4 16.3 MIN 28.4 13.9 54.50 26 AV13 30.3 20.6 STD 1.3 5.3 MAX 32.2 30.2 MIN 27.9 14.5 54.56 160 AV9 35.4 37.8 STD 0.8 1.7 MAX 37.0 39.4 MIN 34.1 33.6 1.7 MAX 37.0	ft bl/ft ksi ksi ft 52.00 9 AV9 27.6 13.1 6.5 STD 1.0 0.4 0.3 MAX 29.5 13.7 7.0 MIN 25.8 12.2 6.0 53.00 12 AV12 29.0 14.4 6.9 STD 1.5 0.9 0.4 MAX 31.9 16.3 7.8 MIN 26.9 12.8 6.3 54.00 13 AV13 29.6 15.2 6.9 STD 0.9 0.8 0.2 MAX 31.4 16.3 7.5 MIN 28.4 13.9 6.5 5 5 5.5 5.3 0.5 5 54.50 26 AV13 30.3 20.6 7.2 5 54.50 26 AV13 30.3 20.6 7.2 5 54.50 160 AV9 35.4	ft bl/ft ksi ksi ft k-ft 52.00 9 AV9 27.6 13.1 6.5 24 STD 1.0 0.4 0.3 2 MAX 29.5 13.7 7.0 27 MIN 25.8 12.2 6.0 20 53.00 12 AV12 29.0 14.4 6.9 25 STD 1.5 0.9 0.4 2 2 2 53.00 12 AV12 29.0 14.4 6.9 25 STD 1.5 0.9 0.4 2 2 MAX 31.9 16.3 7.8 28 MIN 26.9 15.2 6.9 25 54.00 13 AV13 29.6 15.2 6.9 25 MAX 31.4 16.3 7.5 27 MIN 28.4 13.9 6.5 21 54.50 26	depth ft BLC bl/ft TYPE CSX ksi CSB ksi STK ft EMX k-ft BPM tt 52.00 9 AV9 27.6 13.1 6.5 24 46 STD 1.0 0.4 0.3 2 1 46 MAX 29.5 13.7 7.0 27 48 MIN 25.8 12.2 6.0 20 45 53.00 12 AV12 29.0 14.4 6.9 25 45 STD 1.5 0.9 0.4 2 1 MAX 31.9 16.3 7.8 28 47 MIN 26.9 12.8 6.3 22 42 54.00 13 AV13 29.6 15.2 6.9 25 45 MX 31.4 16.3 7.5 27 46 MIN 28.4 13.9 6.5 21 43 54.50 26 AV13 30.3 2

Total number of blows analyzed: 150

BL# depth (ft) Comments

40 32.33 Reference Elevation EL 590.5

Time Summary

Drive 6 minutes 31 seconds

4:24:31 PM - 4:31:02 PM (11/17/2014) BN 1 - 192

PDIPLOT Ver. 2014.1 - Printed: 18-Nov-2014

Test date: 18-Nov-2014

STH 96 over Fox River (B-5-831) - PIER 11 #1 - BOR APE D25-42, HP 12 x 53

GRL Engineers, Inc.	
Case Method & iCAP® Results	

Page 1 of 1 PDIPLOT Ver. 2014.1 - Printed: 18-Nov-2014

STH 96 over Fox River (B-5-831) - PIER 11 #1 - BOR

APE D25-42, HP 12 x 53

							r	$1 - D_{20} + 2, 1$	11 12 × 00
OP: AZ Tes								Test date: 18-	-Nov-2014
AR:	15.50 in^2							SP: (0.492 k/ft3
LE:	72.40 ft							EM: 30	0,000 ksi
WS: 1	16,807.9 f/s							JC:	1.00
CSX:	Max Measured C	Compr. Stress	6			EM	X: Max Transfe	rred Energy	
CSB:	Compression Str	ess at Bottor	n			BPN	I: Blows per M	inute	
STK:	O.E. Diesel Ham	mer Stroke				RXS	: Max Case M	lethod Capacity	y (JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
end	ft	bl/ft		ksi	ksi	ft	k-ft	**	kips
9	54.60	240	AV9	34.3	35.9	9.3	32	39	566
			STD	0.8	1.1	0.3	3	1	24
			MAX	35.3	37.4	9.6	35	40	596
			MIN	32.8	33.6	8.8	25	38	510
			Average	34.3	35.9	9.3	32	39	566
			Std. Dev.	0.8	1.1	0.3	3	1	24
			Maximum	35.3	37.4	9.6	35	40	596
			Minimum	32.8	33.6	8.8	25	38	510
	Total number of blows analyzed: 9								

Time Summary

Drive 14 seconds

4:12:53 PM - 4:13:07 PM (11/18/2014) BN 1 - 10

PDIPLOT Ver. 2014.1 - Printed: 18-Nov-2014

STH 96 over Fox River (B-5-831) - Pier 11 #32 - EOID APE D25-42, HP 12 x 53

Test date: 17-Nov-2014

STH 9	6 over Fox River (B-5-831) - Pier 11 #32 - EOID
OP: R	F
AR:	15.50 in^2

Page 1 of 2 PDIPLOT Ver. 2014.1 - Printed: 18-Nov-2014

APE D25-42, HP 12 x 53 Test date: 17-Nov-2014 SP: 0.492 k/ft3

AR: LE: WS: 1	15.50 in^2 72.40 ft 16,807.9 f/s								0.492 k/ft3 0,000 ksi 1.00
CSX: CSB:	Max Measured Co Compression Stres	s at Bottom				BPM:	Max Transfe Blows per Mi	rred Energy nute	
BL# end 3	O.E. Diesel Hamm depth ft 35.00	BLC bl/ft 3	TYPE AV3 STD MAX MIN	CSX ksi 10.8 0.2 11.1 10.6	CSB ksi 2.7 0.1 2.7 2.6	STK ft 5.0 0.1 5.1 4.9	EMX EMX k-ft 7 1 8 6	ethod Capacit BPM ** 52 1 53 52	(<u>JC=0.9)</u> RX9 kips 26 2 28 28 23
6	36.00	3	AV3 STD MAX MIN	10.9 1.0 12.3 10.2	2.9 0.1 3.0 2.8	5.1 0.4 5.6 4.7	7 1 8 6	52 2 54 49	24 8 35 17
10	37.00	4	AV4 STD MAX MIN	11.1 0.5 11.8 10.6	2.9 0.1 3.0 2.8	5.1 0.2 5.3 4.9	6 1 7 6	52 1 53 51	33 1 34 31
14	38.00	4	AV4 STD MAX MIN	10.9 1.4 12.6 9.0	3.0 0.3 3.2 2.5	5.1 0.5 5.7 4.4	7 1 8 5	52 2 56 49	32 4 38 27
18	39.00	4	AV4 STD MAX MIN	11.5 1.0 13.2 10.7	3.1 0.3 3.3 2.7	5.3 0.4 6.0 4.9	7 1 8 6	51 2 53 48	33 1 35 31
23	40.00	5	AV5 STD MAX MIN	11.2 1.0 12.4 9.4	2.9 0.3 3.2 2.5	5.1 0.4 5.7 4.4	6 1 7 5	52 2 56 49	40 3 42 34
28	41.00	5	AV5 STD MAX MIN	11.5 0.6 12.5 10.9	3.1 0.2 3.3 2.9	5.2 0.2 5.6 5.0	6 0 7 6	51 1 53 50	40 3 44 36
33	42.00	5	AV4 STD MAX MIN	15.5 4.9 23.7 11.3	4.9 1.9 7.7 2.9	4.8 0.7 5.5 3.8	8 4 16 4	54 4 59 50	60 24 86 35
38	43.00	5	AV5 STD MAX MIN	22.9 4.4 26.3 14.9	7.1 1.0 8.2 5.4	5.4 0.9 6.1 3.8	21 5 26 11	51 4 59 48	111 7 118 98
43	44.00	5	AV5 STD MAX MIN	23.8 1.9 25.9 21.2	7.3 0.2 7.5 6.9	5.5 0.4 6.0 5.0	22 3 26 18	50 2 52 48	111 4 118 106
51	45.00	8	AV8 STD MAX MIN	24.0 1.7 26.4 21.5	7.5 0.3 8.0 7.1	5.5 0.4 6.1 4.9	19 2 22 17	50 2 53 48	112 3 116 108
59	46.00	8	AV8 STD MAX MIN	24.1 2.2 27.5 20.7	7.5 0.4 8.1 6.8	5.6 0.5 6.4 4.9	20 2 22 17	50 2 53 46	113 5 121 107
65	47.00	6	AV6 STD MAX MIN	24.1 1.8 26.9 21.7	7.7 0.3 8.2 7.3	5.5 0.4 6.1 5.0	21 3 25 17	50 2 52 48	116 5 124 110
74	48.00	9	AV9 STD MAX MIN	26.0 2.3 29.9 22.6	10.3 3.6 18.9 7.7	5.9 0.5 6.7 5.1	20 2 22 17	48 2 52 45	141 32 213 117

STH 96 over Fox River (B-5-831) -	Pier 11 #3	2 - EOID

Page 2 of 2 PDIPLOT Ver. 2014.1 - Printed: 18-Nov-2014

APE D25-42, HP 12 x 53

BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX
nd	ft	bl/ft	IIFL	ksi	ksi	ft	k-ft	DF IVI **	kip
87	49.00	13	AV13	29.3	14.1	6.7	23	46	20
07	40.00	10	STD	1.5	2.3	0.4	2	1	1
			MAX	31.6	19.3	7.5	28	48	23
			MIN	26.6	11.5	6.0	19	43	17
100	50.00	13	AV13	28.8	12.3	6.6	23	46	17
			STD	1.0	0.5	0.3	1	1	
			MAX	30.7	13.3	7.2	25	48	19
			MIN	27.1	11.6	6.1	21	44	16
114	51.00	14	AV14	29.4	14.0	6.8	23	45	2
			STD	1.1	0.7	0.3	2	1	
			MAX	30.9	15.1	7.2	26	48	2
			MIN	27.3	12.2	6.1	21	44	19
131	52.00	17	AV17	28.5	14.9	6.7	20	46	2
			STD	1.3	0.6	0.4	2	1	
			MAX	30.9	16.1	7.5	22	48	2
			MIN	26.2	14.1	6.0	17	43	2
58	53.00	27	AV27	28.6	15.4	6.8	19	45	2
			STD	1.1	0.4	0.3	2	1	
			MAX	30.9	16.3	7.6	22	47	2
			MIN	26.6	14.8	6.1	16	43	2
189	54.00	31	AV31	29.3	16.8	7.0	19	45	2
			STD	1.4	1.4	0.4	2	1	
			MAX	32.1	20.8	7.9	22	47	3
			MIN	26.5	14.9	6.2	15	42	2
203	54.50	28	AV14	30.3	22.0	7.6	22	43	3
			STD	4.4	3.1	1.1	6	_4	
			MAX	33.4	26.4	8.6	28	57	4
			MIN	16.9	13.2	4.1	5	40	2
212	54.59	96	AV9	34.6	31.1	8.9	29	40	5
			STD	0.8	1.5	0.5	2	1	_
			MAX	36.0	33.7	10.2	32	41	5
			MIN	<u>33.4</u> 25.8	<u>28.6</u> 13.0	<u>8.4</u> 6.5	<u>27</u> 19	<u> </u>	<u>5</u>
			Average Std. Dev.	25.8 6.7	6.7	6.5 1.0	6	47	1
			Maximum	36.0	33.7	10.2	32	4 59	5
			Minimum	9.0	2.5	3.8	4	37	J
					mber of blows a		т	07	

BL# depth (ft) Comments

1 34.33

Time Summary

3:21:44 PM - 3:22:17 PM (11/17/2014) BN 1 - 30 3:22:17 PM - 3:34:30 PM Drive 33 seconds 12 minutes 13 seconds Stop Drive 4 minutes 37 seconds

Reference Elevation EL 590.5

3:34:30 PM - 3:39:07 PM BN 32 - 213

Total time [0:17:23] = (Driving [0:05:10] + Stop [0:12:13])

PDIPLOT Ver. 2014.1 - Printed: 18-Nov-2014

Test date: 18-Nov-2014

STH 96 over Fox River (B-5-831) - PIER 11 #32 - BOR APE D25-42, HP 12 x 53

GRL Engineers, Inc.	
Case Method & iCAP® Results	

Page 1 of 1 PDIPLOT Ver. 2014.1 - Printed: 18-Nov-2014

STH 96 over Fox River (B-5-831) - PIER 11 #32 - BOR

APE D25-42, HP 12 x 53

0111		(0 0 0 0 1) 1					r	11 L D 20 + 2, 1	11 12 × 00
OP: A	Z							Test date: 18	-Nov-2014
AR:	15.50 in^2							SP:	0.492 k/ft3
LE:	72.40 ft							EM: 3	0,000 ksi
WS: 1	16,807.9 f/s							JC:	1.00
CSX:	Max Measured C	Compr. Stress	6			EMX	K: Max Transfe	rred Energy	
CSB:	Compression Str	ess at Bottor	n			BPN	I: Blows per Mi	inute	
STK:	O.E. Diesel Ham	mer Stroke				RXS	: Max Case M	ethod Capacit	ty (JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
end	ft	bl/ft		ksi	ksi	ft	k-ft	**	kips
9	54.64	240	AV9	31.8	31.4	8.9	31	40	531
			STD	1.2	1.2	0.4	2	1	16
			MAX	33.3	32.6	9.4	34	41	547
			MIN	29.3	28.4	8.3	28	39	496
			Average	31.8	31.4	8.9	31	40	531
			Std. Dev.	1.2	1.2	0.4	2	1	16
			Maximum	33.3	32.6	9.4	34	41	547
			Minimum	29.3	28.4	8.3	28	39	496
				Total nu	umber of blows	analyzed: 9			

Time Summary

Drive 13 seconds

3:54:25 PM - 3:54:38 PM (11/18/2014) BN 1 - 10

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts STH 96 over Fox River (B-5-831); Pile: PIER 11 #1 EOIDTest: 17-Nov-2014 16:30APE D25-42, HP 12 x 53; Blow: 188CAPWAP(R) 2014GRL Engineers, Inc.OP: RFno liability whatsoever of any kind for the analysis solution and/or the applicationof the analysis result.

STH 96 over Fox River (B-5-831); Pile: PIER 11 #1 EOID Test: 17-Nov-2014 16:30 APE D25-42, HP 12 x 53; Blow: 188 GRL Engineers, Inc.

CAPWAP(R) 2014 OP: RF

:			CAPWAP SUMM	ARY RESULT	rs		
Total CAPWA	P Capacity:	539.0;	along Shaft	99.0;	at Toe	440.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.
No.	Gages	Grade			Ru	(Depth)	(Area)
	ft	ft	kips	kips	kips	kips/ft	ksf
				539.0			
1	26.3	8.5	4.0	535.0	4.0	0.47	0.12
2	32.9	15.0	4.0	531.0	8.0	0.61	0.15
3	39.5	21.6	4.0	527.0	12.0	0.61	0.15
4	46.1	28.2	4.0	523.0	16.0	0.61	0.15
5	52.7	34.8	4.0	519.0	20.0	0.61	0.15
6	59.2	41.4	4.0	515.0	24.0	0.61	0.15
7	65.8	48.0	5.0	510.0	29.0	0.76	0.19
8	72.4	54.5	70.0	440.0	99.0	10.64	2.68
Avg. Sha	ıft		12.4			1.82	0.46
Тоє	2		440.0				446.54
Soil Model	Parameters/E	xtensions			Shaft	Toe	
Smith Dampi	ng Factor				0.29	0.06	
Quake		(in)			0.21	0.21	
Case Dampin	g Factor				1.04	0.95	
Damping Typ	e				Viscous	Smith	
Unloading Q	uake	(% of	loading quak	e)	38	30	
Unloading L	evel	(% of	Ru)		36		
Resistance	Gap (include	d in Toe Ç	uake) (in)			0.00	
Soil Plug W	eight	(kips)				0.009	
CAPWAP matc	h quality	= 2	.12	(Wave Up M	Match) ; RSA	. = 0	
Observed: F	inal Set	= 0	.08 in; 1	Blow Count		160 b/ft	
Computed: F	inal Set	= 0	.07 in; 1	Blow Count	: =	183 b/ft	
Transducer	F3(F523) CA A3(K2214) CA		RF: 0.94; F4(HO RF: 1.06; A4(K9		94.4; RF: 0.9 305; RF: 1.0		
max. Top Co	mp. Stress	= 3	1.6 ksi	(T= 36.2	2 ms, max= 1	.158 x Top)	
max. Comp.	Stress	= 3	6.6 ksi	(Z= 72.4	l ft, T= 40	.7 ms)	
max. Tens.	Stress	= -5	.04 ksi	(Z= 26.3	3 ft, T= 57	.8 ms)	
max. Energy	(EMX)	= 2	8.0 kip-ft;	max. Meas	sured Top Di	spl. (DMX)=	1.06 in

STH 96 over Fox River (B-5-831); Pile: PIER 11 #1 EOID Test: 17-Nov-2014 16:30 APE D25-42, HP 12 x 53; Blow: 188 GRL Engineers, Inc.

CAPWAP(R) 2014 OP: RF

				REMA TABLE	EXTR			
max.	max.	max.	max.	max.	min.	max.	Dist.	Pile
Displ.	Veloc.	Trnsfd.	Tens.	Comp.	Force	Force	Below	Sgmnt
		Energy	Stress	Stress			Gages	No.
in	ft/s	kip-ft	ksi	ksi	kips	kips	ft	
1.05	16.4	28.0	-1.44	31.6	-22.3	490.3	3.3	1
1.02	16.4	27.6	-1.53	31.7	-23.7	491.1	6.6	2
0.99	16.3	27.1	-1.68	31.8	-26.1	493.5	9.9	3
0.96	16.3	26.5	-2.05	31.9	-31.7	493.9	13.2	4
0.92	16.2	26.0	-2.95	31.9	-45.7	493.9	16.5	5
0.89	16.1	25.4	-3.79	32.1	-58.8	497.6	19.7	6
0.85	15.9	24.8	-4.56	32.5	-70.8	503.1	23.0	7
0.82	15.7	24.1	-5.04	32.8	-78.2	508.8	26.3	8
0.78	15.4	22.4	-4.88	31.8	-75.6	492.4	29.6	9
0.74	15.2	21.6	-4.95	32.1	-76.8	498.0	32.9	10
0.70	15.0	19.9	-4.80	31.3	-74.4	485.4	36.2	11
0.66	14.8	19.1	-4.93	31.9	-76.4	494.2	39.5	12
0.61	14.6	17.6	-4.81	32.2	-74.5	499.0	42.8	13
0.57	14.3	16.7	-5.02	32.9	-77.9	509.4	46.1	14
0.53	14.1	15.2	-4.99	33.1	-77.3	513.2	49.4	15
0.49	13.9	14.3	-4.99	33.7	-77.4	522.5	52.7	16
0.44	13.7	12.8	-4.77	34.0	-73.9	527.9	55.9	17
0.40	13.4	11.8	-4.78	34.4	-74.2	532.9	59.2	18
0.35	13.2	10.4	-4.73	34.9	-73.3	540.9	62.5	19
0.31	13.0	9.5	-4.84	35.3	-75.1	547.8	65.8	20
0.26	12.0	8.2	-4.71	35.6	-73.0	552.5	69.1	21
0.22	9.9	5.1	-4.75	36.6	-73.7	567.8	72.4	22
40.7 ms)	(T =			36.6			72.4	osolute
57.8 ms)	(т =		-5.04				26.3	

				CAS	E METHOD					
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
RP	652.3	592.3	532.2	472.2	412.2					
RX	652.3	613.2	596.1	579.0	561.9	544.8	531.1	518.5	506.4	496.7
RU	652.3	592.3	532.2	472.2	412.2					

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips k	ips/in
16.5	36.03	456.4	496.1	496.4	1.06	0.08	0.08	28.4	599.7	2095

PILE PROFILE AND PILE MODEL

Depth	Area	E-Mod	ulus Spec.	Weight P	erim.
ft	in ²		ksi	lb/ft ³	ft
0.0	15.5	i 299	92.2	492.000	3.97
72.4	15.5	i 299	92.2	492.000	3.97
Toe Area	141.9) in ²			

Top Segment Length 3.29 ft, Top Impedance 28 kips/ft/s

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c 8.6 ms Total volume: 7.793 ft^{3;} Volume ratio considering added impedance: 1.000

Analysis: 18-Nov-2014

STH 96 over Fo:	<pre>k River (B-5-831);</pre>	Pile: PIER 11 #1 - BOR
APE D25-42, HP	12 x 53; Blow: 4	
GRL Engineers,	Inc.	

