GRL Engineers, Inc.

1540 E. Dundee Road, Suite 102 Palatine, IL 60074 USA Phone: (847) 221-2750 Fax: (847) 221-2752

TRANSMITTAL

To: Mr. Kevin Weber	From: Rory Flynn			
Company: Lunda Construction Co.	No. of Sheets: 42			
E-mail: kweber@lundaconstruction.com	Date: April 20, 2015			

RE: Dynamic Testing Results – USH 10 over Little Lake Butte des Morts Structure B-70-403 – West Abutment Winnebago County, Wisconsin

On April 16, 2015, West Abutment Pile #3 and #8 at the above structure were dynamically tested during initial driving. Restrike testing was performed on April 17. Project plans indicate the HP 14 x 73 H-piles at the abutment have a required driving resistance, or ultimate capacity, of 400 kips (200 tons). The abutment consists of both vertical and 1H:4V battered piles with a minimum tip elevation of EL 707.0. The piles were equipped with driving shoes and were driven with an APE D30-42 hammer (number PD 0234) operated on fuel setting 4.

West Abutment #3 was driven to a depth of 81.5 feet which corresponds to a pile tip elevation of EL 696.0. The reported pile set over the final ten blows of driving was $2^{1/4}$ inches. The average hammer stroke over this increment was 8.4 feet. During the beginning of restrike the pile was driven $1^{3/4}$ inches over ten blows at an average stroke of 8.5 feet.

West Abutment #8 was driven to a depth of 83.0 feet which corresponds to a pile tip elevation of El. 694.5. The reported pile set over the final ten blows of driving was $1^{1/4}$ inches. The average hammer stroke over this increment was 8.3 feet. During the beginning of restrike the pile was driven $1^{1/8}$ inches over ten blows at an average stroke of 8.6 feet.

We recommend the production piles at the West Abutment of Structure B-70-403, driven with the APE D30-42 hammer PD0234, obtain the minimum recommended blow count, noted below, based on the field observed hammer stroke. We recommend maintaining the minimum blow count for **three consecutive inches** of driving at the recommended average hammer stroke. Additionally, all production piles should achieve the minimum pile tip elevation of EL 707.0 for uplift, as indicated on the plans. The criteria is applicable to both the vertical and the 1H:4V batter piles.

Field Observed Hammer Stroke (feet)	Recommended Minimum Blow Count (blows per inch)
7.0	5
7.5	4
8.0	4
8.5	4
9.0	4
9.5	3

Driving should be halted if a blow count of 10 blows per inch at a 8.5 foot stroke or higher is achieved prior to attaining the criteria. We anticipate the production piles will terminate at depths similar to those of the test pile.

Please call if you have any questions on these recommendations.

GRL Engineers, Inc.

Rory Flynn, E.I.

Travis Coleman, P.E.

Cc: Jeff Horsfall - jeffrey.horsfall@dot.wi.gov

Attachments:

Dynamic Test Results - (pages 3 - 22) CAPWAP Analysis Results - (pages 23 - 42)