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. STH 96 over Fox River (B-5-831); Pile: PIER 11 #1 - BOR Test: 18-Nov-2014 16:12 APE D25-42, HP 12 x 53; Blow: 4 GRL Engineers, Inc.

CAPWAP(R) 2014 OP: AZ

			CAPWAP SUMMA	ARY RESULTS			
Total CAPWA	P Capacity:	565.0;	along Shaft	115.0;	at Toe	450.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.
No.	Gages	Grade			Ru	(Depth)	(Area)
	ft	ft	kips	kips	kips	kips/ft	ksf
				565.0			
1	26.3	8.5	7.0	558.0	7.0	0.82	0.21
2	32.9	15.1	7.0	551.0	14.0	1.06	0.27
3	39.5	21.7	7.0	544.0	21.0	1.06	0.27
4	46.1	28.2	7.0	537.0	28.0	1.06	0.27
5	52.7	34.8	10.0	527.0	38.0	1.52	0.38
6	59.2	41.4	15.0	512.0	53.0	2.28	0.57
7	65.8	48.0	22.0	490.0	75.0	3.34	0.84
8	72.4	54.6	40.0	450.0	115.0	6.08	1.53
Avg. Sha	ft		14.4			2.11	0.53
Тое			450.0				456.69
<u>Soil Model I</u>	Parameters/E	Extensions			Shaft	Тое	
Smith Dampin	ng Factor				0.38	0.06	
Quake	-	(in)			0.10	0.13	
Case Damping	g Factor				1.58	0.98	
Damping Type	9			V	/iscous Vi	scous	
Unloading Qu	Jake	(% of]	loading quak	e)	100	72	
Unloading L	evel	(% of I	Ru)		30		
Resistance (Gap (include	ed in Toe (Quake) (in)			0.04	
CAPWAP matcl	n quality	= 1	.83 (Wave Up Ma	tch) ; RSA	= 0	
Observed: F:	inal Set	= 0	.05 in; H	Blow Count	=	240 b/ft	
Computed: F:	inal Set	= 0	.04 in; H	Blow Count	=	333 b/ft	
Transducer	F3(F523) CAI	L: 93.8; RF:	0.95; F4(H083)	CAL: 94.4;	RF: 0.95		
	A3(K974) CAI	L: 305; RF:	1.05; A4(K2214) CAL: 332;	RF: 1.05		
max. Top Con	mp. Stress	= 32	2.4 ksi	(T= 36.2 :	ms, max= 1	.083 x Top)	
max. Comp.	Stress	= 3!	5.1 ksi	(Z= 52.7	ft, T= 43	.7 ms)	
max. Tens.	Stress	= -5	.64 ksi	(Z= 52.7	ft, T= 58	.2 ms)	
max. Energy	(EMX)	= 33	1.0 kip-ft;	max. Measu	red Top Di	spl. (DMX)=	1.03 in

STH 96 over Fox River (B-5-831); Pile: PIER 11 #1 - BOR Test: 18-Nov-2014 16:12 APE D25-42, HP 12 x 53; Blow: 4 GRL Engineers, Inc.

CAPWAP(R) 2014 OP: AZ

					EMA TABL	E				
Pile	Dist		nax.	min.	max.	max		max.	max.	max
Sgmnt	Belc		orce	Force	Comp.	Tens			Veloc.	Displ
No.	Gage				Stress	Stres		ergy		
	f	t I	tips	kips	ksi	ks	i ki	p-ft	ft/s	i
1	3.	3 50	02.9	-13.5	32.4	-0.8	7	31.0	16.6	1.0
2	6.	6 50	03.9	-17.5	32.5	-1.1	.3	30.4	16.6	1.0
3	9.	9 50	05.0	-21.4	32.6	-1.3	8	29.7	16.5	0.9
4	13.	2 50	06.3	-26.0	32.7	-1.6	8	29.0	16.5	0.9
5	16.	5 50	08.1	-36.9	32.8	-2.3	8	28.3	16.4	0.0
6	19.	7 53	L5.3	-47.8	33.2	-3.0	8	27.5	16.1	0.0
7	23.	0 52	26.2	-57.7	33.9	-3.7	2	26.7	15.7	0.8
8	26.	3 5	36.4	-66.9	34.6	-4.3	2	25.8	15.3	0.7
9	29.	6 53	L3.7	-67.8	33.1	-4.3	7	23.0	14.9	0.7
10	32.		21.6	-76.1	33.6	-4.9		22.1	14.5	0.6
11	36.		22.2	-78.2	33.7	-5.0		19.5	14.1	0.6
12	39.		31.5	-85.7	34.3	-5.5		18.6	13.8	0.5
13	42.		33.0	-83.6	34.4	-5.3		16.2	13.4	0.5
14	46.		41.9	-87.0	35.0	-5.6		15.2	13.0	0.5
15	49.		41.3	-84.9	34.9	-5.4		13.1	12.5	0.4
16	52.		44.4	-87.5	35.1	-5.6		12.1	12.0	0.4
10	55.		34.0	-80.7	34.4	-5.2		10.0	11.3	0.3
18	55.		42.7	-82.5	35.0	-5.3		9.0	10.6	0.3
19	62.		34.0	-71.3	34.4	-4.6		6.8	9.9	0.2 0.2
20	65.		33.6	-72.6	34.4	-4.6		5.9	9.0	
21	69.		10.3	-56.5	32.9	-3.6		4.0	7.4	0.1
22	72.	4 5.	L7.9	-57.7	33.4	-3.7	2	2.7	5.3	0.1
bsolute	52. 52.				35.1	-5.6		-	T = T =	43.7 ms 58.2 ms
								,		
					E METHOD					
[=	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	5 1.
P	715.9	664.8	613.6	562.5	511.4					
X	715.9	665.5	628.8	605.6	583.2	561.2	540.2	527.5	516.8	506.
υ	710.9	658.7	606.6	554.4	502.3					
AU = 1 urrent CA	67.8 (ki			628.1 (k		(PD)- 0	50. T(T	- (v	07	
VMX ft/s	TVP	VT1*Z kips	FT1 kips	FMX kips	DMX in	DFN in	SET	EMX kip-ft		S KH s kips/i
	ms	-	_	-				31.4		
16.2	36.03	449.4	522.2	522.2	1.03	0.05	0.05	31.4	090.5	500
			PII	E PROFIL	E AND PI	LE MODEI	ı			
	Depth			ea	E-Modu	lus	Spec.	Weight		Perim
	ft		in	2		ksi	11	b/ft³		f
	0.0		15	.5	2999	2.2	4	92.000		3.9
	72.4			.5	2999		4	92.000		3.9
'oe Area			141	.9	in ²					
Je Area			=	-						
oe Area op Segmen	t Length	3	.29 ft.	Top Impe	dance	28 4	ips/ft/	's		

 STH 96 over Fox River (B-5-831); Pile: PIER 11 #1 - BOR
 Test: 18-Nov-2014 16:12

 APE D25-42, HP 12 x 53; Blow: 4
 CAPWAP(R) 2014

 GRL Engineers, Inc.
 OP: AZ

Total volume: 7.793 ft^{3;} Volume ratio considering added impedance: 1.000

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts STH 96 over Fox River (B-5-831); Pile: PIER 11 #32Test: 17-Nov-2014 15:39APE D25-42, HP 12 x 53; Blow: 211CAPWAP(R) 2014GRL Engineers, Inc.OP: RFno liability whatsoever of any kind for the analysis solution and/or the applicationof the analysis result.

STH 96 over Fox River (B-5-831); Pile: PIER 11 #32 Test: 17-Nov-2014 15:39 APE D25-42, HP 12 x 53; Blow: 211 GRL Engineers, Inc.

CAPWAP(R) 2014 OP: RF

Sgmnt Below Below in Pile of Resist. Resist. No. Gages Grade Ru (Depth) (Are ft ft ft kips kips kips/ft k 1 26.3 8.5 10.0 561.0 10.0 1.18 0. 2 32.9 15.1 10.0 551.0 20.0 1.52 0. 3 39.5 21.7 6.0 545.0 26.0 0.91 0. 4 46.1 28.3 6.0 533.0 38.0 0.91 0. 5 52.7 34.8 6.0 533.0 38.0 0.91 0. 6 59.2 41.4 15.0 518.0 53.0 2.28 0. 7 65.8 48.0 24.0 494.0 77.0 3.65 0. 8 72.4 54.6 40.0 454.0 117.0 6.08 1. <th></th>	
Soil Dist. Depth Ru Force Sum Unit Un Sgmnt Below Below in Pile of Resist. Resist No. Gages Grade Ru (Depth) (Are ft ft kips kips kips kips/ft k 1 26.3 8.5 10.0 561.0 10.0 1.18 0. 2 32.9 15.1 10.0 551.0 20.0 1.52 0. 3 39.5 21.7 6.0 545.0 26.0 0.91 0. 4 46.1 28.3 6.0 533.0 38.0 0.91 0. 5 52.7 34.8 6.0 533.0 38.0 0.91 0. 6 59.2 41.4 15.0 518.0 53.0 2.28 0. 7 65.8 48.0 24.0 494.0 17.0 6.08 1.	t. a) sf ir
Sgmnt Below in Pile of Resist. Resist No. Gages Grade Ru (Depth) (Are ft ft kips kips kips kips/ft k 571.0 <	t. a) sf ir
No. Gages ft Grade ft kips kips kips kips kips/ft kips 1 26.3 8.5 10.0 561.0 10.0 1.18 0. 2 32.9 15.1 10.0 551.0 20.0 1.52 0. 3 39.5 21.7 6.0 545.0 26.0 0.91 0. 4 46.1 28.3 6.0 539.0 32.0 0.91 0. 5 52.7 34.8 6.0 533.0 38.0 0.91 0. 6 59.2 41.4 15.0 518.0 53.0 2.28 0. 7 65.8 48.0 24.0 494.0 77.0 3.65 0. 8 72.4 54.6 40.0 454.0 117.0 6.08 1. Avg. Shaft 14.6 2.14 0. 70.04 6.0 6.0 Soil Model Parameters/Extensions Shaft Toe 0	a) sf ir
ft ft kips kips kips kips/ft k 571.0 1 26.3 8.5 10.0 561.0 10.0 1.18 0. 2 32.9 15.1 10.0 551.0 20.0 1.52 0. 3 39.5 21.7 6.0 545.0 26.0 0.91 0. 4 46.1 28.3 6.0 539.0 32.0 0.91 0. 5 52.7 34.8 6.0 533.0 38.0 0.91 0. 6 59.2 41.4 15.0 518.0 53.0 2.28 0. 7 65.8 48.0 24.0 494.0 77.0 3.65 0. 8 72.4 54.6 40.0 454.0 117.0 6.08 1. Avg. Shaft 14.6 2.14 0. 7 0.27 0.04 Case Damping Factor 0.27 0.04 1.14 0.66 0.27 <td>sf ir</td>	sf ir
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30 0.25
2 32.9 15.1 10.0 551.0 20.0 1.52 0. 3 39.5 21.7 6.0 545.0 26.0 0.91 0. 4 46.1 28.3 6.0 539.0 32.0 0.91 0. 5 52.7 34.8 6.0 533.0 38.0 0.91 0. 6 59.2 41.4 15.0 518.0 53.0 2.28 0. 7 65.8 48.0 24.0 494.0 77.0 3.65 0. 8 72.4 54.6 40.0 454.0 117.0 6.08 1. Avg. Shaft 14.6 2.14 0. Toe 454.0 460. Soil Model Parameters/Extensions Shaft Toe Shaft 0.27 0.04 Case Damping Factor 0.27 0.04 1.14 0.66 Damping Type Viscous Viscous Viscous 2.30	30 0.25
3 39.5 21.7 6.0 545.0 26.0 0.91 0. 4 46.1 28.3 6.0 539.0 32.0 0.91 0. 5 52.7 34.8 6.0 533.0 38.0 0.91 0. 6 59.2 41.4 15.0 518.0 53.0 2.28 0. 7 65.8 48.0 24.0 494.0 77.0 3.65 0. 8 72.4 54.6 40.0 454.0 117.0 6.08 1. Avg. Shaft 14.6 2.14 0. Toe 454.0 460. Soil Model Parameters/Extensions Shaft Toe Shaft 0.27 0.04 Case Damping Factor 0.27 0.04 1.14 0.66 Damping Type Viscous Viscous Viscous Unloading Quake (% of loading quake) 82 30	
4 46.1 28.3 6.0 539.0 32.0 0.91 0. 5 52.7 34.8 6.0 533.0 38.0 0.91 0. 6 59.2 41.4 15.0 518.0 53.0 2.28 0. 7 65.8 48.0 24.0 494.0 77.0 3.65 0. 8 72.4 54.6 40.0 454.0 117.0 6.08 1. Avg. Shaft 14.6 2.14 0. Toe 454.0 460. 460. Soil Model Parameters/Extensions Shaft Toe Sinith Damping Factor 0.27 0.04 Case Damping Factor 0.27 0.04 Damping Type Viscous Viscous Unloading Quake (% of loading quake) 82 30	38 0.25
5 52.7 34.8 6.0 533.0 38.0 0.91 0. 6 59.2 41.4 15.0 518.0 53.0 2.28 0. 7 65.8 48.0 24.0 494.0 77.0 3.65 0. 8 72.4 54.6 40.0 454.0 117.0 6.08 1. Avg. Shaft 14.6 2.14 0. Toe 454.0 460. 460. Soil Model Parameters/Extensions Shaft Toe Soil Model Parameters/Extensions Shaft Toe Smith Damping Factor 0.27 0.04 Case Damping Factor 1.14 0.66 Damping Type Viscous Viscous Unloading Quake (% of loading quake) 82 30	23 0.25
6 59.2 41.4 15.0 518.0 53.0 2.28 0. 7 65.8 48.0 24.0 494.0 77.0 3.65 0. 8 72.4 54.6 40.0 454.0 117.0 6.08 1. Avg. Shaft 14.6 2.14 0. Toe 454.0 460. 460. Soil Model Parameters/Extensions Shaft Toe Smith Damping Factor 0.27 0.04 Case Damping Factor 0.27 0.04 Damping Type Viscous Viscous Unloading Quake (% of loading quake) 82 30	23 0.25
7 65.8 48.0 24.0 494.0 77.0 3.65 0. 8 72.4 54.6 40.0 454.0 117.0 6.08 1. Avg. Shaft 14.6 2.14 0. Toe 454.0 460. Soil Model Parameters/Extensions Shaft Toe Smith Damping Factor 0.27 0.04 Case Damping Factor 1.14 0.66 Damping Type Viscous Viscous Unloading Quake (% of loading quake) 82 30	23 0.25
8 72.4 54.6 40.0 454.0 117.0 6.08 1. Avg. Shaft 14.6 2.14 0. Toe 454.0 460. Soil Model Parameters/Extensions Shaft Toe Smith Damping Factor 0.27 0.04 Case Damping Factor 1.14 0.66 Damping Type Viscous Viscous Unloading Quake (% of loading quake) 82 30	57 0.25
Avg. Shaft14.62.140.Toe454.0460.Soil Model Parameters/ExtensionsShaftToeSmith Damping Factor0.270.04Case Damping Factor1.140.66Damping TypeViscousViscousUnloading Quake(% of loading quake)8230	92 0.25
Toe454.0460.Soil Model Parameters/ExtensionsShaftToeSmith Damping Factor0.270.04Case Damping Factor1.140.66Damping TypeViscousViscousUnloading Quake(% of loading quake)8230	53 0.23
Soil Model Parameters/ExtensionsShaftToeSmith Damping Factor0.270.04Case Damping Factor1.140.66Damping TypeViscousViscousUnloading Quake(% of loading quake)8230	54 0.24
Smith Damping Factor0.270.04Case Damping Factor1.140.66Damping TypeViscousViscousUnloading Quake(% of loading quake)8230	75 0.24
Case Damping Factor1.140.66Damping TypeViscousViscousUnloading Quake(% of loading quake)8230	
Damping TypeViscousUnloading Quake(% of loading quake)8230	
Unloading Quake (% of loading quake) 82 30	
Unloading Level (% of Ru) 27	
Resistance Gap (included in Toe Quake) (in) 0.09	
Soil Plug Weight (kips) 0.031	
CAPWAP match quality = 2.02 (Wave Up Match) ; RSA = 0	
Observed: Final Set = 0.13 in; Blow Count = 96 b/ft	
Computed: Final Set = 0.09 in; Blow Count = 139 b/ft	
Transducer F3(F523) CAL: 93.8; RF: 0.95; F4(H083) CAL: 94.4; RF: 0.95 A3(K2214) CAL: 332; RF: 1.05; A4(K974) CAL: 305; RF: 1.05	
max. Top Comp. Stress = 31.7 ksi (T= 36.2 ms, max= 1.070 x Top)	
max. Comp. Stress = 33.9 ksi (Z= 59.2 ft, T= 43.3 ms)	
max. Tens. Stress = -5.70 ksi (Z= 32.9 ft, T= 57.8 ms)	
<pre>max. Energy (EMX) = 31.3 kip-ft; max. Measured Top Displ. (DMX)=</pre>	1 10

STH 96 over Fox River (B-5-831); Pile: PIER 11 #32 Test: 17-Nov-2014 15:39 APE D25-42, HP 12 x 53; Blow: 211 GRL Engineers, Inc.

CAPWAP(R) 2014 OP: RF

				REMA TABLE	EXTF			
max	max.	max.	max.	max.	min.	max.	Dist.	Pile
Displ	Veloc.	Trnsfd.	Tens.	Comp.	Force	Force	Below	Sgmnt
		Energy	Stress	Stress			Gages	No.
i	ft/s	kip-ft	ksi	ksi	kips	kips	ft	
1.1	16.6	31.3	-1.24	31.7	-19.2	491.6	3.3	1
1.0	16.6	30.7	-1.41	31.8	-21.8	492.3	6.6	2
1.0	16.6	30.1	-1.57	31.8	-24.3	493.1	9.9	3
0.9	16.5	29.4	-2.05	31.9	-31.8	494.1	13.2	4
0.9	16.5	28.8	-2.91	32.0	-45.1	495.4	16.5	5
0.9	16.2	28.1	-3.72	32.4	-57.6	501.8	19.7	6
0.8	15.8	27.4	-4.50	33.1	-69.8	513.5	23.0	7
0.8	15.4	26.6	-5.24	33.8	-81.2	523.8	26.3	8
0.8	15.0	23.6	-5.27	31.3	-81.8	485.4	29.6	9
0.7	14.7	22.7	-5.70	31.9	-88.3	493.9	32.9	10
0.7	14.4	19.9	-5.27	31.7	-81.7	490.9	36.2	11
0.6	14.2	19.1	-5.41	32.2	-83.9	498.9	39.5	12
0.6	14.0	17.2	-5.16	32.2	-80.0	499.7	42.8	13
0.5	13.7	16.3	-5.31	32.6	-82.3	505.1	46.1	14
0.5	13.5	14.6	-5.05	32.6	-78.3	506.1	49.4	15
0.5	13.1	13.7	-5.17	33.4	-80.2	517.6	52.7	16
0.4	12.6	12.1	-4.90	33.3	-76.0	516.4	55.9	17
0.4	12.1	11.1	-5.02	33.9	-77.8	525.9	59.2	18
0.3	11.4	9.0	-4.24	33.3	-65.7	516.5	62.5	19
0.3	10.8	8.0	-4.34	33.6	-67.3	520.9	65.8	20
0.2	10.4	5.9	-3.35	32.1	-51.9	497.7	69.1	21
0.2	9.1	4.3	-3.42	32.2	-53.0	499.9	72.4	22
43.3 ms	(T =			33.9			59.2	solute
57.8 ms	(т =		-5.70				32.9	

STH	96 over	ox River (B-5-831); Pile: PIE	R 11 #32
APE	D25-42,	P 12 x 53; Blow: 211	
GRL	Engineer	, Inc.	

CASE METHOD										
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	654.2	623.7	593.1	562.5	531.9	501.4	470.8	440.2	409.6	379.1
RX	658.8	629.6	614.1	602.7	591.6	580.5	569.4	558.3	552.1	547.4
RU	654.2	623.7	593.1	562.5	531.9	501.4	470.8	440.2	409.6	379.1
RAU = 164.3 (kips); RA2 = 607.4 (kips)										
Current	CAPWAP Ru	= 571.0	(kips);	Correspo	nding J(RP)= 0.2	7; J(RX)	= 0.59		

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips 1	kips/in
16.6	36.03	459.9	500.1	500.1	1.10	0.13	0.13	31.9	626.3	3027

PILE PROFILE AND PILE MODEL

	Depth	Area	E-Modulus	Spec. Weight	Perim.
	ft	in ²	ksi	lb/ft ³	ft
	0.0	15.5	29992.2	492.000	3.97
	72.4	15.5	29992.2	492.000	3.97
Toe Area		141.9	in ²		

Top Segment Length 3.29 ft, Top Impedance 28 kips/ft/s

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c 8.6 ms

Total volume: 7.793 ft^{3;} Volume ratio considering added impedance: 1.000

\mathtt{STH}	96 over	Foz	c Ri	ver	(в-5-83	1);	Pile:	PIER	11	#32	-	BOR	
APE	D25-42,	ΗP	12 :	ĸ 53	; Blow:	5							
GRL	Engineer	s,	Inc	•									

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. STH 96 over Fox River (B-5-831); Pile: PIER 11 #32 - BOR Test: 18-Nov-2014 15:54 APE D25-42, HP 12 x 53; Blow: 5 GRL Engineers, Inc.

CAPWAP(R) 2014 OP: AZ

			CAPWAP SUMMA	RY RESULTS	5		
Total CAPWA	P Capacity:	573.0;	along Shaft	121.0;	at Toe	452.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.
No.	Gages	Grade			Ru	(Depth)	(Area)
	ft	ft	kips	kips	kips	kips/ft	ksf
				573.0			
1	26.3	8.5	7.0	566.0	7.0	0.82	0.21
2	32.9	15.1	7.0	559.0	14.0	1.06	0.27
3	39.5	21.7	7.0	552.0	21.0	1.06	0.27
4	46.1	28.3	7.0	545.0	28.0	1.06	0.27
5	52.7	34.9	7.0	538.0	35.0	1.06	0.27
6	59.2	41.5	18.0	520.0	53.0	2.73	0.69
7	65.8	48.0	27.0	493.0	80.0	4.10	1.03
8	72.4	54.6	41.0	452.0	121.0	6.23	1.57
Avg. Sha	ft		15.1			2.22	0.56
Тое			452.0				458.72
Soil Model	Parameters/E	xtensions			Shaft	Тое	
Smith Dampin	ng Factor				0.36	0.05	
Quake	3	(in)			0.15	0.17	
Case Damping	g Factor				1.57	0.82	
Damping Type	8			7	Viscous Vi	scous	
Unloading Q	uake	(% of	loading quak	e)	45	30	
Unloading L	evel	(% of	Ru)		39		
Resistance (Gap (include	d in Toe	Quake) (in)			0.01	
CAPWAP match				-	tch) ; RSA		
Observed: F			•	low Count	=	240 b/ft	
Computed: F: Transducer	F3(F523) CAI		.07 in; E : 0.97; F4(H083)	Slow Count	= PF. 0.97	171 b/ft	
Transducer	A3(K974) CA		: 1.03; A4(K2214		RF: 1.03		
max. Top Con	mp. Stress	= 3	2.4 ksi	(T= 36.2	ms, max= 1	.074 x Top)	
max. Comp.	Stress	= 3	4.8 ksi	(Z= 26.3	ft, T= 37	.6 ms)	
max. Tens.	Stress	= -7	.33 ksi	(Z= 39.5	ft, T= 58	.0 ms)	
max. Energy	(EMX)	= 3	2.7 kip-ft;	max. Measu	red Top Di	spl. (DMX)=	1.07 in

STH 96 over Fox River (B-5-831); Pile: PIER 11 #32 - BOR Test: 18-Nov-2014 15:54 APE D25-42, HP 12 x 53; Blow: 5 GRL Engineers, Inc.

CAPWAP(R) 2014 OP: AZ

					REMA TABL					
Pile			max.	min.	max.	max		max.	max.	max
Sgmnt			orce	Force	Comp.	Tens			Veloc.	Displ
No.	-			le deserve	Stress	Stres		ergy	EL / m	
			kips	kips	ksi	ks		p-ft	ft/s	i
1			02.7	-24.9	32.4	-1.6		32.7	16.7	1.0
2			03.8	-32.5	32.5	-2.1		32.0	16.6	1.0
3			05.1	-43.9	32.6	-2.8		31.4	16.6	0.9
4			06.5	-55.5	32.7	-3.5		30.7	16.5	0.9
5			09.3	-67.3	32.8	-4.3		29.9	16.4	0.93
6			18.1	-78.1	33.4	-5.0		29.2	16.1	0.8
7			29.3	-88.0	34.1	-5.6		28.4	15.7	0.8
8			39.7	-97.8	34.8	-6.3		27.5	15.3	0.79
9			05.2	-99.3	32.6	-6.4		24.7	14.9	0.7
10			15.5	-108.3	33.3	-6.9		23.8	14.5	0.70
11			09.4	-108.1	32.9	-6.9		21.3	14.2	0.60
12			23.0	-113.7	33.7	-7.3		20.4	13.8	0.61
13			24.7	-109.0	33.8	-7.0		18.1	13.4	0.5
14 15			33.9	-111.7	34.4	-7.2 -6.8		17.1 15.1	13.0 12.6	0.53
15			33.6 38.3	-106.9	34.4 34.7	-0.0		15.1	12.0	0.44
10			33.6	-109.0 -104.2	34.7	-6.7		12.2	12.0	0.4
18			39.7	-104.2	34.8	-6.8		11.2	10.5	0.3
19			23.5	-91.3	34.8	-5.8		8.8	9.6	0.3
20			30.1	-92.8	34.2	-5.9		7.9	8.8	0.20
20			02.3	-71.0	32.4	-4.5		5.7	7.7	0.20
22			07.8	-71.1	32.8	-4.5		4.1	6.2	0.17
bsolute	26.				34.8		-		C =	37.6 ms
msorace	39.				54.0	-7.3	22	-	 C =	58.0 ms
		-					-		-	
				CAS	E METHOD					
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.	3 0.9
RP	691.3	663.6	635.9	608.2	580.5	552.8	525.1	497.5	469.3	3 442.1
хх	698.5	672.2	647.3	633.5	619.7	605.9	592.1	578.3	564.	
τU	691.3	663.6	635.9	608.2	580.5	552.8	525.1	497.5	469.3	8 442.3
RAU =	85.9 (ki	ps); R	A2 =	621.9 (}	(ips)					
Current CA	APWAP Ru	= 573.0	(kips)	; Corresp	onding J	(RP) = 0	.43; J(F	ex) = 0.	74	
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QU	
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kip	s kips/in
16.6	36.03	459.0	509.2	515.4	1.07	0.05	0.05	33.5	717.	4 282
			PII	LE PROFII	E AND PI	LE MODEI				
	Depth		Ar	ea	E-Modu	lus	Spec. N	Weight		Perim
	ft		ir			ksi	-	o/ft ³		ft
	0.0			.5	2999			92.000		3.9
	72.4		15	.5	2999	2.2	4	92.000		3.9
loe Area			141	.9	in^2					

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c $8.6\ ms$

STH 96 over Fox River (B-5-831); Pile: PIER 11 #32 - BOR	Test: 18-Nov-2014 15:54
APE D25-42, HP 12 x 53; Blow: 5	CAPWAP(R) 2014
GRL Engineers, Inc.	OP: AZ

Total volume: 7.793 ft^{3;} Volume ratio considering added impedance: 1.000

GRL Engineers, Inc.

1540 E. Dundee Road, Suite 102 Palatine, IL 60074 USA Phone: (847) 221-2750 Fax: (847) 221-2752

TRANSMITTAL

To: Mr. Wade Hamacher	From: Travis Coleman
Company: Lunda Construction Company	No. of Sheets: 32
E-mail: whamacher@lundaconstruction.com	Date: November 13, 2014

RE: Dynamic Testing Results – Pier 12 WisDOT Contract B-5-381 – STH 96 over Fox River Wrightstown, Wisconsin

On November 12, 2014, Pier 12 #7 and Pier 12 #26 at the above structure were dynamically tested during initial driving. The piles were tested during restrike on November 13. The 75.4 foot long HP 12 x 53 H-piles were equipped with driving shoes and were driven with an APE D25-42 hammer operated on fuel setting three. Plans indicate the piles in Pier 12 have a required driving resistance or ultimate capacity of 390 kips, and an estimated length of 45 feet.

Pier 12 #7 was driven to a depth of 52.7 feet below the excavated ground surface at EL 590.5, which corresponds to a pile tip elevation of EL 537.8. The blow count over the final increment of driving was 5 blows for $\frac{5}{10}$ inch of penetration at an average hammer stroke of 8.0 feet. The blow count at the beginning of restrike of Pier 12 #7 was 10 blows for 1.75 inches of penetration at an average hammer stroke of 8.3 feet.

Pier 12 #26 was driven to a depth of 52.9 feet below the excavated ground surface at EL 590.5, which corresponds to a pile tip elevation of EL 537.6. The blow count over the final increment of driving was 5 blows for ½ inch of penetration at an average hammer stroke of 8.5 feet. The blow count at the beginning of restrike of Pier 12 #26 was 10 blows for 1 inch of penetration at an average hammer stroke of 9.0 feet.

For the 390 kip piles, driven with the APE D25-42 hammer, in Pier 12 of the STH 96 Bridge over the Fox River we recommend using the following criteria:

Field Observed	Recommended Minimum
Hammer Stroke	Blow Count
(feet)	(blows per inch)
7.5	8
8.0	7
8.5	6
9.0	5

We recommended the above blow count at the corresponding hammer stroke be maintained for

two consecutive inches of driving. Driving may be terminated if production piles exceed 10 blows over an increment of one inch or less at hammer strokes of 8.5 feet. After splicing or any other delays, we recommend not applying the criteria until at least two feet of driving has occurred beyond the termination depth associated with the delay.

Please contact us if there are any problems meeting the recommended criterion or if you have any questions on these recommendations.

GRL Engineers, Inc.

Rory Flynn, E.I.

Travis Coleman, P.E.

cc: Steve Seymour - steve.seymour@omnni.com Jeff Horsfall - jeffrey.horsfall@dot.wi.gov

Attachments:

Dynamic Results	(Pages 3 – 12)
CAPWAP Results	(Pages 13 – 32)

GRL Engineers, Inc. - Case Method & iCAP® Results

Test date: 12-Nov-2014

STH 96 over Fox River (B-5-831) - Pier 12 #7 - EOID APE D25-42, HP 12 x 53 GRL Engineers, Inc. Case Method & iCAP® Results

STH 96 over Fox River (B-5-831) - Pier 12 #7 - OP: AZ				
AR:	15.50 in^2			

Page 1 of 2 PDIPLOT Ver. 2014.1 - Printed: 12-Nov-2014

APE D25-42, HP 12 x 53 Test date: 12-Nov-2014 SP: 0.492 k/ft3

<u>OP: A</u>	Z							Test date: 12	2-Nov-2014
AR: LE:	15.50 in^2 72.40 ft							EM: 3	0.492 k/ft3 30,000 ksi
	16,807.9 f/s	amor Stroop					May Transfa	JC:	1.00
	Max Measured Co Compression Stre						Max Transfe Blows per M		
	O.E. Diesel Hamn							lethod Capaci	ity (JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
end	ft	bl/ft		ksi	ksi	ft	k-ft	**	kips
8	30.00	8	AV8	22.5	7.7	6.3	16	48	97
			STD	3.3	0.6	1.4	8	5	14
			MAX	29.9	8.6	8.0	34 11	54	127
			MIN	18.7	6.6	4.6		42	79
14	31.00	6	AV6 STD	22.8	7.0	5.6	21	50	103
			MAX	2.2 25.2	0.4 7.4	0.5 6.2	3 24	2 54	4 107
			MIN	18.7	6.4	4.6	14	47	97
22	32.00	8	AV8	22.1	6.7	5.5	19	50	103
	02.00	Ũ	STD	3.4	0.5	0.8	5	4	7
			MAX	26.2	7.3	6.6	27	56	113
			MIN	16.8	5.9	4.3	13	46	93
30	33.00	8	AV8	22.2	6.7	5.5	20	50	103
			STD	2.1	0.3	0.5	3	2	4
			MAX MIN	24.4 17.6	7.2 6.1	6.1 4.4	24 14	56 48	109 93
		_							
37	34.00	7	AV7 STD	21.5 4.0	6.8 1.3	5.8 1.7	21 6	50 7	102 18
			MAX	24.1	7.9	9.3	26	65	113
			MIN	11.9	3.9	3.1	7	39	58
44	35.00	7	AV7	24.4	8.1	6.2	26	47	121
	00100		STD	1.0	0.3	0.3	2	1	4
			MAX	25.2	8.7	6.5	28	50	127
			MIN	22.2	7.7	5.6	22	46	115
52	36.00	8	AV8	26.8	14.7	6.9	28	45	187
			STD MAX	2.0 29.1	1.6 16.6	0.6 7.6	4 33	2 49	29 233
			MIN	23.4	11.8	5.9	22	49	233 147
60	37.00	8	AV8	26.6	12.0	6.8	28	45	169
00	57.00	0	STD	0.8	0.6	0.2	20	43	9
			MAX	28.0	13.0	7.1	31	46	190
			MIN	25.5	11.3	6.5	25	44	160
70	38.00	10	AV10	27.3	14.8	7.1	28	44	213
			STD	0.6	0.5	0.2	1	1	5
			MAX MIN	28.5 26.4	15.9 14.1	7.5 6.8	31 26	45 43	223 206
		10							
80	39.00	10	AV10 STD	27.1 0.9	15.3 0.4	7.1 0.3	27 2	44 1	222 8
			MAX	28.6	16.0	7.5	31	46	237
			MIN	25.3	14.5	6.6	24	43	212
91	40.00	11	AV11	27.6	16.5	7.2	26	44	242
			STD	0.8	0.7	0.2	2	1	7
			MAX	28.7	17.9	7.6	27	45	252
			MIN	26.2	15.2	6.8	23	43	231
111	41.00	20	AV20	27.3	17.1	7.1	23	44	267
			STD MAX	0.6 28.3	0.3 17.7	0.2 7.4	1 26	1 46	11 280
			MIN	25.7	16.3	6.6	20	43	246
144	42.00	33	AV33	27.0	17.4	7.0	22	45	297
144	42.00	55	STD	1.0	0.5	0.3	2		7
			MAX	28.3	18.2	7.4	25	47	312
			MIN	24.3	16.1	6.2	17	43	285
178	43.00	34	AV34	27.8	17.2	7.3	24	44	313
			STD	0.6	0.4	0.2	1	1	6
			MAX MIN	28.9 26.3	18.2 16.4	7.7 6.9	26 21	45 43	323 301
				20.0	10.4	0.0	Z 1	70	001

GRL Engineers, Inc. Case Method & iCAP® Results

STH 96 over Fox River	(B-5-831) - Pier	12 #7 - EOID)
OP AZ			

Page 2 of 2 PDIPLOT Ver. 2014.1 - Printed: 12-Nov-2014

> APE D25-42, HP 12 x 53 Test date: 12-Nov-2014

BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	R۷
nd	ft	bl/ft		ksi	ksi	ft	k-ft	**	ki
212	44.00	34	AV34	27.9	16.6	7.4	24	43	32
		-	STD	0.7	0.5	0.2	1	1	-
			MAX	29.5	17.4	7.9	27	45	3
			MIN	26.5	15.6	6.9	22	42	3
253	45.00	41	AV41	28.2	15.6	7.4	25	43	3
			STD	0.6	0.6	0.2	1	0	
			MAX	29.2	16.8	7.8	27	45	3
			MIN	26.4	14.7	6.9	21	42	3
99	46.00	46	AV44	28.4	15.6	7.5	25	43	3
			STD	0.7	0.4	0.2	1	1	
			MAX	30.8	16.3	8.3	29	44	3
			MIN	26.8	14.5	7.0	23	41	3
45	47.00	46	AV44	28.2	15.8	7.5	24	43	3
			STD	0.7	0.4	0.2	1	1	
			MAX	29.7	16.9	7.9	26	44	3
			MIN	26.8	15.3	7.1	22	42	3
89	48.00	44	AV44	28.1	15.6	7.5	24	43	3
			STD	0.7	0.3	0.2	1	1	
			MAX MIN	29.6 26.2	16.7 15.0	7.9 6.9	27 22	45 42	
34	49.00	45	AV45	29.2	15.7	7.7	26	42	
34	49.00	45	STD	29.2 0.7	0.3	0.2	20	42	
			MAX	31.0	16.4	8.3	29	44	3
			MIN	27.4	14.8	7.1	23	41	2
77	50.00	43	AV43	29.2	15.6	7.7	25	42	3
			STD	0.7	0.4	0.2	1	1	
			MAX	30.6	16.4	8.1	27	44	3
			MIN	27.5	14.7	7.3	23	41	2
20	51.00	43	AV43	29.5	15.8	7.8	26	42	2
			STD	0.7	0.4	0.2	1	1	
			MAX	31.6	16.7	8.5	29	44	3
			MIN	27.9	15.0	7.3	22	41	2
569	52.00	49	AV49	29.8	16.6	7.9	26	42	3
			STD	0.8	0.5	0.3	2	1	
			MAX MIN	31.4 27.7	17.7 15.6	8.4 7.2	29 22	44 41	
518	52.65	76	AV48	30.4	18.9	8.1	26	42	3
010	52.05	70	STD	0.7	0.7	0.1	20	42	
			MAX	31.8	20.6	8.6	29	43	2
			MIN	28.8	17.3	7.5	22	40	3
523	52.70	96	AV4	30.3	19.9	8.0	26	42	2
-			STD	0.2	0.9	0.1	1	0	
			MAX	30.7	21.3	8.1	27	42	4
			MIN	30.1	19.3	7.9	26	41	4
			Average	28.1	15.6	7.4	25	43	2
			Std. Dev.	2.1	2.7	0.6	3	2	
			Maximum	31.8	21.3	9.3	34	65	4
			Minimum	11.9	3.9 nber of blows a	3.1	7	39	