GRL Engineers, Inc.
Case Method & iCAP® Results

Pa	nge 1
PDIPLOT2 2014.2.48.1 - Printed 17-April-2	015

USH 10 over LLBDM - WEST ABUTMENT #3 OP: RF AR: 21.40 in²

APE D30-42, HP 14 x 73

Date: 16-April-2015 SP: 0.492 k/ft³

JF.	0.492	N/IL
EM:	30,000	ksi

AR:	21.40 in ²								492 k/ft ³
LE:	77.50 ft							EM: 30,0	
	6,807.9 f/s					AV. May Tre	f		.00 []
	Aax Measure					MX: Max Tra PM: Blows p		nergy	
	Compression D.E. Diesel ⊢							Capacity ()	C-0 0)
BL#	depth	BLC	TYPE	CSB	RX9: Max Case Method Capacity (J CSB STK EMX BPM				
DL#	ft	bl/ft	IIFE	CSX ksi	ksi	ft	k-ft	bpm	RX9 kips
3	11.20	5	AV1	20.9	3.0	4.8	30	53.2	43
Ū	11.20	0	MAX	20.9	3.0	4.8	30	53.2	43
			MIN	20.9	3.0	4.8	30	53.2	43
				_0.0	0.0			00.2	
7	12.00	5	AV3	18.9	4.4	4.7	25	55.1	65
			MAX	25.7	5.1	6.1	39	64.0	84
			MIN	11.2	3.0	3.2	12	47.7	36
11	13.00	4	AV4	19.0	5.1	4.7	26	54.0	64
			MAX	19.6	5.5	4.8	27	55.1	69
			MIN	18.0	4.8	4.5	24	53.2	57
16	14.00	5	AV5	18.9	5.2	4.7	24	54.0	76
10	14.00	5	MAX	20.1	5.2 5.4	4.7 4.9	24 26	54.0 56.8	70 84
			MIN	16.3	4.9	4.9	20	50.8	68
			IVIIIN	10.0	4.5	٦.٢	21	52.0	00
22	15.00	6	AV6	21.9	6.9	5.3	29	51.0	108
		-	MAX	24.7	8.9	6.0	36	53.8	125
			MIN	19.1	5.6	4.7	24	48.0	84
28	16.00	6	AV6	24.8	9.4	6.0	34	47.8	126
			MAX	25.3	9.8	6.1	37	49.0	133
			MIN	23.7	9.0	5.7	32	47.4	119
	17.00	•			<u> </u>		~~~	40.4	400
34	17.00	6	AV6	23.8	8.4	5.7	33	49.1	122
			MAX	24.9	9.0	5.9 5.6	34	49.7	127
			MIN	23.1	7.3	5.6	32	48.3	119
40	18.00	6	AV6	23.2	7.4	5.5	31	50.1	120
40	10.00	0	MAX	24.0	7.9	5.6	33	51.1	126
			MIN	22.2	7.0	5.2	29	49.4	113
						0.2			
46	19.00	6	AV6	23.6	7.6	5.7	33	49.3	125
			MAX	24.2	8.5	5.8	35	49.9	133
			MIN	23.0	7.2	5.5	31	48.8	117
52	20.00	6	AV6	24.3	7.8	5.8	33	48.6	123
			MAX	24.9	8.3	6.0	34	49.2	125
			MIN	23.5	7.2	5.7	32	47.9	121
59	21.00	7	AV7	24.8	01	5.9	33	48.3	129
29	21.00	1	MAX	24.8 25.4	8.1 8.7	5.9 6.0	33 35	48.3 49.0	129
			MIN	23.4 24.1	o.7 7.4	6.0 5.7	35	49.0 47.8	137
			IVIIIN	27.1	7.4	5.7	JI	ч7.0	121
65	22.00	6	AV6	24.8	8.4	5.8	33	48.6	130
		Ŭ	MAX	25.3	9.0	5.9	34	49.3	134
			MIN	24.0	0 1	57	22	10.0	126