BL# depth (ft) Comments

1 29.13 Reported reference EL 590.5

Time Summary

Drive 16 minutes 49 seconds

9:25:36 AM - 9:42:25 AM (11/12/2014) BN 1 - 623

GRL Engineers, Inc. - Case Method & iCAP® Results

PDIPLOT Ver. 2014.1 - Printed: 13-Nov-2014

Test date: 13-Nov-2014

CSX (ksi) — RX9 (kips) — EMX (k-ft) Max Measured Compr. Stress Max Transferred Energy Max Case Method Capacity (JC=0.9) 30 0 10 20 30 40 50 60 0 10 20 40 50 60 0 100 200 300 400 500 600 0 4 В L 0 w Ν u m b е r 8 12 -0 10 20 30 40 50 60 0 2 4 6 8 10 12 0 20 40 60 80 100 120 CSB (ksi) — STK (ft) BLC (blows/ft) /=// Compression Stress at Bottom O.E. Diesel Hammer Stroke Blow Count

STH 96 over Fox River (B-5-831) - Pier 12 #7 - BOR APE D25-42, HP 12 x 53

	gineers, Inc. ethod & iCAP® Re	LOT Ver. 2014	F 1 - Printed: 13.	Page 1 of 1 -Nov-2014					
STH 96 over Fox River (B-5-831) - Pier 12 #7 - BOR OP: TC								APE D25-42, H Test date: 13	
LE:	15.50 in^2 72.40 ft ,807.9 f/s								0.492 k/ft3 0,000 ksi 1.00
CSB: C	Ax Measured Con compression Stress D.E. Diesel Hamme	s at Bottom					X: Max Transfe M: Blows per M		······································
BL#			TYPE	COV	CSB		EMX	BPM	<u> </u>
	depth ft	BLC bl/ft	TTPE	CSX ksi	ksi	STK ft	k-ft	BPINI **	RX9
end 10	52.85	68	AV9	32.1	25	8.3	27	41.4	kips 454
10	52.05	00	STD	3.7	23	1.2	6	3.6	434
			MAX	34.9	28	9.6	33	50.8	49
			MIN	22.3	16	5.3	12	38.3	324
			Average	32.1	25	8.3	27	41.4	454
			Std. Dev.	3.7	3	1.2	6	3.6	49
			Maximum	34.9	28	9.6	33	50.8	491
			Minimum	22.3	16	5.3	12	38.3	324
				-	umber of blows			00.0	02.
BL#	depth (ft)	Co	mments						
5	52.77	CV	N						
Time Su	Immary								
Drive	13 seconds			9:44:57 AM -	9:45:10 AM (11	/13/2014) BN [·]	1 - 10		

GRL Engineers, Inc. - Case Method & iCAP® Results

PDIPLOT Ver. 2014.1 - Printed: 12-Nov-2014

Test date: 12-Nov-2014

STH 96 over Fox River (B-5-831) - Pier 12 #26 - EOID APE D25-42, HP 12 x 53 GRL Engineers, Inc. Case Method & iCAP® Results

STH 9 OP: A	96 over Fox River (B-5-831) - Pier 12 #26 - EOID Z
AR:	15.50 in^2
ΙF·	72 40 ft

Page 1 of 2 PDIPLOT Ver. 2014.1 - Printed: 12-Nov-2014

APE D25-42, HP 12 x 53

PE D25-42, HP 12 X 53
Test date: 12-Nov-2014
SP: 0.492 k/ft3
EM: 30,000 ksi

<u>OP: A</u>	Z							Test date: 12	-Nov-2014
AR: LE: WS: 1	15.50 in^2 72.40 ft 16,807.9 f/s								0.492 k/ft3 0,000 ksi 1.00
CSX: CSB:	Max Measured Co Compression Stres	ss at Bottom				BPM:	Max Transfer Blows per Mi	rred Energy nute	
	O.E. Diesel Hamm						Max Case M		
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
end 5	ft 29.00	bl/ft 5	AV5 STD	ksi 21.8 2.4	ksi 7.7 0.3	ft 5.8 0.6	k-ft 21 6	49 3	kips 114 6
			MAX MIN	24.4 18.4	8.1 7.3	6.4 4.8	30 13	53 47	122 106
12	30.00	7	AV7 STD MAX MIN	23.0 0.3 23.4 22.4	7.5 0.2 7.7 7.3	5.9 0.1 6.0 5.7	24 1 25 23	49 0 49 48	115 3 120 110
20	31.00	8	AV8 STD MAX MIN	21.0 1.2 22.1 17.9	6.9 0.3 7.2 6.3	5.4 0.3 5.6 4.7	18 3 21 12	50 1 54 49	109 6 116 97
28	32.00	8	AV8 STD MAX MIN	18.6 2.6 22.5 14.7	6.4 0.5 7.2 5.6	4.9 0.6 5.9 4.1	14 4 21 8	53 3 57 49	102 7 113 92
37	33.00	9	AV9 STD MAX MIN	19.6 1.7 23.0 17.6	6.5 0.3 7.1 5.9	5.1 0.4 5.9 4.6	15 3 20 12	52 2 54 49	104 4 109 98
46	34.00	9	AV9 STD MAX MIN	19.3 2.0 22.3 15.3	6.3 0.3 6.9 5.7	5.0 0.4 5.7 4.2	15 3 19 8	52 2 57 49	104 6 112 94
56	35.00	10	AV10 STD MAX MIN	17.5 1.8 21.7 15.1	6.1 0.3 6.6 5.7	4.7 0.4 5.6 4.3	12 3 18 9	54 2 56 50	99 7 114 90
66	36.00	10	AV10 STD MAX MIN	18.8 1.7 20.9 16.3	6.4 0.3 6.8 5.8	5.0 0.4 5.5 4.4	14 3 18 9	53 2 55 50	101 6 108 91
76	37.00	10	AV10 STD MAX MIN	18.4 1.2 20.2 15.6	6.3 0.2 6.5 5.9	4.9 0.2 5.2 4.3	14 1 16 10	53 1 56 51	102 3 107 97
86	38.00	10	AV10 STD MAX MIN	19.2 3.3 24.8 14.3	9.1 3.9 17.0 5.6	5.1 0.8 6.7 4.1	14 5 24 7	52 4 57 46	132 45 232 92
97	39.00	11	AV11 STD MAX MIN	25.0 1.5 28.5 23.2	17.7 1.9 20.8 14.4	6.6 0.5 7.8 6.1	20 3 27 18	46 1 48 42	198 15 224 176
130	40.00	33	AV33 STD MAX MIN	25.0 2.4 28.4 20.4	16.2 4.9 22.1 8.5	6.6 0.7 7.7 5.3	19 3 23 13	46 2 51 43	258 63 336 158
154	41.00	24	AV24 STD MAX MIN	24.9 1.0 27.3 23.2	14.1 1.3 18.3 12.8	6.6 0.3 7.3 6.0	19 2 23 17	46 1 48 44	220 14 274 202
184	42.00	30	AV30 STD MAX MIN	25.6 0.9 27.2 24.0	16.0 0.7 17.0 14.2	6.8 0.3 7.3 6.3	20 1 23 17	45 1 47 44	249 14 272 220

GRL Engineers, Inc. Case Method & iCAP® Results

STH 96 over Fox River	B-5-831) - Pier 12 #26 - EOID
OP AZ	

Page 2 of 2 PDIPLOT Ver. 2014.1 - Printed: 12-Nov-2014

> APE D25-42, HP 12 x 53 Test date: 12-Nov-2014

OP: AZ								Test date: 12-	
BL# end	depth ft	BLC bl/ft	TYPE	CSX ksi	CSB ksi	STK ft	EMX k-ft	BPM	RX9 kip
228	43.00	44	AV44 STD MAX MIN	26.8 1.0 29.0 24.9	18.3 1.0 19.7 16.6	7.2 0.3 7.8 6.5	22 2 26 18	44 1 46 42	300 13 323 274
274	44.00	46	AV46 STD MAX MIN	27.5 0.9 29.4 25.5	18.9 0.6 20.0 16.9	7.4 0.3 7.9 6.9	23 2 26 19	43 1 45 42	31 32 30
318	45.00	44	AV44 STD MAX MIN	27.6 0.6 28.7 26.3	19.1 0.4 20.2 18.2	7.5 0.2 8.0 7.1	23 1 26 21	43 1 44 42	32 33 31
372	46.00	54	AV54 STD MAX MIN	28.0 0.7 29.5 26.1	18.4 0.6 19.5 17.4	7.5 0.3 8.0 6.8	23 2 26 20	43 1 45 42	31 33 30
423	47.00	51	AV51 STD MAX MIN	28.1 0.6 29.4 26.6	18.3 0.3 18.9 17.5	7.5 0.2 7.9 7.0	23 1 25 21	43 1 45 42	31 32 30
473	48.00	50	AV50 STD MAX MIN	28.5 0.6 29.9 26.6	18.5 0.3 19.1 17.6	7.6 0.2 7.9 7.0	23 1 25 21	43 1 45 42	31 32 30
523	49.00	50	AV50 STD MAX MIN	28.5 0.5 29.7 27.4	18.9 0.3 19.7 18.2	7.5 0.1 7.9 7.2	23 1 25 22	43 0 44 42	30 32 30
573	50.00	50	AV50 STD MAX MIN	28.5 0.5 29.6 27.5	19.2 0.3 19.9 18.7	7.5 0.1 7.8 7.2	23 1 25 21	43 0 44 42	30- 31: 29
629	51.00	56	AV56 STD MAX MIN	28.9 0.6 30.4 27.7	19.8 0.5 20.9 18.9	7.6 0.2 8.1 7.2	23 1 26 21	43 1 44 42	30: 31(29)
685	52.00	56	AV56 STD MAX MIN	29.4 0.6 30.6 28.1	20.7 0.4 21.7 19.6	7.8 0.2 8.2 7.4	24 1 27 22	42 0 43 41	30 31 29
746	52.86	71	AV61 STD MAX MIN	30.2 0.6 31.8 29.0	22.9 0.9 24.7 20.9	8.0 0.2 8.7 7.6	25 1 29 23	42 1 43 40	339 1 400 314
751	52.90	120	AV5 STD MAX MIN	31.4 0.7 32.2 30.3	25.3 0.6 25.9 24.5	8.5 0.2 8.8 8.1	28 1 30 26	41 1 42 40	42: 10 434 400
			Average Std. Dev. Maximum Minimum	27.0 3.3 32.2 14.3	17.6 4.5 25.9 5.6 mber of blows a	7.2 0.9 8.8 4.1	22 3 30 7	44 3 57 40	281 71 434 90

Total number of blows analyzed: 751

1 28.20

depth (ft) Comments

Reported reference EL 590.5

Time Summary

BL#

Drive 17 minutes 49 seconds

10:14:26 AM - 10:32:15 AM (11/12/2014) BN 1 - 751

GRL Engineers, Inc. - Case Method & iCAP® Results

PDIPLOT Ver. 2014.1 - Printed: 13-Nov-2014

Test date: 13-Nov-2014

STH 96 over Fox River (B-5-831) - Pier 12 #26 - BOR APE D25-42, HP 12 x 53

GRL Engineers, Inc. Page 1 c Case Method & iCAP® Results PDIPLOT Ver. 2014.1 - Printed: 13-Nov-20									
STH 96 over Fox River (B-5-831) - Pier 12 #26 - BOR APE D25-42, HP 12 x OP: TC Test date: 13-Nov-20									
	15.50 in^2 72.40 ft 807.9 f/s							-	0.492 k/ft3 30,000 ksi 1.00
CSX: Max Measured Compr. StressEMX: Max Transferred EnergyCSB: Compression Stress at BottomBPM: Blows per Minute									
	.E. Diesel Hamme					RX		lethod Capaci	
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
end	ft	bl/ft		ksi	ksi	ft	k-ft	**	kips
10	52.98	120	AV9	35.4	31	9.0	32	39.6	511
			STD	3.2	3	1.0	5	2.5	30
			MAX	37.9	34	10.1	37	46.1	544
			MIN	26.7	23	6.5	18	37.3	440
			Average	35.4	31	9.0	32	39.6	511
			Std. Dev.	3.2	3	1.0	5	2.5	30
			Maximum	37.9	34	10.1	37	46.1	544
			Minimum	26.7	23	6.5	18	37.3	440
				Total n	umber of blows				
BL#	depth (ft)	Com	nents						
5	52.94	CW							
Time Su	mmary								
Drive	14 seconds			10:01:33 AM	- 10:01:47 AM	(11/13/2014) B	N 1 - 10		

Force Msd

Velocity Msd

90 ms

12 L/c

استنتك

NULUU

Dy =

Dx =

SET/BI =

1.18 in

1.31 in

0.12 in

Displacement (in)

0.80

1.20

1.60

2.00

2.40

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. STH 96 over Fox River (B-5-831); Pile: Pier 12 #7 - EOID Test: 12-Nov-2014 09:42 APE D25-42, HP 12 x 53; Blow: 620 GRL Engineers, Inc.

CAPWAP(R) 2014 OP: AZ

			CAPWAP SUMMA	ARY RESULTS	5		
Total CAPWA	P Capacity:	437.0;	along Shaft	137.0;	at Toe	300.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.
No.	Gages	Grade			Ru	(Depth)	(Area)
	ft	ft	kips	kips	kips	kips/ft	ksf
				437.0			
1	26.3	6.6	4.0	433.0	4.0	0.61	0.15
2	32.9	13.2	5.0	428.0	9.0	0.76	0.19
3	39.5	19.8	5.0	423.0	14.0	0.76	0.19
4	46.1	26.3	5.0	418.0	19.0	0.76	0.19
5	52.7	32.9	7.0	411.0	26.0	1.06	0.27
6	59.2	39.5	21.0	390.0	47.0	3.19	0.80
7	65.8	46.1	40.0	350.0	87.0	6.08	1.53
8	72.4	52.7	50.0	300.0	137.0	7.60	1.91
Avg. Sha	ft		17.1			2.60	0.66
Тое			300.0				304.46
Soil Model	Parameters/E	xtensions			Shaft	Тое	
Smith Dampin	ng Factor				0.31	0.03	
Quake	5	(in)			0.14	0.31	
Case Damping	g Factor				1.54	0.33	
Damping Type	e				Viscous	Smith	
Unloading Q	uake	(% of	loading quak	e)	32	116	
Unloading L	evel	(% of	Ru)	-	70		
Resistance (Gap (include	d in Toe	Quake) (in)			0.06	
Soil Plug We	eight	(kips)			0.100	0.062	
CAPWAP matcl	h quality	= 3	.64 (Wave Up Ma	atch) ; RSA	. = 0	
Observed: F:	inal Set	= 0	.12 in; E	Blow Count	=	96 b/ft	
Computed: F:	inal Set	= 0	.10 in; E	Blow Count	=	124 b/ft	
Transducer	F3(H083) CAI	.: 94.4; RF:	: 0.96; F4(F523)	CAL: 93.8;	; RF: 0.96		
	A3(K974) CAI	. 305; RF:	: 1.04; A4(K2214) CAL: 332	; RF: 1.04		
max. Top Con	mp. Stress	= 2	9.6 ksi	(T= 36.2	ms, max= 1	039 x Top)	
max. Comp.	Stress	= 3	0.7 ksi	(Z= 26.3	ft, T= 37	.6 ms)	
max. Tens.	Stress	= -3	.48 ksi	(Z= 39.5	ft, T= 58	8.9 ms)	
max. Energy	(EMX)	= 2	5.4 kip-ft;	max. Measu	ured Top Di	.spl. (DMX)=	1.00 in

STH 96 over Fox River (B-5-831); Pile: Pier 12 #7 - EOID Test: 12-Nov-2014 09:42 APE D25-42, HP 12 x 53; Blow: 620 GRL Engineers, Inc.

CAPWAP(R) 2014 OP: AZ

			EXTI	REMA TABL	E				
Pile	Dist.	max.	min.	max.	max	. г	nax.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens	. Trns	sfd.	Veloc.	Displ.
No.	Gages			Stress	Stres	s Ene	ergy		
	ft	kips	kips	ksi	ks	i kip	p -f t	ft/s	ir
1	3.3	458.4	-14.8	29.6	-0.9	6 2	25.4	15.3	1.00
2	6.6	459.0	-15.8	29.6	-1.0	2 2	25.1	15.2	0.97
3	9.9	459.8	-18.1	29.7	-1.1	7 2	24.6	15.2	0.94
4	13.2	460.6	-24.6	29.7	-1.5	8 2	24.2	15.1	0.91
5	16.5	461.6	-31.4	29.8	-2.0	2 2	23.7	15.1	0.88
6	19.7	465.2	-38.2	30.0	-2.4	6 2	23.2	14.9	0.85
7	23.0	470.4	-44.8	30.3	-2.8	9 2	22.7	14.7	0.81
8	26.3	476.2	-50.8	30.7	-3.2	8 2	22.1	14.5	0.78
9	29.6	460.5	-48.5	29.7	-3.1	3 2	20.6	14.3	0.74
10	32.9	466.7	-53.7	30.1	-3.4	7 2	20.1	14.0	0.71
11	36.2	446.2	-49.7	28.8	-3.2	1 1	L8.6	13.8	0.68
12	39.5	452.5	-54.0	29.2	-3.4	8 1	L8.0	13.5	0.64
13	42.8	432.7	-48.6	27.9	-3.1	3 1	L6.5	13.3	0.61
14	46.1	440.1	-51.8	28.4	-3.3	4 1	L6.0	13.0	0.57
15	49.4	443.2	-48.0	28.6	-3.1	0 1	L4.7	12.7	0.54
16	52.7	443.7	-53.0	28.6	-3.4	2 1	L4 . 1	12.1	0.50
17	55.9	424.9	-47.0	27.4	-3.0	3 1	L2.8	11.5	0.47
18	59.2	464.1	-51.2	29.9	-3.3	0 1	L2.2	10.4	0.44
19	62.5	416.4	-25.8	26.9	-1.6	6	9.9	8.8	0.40
20	65.8	421.3	-29.5	27.2	-1.9	0	9.4	8.6	0.37
21	69.1	361.4	0.0	23.3	0.0	0	6.4	9.8	0.34
22	72.4	365.6	-1.4	23.6	-0.0	9	3.5	9.2	0.31
Absolute	26.3			30.7			(]	C = 1	37.6 ms)
	39.5				-3.4	8	•	c =	58.9 ms)
			CAS	SE METHOD					
J =	0.0	0.1 0.	2 0.3	0.4	0.5	0.6	0.7	0.	8 0.9
RP 5	69.6 53	37.0 504.	3 471.7	439.0	406.4	373.7	341.1	308.	5 275.8
RX 5	69.6 53	504.	3 471.7	442.2	437.4	432.5	427.7	423.	3 420.4
ע 5	69.6 53	504.	3 471.7	439.0	406.4	373.7	341.1	308.	5 275.8
RAU = 405	5.8 (kips)); RA2 =	477.6 (1	kips)					
Current CAPV	VAP Ru = 4	437.0 (kips); Corres	ponding J	(RP)= 0.	41; J(R	(x) = 0.	51	
VMX	TVP VI	.1*Z FT:	1 FMX	DMX	DFN	SET	EMX	QU	s kee
ft/s		ips kip		in	in	in	kip-ft		s kips/in
-		29.7 466.	-	1.00	0.13	0.12	25.7	546.	-
							2007		
		P	ILE PROFI	LE AND PI	LE MODEL				
	Depth		Area	E-Modu	lus	Spec. V	Veight		Perim.
	ft		in²		ksi		o/ft ³		ft

Toe Area

0.0

72.4

141.9 in^2

29992.2

29992.2

15.5

15.5

492.000

492.000

3.97

3.97

APE D25		12 x 53;	B-5-831); Blow: 62		Pier 12 #	7 - EOID		Test: 12	L4 09:42 (R) 2014 OP: AZ	
Segmnt Number	Dist.Im B.G.	pedance	Imped. Change	Slack	Tension Eff.	Comp: Slack	ression Eff.	Perim.	Wave Speed	Soil Plug
Nullber		.ps/ft/s	%	in	ELL.	in	ELL.	ft	ft/s	kips
1	3.3	27.67	0.00	0.00	0.000	-0.00	0.000	3.971	L6807.9	0.000
21	69.1	27.67	0.00	0.00	0.000	-0.00	0.000	3.971	L6807.9	0.100
22	72.4	27.67	0.00	0.00	0.000	-0.00	0.000	3.971	L6807.9	0.000

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c 8.6 ms Total volume: 7.793 ft^{3;} Volume ratio considering added impedance: 1.000

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result.