5.7

8.1

33

48.2

126

MIN

24.0

USH 10 over LLBDM - WEST ABUTMENT #3

APE D30-42, HP 14 x 73

OP: RF]	Date: 16-Ap	ril-2015
BL#	depth ft	BLC bl/ft	TYPE	CSX ksi	CSB ksi	STK ft	EMX k-ft	BPM bpm	RX9 kips
72	23.00	7	AV7 MAX MIN	24.8 25.5 24.2	7.7 8.1 7.3	5.8 6.0 5.7	33 34 31	48.7 49.2 48.1	134 142 129
82	24.00	10	AV10 MAX MIN	25.8 27.1 24.5	8.6 10.0 7.2	6.1 6.3 5.8	32 34 31	47.6 48.7 46.7	161 181 138
92	25.00	10	AV10 MAX MIN	26.6 27.4 25.8	10.1 11.3 9.5	6.3 6.5 6.1	34 35 32	46.7 47.4 46.1	197 208 182
101	26.00	9	AV9 MAX MIN	27.0 27.6 26.4	10.7 11.6 9.8	6.5 6.7 6.3	35 37 34	46.1 46.9 45.5	203 208 196
109	27.00	8	AV8 MAX MIN	27.3 28.0 26.2	10.6 11.3 10.0	6.6 6.8 6.3	36 38 34	45.9 46.9 45.1	206 212 201
121	28.00	12	AV12 MAX MIN	27.0 27.5 26.3	10.3 11.1 9.6	6.5 6.7 6.3	35 37 33	46.1 46.7 45.5	200 216 186
132	29.00	11	AV11 MAX MIN	27.3 28.9 26.1	10.6 12.6 8.1	6.6 7.0 6.2	35 38 32	45.8 47.2 44.4	206 236 182
143	30.00	11	AV11 MAX MIN	28.6 29.2 27.9	12.7 13.6 12.2	7.0 7.1 6.8	37 38 36	44.6 45.1 44.1	229 235 215
154	31.00	11	AV11 MAX MIN	27.7 28.7 26.1	11.0 12.8 9.8	6.7 7.1 6.3	35 38 33	45.6 46.7 44.3	208 219 183
165	32.00	11	AV11 MAX MIN	27.5 28.4 26.5	9.6 10.5 8.7	6.6 6.8 6.4	35 36 33	45.8 46.6 45.2	201 221 188
175	33.00	10	AV10 MAX MIN	27.9 28.4 27.4	10.9 11.8 9.8	6.8 6.9 6.6	36 37 35	45.3 45.9 44.9	222 228 209
186	34.00	11	AV11 MAX MIN	27.2 27.6 25.8	9.2 9.9 8.3	6.5 6.6 6.2	34 35 31	46.2 47.3 45.7	195 206 187
196	35.00	10	AV10 MAX MIN	27.5 28.6 26.7	9.9 10.7 8.9	6.6 6.8 6.5	35 37 33	45.7 46.3 45.0	204 213 196

USH 10 over LLBDM - WEST ABUTMENT #3

APE D30-42, HP 14 x 73 Date: 16-April-2015

OP: RF			-	-			[Date: 16-Ap	ril-2015
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
005	ft	bl/ft	A) (O	ksi	ksi	ft	k-ft	bpm	kips
205	36.00	9	AV9 MAX	27.3 27.9	9.4 10.6	6.5 6.7	34 35	46.2 46.6	196 216
			MIN	27.9	8.3	6.4	33	40.0 45.6	184
				20.7	0.5	0.4	55	40.0	104
212	37.00	7	AV7	27.4	9.3	6.5	35	46.3	187
			MAX	27.6	9.9	6.5	37	46.7	196
			MIN	26.9	8.4	6.3	33	46.0	175
220	38.00	8	AV8	26.8	8.6	6.3	34	46.8	182
			MAX	27.7	9.5	6.5	35	47.5	187
			MIN	26.0	7.9	6.1	32	46.3	178
229	39.00	9	AV9	26.9	8.8	6.3	33	46.7	188
			MAX	27.9	9.6	6.6	35	47.5	195
			MIN	25.9	8.0	6.1	31	45.9	171
239	40.00	10	AV10	27.3	9.6	6.5	34	46.2	194
			MAX	28.0	10.7	6.6	34	47.0	204
			MIN	26.3	8.7	6.3	32	45.7	180
249	41.00	10	AV10	27.0	9.9	6.4	33	46.4	197
			MAX	27.6	11.6	6.5	34	47.0	204
			MIN	26.2	8.5	6.3	31	46.0	193
259	42.00	10	AV10	27.1	9.9	6.4	32	46.5	192
			MAX	28.2	11.2	6.6	34	47.4	201
			MIN	26.3	8.9	6.1	31	45.7	183
268	43.00	9	AV9	27.2	9.9	6.4	34	46.3	192
			MAX	28.0	10.7	6.7	35	47.2	198
			MIN	26.2	9.1	6.2	31	45.6	186
277	44.00	9	AV9	27.0	9.1	6.4	33	46.6	198
			MAX	28.1	9.8	6.6	34	47.7	204
			MIN	26.0	8.6	6.1	30	45.9	187
289	45.00	12	AV12	27.3	9.7	6.5	32	46.3	208
			MAX	28.2	10.7	6.7	34	47.3	220
			MIN	26.3	8.7	6.2	30	45.5	195
299	46.00	10	AV10	27.1	9.3	6.4	33	46.3	206
			MAX	27.8	9.9	6.6	34	47.1	218
			MIN	26.5	8.6	6.2	31	45.8	197
309	47.00	10	AV10	26.7	9.0	6.4	32	46.5	211
			MAX	27.5	9.7	6.6	34	47.2	217
			MIN	26.0	8.4	6.2	31	45.8	204
320	48.00	11	AV11	26.8	9.1	6.4	31	46.4	220
			MAX	27.3	9.7	6.5	32	46.9	228
			MIN	26.3	8.5	6.3	31	46.0	210
331	49.00	11	AV11	27.4	9.6	6.6	33	45.9	232

GRL Engineers, Inc. Case Method & iCAP® Results

	Page 4
PDIPLOT2 2014.2.48.1 - Printed	17-April-2015

USH 10 over LLBDM - WEST ABUTMENT #3 OP: RF

APE D30-42, HP 14 x 73 Date: 16-April-2015

OP: RF							Γ	Date: 16-Ap	ril-2015
BL#	depth ft	BLC bl/ft	TYPE MAX MIN	CSX ksi 28.1 26.0	CSB ksi 10.0 9.1	STK ft 6.8 6.2	EMX k-ft 35 30	BPM bpm 47.2 45.2	RX9 kips 240 223
341	50.00	10	AV10 MAX MIN	26.9 27.6 26.1	9.1 9.8 8.7	6.4 6.7 6.2	32 33 30	46.4 47.1 45.6	229 234 225
350	51.00	9	AV9 MAX MIN	27.2 28.3 26.5	9.1 10.1 8.8	6.5 6.9 6.3	34 37 31	46.0 46.9 44.8	226 239 218
360	52.00	10	AV10 MAX MIN	27.0 27.5 26.5	9.1 9.6 8.9	6.5 6.7 6.3	33 33 31	46.2 46.7 45.4	224 231 220
370	53.00	10	AV10 MAX MIN	27.1 27.9 26.4	9.0 9.4 8.8	6.4 6.7 6.2	32 34 31	46.4 47.2 45.4	230 243 222
381	54.00	11	AV11 MAX MIN	27.1 28.1 26.3	9.4 10.6 8.9	6.5 6.7 6.3	32 33 30	46.3 47.0 45.6	233 239 229
391	55.00	10	AV10 MAX MIN	27.2 27.8 26.7	9.2 9.6 8.8	6.5 6.8 6.3	32 34 31	46.1 46.8 45.3	230 240 226
400	56.00	9	AV9 MAX MIN	27.1 27.7 26.4	9.1 9.5 8.9	6.5 6.6 6.3	32 34 31	46.2 46.9 45.7	231 239 227
409	57.00	9	AV9 MAX MIN	27.1 28.1 26.3	9.4 10.4 9.0	6.5 6.8 6.3	33 35 31	46.1 46.8 45.3	231 241 223
418	58.00	9	AV9 MAX MIN	27.1 27.6 26.6	9.3 10.3 9.0	6.5 6.6 6.3	32 34 31	46.2 46.7 45.7	231 238 227
429	59.00	11	AV11 MAX MIN	27.4 28.3 26.4	9.6 9.9 9.2	6.5 6.9 6.2	32 34 30	46.0 47.2 44.9	236 246 229
441	60.00	12	AV12 MAX MIN	27.3 28.2 26.5	10.0 10.4 9.6	6.5 6.7 6.3	30 31 29	46.2 46.8 45.6	235 240 230
452	61.00	11	AV11 MAX MIN	28.1 29.7 27.5	10.6 11.3 10.1	6.7 7.1 6.4	32 35 30	45.6 46.5 44.3	239 248 233
465	62.00	13	AV13 MAX	27.9 29.1	11.0 11.8	6.7 6.9	31 33	45.6 46.4	242 246