STH 96 over Fox River (B-5-831); Pile: Pier 12 #7 - BOR Test: 13-Nov-2014 09:45 APE D25-42, HP 12 x 53; Blow: 5 GRL Engineers, Inc.

CAPWAP (R) 2014 OP: TC

SoilDist.DepthRuForceSumSgmntBelowBelowin PileofNo.GagesGradeRuftftkipskips465.0	5.0 kips Unit Resist. (Depth) kips/ft 1.19 1.22	Unit Resist. (Area) ksf 0.30
Sgmnt Below Below in Pile of No. Gages Grade Ru ft ft kips kips kips 465.0	Resist. (Depth) kips/ft 1.19	Resist. (Area) ksf
No. Gages Grade Ru ft ft kips kips kips 465.0	(Depth) kips/ft 1.19	(Area) ksf
ft ft kips kips kips 465.0	kips/ft	ksf
465.0	1.19	
		0.30
		0.30
1 26.3 6.7 8.0 457.0 8.0	1.22	
2 32.9 13.3 8.0 449.0 16.0		0.31
3 39.5 19.9 8.0 441.0 24.0	1.22	0.31
4 46.1 26.4 9.0 432.0 33.0	1.37	0.34
5 52.7 33.0 10.0 422.0 43.0	1.52	0.38
6 59.2 39.6 20.0 402.0 63.0	3.04	0.77
7 65.8 46.2 42.0 360.0 105.0	6.38	1.61
8 72.4 52.8 45.0 315.0 150.0	6.84	1.72
Avg. Shaft 18.7	2.84	0.72
Toe 315.0		319.68
Soil Model Parameters/Extensions Shaft	Тое	
Smith Damping Factor 0.31	0.06	
Quake (in) 0.07	0.22	
Case Damping Factor 1.68	0.68	
	Smith	
Unloading Quake (% of loading quake) 55	104	
Reloading Level (% of Ru) 100	100	
Resistance Gap (included in Toe Quake) (in)	0.07	
	0.021	
CAPWAP match quality = 2.60 (Wave Up Match) ; RSA =	= 0	
Observed: Final Set = 0.18 in; Blow Count =	68 b/ft	
Computed: Final Set = 0.14 in; Blow Count =	83 b/ft	
Transducer F3 (F523) CAL: 93.8; RF: 0.97; F4 (H083) CAL: 94.4; RF: 0.97	05 0/10	
A3 (K2214) CAL: 332; RF: 1.03; A4 (K974) CAL: 305; RF: 1.03		
max. Top Comp. Stress = 31.2 ksi (T= 36.2 ms, max= 1.0	074 x Top)	
max. Comp. Stress = 33.5 ksi (Z= 26.3 ft, T= 37.6	6 ms)	
max. Tens. Stress = -1.24 ksi (Z= 26.3 ft, T= 177.8	3 ms)	
max. Energy (EMX) = 25.8 kip-ft; max. Measured Top Disp	pl. $(DMX) =$	0.94 in

STH 96 over Fox River (B-5-831); Pile: Pier 12 #7 - BOR Test: 13-Nov-2014 09:45 APE D25-42, HP 12 x 53; Blow: 5 GRL Engineers, Inc.

CAPWAP (R) 2014 OP: TC

				EMA TABLE	EXTR			
max	max.	max.	max.	max.	min.	max.	Dist.	Pile
Displ	Veloc.	Trnsfd.	Tens.	Comp.	Force	Force	Below	Sgmnt
		Energy	Stress	Stress			Gages	No.
i	ft/s	kip-ft	ksi	ksi	kips	kips	ft	
0.9	15.9	25.8	-1.24	31.2	-19.2	484.1	3.3	1
0.9	15.9	25.4	-1.24	31.3	-19.2	485.4	6.6	2
0.8	15.8	24.9	-1.24	31.4	-19.2	486.8	9.9	3
0.8	15.7	24.4	-1.24	31.5	-19.2	488.4	13.2	4
0.8	15.7	23.8	-1.24	31.7	-19.2	490.9	16.5	5
0.7	15.3	23.2	-1.24	32.3	-19.2	500.2	19.7	6
0.7	15.0	22.5	-1.24	32.8	-19.3	509.1	23.0	7
0.7	14.6	21.9	-1.24	33.5	-19.3	519.7	26.3	8
0.6	14.3	19.7	-0.75	31.2	-11.6	484.4	29.6	9
0.6	13.9	19.1	-0.75	31.9	-11.7	494.7	32.9	10
0.5	13.6	17.1	-0.26	29.7	-4.0	461.1	36.2	11
0.5	13.2	16.5	-0.32	30.4	-4.9	471.7	39.5	12
0.5	12.8	14.7	0.00	28.4	0.0	440.8	42.8	13
0.4	12.4	14.1	-0.24	29.1	-3.7	451.7	46.1	14
0.4	12.0	12.4	0.00	27.1	0.0	420.3	49.4	15
0.4	11.4	11.8	-0.08	28.1	-1.3	436.1	52.7	16
0.3	10.8	10.2	0.00	26.9	0.0	417.6	55.9	17
0.3	10.0	9.6	0.00	28.1	0.0	435.8	59.2	18
0.3	9.0	7.6	0.00	26.1	0.0	404.5	62.5	19
0.2	9.3	7.0	0.00	26.7	0.0	413.4	65.8	20
0.2	10.1	4.3	0.00	23.7	0.0	367.2	69.1	21
0.2	9.3	2.3	0.00	23.9	0.0	370.9	72.4	22
37.6 ms	(T =			33.5			26.3	bsolute
177.8 ms	(T =		-1.24				26.3	

				CAS	E METHOD					
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	603.6	570.3	537.1	503.9	470.7	437.4	404.2	371.0	337.8	304.5
RX	613.8	581.0	548.2	522.3	506.6	491.0	475.3	466.0	459.8	453.7
RU	603.6	570.3	537.1	503.9	470.7	437.4	404.2	371.0	337.8	304.5
RAU =	311.1 (ki	.ps); RA	2 = 4	91.2 (ki	ps)					

Current CAPWAP Ru = 465.0 (kips); Corresponding J(RP) = 0.42; J(RX) = 0.72

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
15.9	36.03	438.8	497.0	504.1	0.94	0.18	0.18	26.1	562.9	2100

Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in ²	ksi	lb/ft ³	ft
0.0	15.5	29992.2	492.000	3.97
72.4	15.5	29992.2	492.000	3.97
Toe Area	141.9	in ²		
Top Segment Length	3.29 ft, Top Imp	edance 28	kips/ft/s	

STH 96 over Fox River (B-5-831);	Pile: Pier 12 #7 - BOR	Test: 13-Nov-2014 09:45
APE D25-42, HP 12 x 53; Blow: 5		CAPWAP (R) 2014
GRL Engineers, Inc.		OP: TC

Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c 8.6 ms Total volume: 7.793 ft^{3;} Volume ratio considering added impedance: 1.000

Force Msd

ם עלים האתילים הם

Velocity Msd

90 ms

12 L/c

SF =

EB =

Dy =

Dx =

SET/BI =

Displacement (in)

0.80

1.20

1.60

2.00

2.40

131.0 kips

305.0 kips

1.18 in

1.28 in

0.10 in

STH 96 over Fox River (B-5-831); Pile: Pier 12 #26 - EOID	Test: 12-Nov-2014 10:32
APE D25-42, HP 12 x 53; Blow: 748	CAPWAP(R) 2014
GRL Engineers, Inc.	OP: AZ

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result.

STH 96 over Fox River (B-5-831); Pile: Pier 12 #26 - EOID Test: 12-Nov-2014 10:32 APE D25-42, HP 12 x 53; Blow: 748 GRL Engineers, Inc.

CAPWAP(R) 2014 OP: AZ

			CAPWAP SUMMA	ARY RESULTS			
Total CAPWAP	Capacity:	436.0;	along Shaft	131.0;	at Toe	305.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.
No.	Gages	Grade			Ru	(Depth)	(Area)
	ft	ft	kips	kips	kips	kips/ft	ksf
				436.0			
1	26.3	6.8	5.0	431.0	5.0	0.74	0.19
2	32.9	13.4	5.0	426.0	10.0	0.76	0.19
3	39.5	20.0	5.0	421.0	15.0	0.76	0.19
4	46.1	26.5	5.0	416.0	20.0	0.76	0.19
5	52.7	33.1	5.0	411.0	25.0	0.76	0.19
6	59.2	39.7	14.0	397.0	39.0	2.13	0.54
7	65.8	46.3	33.0	364.0	72.0	5.01	1.26
8	72.4	52.9	59.0	305.0	131.0	8.96	2.26
Avg. Shaf	t		16.4			2.48	0.62
Тое			305.0				309.54
Soil Model Pa	arameters/E	xtensions			Shaft	Тое	
Smith Damping	g Factor				0.33	0.03	
Quake		(in)			0.08	0.30	
Case Damping	Factor				1.56	0.33	
Damping Type				7	/iscous	Smith	
Unloading Qua	ake	(% of	loading quak	e)	59	124	
Unloading Lev	vel	(% of	Ru)		66		
Resistance Ga	ap (include	d in Toe	Quake) (in)			0.06	
Soil Plug We	ight	(kips)				0.170	
CAPWAP match	quality	= 2	.14	(Wave Up Ma	tch) ; RSA	= 0	
Observed: Fin	nal Set	= 0		Blow Count	=	120 b/ft	
Computed: Fin	nal Set	= 0	.06 in; H	Blow Count	=	200 b/ft	
Transducer	F3(H083) CAL	: 94.4; RF	: 0.95; F4(F523)	CAL: 93.8;	RF: 0.95		
	A3(K974) CAI	: 305; RF	: 1.05; A4(K2214) CAL: 332;	RF: 1.05		
max. Top Com	p. Stress	= 2	9.5 ksi	(T= 36.2	ms, max= 1	.048 x Top)	
max. Comp. St	tress	= 3	0.9 ksi	(Z= 26.3	ft, T= 37	.6 ms)	
max. Tens. St	tress	= -3	.12 ksi	(Z= 59.2	ft, T= 60	.9 ms)	
	(EMX)	= 2	5.4 kip-ft;				

STH 96 over Fox River (B-5-831); Pile: Pier 12 #26 - EOID Test: 12-Nov-2014 10:32 APE D25-42, HP 12 x 53; Blow: 748 GRL Engineers, Inc.

CAPWAP(R) 2014 OP: AZ

					EMA TABL					
Pile			nax.	min.	max.	maz		max.	max.	max
Sgmnt			orce	Force	Comp.	Tens		sfd.	Veloc.	Displ
No.	Gage f		rips	kips	Stress ksi	Stres ks		ergy p-ft	ft/s	i
1	3.		57 . 7	-19.6	29.5	-1.2	26	25.4	15.1	0.9
2			58.6	-21.4	29.6	-1.3		25.1	15.1	0.9
3			59.6	-23.0	29.6	-1.4		24.7	15.0	0.9
4			50.6	-24.8	29.7	-1.6		24.2	15.0	0.8
5			52.0	-31.2	29.8	-2.0		23.7	14.9	0.8
6			56.6	-37.4	30.1	-2.4		23.2	14.7	0.8
7			3.1	-42.6	30.5	-2.7		22.7	14.5	0.7
8			9.5	-46.8	30.9	-3.0		22.2	14.2	0.7
9			57.4	-41.6	29.5	-2.6		20.6	14.0	0.7
10			53.9	-45.8	29.9	-2.9		20.1	13.7	0.7
11			2.5	-41.6	28.5	-2.6		18.6	13.5	0.6
12			8.8	-45.9	28.9	-2.9		18.1	13.2	0.6
13			28.4	-42.3	27.6	-2.7		16.6	13.0	0.6
14			34.6	-46.5	28.0	-3.0		16.1	12.8	0.5
15			20.1	-43.8	27.1	-2.8		14.8	12.5	0.5
16			32.5	-47.9	27.9	-3.0		14.2	12.1	0.5
17			9.1	-44.6	27.0	-2.8		13.0	11.5	0.4
18			1.4	-48.4	28.5	-3.1		12.4	10.8	0.4
19			1.1	-34.1	26.5	-2.2		10.5	9.8	0.4
20			28.5	-37.7	27.6	-2.4		10.0	8.8	0.3
21			7.4	-7.8	24.3	-0.5		7.1	9.4	0.3
22			/8.8	-11.4	24.4	-0.7		3.4	9.5	0.3
bsolute	26.	3			30.9			(т =	37.6 ms
	59.	2				-3.1	L2	(т =	60.9 ms
				CAS	E METHOD					
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	3 O.
RP	563.7	531.8	499.8	467.9	436.0	404.1	372.2	340.3	308.4	£ 276.
xx	563.7	531.8	499.8	473.2	457.1	448.2	440.3	432.4	426.0	420.
τU	563.7	531.8	499.8	467.9	436.0	404.1	372.2	340.3	308.4	£ 276.
RAU = 3	67.6 (ki	ps); Ri	42 =	487.2 (k	ips)					
Current CA	PWAP Ru	= 436.0	(kips);	Corresp	onding J	(RP)= 0	.40; J(F	ex) = 0	65	
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX		s KE
ft/s	ms	kips	kips	kips	in	in		kip-ft		s kips/i
15.1	36.03	418.2	464.5	469.0	0.99	0.10	0.10	25.8	568.0	5 127
			דדת	E DDOETT	E AND PI					
	Depth			ea	E-Modu		Spec. 1	Veight		Perim
	ft		in			ksi	-	o/ft ³		ferim
	0.0		15	.5	2999	2.2	4	92.000		3.9
	72.4		15	.5	2999	2.2	4	92.000		3.9
loe Area			141	.9	in^2					

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c $8.6\ ms$
STH 96 over Fox River (B-5-831); Pile: Pier 12 #26 - EOID	Test: 12-Nov-2014 10:32
APE D25-42, HP 12 x 53; Blow: 748	CAPWAP(R) 2014
GRL Engineers, Inc.	OP: AZ

Total volume: 7.793 ft^{3;} Volume ratio considering added impedance: 1.000

95 ms

72.4 ft

52.9 ft

15.5 in²

141.9 in²

3.97 ft

29992 ksi

16808 ft/s

16808 ft/s

4.20

33.6 ksi

36.4 ksi

-0.77 ksi

0.05 in

0.21 in

0.31 s/ft

0.07 s/ft

492.0 lb/ft3

13 L/c

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result.

STH 96 over Fox River (B-5-831); Pile: Pier 12 #26 - BOR Test: 13-Nov-2014 10:01 APE D25-42, HP 12 x 53; Blow: 5 GRL Engineers, Inc.

CAPWAP (R) 2014 OP: TC

2			CAPWA	P SUMMARY	RESULTS				
Total CA	APWAP Capacit	ty: 497	.0; along	Shaft	127.0; at	Toe	370.0	kips	
Soil	Dist.	Depth	Ru	Force	Sum		Unit	Unit	Quake
Sgmnt	Below	Below		in Pile	of	Res	sist.	Resist.	
No.	Gages	Grade			Ru	(De	epth)	(Area)	
	ft	ft	kips	kips	kips	kip	os/ft	ksf	! in
				497.0					
1	26.3	6.9	10.0	487.0	10.0		1.46	0.37	0.05
2	32.9	13.5	10.0	477.0	20.0		1.52	0.38	0.0
3	39.5	20.0	10.0	467.0	30.0		1.52	0.38	0.05
4	46.1	26.6	10.0	457.0	40.0		1.52	0.38	0.0
5	52.7	33.2	10.0	447.0	50.0		1.52	0.38	0.05
6	59.2	39.8	12.0	435.0	62.0		1.82	0.46	0.05
7	65.8	46.4	25.0	410.0	87.0		3.80	0.96	0.05
8	72.4	52.9	40.0	370.0	127.0		6.08	1.53	0.05
Avg.	Shaft		15.9				2.40	0.60	0.05
	Тое		370.0					375.50	0.21
Soil Mod	del Parameter	rs/Extensi	ons			Shaft	То	e	
	amping Factor					0.31	0.0	7	
	mping Factor					1.42	0.9	-	
Damping					Vi	scous	Smit		
	ng Quake	19	of loadir	a miske)	V1	93	100.00000000000000000000000000000000000	6	
	ng Level		of Ru)	ig quake)		100	10	1001	
	ng Level		of Ru)			0	10	0	
	nce Gap (inc.			(in)		v	0.0	2	
	nce Gap (inc. ng Weight		ips)	(11)			0.17		
	an an		NR 0.						
CAPWAP I	match quality	y =	4.20	(Wa	ve Up Matc	h) ; F	ISA = 0		
Observed	d: Final Set	=	0.10 ir	; Blo	w Count	=	120	b/ft	
	d: Final Set		0.00 ir	NY and a state of the second	w Count	=	3048	b/ft	
Transducer	F3 (F523) A3 (K2214)	CAL: 93.8;) CAL: 332;)	RF: 0.94; F4(RF: 1.06; A4(94.4; RF: 0.94 305; RF: 1.06				
max. Tor	o Comp. Stre	to-standore enderste v	33.6 ks		annan taran san an Aisteach		1.084	(GOT X	
an and an an an and a second	mp. Stress	=	36.4 ks			and Subaran		100 CALING # 100	
			-0.77 ks			100 ANS			
max. Ter	ns Stress	=	-0.// 25	1 12		· · · · = ·	79 9 mg		

STH 96 over Fox River (B-5-831); Pile: Pier 12 #26 - BOR Test: 13-Nov-2014 10:01 APE D25-42, HP 12 x 53; Blow: 5 GRL Engineers, Inc.

CAPWAP (R) 2014 OP: TC

	EXTREMA TABLE											
max	max.	max.	max.	max.	min.	max.	Dist.	Pile				
Displ	Veloc.	Trnsfd.	Tens.	Comp.	Force	Force	Below	Sgmnt				
		Energy	Stress	Stress			Gages	No.				
ir	ft/s	kip-ft	ksi	ksi	kips	kips	ft					
1.04	17.0	32.2	-0.60	33.6	-9.3	520.8	3.3	1				
1.00	17.0	31.7	-0.60	33.7	-9.3	522.1	6.6	2				
0.97	16.9	31.1	-0.60	33.8	-9.3	523.3	9.9	3				
0.93	16.9	30.3	-0.60	33.8	-9.3	524.8	13.2	4				
0.89	16.8	29.6	-0.60	34.0	-9.2	527.5	16.5	5				
0.85	16.3	29.0	-0.60	34.9	-9.2	540.6	19.7	6				
0.82	15.9	28.3	-0.60	35.5	-9.3	550.8	23.0	7				
0.78	15.4	27.5	-0.60	36.4	-9.3	564.7	26.3	8				
0.74	15.0	24.4	-0.55	33.4	-8.6	517.6	29.6	9				
0.70	14.5	23.6	-0.55	34.2	-8.6	530.8	32.9	10				
0.66	14.2	20.8	-0.51	31.3	-7.8	485.7	36.2	11				
0.62	13.7	20.0	-0.51	32.2	-7.8	498.6	39.5	12				
0.57	13.4	17.5	-0.46	31.9	-7.2	494.1	42.8	13				
0.53	12.9	16.7	-0.46	32.3	-7.2	500.3	46.1	14				
0.50	12.6	14.5	-0.41	30.9	-6.4	479.0	49.4	15				
0.45	12.1	13.7	-0.41	31.3	-6.4	485.5	52.7	16				
0.42	11.7	11.7	-0.37	31.2	-5.7	483.3	55.9	17				
0.38	10.9	11.0	-0.37	31.4	-5.7	486.1	59.2	18				
0.34	10.1	9.2	-0.35	30.1	-5.5	467.0	62.5	19				
0.30	9.3	8.6	-0.74	30.4	-11.5	470.8	65.8	20				
0.27	10.1	6.4	-0.66	28.6	-10.2	444.1	69.1	21				
0.23	9.2	4.4	-0.77	29.5	-11.9	456.9	72.4	22				
37.6 ms)	(T =			36.4			26.3	solute				
59.9 ms)	(T =		-0.77				72.4					

	CASE METHOD											
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8		
RP	646.7	577.9	509.1	440.4	371.6							
RX	656.2	599.9	560.9	532.6	516.3	501.1	489.9	482.3	474.6	467.0		
RU	646.7	577.9	509.1	440.4	371.6							

RAU = 423.1 (kips); RA2 = 573.6 (kips)

Current CAPWAP Ru = 497.0 (kips); Corresponding J(RP) = 0.44; J(RX) = 1.06

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
17.0	36.42	471.4	519.1	540.8	1.06	0.13	0.10	32.6	676.3	1947

DTTE	PROFILE	TANTO	DTTE	MODET
PILE	PROFILE	AND	PILL	MODEL

Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in²	ksi	lb/ft ³	ft
0.0	15.5	29992.2	492.000	3.97
72.4	15.5	29992.2	492.000	3.97
Toe Area	141.9	in ²		
Top Segment Length	3.29 ft, Top	Impedance 28	kips/ft/s	
Wave Speed: Pile Top	16807.9, Elastic	c 16807.9, Overall	16807.9 ft/s	

STH 96 over Fox River (B-5-831);	Pile: Pier 12 #26 - BOR	Test: 13-Nov-2014 10:01
APE D25-42, HP 12 x 53; Blow: 5		CAPWAP (R) 2014
GRL Engineers, Inc.		OP: TC

Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c 8.6 ms Total volume: 7.793 ft^{3;} Volume ratio considering added impedance: 1.000

GRL Engineers, Inc.

1540 E. Dundee Road, Suite 102 Palatine, IL 60074 USA Phone: (847) 221-2750 Fax: (847) 221-2752

TRANSMITTAL

To: Mr. Wade Hamacher	From: Travis Coleman
Company: Lunda Construction Company	No. of Sheets: 32
E-mail: whamacher@lundaconstruction.com	Date: November 14, 2014

RE: Dynamic Testing Results – Pier 13
WisDOT Contract B-5-381 – STH 96 over Fox River
Wrightstown, Wisconsin

On November 12, 2014, Pier 13 #1 and Pier 13 #34 at the above structure were dynamically tested during initial driving. The piles were tested during restrike on November 13. The 75.4 foot long HP 12 x 53 H-piles were equipped with driving shoes and were driven with an APE D25-42 hammer operated on fuel setting three. Plans indicate the piles in Pier 13 have a required driving resistance or ultimate capacity of 370 kips, and an estimated length of 40 feet.

Pier 13 #1 was driven to a depth of 49.7 feet below the excavated ground surface at EL 592.5, which corresponds to a pile tip elevation of EL 542.8. The blow count over the final increment of driving was 5 blows for $\frac{5}{6}$ inch of penetration at an average hammer stroke of 8.1 feet. The blow count at the beginning of restrike of Pier 13 #1 was 10 blows for 2 inches of penetration at an average hammer stroke of 8.7 feet.

Pier 13 #34 was driven to a depth of 49.7 feet below the excavated ground surface at EL 592.5, which corresponds to a pile tip elevation of EL 542.8. The blow count over the final increment of driving was 5 blows for $\frac{3}{4}$ inch of penetration at an average hammer stroke of 8.2 feet. The blow count at the beginning of restrike of Pier 13 #34 was 10 blows for $\frac{3}{4}$ inch of penetration at an average hammer stroke of 8.3 feet.

For the 370 kip piles, driven with the APE D25-42 hammer, in Pier 13 of the STH 96 Bridge over the Fox River we recommend using the following criteria:

Field Observed	Recommended Minimum
Hammer Stroke	Blow Count
(feet)	(blows per inch)
7.5	10
8.0	8
8.5	7
9.0	6

We recommended the above blow count at the corresponding hammer stroke be maintained for

two consecutive inches of driving. Driving may be terminated if production piles exceed 10 blows over an increment of one inch or less at hammer strokes of 8.5 feet. After splicing or any other delays, we recommend not applying the criteria until at least two feet of driving has occurred beyond the termination depth associated with the delay.

Please contact us if there are any problems meeting the recommended criterion or if you have any questions on these recommendations.

GRL Engineers, Inc.

Travis Coleman, P.E.

Al Ziai

cc: Steve Seymour - steve.seymour@omnni.com Jeff Horsfall - jeffrey.horsfall@dot.wi.gov

Attachments:

Dynamic Results(Pages 3 - 12)CAPWAP Results(Pages 13 - 32)

GRL Engineers, Inc. - Case Method & iCAP® Results

PDIPLOT Ver. 2014.1 - Printed: 12-Nov-2014

STH 96 over Fox River (B-5-831) - Pier 13 #1 - EOID APE D25-42, HP 12 x 53

1 - Reported reference EL 592.5

Test date: 12-Nov-2014

GRL Engineers, Inc. Case Method & iCAP® Results

STH 9 OP: AZ	6 over Fox River (B-5-831) - Pier 13 #1 - EOID
AR:	15.50 in^2

Page 1 of 2 PDIPLOT Ver. 2014.1 - Printed: 12-Nov-2014

APE D25-42, HP 12 x 53 Test date: 12-Nov-2014 SP: 0.492 k/ft3

AR: LE: WS: '	15.50 in^2 72.40 ft 16,807.9 f/s							EM: 30	0.492 k/ft3 0,000 ksi 1.00
CSX: CSB:	Max Measured Co Compression Stres O.E. Diesel Hamm	s at Bottom	ttom BPM: Blows per Minute						
BL# end 6	depth ft 31.00	BLC bl/ft 6	TYPE AV6 STD MAX MIN	CSX ksi 22.4 1.3 24.2 20.1	CSB ksi 8.2 0.2 8.6 7.9	STK ft 5.6 0.4 6.4 5.2	EMX k-ft 24 3 28 19	BPM ** 49 2 52 46	RX9 kips 117 14 132 91
13	32.00	7	AV7 STD MAX MIN	21.2 1.0 23.1 20.0	7.7 0.2 8.1 7.5	5.1 0.3 5.6 4.7	22 2 26 18	52 1 54 49	121 9 138 111
20	33.00	7	AV7 STD MAX MIN	21.0 0.6 21.7 20.1	8.3 0.5 9.0 7.4	5.1 0.1 5.3 4.9	20 1 22 18	52 1 53 51	110 4 114 101
30	34.00	10	AV10 STD MAX MIN	20.9 1.5 22.9 17.4	8.0 0.5 8.8 7.2	5.1 0.4 5.9 4.3	18 3 22 14	52 2 56 49	112 3 119 108
38	35.00	8	AV8 STD MAX MIN	21.9 0.7 22.9 20.8	8.4 0.2 8.8 8.0	5.5 0.2 5.8 5.2	22 2 24 20	50 1 51 49	116 6 125 104
48	36.00	10	AV10 STD MAX MIN	21.2 0.7 22.3 19.8	8.6 0.2 8.9 8.3	5.4 0.2 5.7 4.9	19 1 21 17	50 1 53 49	120 5 131 111
58	37.00	10	AV10 STD MAX MIN	23.3 0.9 25.1 22.0	11.8 2.0 14.5 9.5	5.9 0.2 6.4 5.6	22 1 24 19	48 1 49 46	160 18 187 132
76	38.00	18	AV18 STD MAX MIN	25.2 0.5 26.2 24.1	14.3 0.6 15.3 13.2	6.4 0.1 6.7 6.1	23 1 24 21	46 1 47 46	210 7 220 192
94	39.00	18	AV18 STD MAX MIN	26.2 1.2 28.3 23.0	14.6 1.5 16.3 11.0	6.5 0.3 7.0 5.8	22 2 26 19	46 1 49 44	223 15 237 182
113	40.00	19	AV19 STD MAX MIN	26.6 0.4 27.7 26.0	14.0 0.4 15.1 13.3	6.5 0.2 6.9 6.3	23 1 25 21	46 1 47 45	211 7 229 198
133	41.00	20	AV20 STD MAX MIN	27.2 0.6 28.4 26.3	14.9 0.4 15.7 14.4	6.8 0.2 7.0 6.5	23 1 26 21	45 1 46 44	214 4 221 208
154	42.00	21	AV21 STD MAX MIN	28.3 0.6 29.6 27.2	15.7 0.5 16.5 14.8	7.0 0.2 7.4 6.8	24 1 26 22	44 1 45 43	233 9 246 218
177	43.00	23	AV23 STD MAX MIN	28.7 0.6 29.7 27.7	16.4 0.4 17.2 15.5	7.3 0.2 7.7 6.9	25 1 28 22	44 1 45 43	247 4 257 241
208	44.00	31	AV31 STD MAX MIN	29.5 0.5 30.9 28.2	16.6 0.3 17.2 16.0	7.6 0.2 7.9 7.1	26 1 29 24	43 0 44 42	258 8 281 243

GRL Engineers, Inc. Case Method & iCAP® Results

STH 96 over Fox River (B-5-831) - Pier 13 #1 - EC	DID
OP 47	

Page 2 of 2 PDIPLOT Ver. 2014.1 - Printed: 12-Nov-2014

APE D25-42, HP 12 x 53

BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX
end	ft	bl/ft		ksi	ksi	ft	k-ft	**	kip
248	45.00	40	AV40	29.4	17.7	7.5	25	43	30
			STD	0.6	0.7	0.2	1	1	
			MAX	30.4	19.3	7.9	27	44	32
			MIN	28.0	16.5	7.0	23	42	28
291	46.00	43	AV43	28.9	16.9	7.6	25	43	29
			STD	0.6	0.4	0.2	1	1	
			MAX	30.2	17.8	8.0	27	44	31
			MIN	27.2	15.8	7.1	23	42	28
334	47.00	43	AV43	29.6	17.3	7.7	26	43	31
			STD	0.7	0.5	0.2	1	1	
			MAX	31.1	18.0	8.1	28	44	33
			MIN	28.2	16.3	7.2	23	42	29
380	48.00	46	AV46	29.9	17.6	7.8	27	42	33
			STD	0.5	0.4	0.2	1	0	
			MAX	30.8	18.3	8.1	29	44	35
			MIN	28.5	16.4	7.3	24	41	32
432	49.00	52	AV52	30.0	17.6	7.8	27	42	34
			STD	0.5	0.4	0.2	1	0	
			MAX	31.4	18.4	8.1	28	43	35
			MIN	28.8	16.9	7.4	24	41	33
476	49.65	68	AV44	30.3	17.9	7.9	27	42	35
			STD	0.8	0.6	0.2	1	1	1
			MAX	33.0	20.1	8.5	30	43	39
			MIN	28.7	16.9	7.4	24	41	33
481	49.70	96	AV5	31.4	19.2	8.1	28	41	39
			STD	0.3	0.2	0.2	2	0	2
			MAX	31.8	19.6	8.4	29	42	40
			MIN	30.9	18.9	8.0	24	41	35
			Average	28.1	15.8	7.2	25	44	27
			Std. Dev.	2.8	2.9	0.8	2	3	7
			Maximum Minimum	33.0 17.4	20.1 7.2	8.5 4.3	30 14	56 41	40 g
			within		∩.∠ nber of blows a	-	14	41	9

BL# depth (ft) Comments

30.17 Reported reference EL 592.5

Time Summary

1

Drive 11 minutes 38 seconds

12:13:27 PM - 12:25:05 PM (11/12/2014) BN 1 - 481

GRL Engineers, Inc. - Case Method & iCAP® Results

PDIPLOT Ver. 2014.1 - Printed: 14-Nov-2014

Test date: 13-Nov-2014

STH 96 over Fox River (B-5-831) - Pier 13 #1 - BOR APE D25-42, HP 12 x 53

	gineers, Inc. ethod & iCAP® Re	sults				PDIF	PLOT Ver. 2014	F 1 - Printed: 14.	Page 1 of 1 -Nov-2014
STH 96 <u>OP: AZ</u>	over Fox River (B-	5-831) - P	ier 13 #1 - BOR					APE D25-42, H Test date: 13	
LE:	15.50 in^2 72.40 ft ,807.9 f/s								0.492 k/ft3 0,000 ksi 1.00
CSB: C	Ax Measured Com compression Stress D.E. Diesel Hamme	at Bottom					X: Max Transfe M: Blows per M 9: Max Case M		v (JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
end	ft	bl/ft		ksi	ksi	ft	k-ft	**	kips
10	49.85	60	AV9	33.3	23.7	8.7	29	40.3	472
			STD	2.0	1.7	0.8	4	1.9	24
			MAX	35.2	25.3	9.7	33	45.2	492
			MIN	27.9	19.4	6.8	19	38.1	407
			Average	33.3	23.7	8.7	29	40.3	472
			Std. Dev.	2.0	1.7	0.8	4	1.9	24
			Maximum	35.2	25.3	9.7	33	45.2	492
			Minimum	27.9	19.4	6.8	19	38.1	407
				Total n	umber of blows	analyzed: 9			
BL#	depth (ft)	Co	mments						
4	49.75	C/	N						
Time Su	Immary								
Drive	14 seconds			8:44:28 AM -	8:44:42 AM (11	/13/2014) BN	1 - 11		

GRL Engineers, Inc. - Case Method & iCAP® Results

PDIPLOT Ver. 2014.1 - Printed: 14-Nov-2014

Test date: 12-Nov-2014

STH 96 over Fox River (B-5-831) - Pier 13 #34 - EOID APE D25-42, HP 12 x 53

GRL Engineers, Inc. Case Method & iCAP® Results

Page 1 of 2 PDIPLOT Ver. 2014.1 - Printed: 14-Nov-2014

STH 96 over Fox River (B-5-831) - Pier 13 #34 - EOID OP: AZ

APE D25-42, HP 12 x 53 Test date: 12-Nov-2014

AR: LE: WS: 1	15.50 in^2 72.40 ft 16,807.9 f/s								0.492 k/ft3 0,000 ksi 1.00
CSX: CSB:	Max Measured Cor Compression Stres O.E. Diesel Hamme	s at Bottom				BPM	: Max Transfe : Blows per M		v(10-0.9)
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
end	ft	bl/ft		ksi	ksi	ft	k-ft	**	kips
6	30.00	6	AV6	24.5	7.7	6.2	26	47	113
			STD	2.5	0.6	0.6	4	2	7
			MAX MIN	28.1 20.7	8.8 7.0	7.2 5.4	34 19	51 44	128 107
10	24.00	7							
13	31.00	7	AV7 STD	22.6 1.0	6.8 0.2	5.5 0.2	22 1	50 1	107 3
			MAX	23.5	7.1	5.7	24	52	110
			MIN	20.4	6.5	5.1	19	49	102
20	32.00	7	AV7	21.6	6.5	5.3	20	51	103
			STD	1.5	0.2	0.3	2	1	4
			MAX	24.2	6.9	5.9	23	52	108
			MIN	20.0	6.3	5.0	18	48	99
26	33.00	6	AV6	21.3	6.4	5.2	21	51	100
			STD MAX	1.4 23.3	0.2 6.7	0.3 5.7	2 24	1 53	3 104
			MIN	19.6	6.3	4.8	17	49	94
31	34.00	5	AV5	21.0	6.4	5.2	20	51	99
01	04.00	0	STD	1.6	0.2	0.3	3	2	1
			MAX	23.2	6.7	5.7	24	54	101
			MIN	18.6	6.1	4.7	17	49	97
38	35.00	7	AV7	22.1	7.6	5.5	21	50	115
			STD	1.1	1.6	0.3	2	1	17
			MAX	24.3	10.3	6.1	25	51	143
			MIN	20.6	6.4	5.2	18	48	99
49	36.00	11	AV11	26.8	15.4	6.9	27	45	188
			STD MAX	1.2 28.7	2.8 18.7	0.3 7.4	2 31	1 47	12 210
			MIN	25.0	10.4	6.3	24	43	159
61	37.00	12	AV12	25.9	13.7	6.6	25	46	183
01	07.00	12	STD	0.9	1.5	0.3	1	1	5
			MAX	27.9	16.1	7.1	29	47	193
			MIN	24.4	11.5	6.2	23	44	175
72	38.00	11	AV11	25.8	11.4	6.5	25	46	183
			STD	1.0	0.9	0.3	2	1	13
			MAX MIN	27.0 23.7	12.9 9.9	6.9 5.9	28 21	48 45	201 157
07	20.00	45							
87	39.00	15	AV15 STD	26.0 1.5	12.4 2.1	6.5 0.4	24 3	46 1	208 31
			MAX	28.3	15.5	7.3	28	49	251
			MIN	23.3	10.0	5.8	20	44	173
107	40.00	20	AV20	27.4	14.2	7.0	24	45	242
			STD	1.4	0.9	0.4	3	1	11
			MAX	30.5	15.9	8.0	30	47	262
			MIN	24.8	12.9	6.2	19	42	222
126	41.00	19	AV19	27.6	14.0	7.1	25	44	234
			STD MAX	0.9 29.2	0.5 15.3	0.3 7.5	2 28	1 46	5 240
			MAX	29.2 25.9	15.3	7.5 6.6	28 22	46 43	240 224
147	42.00	21	AV21	27.7	14.5	7.1	25	44	237
177	72.00	21	STD	1.0	0.5	0.3	23	1	7
			MAX	29.4	15.4	7.6	27	46	250
			MIN	26.0	13.5	6.4	21	43	221