GRL Engineers, Inc. Case Method & iCAP® Results

Р	age 5
PDIPLOT2 2014.2.48.1 - Printed 17-April-2	2015

USH 10 over LLBDM - WEST ABUTMENT #3 OP: RF							APE D30-42, HP 14 x 73 Date: 16-April-2015			
BL#	depth ft	BLC bl/ft	TYPE MIN	CSX ksi 27.2	CSB ksi 10.3	STK ft 6.4	EMX k-ft 28	BPM bpm 44.7	RX9 kips 233	
477	63.00	12	AV12 MAX MIN	28.1 29.9 27.3	11.3 12.0 10.3	6.7 7.1 6.5	31 35 29	45.5 46.3 44.1	238 248 233	
489	64.00	12	AV12 MAX MIN	28.3 29.2 27.3	11.3 12.2 10.9	6.8 7.0 6.6	32 34 30	45.3 45.9 44.4	241 253 234	
501	65.00	12	AV12 MAX MIN	28.8 29.1 28.4	11.6 12.2 10.9	7.0 7.1 6.8	34 35 33	44.6 45.2 44.2	246 252 241	
515	66.00	14	AV14 MAX MIN	28.2 28.8 27.4	11.4 12.0 11.0	6.8 7.0 6.5	32 33 30	45.1 46.0 44.4	244 251 238	
528	67.00	13	AV13 MAX MIN	28.1 28.9 27.1	11.7 12.2 11.2	6.8 7.1 6.6	32 33 30	45.1 45.8 44.2	240 251 230	
540	68.00	12	AV12 MAX MIN	27.6 28.5 26.7	12.3 13.0 11.3	6.8 7.1 6.5	31 33 29	45.2 46.1 44.2	230 240 222	
552	69.00	12	AV12 MAX MIN	27.8 28.7 26.9	13.0 13.5 12.1	6.8 7.1 6.6	31 33 29	45.1 45.9 44.2	229 236 218	
564	70.00	12	AV12 MAX MIN	27.8 28.6 26.7	12.8 13.3 12.2	6.8 7.0 6.6	31 32 29	45.2 45.8 44.5	227 233 217	
576	71.00	12	AV12 MAX MIN	28.0 28.9 27.4	13.5 14.1 12.4	6.8 7.1 6.6	31 32 30	45.1 45.7 44.2	228 236 223	
588	72.00	12	AV12 MAX MIN	27.7 29.6 27.1	13.8 14.5 13.1	6.7 7.2 6.5	30 33 28	45.5 46.2 43.8	224 235 217	
599	73.00	11	AV11 MAX MIN	27.8 28.6 26.9	13.8 14.5 13.4	6.7 6.8 6.5	30 31 28	45.5 46.1 45.0	224 229 219	
611	74.00	12	AV12 MAX MIN	28.6 29.5 27.9	14.6 15.2 13.8	6.7 6.9 6.5	31 32 29	45.3 46.0 44.7	230 237 220	
624	75.00	13	AV13 MAX MIN	28.4 29.6 27.4	14.9 15.4 14.6	6.8 7.2 6.5	31 33 29	45.2 46.1 43.9	238 253 232	

USH 10 over LLBDM - WEST ABUTMENT #3 APE D30-42, HP 1- OP: RF Date: 16-Apri									
BL#	depth ft	BLC bl/ft	TYPE	CSX ksi	CSB ksi	STK ft	EMX k-ft	BPM bpm	RX9 kips
637	76.00	13	AV13 MAX MIN	28.4 29.2 27.4	15.0 15.8 14.3	6.8 7.0 6.5	31 33 29	45.2 46.1 44.4	231 238 226
649	77.00	12	AV11 MAX MIN	30.4 33.1 28.0	17.8 20.1 14.9	7.6 9.1 6.8	35 42 30	43.1 45.3 39.3	214 229 193
665	78.00	16	AV16 MAX MIN	30.5 31.8 29.8	20.9 22.2 18.9	7.5 7.9 7.3	33 35 30	43.0 43.7 41.9	179 196 165
685	79.00	20	AV20 MAX MIN	31.2 32.1 30.3	23.3 25.6 22.0	7.7 7.9 7.5	33 35 31	42.5 43.2 41.9	245 306 208
719	80.00	34	AV34 MAX MIN	32.0 33.5 30.7	26.8 30.2 24.5	8.0 8.6 7.6	34 38 31	41.7 42.9 40.4	359 440 283
764	80.92	49	AV45 MAX MIN	32.9 33.8 32.3	29.0 30.3 27.7	8.3 8.6 8.1	36 38 35	40.9 41.6 40.3	432 459 408
774	81.13	48	AV10 MAX MIN	32.7 33.1 31.9	28.2 29.1 27.6	8.2 8.4 7.9	36 36 34	41.2 41.9 40.8	416 430 406
784	81.31	53	AV10 MAX MIN	33.0 33.5 32.5	29.0 29.6 28.4	8.4 8.5 8.2	36 37 35	40.9 41.3 40.5	431 437 422
794	81.50	53	AV9 MAX MIN	33.3 33.7 32.5	29.5 30.0 28.7	8.4 8.6 8.2	37 38 36	40.8 41.3 40.3	438 442 <u>433</u>
			Average Iaximum Minimum	28.0 33.8 11.2	13.5 30.3 3.0	6.8 9.1 3.2	33 42 12	45.4 64.0 39.3	235 459 36
	Minimum 11.2 3.0 3.2 12 39.3 36 Total number of blows analyzed: 789								

BL# Sensors

1-794 F3: [F607] 93.6 (0.98); F4: [D815] 93.0 (0.98); A3: [K2524] 360.0 (1.03); A4: [K3550] 360.0 (1.03)

BL# Comments

Reported Reference EL 777.46 3

642 LE = 90.00 ft; WC = 16,822.4 f/s

GRL Engineers, Inc. Case Method & iCAP® Results Page 7 PDIPLOT2 2014.2.48.1 - Printed 17-April-2015

USH 10 over LLBDM - WEST ABUTMENT #3 OP: RF APE D30-42, HP 14 x 73 Date: 16-April-2015

Time Summary

 Drive
 14 minutes 22 seconds
 7:16 AM - 7:31 AM (4/16/2015) BN 1 - 641

 Stop
 2 hours 18 minutes 40 seconds
 7:31 AM - 9:49 AM

 Drive
 3 minutes 39 seconds
 9:49 AM - 9:53 AM BN 642 - 794

Total time [02:36:42] = (Driving [00:18:01] + Stop [02:18:40])

	ayer
PDIPLOT2 2014.2.48.1 - Printed 17-April-	2015

		DM - WEST	ABUTMENT	"#3-BOR				030-42, HP	
<u>OP: F</u>	RF						[Date: 17-Ap	
AR:	21.40 in²								492 k/ft ³
LE:	90.00 ft							EM: 30,	000 ksi
<u>WS:</u>	<u>16,807.9 f/s</u>								1.00 []
CSX:	Max Measu	ured Compi	. Stress		EN	IX: Max Tr	ansferred E	nergy	
CSB:	Compressi	on Stress a	t Bottom		BP	M: Blows	oer Minute		
STK:	O.E. Diese	<u>I Hammer S</u>	Stroke		RX	<u>(9: Max Ca</u>	ase Method	Capacity (JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
	ft	blows/ft		ksi	ksi	ft	k-ft	bpm	kips
10	81.65	69	AV9	33.7	31.3	8.5	38	40.5	502
			MAX	34.2	32.0	8.7	40	41.1	516
			MIN	32.8	30.3	8.3	37	40.1	476
20	81.76	87	AV10	34.0	32.0	8.6	39	40.4	528
			MAX	34.7	32.6	8.8	41	40.9	545
			MIN	33.4	31.3	8.4	37	39.8	514
30	81.85	107	AV10	34.4	33.1	8.7	40	40.1	558
			MAX	34.8	33.5	8.9	41	40.4	569
			MIN	34.1	32.5	8.6	39	39.7	542
			Average	34.0	32.1	8.6	39	40.3	531
			Maximum	34.8	33.5	8.9	41	41.1	569
			Minimum	32.8	30.3	8.3	37	39.7	476
			Total n	umber of bl	ows analyze	ed: 29			