GRL Engineers, Inc. Case Method & iCAP® Results

STH 96 over Fox River (B-5-831) - Pier 13 #34 - EOII	D

Page 2 of 2 PDIPLOT Ver. 2014.1 - Printed: 14-Nov-2014

APE D25-42, HP 12 x 53 Test date: 12-Nov-2014

<u>DP: AZ</u> BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	Test date: 12- BPM	RX9
end	ft	bl/ft		ksi	ksi	ft	k-ft	**	kip
175	43.00	28	AV24	28.4	15.0	7.3	25	44	23
115	40.00	20	STD	0.9	0.5	0.3	20	1	20
			MAX	30.0	15.7	7.9	28	46	24
			MIN	26.1	13.9	6.7	20	40	22
209	44.00	34	AV34	28.2	15.1	7.3	24	44	25
		-	STD	1.1	0.6	0.4	2	1	1
			MAX	29.9	16.5	7.8	28	46	28
			MIN	25.6	14.1	6.5	20	42	23
249	45.00	40	AV40	28.8	15.3	7.4	25	43	28
			STD	0.9	0.4	0.3	2	1	
			MAX	31.3	16.1	8.2	30	45	29
			MIN	27.0	14.4	6.8	22	41	26
292	46.00	43	AV43	28.3	15.3	7.2	24	44	29
			STD	0.9	0.4	0.3	2	1	
			MAX	30.2	16.1	7.8	27	46	30
			MIN	26.4	14.4	6.7	21	42	27
345	47.00	53	AV53	28.5	16.4	7.4	24	43	31
			STD	1.0	0.8	0.3	2	1	1
			MAX	30.4	17.9	8.1	28 21	46	34
	10.00		MIN	26.8	15.0	6.7		42	29
405	48.00	60	AV60 STD	29.1 1.0	17.8 0.5	7.5 0.3	25 2	43	31
			MAX		0.5 19.2	0.3 8.3	29	1	33
			MIN	31.5 26.8	19.2	6.9	29	45 41	30
100	40.00	50							
463	49.00	58	AV58 STD	29.3 1.0	18.2 0.5	7.6 0.3	25	43 1	31
			MAX	31.0	0.5 19.4	0.3 8.1	2 28	45	33
			MIN	27.0	17.2	6.9	20	43	29
520	49.60	95	AV57	29.7	17.6	7.7	25	43	33
520	49.00	90	STD	0.9	0.5	0.3	23	43	1
			MAX	31.9	18.7	8.5	30	44	37
			MIN	28.0	16.6	7.1	22	41	31
525	49.66	80	AV5	31.4	17.8	8.2	29	41	37
020	10.00	00	STD	0.8	0.5	0.2	1	1	0.
			MAX	32.5	18.5	8.4	30	42	38
			MIN	29.9	17.1	7.8	27	41	37
			Average	28.0	15.3	7.2	25	44	27
			Std. Dev.	2.2	3.0	0.7	2	2	6
			Maximum	32.5	19.4	8.5	34	54	38
			Minimum	18.6	6.1	4.7	17	41	g
				Total nu	mber of blows a	nalyzed: 521			
SL#	depth (ft)	Con	nments						
	acpuir (ii)	001							

1 29.17 Reported reference EL 592.5

Time Summary

Drive 12 minutes 34 seconds

11:37:01 AM - 11:49:35 AM (11/12/2014) BN 1 - 525

GRL Engineers, Inc. - Case Method & iCAP® Results

PDIPLOT Ver. 2014.1 - Printed: 14-Nov-2014

Test date: 13-Nov-2014

STH 96 over Fox River (B-5-831) - Pier 13 #34 - BOR APE D25-42, HP 12 x 53

	gineers, Inc. ethod & iCAP® Re	esults				PDIP	LOT Ver. 2014	F 1 - Printed: 14.	Page 1 of 1 -Nov-2014
STH 96 OP: TC	over Fox River (B	-5-831) - Pi	ier 13 #34 - BOR					APE D25-42, H Test date: 13	
	15.50 in^2 72.40 ft 807.9 f/s								0.492 k/ft3 0,000 ksi 1.00
CSB: C	ax Measured Cor ompression Stres .E. Diesel Hamme	s at Bottom					X: Max Transfe M: Blows per M		
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
end	ft	bl/ft		ksi	ksi	ft	k-ft	DF IVI **	kips
10	49.74	240	AV9	32.3	21.4	8.3	26	41.2	419
10	-0.7-	240	STD	2.4	1.2	0.8	4	2.3	26
			MAX	34.6	22.3	9.2	30	47.2	448
			MIN	26.0	18.3	6.2	17	39.1	354
			Average	32.3	21.4	8.3	26	41.2	419
			Std. Dev.	2.4	1.2	0.8	4	2.3	26
			Maximum	34.6	22.3	9.2	30	47.2	448
			Minimum	26.0	18.3	6.2	17	39.1	354
				Total n	umber of blows	analyzed: 9			
BL#	depth (ft)	Co	mments						
4	49.72	C	N						
5	49.72	CI							
Time Su	mmary								

Drive 14 seconds

9:03:47 AM - 9:04:01 AM (11/13/2014) BN 1 - 10

Force Msd
Velocity Msd

90 ms

12 L/c

1++++

	Length b. Sensors	72.4 ft
	Embedment	49.6 ft
	Top Area	15.5 in ²
	End Bearing Area	141.9 in ²
	Top Perimeter	3.97 ft
	Top E-Modulus	29992 ksi
	Top Spec. Weight	492.0 lb/ft3
	Top Wave Spd.	16808 ft/s
	Overall W.S.	16808 ft/s
	Match Quality	2.60
	Top Compr. Stress	32.1 ksi
	Max Compr. Stress	33.6 ksi
	Max Tension Stress	-1.55 ksi
	Avg. Shaft Quake	0.10 in
-	Toe Quake	0.50 in
	Avg. Shaft Smith Dpg.	0.30 s/ft
	Toe Smith Damping	0.03 s/ft

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. STH 96 over Fox River (B-5-831); Pile: Pier 13 #1 - EOID Test: 12-Nov-2014 12:24 APE D25-42, HP 12 x 53; Blow: 476 GRL Engineers, Inc.

CAPWAP(R) 2014 OP: AZ

			CAPWAP SUMMA	ARY RESULTS	5		
Total CAPWAR	P Capacity:	395.0;	along Shaft	125.0;	at Toe	270.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.
No.	Gages	Grade			Ru	(Depth)	(Area)
	ft	ft	kips	kips	kips	kips/ft	ksf
				395.0			
1	26.3	3.6	5.0	390.0	5.0	1.40	0.35
2	32.9	10.2	5.0	385.0	10.0	0.76	0.19
3	39.5	16.7	5.0	380.0	15.0	0.76	0.19
4	46.1	23.3	5.0	375.0	20.0	0.76	0.19
5	52.7	29.9	5.0	370.0	25.0	0.76	0.19
6	59.2	36.5	23.0	347.0	48.0	3.49	0.88
7	65.8	43.1	37.0	310.0	85.0	5.62	1.42
8	72.4	49.6	40.0	270.0	125.0	6.08	1.53
Avg. Sha:	ft		15.6			2.52	0.63
Тое			270.0				274.01
Soil Model H	Domomotoma /T				a 1 c +	m	
<u></u>	Parameters/E	xtensions			Shaft	Тое	
Smith Dampin		xtensions	1		0.30	0.03	
		(in)	1				
Smith Dampir	ng Factor				0.30	0.03	
Smith Dampir Quake	ng Factor g Factor			7	0.30 0.10	0.03 0.50	
Smith Dampin Quake Case Damping	ng Factor g Factor a	(in)	loading quak		0.30 0.10 1.36	0.03 0.50 0.29	
Smith Dampin Quake Case Damping Damping Type	ng Factor g Factor e Jake	(in)	loading quak		0.30 0.10 1.36 Viscous	0.03 0.50 0.29 Smith	
Smith Dampin Quake Case Damping Damping Type Unloading Qu	ng Factor 9 Factor 9 Jake 9 vel	(in) (% of (% of	loading quak Ru)		0.30 0.10 1.36 Viscous 57	0.03 0.50 0.29 Smith	
Smith Dampin Quake Case Damping Damping Type Unloading Qu Unloading Le	ng Factor 9 Factor 9 1ake 9vel 3ap (include	(in) (% of (% of d in Toe	loading quak Ru) Quake) (in)		0.30 0.10 1.36 Viscous 57 83	0.03 0.50 0.29 Smith 174 0.19	
Smith Dampin Quake Case Damping Damping Type Unloading Qu Unloading Le Resistance (ng Factor g Factor a uake evel Gap (include n quality	(in) (% of (% of d in Toe = 2	loading quak Ru) Quake) (in)	e)	0.30 0.10 1.36 Viscous 57 83	0.03 0.50 0.29 Smith 174 0.19	
Smith Dampin Quake Case Damping Damping Type Unloading Qu Unloading Le Resistance (CAPWAP match	ng Factor g Factor a uake evel Gap (include n quality inal Set inal Set	(in) (% of (% of d in Toe = 2 = 0 = 0	loading quak Ru) Quake) (in) 60 (.18 in; E .18 in; E	e) Wave Up Ma Blow Count Blow Count	0.30 0.10 1.36 Viscous 57 83 etch) ; RSA =	0.03 0.50 0.29 Smith 174 0.19	
Smith Dampin Quake Case Damping Damping Type Unloading Qu Unloading Le Resistance O CAPWAP match Observed: Fi	ng Factor g Factor a uake evel Gap (include n quality inal Set inal Set	(in) (% of (% of d in Toe = 2 = 0 = 0 : 93.8; RF	loading quak Ru) Quake) (in) 60 (18 in; E 18 in; E : 0.95; F4(H083)	e) Wave Up Ma Blow Count Blow Count CAL: 94.4;	0.30 0.10 1.36 Viscous 57 83 etch) ; RSA =	0.03 0.50 0.29 Smith 174 0.19 = 0 68 b/ft	
Smith Dampin Quake Case Damping Damping Type Unloading Qu Unloading Le Resistance O CAPWAP match Observed: Fi Computed: Fi	ng Factor g Factor a uake evel Gap (include n quality inal Set inal Set	(in) (% of (% of d in Toe = 2 = 0 = 0 : 93.8; RF	loading quak Ru) Quake) (in) 60 (.18 in; E .18 in; E	e) Wave Up Ma Blow Count Blow Count CAL: 94.4;	0.30 0.10 1.36 Viscous 57 83 etch) ; RSA =	0.03 0.50 0.29 Smith 174 0.19 = 0 68 b/ft	
Smith Dampin Quake Case Damping Damping Type Unloading Qu Unloading Le Resistance O CAPWAP match Observed: Fi Computed: Fi	ng Factor g Factor a uake evel Gap (include n quality inal Set inal Set F3(F523) CAN A3(K2214) CAN	(in) (% of (% of d in Toe = 2 = 0 = 0 :: 93.8; RF :: 332; RF	loading quak Ru) Quake) (in) 60 (18 in; E 18 in; E : 0.95; F4(H083)	e) Wave Up Ma Blow Count Blow Count CAL: 94.4; CAL: 305;	0.30 0.10 1.36 Viscous 57 83 (tch) ; RSA = = RF: 0.95 RF: 1.05	0.03 0.50 0.29 Smith 174 0.19 = 0 68 b/ft	
Smith Dampin Quake Case Damping Damping Type Unloading Qu Unloading Le Resistance O CAPWAP match Observed: Fi Computed: Fi Transducer	ng Factor g Factor a uake evel Gap (include n quality inal Set inal Set F3(F523) CAN A3(K2214) CAN mp. Stress	(in) (% of (% of d in Toe = 2 = 0 = 0 = 0 :: 93.8; RF :: 332; RF = 3	loading quak Ru) Quake) (in) 60 (.18 in; E .18 in; E 18 in; E 18 in; E 18 in; A(K974) 	e) Wave Up Ma Blow Count Blow Count CAL: 94.4; CAL: 305; (T= 36.2	0.30 0.10 1.36 Viscous 57 83 (tch) ; RSA = = RF: 0.95 RF: 1.05	0.03 0.50 0.29 Smith 174 0.19 = 0 68 b/ft 68 b/ft 047 x Top)	
Smith Dampin Quake Case Damping Damping Type Unloading Qu Unloading Le Resistance O CAPWAP match Observed: Fi Computed: Fi Transducer max. Top Com	ng Factor g Factor a uake evel Gap (include n quality inal Set inal Set F3(F523) CAT A3(K2214) CAT mp. Stress Stress	(in) (% of (% of d in Toe = 2 = 0 = 0 = 0 :: 93.8; RF :: 332; RF = 3 = 3	loading quak Ru) Quake) (in) 60 (.18 in; E .18 in; E 18 in; E 18 in; E 18 in; A(K974) 	e) Wave Up Ma Blow Count CAL: 94.4; CAL: 305; (T= 36.2 (Z= 26.3	0.30 0.10 1.36 Viscous 57 83 (tch) ; RSA = = RF: 0.95 RF: 1.05 ms, max= 1 ft, T= 37	0.03 0.50 0.29 Smith 174 0.19 = 0 68 b/ft 68 b/ft 047 x Top)	

STH 96 over Fox River (B-5-831); Pile: Pier 13 #1 - EOID Test: 12-Nov-2014 12:24 APE D25-42, HP 12 x 53; Blow: 476 GRL Engineers, Inc.

CAPWAP(R) 2014 OP: AZ

				EXTR	EMA TABL	E				
Pile	Dis	t.	max.	min.	max.	max	• 1	max.	max.	max.
Sgmnt	Bel	ow I	force	Force	Comp.	Tens	. Trn	sfd. N	/eloc.	Displ.
No.	Gag	es			Stress	Stress	s En	ergy		
		ft	kips	kips	ksi	ks:	i ki	p-ft	ft/s	ir
1	3	.3 4	97.9	0.0	32.1	0.00	D .	29.4	16.7	1.07
2		.6 4	198.8	-3.1	32.2	-0.20	D .	29.3	16.7	1.05
3		.9 4	199.7	-6.7	32.2	-0.43	3	29.1	16.7	1.03
4	13	.2 !	500.8	-9.6	32.3	-0.62	2	28.8	16.6	1.01
5	16	.5 5	502.5	-12.8	32.4	-0.83	3 .	28.6	16.5	0.98
6	19	.7 5	508.4	-17.3	32.8	-1.1	1.	28.3	16.3	0.96
7	23	.0 5	514.4	-20.8	33.2	-1.34	4	27.9	16.1	0.93
8	26	.3 !	521.4	-24.0	33.6	-1.5	5	27.5	15.8	0.90
9	29	.6 4	198.9	-17.8	32.2	-1.14		25.8	15.6	0.88
10	32	.9 5	505.8	-20.6	32.6	-1.33	3	25.5	15.3	0.85
11	36	.2 4	184.2	-13.4	31.2	-0.86	5	23.9	15.1	0.82
12	39		190.9	-14.6	31.7	-0.94		23.4	14.8	0.79
13			170.2	-8.9	30.3	-0.58		21.9	14.6	0.76
14			76.9	-11.8	30.8	-0.76		21.5	14.3	0.73
15			65.2	-6.5	30.0	-0.42		20.1	14.0	0.70
16			176.7	-9.2	30.7	-0.59		19.6	13.3	0.67
17			173.7	-3.3	30.6	-0.2		18.3	12.5	0.64
18			514.9	-4.9	33.2	-0.32		17.9	11.3	0.61
19			154.2	0.0	29.3	0.00		14.1	10.4	0.58
20			133.6	0.0	28.0	0.00		13.7	11.1	0.55
20			325.3	0.0	20.0	0.00		8.8	12.8	0.53
22			324.3	-0.0	20.9	-0.00		3.9	13.2	0.50
Absolute		.3			33.6				=	37.6 ms)
ADSOLUTE		.3			33.0	-1.5	F	•	-	59.5 ms)
	20	• 3				-1.5	5	(1	-	59.5 IIIS)
				CAS	E METHOD					
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	5 1.8
RP	546.1	460.8	375.5	290.2	204.9					
RX	546.1	460.8	415.4	403.0	398.6	394.2	390.9	389.0	387.1	L 385.2
RU	546.1	460.8	375.5	290.2	204.9					
RAU = 2	285.0 (k	ips); 1	RA2 =	441.3 ()	ips)					
Current CA	APWAP Ru	= 395.0) (kips)	; Corres	onding J	(RP)= 0.	35; J(F	ex) = 0.9	96	
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	5 KEI
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	~	s kips/ir
16.7	36.22	461.6	511.0	511.0	1.07	0.18	0.18	29.6	572.3	
			דדם	.ד ספרדי	E AND PI					
	D+1-							via i aht		Dereir
	Depth			ea	E-Modu		Spec. 1	-		Perim.
	ft		in	-		ksi	11	b/ft³		ft

_	_	
тое	Area	

0.0

72.4

141.9 in^2

29992.2

29992.2

15.5

15.5

492.000

492.000

3.97

3.97

STH 96 over Fox River (B-5-831); Pile: Pier 13 #1 - EOID Test: 12-Nov-2014 12:24 APE D25-42, HP 12 x 53; Blow: 476 CAPWAP(R) 2014 GRL Engineers, Inc. OP: AZ										
Segmnt	Dist.Im	pedance	Imped.		Tension	Comp	ression	Perim.	Wave	Soil
Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
	ftki	ps/ft/s	%	in		in		ft	ft/s	kips
1	3.3	27.67	0.00	0.00	0.000	-0.00	0.000	3.971	6807.9	0.000
21	69.1	27.67	0.00	0.00	0.000	-0.00	0.000	3.971	6807.9	0.100
22	72.4	27.67	0.00	0.00	0.000	-0.00	0.000	3.971	6807.9	0.000

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c 8.6 ms Total volume: 7.793 ft^{3;} Volume ratio considering added impedance: 1.000

Force Msd

Velocity Msd

Pile Top

463.0 kips

153.0 kips

310.0 kips

1.23 in

1.43 in

0.20 in

500

Bottom

RU =

SF =

EB =

Dy =

Dx =

SET/BI =

Load (kips)

300

400

500

200

0

0.0

0.4

0.8

1.2

1.6

2.0

2.4

Displacement (in)

100

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result.

STH 96 over Fox River (B-5-831); Pile: Pier 13 #1 - BOR Test: 13-Nov-2014 08:44 APE D25-42, HP 12 x 53; Blow: 4 GRL Engineers, Inc.

CAPWAP (R) 2014 OP: AZ

			CAPWAP SUMM	ARY RESULT	s		
Total CAPWA	P Capacity:	463.0;	along Shaft	153.0;	at Toe	310.0 kips	
Soil	Dist.	Depth	Ru	Force	Su	n Unit	Unit
Sgmnt	Below	Below		in Pile	0:	f Resist.	Resist.
No.	Gages	Grade			R	u (Depth)	(Area)
	ft	ft	kips	kips	kip	s kips/ft	ksf
				463.0			
1	26.3	3.7	5.0	458.0	5.0	1.36	0.34
2	32.9	10.3	6.0	452.0	11.0	0.91	0.23
3	39.5	16.8	6.0	446.0	17.0	0.91	0.23
4	46.1	23.4	6.0	440.0	23.0	0.91	0.23
5	52.7	30.0	8.0	432.0	31.0	1.22	0.31
6	59.2	36.6	15.0	417.0	46.0	2.28	0.57
7	65.8	43.2	52.0	365.0	98.0	7.90	1.99
8	72.4	49.8	55.0	310.0	153.0	8.36	2.10
Avg. Sha	ft		19.1			3.08	0.77
Toe	l.		310.0				314.61
Soil Model	Parameters/Ex	tensions			Shaft	Toe	
Smith Dampin	ng Factor				0.32	0.05	
Quake		(in)			0.08	0.31	
Case Damping	g Factor	2 8			1.77	0.50	
Damping Type					Viscous	Smith	
Unloading Qu		(% of	loading quak	ce)	30	35	
Reloading Le	evel	(% of	Ru)	6.1.6 C *9	100	100	
Unloading Le	evel	(% of	Ru)		18		
Resistance (Gap (included	l in Toe	Quake) (in)			0.08	
Soil Plug We	eight	(kips)		0.080	0.008	
CAPWAP match	h quality	= ;	2.92	(Wave Up M	latch) ; RS	A = 0	
Observed: F:	inal Set	=	0.20 in;	Blow Count	: =	60 b/ft	
Computed: F:	inal Set	-	0.16 in;	Blow Count	: =	75 b/ft	
Transducer	F3(F523) CAL:	93.8; RF:	0.96; F4 (H083) C	AL: 94.4; RF:	0.96		
	A3(K2214) CAL:	332; RF:	1.04; A4 (K974) C	AL: 305; RF:	1.04		
max. Top Con	mp. Stress	-	32.4 ksi	(T= 36.2	ms, max=	1.056 ж Тор)	
max. Comp.	Stress	=	34.2 ksi	(Z= 26.3	ft, T= 3	7.6 ms)	
max. Tens.	Stress	= -:	5.85 ksi	(Z= 59.2	ft, T= 5	9.1 ms)	
max. Energy	(73) (71)	=	29.9 kip-ft;	- Alexan - Alexandra		ispl. (DMX) =	Value Carrier IV Stores

STH 96 over Fox River (B-5-831); Pile: Pier 13 #1 - BOR Test: 13-Nov-2014 08:44 APE D25-42, HP 12 x 53; Blow: 4 GRL Engineers, Inc.

CAPWAP (R) 2014 OP: AZ

				EMA TABLE	EXTR			
max.	max.	max.	max.	max.	min.	max.	Dist.	Pile
Displ.	Veloc.	Trnsfd.	Tens.	Comp.	Force	Force	Below	Sgmnt
		Energy	Stress	Stress			Gages	No.
in	ft/s	kip-ft	ksi	ksi	kips	kips	ft	
1.04	16.7	29.9	-1.50	32.4	-23.3	502.6	3.3	1
1.01	16.7	29.5	-1.50	32.5	-23.2	503.8	6.6	2
0.98	16.6	29.0	-1.49	32.6	-23.1	505.0	9.9	3
0.95	16.6	28.4	-1.50	32.7	-23.2	506.4	13.2	4
0.91	16.5	27.8	-1.50	32.8	-23.3	508.6	16.5	5
0.88	16.3	27.3	-1.90	33.2	-29.4	515.3	19.7	6
0.84	16.0	26.7	-2.52	33.7	-39.1	522.0	23.0	7
0.81	15.7	26.0	-3.06	34.2	-47.4	530.9	26.3	8
0.77	15.4	24.1	-3.05	32.8	-47.3	508.3	29.6	9
0.73	15.1	23.4	-3.59	33.4	-55.7	517.2	32.9	10
0.70	14.8	21.5	-3.63	31.6	-56.2	489.8	36.2	11
0.66	14.5	20.8	-4.28	32.2	-66.4	498.5	39.5	12
0.62	14.2	19.0	-4.46	30.5	-69.2	472.6	42.8	13
0.59	13.8	18.4	-4.99	31.1	-77.4	482.7	46.1	14
0.55	13.5	16.8	-5.07	30.7	-78.6	476.3	49.4	15
0.51	13.0	16.2	-5.59	30.7	-86.7	476.0	52.7	16
0.48	12.4	14.5	-5.72	29.3	-88.6	453.5	55.9	17
0.44	11.4	13.9	-5.85	31.7	-90.7	491.9	59.2	18
0.41	9.7	11.8	-5.14	30.0	-79.8	465.4	62.5	19
0.37	9.3	11.2	-5.12	30.3	-79.4	469.1	65.8	20
0.34	10.4	7.0	-2.75	24.3	-42.6	377.4	69.1	21
0.31	9.9	3.5	-2.71	24.6	-42.0	381.0	72.4	22
37.6 ms)	(T =			34.2			26.3	solute
59.1 ms)	(T =		-5.85				59.2	

				CAS	E METHOD					
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
RP	628.8	556.0	483.2	410.4	337.6					
RX	629.7	557.9	500.0	483.0	475.5	469.8	464.7	459.6	454.5	449.4
RU	628.8	556.0	483.2	410.4	337.6					

RAU = 440.3 (kips); RA2 = 495.2 (kips)

Current CAPWAP Ru = 463.0 (kips); Corresponding J(RP) = 0.46; J(RX) = 1.27

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
17.1	35.83	474.2	518.6	520.6	1.06	0.18	0.20	30.2	575.8	1319

Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in ²	ksi	lb/ft ³	ft
0.0	15.5	29992.2	492.000	3.97
72.4	15.5	29992.2	492.000	3.97
Toe Area	141.9	in ²		

STH 96 over Fox River (B-5-831); Pile: Pier 13 #1 - BOR Test: 13-Nov-2014 08:44 APE D25-42, HP 12 x 53; Blow: 4 GRL Engineers, Inc.

CAPWAP (R) 2014 OP: AZ

Segmnt	Dist. In	pedance	Imped.		Tension	Comp	ression	Perim.	Wave	Soil
Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
	ftki	.ps/ft/s	8	in		in		ft	ft/s	kips
1	3.3	27.67	0.00	0.00	0.000	-0.00	0.000	3.97	16807.9	0.000
21	69.1	27.67	0.00	0.00	0.000	-0.00	0.000	3.97	16807.9	0.040
22	72.4	27.67	0.00	0.00	0.000	-0.00	0.000	3.97 1	16807.9	0.040

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c 8.6 ms Total volume: 7.793 ft^{3;} Volume ratio considering added impedance: 1.000

STH 96 over Fox 1	River (B-5-831); Pile: Pier 13 #34 - EOID	Test: 1
APE D25-42, HP 12	2 x 53; Blow: 524	
GRL Engineers, In	nc.	

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. STH 96 over Fox River (B-5-831); Pile: Pier 13 #34 - EOID Test: 12-Nov-2014 11:49 APE D25-42, HP 12 x 53; Blow: 524 GRL Engineers, Inc.

CAPWAP(R) 2014 OP: AZ

			CAPWAP SUMMA	RY RESULTS	5		
Total CAPWA	P Capacity:	381.0;	along Shaft	116.0;	at Toe	265.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.
No.	Gages	Grade			Ru	(Depth)	(Area)
	ft	ft	kips	kips	kips	kips/ft	ksf
				381.0			
1	26.3	3.6	5.0	376.0	5.0	1.40	0.35
2	32.9	10.2	5.0	371.0	10.0	0.76	0.19
3	39.5	16.7	5.0	366.0	15.0	0.76	0.19
4	46.1	23.3	6.0	360.0	21.0	0.91	0.23
5	52.7	29.9	8.0	352.0	29.0	1.22	0.31
6	59.2	36.5	14.0	338.0	43.0	2.13	0.54
7	65.8	43.1	35.0	303.0	78.0	5.32	1.34
8	72.4	49.7	38.0	265.0	116.0	5.77	1.45
Avg. Sha	ft		14.5			2.34	0.59
Тое			265.0				268.94
Soil Model 1	Parameters/E	xtensions			Shaft	Тое	
Smith Dampin	ng Factor				0.30	0.03	
Quake	•	(in)			0.12	0.55	
Case Damping	g Factor				1.26	0.29	
Damping Type	8			7	Viscous Sn	n+Visc	
Unloading Qu	uake	(% of	loading quak	e)	64	135	
Unloading Le	evel	(% of :			58		
Resistance (Gap (include	d in Toe	Quake) (in)			0.12	
Soil Plug We	aight	(kips)			0.150	0.026	
CAPWAP matcl	h quality	= 2	.87 (Wave Up Ma	tch) ; RSA	= 0	
Observed: F:	inal Set	= 0	.15 in; E	Blow Count	=	80 b/ft	
Computed: F:	inal Set	= 0	.13 in; E	Blow Count	=	92 b/ft	
Transducer	F3(H083) CAL	.: 94.4; RF:	: 0.95; F4(F523)	CAL: 93.8;	RF: 0.95		
	A3(K974) CAI	: 305; RF:	1.05; A4(K2214) CAL: 332;	RF: 1.05		
max. Top Con	mp. Stress	= 3	1.8 ksi	(T= 36.2	ms, max= 1	.046 x Top)	
max. Comp. S	Stress	= 3	3.3 ksi	(Z= 26.3	ft, T= 37	.6 ms)	
max. Tens.		= -2	.28 ksi	(Z= 26.3	ft, T= 60	.1 ms)	
max. Energy	(EMX)	= 3	0.3 kip-ft;	max. Measu	red Top Di	.spl. (DMX)=	1.09 in

STH 96 over Fox River (B-5-831); Pile: Pier 13 #34 - EOID Test: 12-Nov-2014 11:49 APE D25-42, HP 12 x 53; Blow: 524 GRL Engineers, Inc.

CAPWAP(R) 2014 OP: AZ

				EXT	REMA TABL	E				
Pile	e Dis	t.	max.	min.	max.	max.	. I	nax.	max.	max.
Sgmnt	: Bel	ow F	orce	Force	Comp.	Tens.	. Trns	sfd. N	/eloc.	Displ.
No.	Gag	es			Stress	Stress	s Ene	ergy		
		ft	kips	kips	ksi	ksi	l kip	p-ft	ft/s	in
1	. 3	.3 4	93.6	-10.1	31.8	-0.65	5 3	30.3	16.5	1.10
2	6	.6 4	94.5	-15.2	31.9	-0.98	3 3	30.2	16.5	1.08
3	; 9	.9 4	95.4	-20.4	32.0	-1.31	L 3	30.0	16.4	1.06
4	13	.2 4	96.4	-25.2	32.0	-1.62	2 2	29.7	16.4	1.04
5	5 16	.5 4	98.0	-28.8	32.1	-1.86	5 2	29.5	16.3	1.02
6	; 19	.7 5	03.7	-31.7	32.5	-2.04	1 2	29.2	16.1	0.99
7	23	.0 5	09.8	-34.4	32.9	-2.22	2 2	28.9	15.9	0.97
8	26	.3 5	16.5	-35.3	33.3	-2.28	3 2	28.5	15.6	0.94
9	29	.6 4	94.5	-28.2	31.9	-1.82	2 2	26.8	15.4	0.91
10			01.0	-29.1	32.3	-1.88		26.5	15.1	0.88
11			79.8	-23.0	30.9	-1.48		24.9	14.9	0.86
12			86.9	-25.6	31.4	-1.65		24.5	14.6	0.83
13			67.5	-20.2	30.2	-1.30		23.0	14.3	0.80
14			76.1	-22.5	30.7	-1.45		22.6	14.0	0.77
15			82.1	-15.7	31.1	-1.02		21.0	13.7	0.74
16			78.5	-18.0	30.9	-1.16		20.6	13.2	0.71
10			45.9	-10.0	28.8	-0.55		10.0 18.7	12.6	0.69
18			95.8	-10.7	32.0	-0.69		L8.3	11.6	0.65
19					30.5					
			72.5	0.0		0.00		L5.7	11.4	0.63
20			58.5	0.0	29.6	0.00		L5.3	11.4	0.60
21			31.3	0.0	21.4	0.00		L0.4	13.4	0.58
22	. /2	.4 3	27.2	-0.0	21.1	-0.00)	5.4	13.1	0.55
Absolute		.3			33.3			(Т	=	37.6 ms)
	26	.3				-2.28	3	(Т	' =	60.1 ms)
				CA	SE METHOD					
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.	6 1.8
RP	538.0	454.0	370.1	286.1	202.1	1.0			±••	5 1.0
RX	538.0	454.0	398.9	389.7	385.2	383.8	382.8	381.8	380.	7 379.7
RU	538.0	454.0	370.1	286.1	202.1	303.0	302.0	301.0	500.	, 373.7
	281.3 (k:			433.5 (
Current CA	-					(RP) = 0.3	37: J(R	(x) = 1.5	54	
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QU	
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	_	s kips/in
16.5	36.03	455.5	502.4	503.0	1.09	0.15	0.15	30.4	588.3	1 616
			PT	LE PROFI	LE AND PI	LE MODEL				
	Depth			rea	E-Modu		Spec. V	Veight		Perim.
	ft			n ²	B-MOUU	ksi	-	o/ft ³		ft
	0.0			5.5	2999			92.000		3.97
	72.4			5.5	2999			92.000		3.97
	/2.4		1:		2999	4.4	43	2.000		3.31

141.9

 in^2

			B-5-831); Blow: 52		Pier 13 #	34 - EOII	0	Test: 12-		.4 11:49 R) 2014
GRL Eng	ineers,	Inc.								OP: AZ
Segmnt	Dist.Im	pedance	Imped.		Tension	Comp	ression	Perim.	Wave	Soil
Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
	ftki	ps/ft/s	8	in		in		ft	ft/s	kips
1	3.3	27.67	0.00	0.00	0.000	-0.00	0.000	3.971	6807.9	0.000

0.000

-0.00

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c 8.6 ms Total volume: 7.793 ft^{3;} Volume ratio considering added impedance: 1.000

0.00

0.00

22

72.4

27.67

3.9716807.9 0.000

0.000

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result.

STH 96 over Fox River (B-5-831); Pile: Pier 13 #34 - BOR Test: 13-Nov-2014 09:03 APE D25-42, HP 12 x 53; Blow: 5 GRL Engineers, Inc.

CAPWAP (R) 2014 OP: TC

			CAPWA	P SUMMARY	RESULTS				
Total CAF	WAP Capaci	ty: 435	.0; along	Shaft	115.0; at	Toe	320.0	kips	
Soil	Dist.	Depth	Ru	Force	Sum		Unit	Unit	Quake
Sgmnt	Below	Below		in Pile	of	Re	sist.	Resist.	
No.	Gages	Grade			Ru	(D	epth)	(Area)	
	ft	ft	kips	kips	kips	ki	ps/ft	ksf	in
				435.0					
1	26.3	3.6	6.0	429.0	6.0		1.64	0.41	0.04
2	32.9	10.2	6.0	423.0	12.0		0.91	0.23	0.04
3	39.5	16.8	7.0	416.0	19.0		1.06	0.27	0.04
4	46.1	23.4	8.0	408.0	27.0		1.22	0.31	0.04
5	52.7	30.0	8.0	400.0	35.0		1.22	0.31	0.04
6	59.2	36.6	10.0	390.0	45.0		1.52	0.38	0.04
7	65.8	43.1	35.0	355.0	80.0		5.32	1.34	0.04
8	72.4	49.7	35.0	320.0	115.0		5.32	1.34	0.04
Avg. Sl	naft		14.4				2.31	0.58	0.04
T	be		320.0					324.76	0.30
Soil Mode	l Paramete	rs/Extensi	ons			Shaft	То	e	
a Raki astronen i marine	1997 - 1996 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	22			2	0.33			
	ping Facto					1.37	0.0		
Damping 1	ing Factor				17-	scous	Smit		
Unloading		19	of loadir	a minko)	VI	40	10		
Reloading			of Ru)	ig quake)		100	10		
an an an air an	e Gap (inc	10 11 C AL	Second Spanning	(in)		100	0.0		
Soil Plug	에는 옷에 벗어졌다. 한 아이지 않는		ips)	(11)		0.090	0.04		
SOII FIUG	wergit	(K.	ips)			0.090	0.04	2	
CAPWAP ma	tch qualit	у =	2.88	(Wa	ave Up Mato	h);1	RSA = 0		
Observed:	Final Set	=	0.05 ir	n; Blo	w Count	=	240	b/ft	
Computed:	Final Set		0.09 ir	Alles on the second second	ow Count	=	129	b/ft	
Transducer	F3 (F523)		RF: 0.97; F4(6 S	94.4; RF: 0.97				
	A3 (K2214) CAL: 332;	RF: 1.03; A4(K974) CAL:	305; RF: 1.03	3			
max. Top	Comp. Stre	ss =	32.8 ks	3i (1	r= 36.4 ms	, max=	= 1.058	х Тор)	
max. Comp	. Stress	=	34.6 ks	3i (2	26.3 ft	, T=	37.8 ms)	
max. Tens	. Stress	i = i	-3.19 ks	3i (2	26.3 ft	, т=	58.3 ms)	
max. Ener	gy (EMX)		28.0 ki	p-ft; ma	x. Measure	d Top	Displ.	(DMX) = 1	L.04 in

STH 96 over Fox River (B-5-831); Pile: Pier 13 #34 - BOR Test: 13-Nov-2014 09:03 APE D25-42, HP 12 x 53; Blow: 5 GRL Engineers, Inc.

CAPWAP (R) 2014 OP: TC

				REMA TABLE	EXTR			
max.	max.	max.	max.	max.	min.	max.	Dist.	Pile
Displ.	Veloc.	Trnsfd.	Tens.	Comp.	Force	Force	Below	Sgmnt
		Energy	Stress	Stress			Gages	No.
in	ft/s	kip-ft	ksi	ksi	kips	kips	ft	
0.99	16.6	28.0	-1.07	32.8	-16.6	507.8	3.3	1
0.97	16.6	27.7	-1.07	32.8	-16.7	508.7	6.6	2
0.94	16.5	27.2	-1.17	32.9	-18.2	509.7	9.9	3
0.91	16.5	26.8	-1.73	32.9	-26.8	510.8	13.2	4
0.88	16.4	26.3	-2.17	33.1	-33.7	512.7	16.5	5
0.84	16.1	25.7	-2.62	33.6	-40.6	520.7	19.7	6
0.81	15.8	25.2	-2.90	34.0	-45.0	527.7	23.0	7
0.78	15.4	24.6	-3.19	34.6	-49.5	537.2	26.3	8
0.74	15.2	22.7	-2.47	32.8	-38.4	507.8	29.6	9
0.71	14.8	22.0	-2.80	33.4	-43.4	517.9	32.9	10
0.67	14.5	20.2	-2.17	31.6	-33.7	490.4	36.2	11
0.64	14.1	19.7	-2.54	32.3	-39.3	501.5	39.5	12
0.60	13.8	17.8	-1.77	30.3	-27.4	470.5	42.8	13
0.57	13.4	17.2	-1.98	31.1	-30.7	481.4	46.1	14
0.54	13.1	15.4	-1.06	28.8	-16.4	446.8	49.4	15
0.50	12.6	14.8	-1.40	29.6	-21.7	459.4	52.7	16
0.47	12.1	13.2	-0.76	27.8	-11.8	431.0	55.9	17
0.43	11.0	12.7	-1.12	29.9	-17.4	464.2	59.2	18
0.40	9.8	11.1	-0.22	29.0	-3.4	449.7	62.5	19
0.37	10.0	10.6	-0.48	28.8	-7.4	446.4	65.8	20
0.34	11.2	7.3	-0.00	23.9	-0.0	369.9	69.1	21
0.31	10.4	4.8	-0.00	24.1	-0.0	374.3	72.4	22
37.8 ms)	(T =			34.6			26.3	solute
58.3 ms)	(T =		-3.19				26.3	

	CASE METHOD										
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
RP	595.7	556.8	517.9	479.0	440.1	401.2	362.3	323.4	284.5	245.6	
RX	595.7	558.7	522.2	491.1	473.5	456.0	444.0	438.9	433.7	428.6	
RU	595.7	556.8	517.9	479.0	440.1	401.2	362.3	323.4	284.5	245.6	
RAU =	296.6 (ki	.ps); RA	2 = 4	68.3 (ki	ps)						

Current CAPWAP Ru = 435.0 (kips); Corresponding J(RP) = 0.41; J(RX) = 0.78

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
16.7	36.22	461.7	523.1	523.1	1.04	0.05	0.05	28.3	624.1	1103

Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in ²	ksi	lb/ft ³	ft
0.0	15.5	29992.2	492.000	3.97
72.4	15.5	29992.2	492.000	3.97
Toe Area	141.9	in ²		

STH 96 over Fox River (B-5-831); Pile: Pier 13 #34 - BOR Test: 13-Nov-2014 09:03 APE D25-42, HP 12 x 53; Blow: 5 GRL Engineers, Inc.

CAPWAP (R) 2014 OP: TC

Segmnt	Dist.Impedance B.G. ftkips/ft/s		Imped. Change %		Tension Eff.	Compression		Perim.	Wave	Soil
Number				Slack		Slack	Eff.	ft	Speed ft/s	Plug kips
				in		in				
1	3.3	27.67	0.00	0.00	0.000	-0.00	0.000	3.97	16807.9	0.000
20	65.8	27.67	0.00	0.00	0.000	-0.00	0.000	3.97	16807.9	0.010
21	69.1	27.67	0.00	0.00	0.000	-0.00	0.000	3.97	16807.9	0.040
22	72.4	27.67	0.00	0.00	0.000	-0.00	0.000	3.97	16807.9	0.040

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c 8.6 ms Total volume: 7.793 ft^{3;} Volume ratio considering added impedance: 1.000