Total number of blows analyzed: 29

BL# Sensors

1-30 F3: [F607] 93.6 (0.97); F4: [D815] 93.0 (0.97); A3: [K2524] 360.0 (1.03); A4: [K3550] 360.0 (1.03)

Time Summary

Drive 43 seconds 7:07 AM - 7:08 AM BN 1 - 30

Page 1

GRL Engineers, Inc.
Case Method & iCAP® Results

Pa	ge 1
PDIPLOT2 2014.2.48.1 - Printed 17-April-20	15

USH 10 over LLBDM - WEST ABUTMENT #8 OP: RF AR: 21.40 in²

APE D30-42, HP 14 x 73

Date: 16-April-2015 SP: 0.492 k/ft³

01.	0.452	IV IL
EM:	30,000	ksi

79

AR: LE:	21.40 in ² 77.50 ft							EM: 30,0	
	6,807.9 f/s	d Compr S	traca			MX: Max Tra	poforrod E		.00 []
	lax Measure Compression					PM: Blows p		nergy	
STK: C).E. Diesel H		oke		R	X9: Max Ca		Capacity (J	C=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
0	ft	bl/ft	A \ /d	ksi	ksi	ft	k-ft	bpm	kips
3	11.50	2	AV1 MAX	22.9 22.9	3.7 3.7	5.4 5.4	40 40	50.6 50.6	1
			MIN	22.9	3.7	5.4 5.4	40	50.6	1 1
4	12.00	2	AV1	15.3	3.2	3.9	23	58.9	0
4	12.00	2	MAX	15.3	3.2	3.9	23	58.9	0
			MIN	15.3	3.2	3.9	23	58.9	Ő
6	13.00	2	AV2	8.6	2.3	3.2	13	64.8	0
-			MAX	10.6	2.6	3.3	16	66.6	0
			MIN	6.5	2.0	3.0	11	63.0	0
9	14.00	3	AV2	11.9	2.4	4.0	21	59.9	0
			MAX	22.5	4.3	5.2	42	68.2	0
			MIN	1.4	0.5	2.8	1	51.5	0
12	15.00	3	AV3	14.4	3.3	3.7	21	60.2	0
			MAX	16.4	3.7	3.9	27	61.9	0
			MIN	12.7	3.0	3.5	16	58.4	0
15	16.00	3	AV2	20.8	4.8	4.8	33	53.3	31
			MAX	23.0	5.3	5.3	37	55.8	62
			MIN	18.5	4.3	4.3	29	50.8	0
19	17.00	4	AV4	17.6	5.6	4.4	24	55.4	59
			MAX	18.7	6.0	4.6	26	56.2	63
			MIN	16.9	5.2	4.3	22	54.6	54
23	18.00	4	AV4	17.7	5.2	4.4	24	55.3	60
			MAX	19.2	5.3	4.7	26	56.6	74
			MIN	16.5	4.9	4.2	22	53.7	52
28	19.00	5	AV5	19.1	5.5	4.7	25	54.0	78
			MAX	20.3	5.6	4.9	27	54.8	85
			MIN	18.1	5.3	4.5	23	52.9	70
33	20.00	5	AV5	20.6	6.4	5.0	28	52.4	91
			MAX	21.2	7.0	5.1	29	53.1	96
			MIN	20.0	5.7	4.8	26	51.7	80
37	21.00	4	AV4	20.3	5.9	4.9	28	52.8	77
			MAX	20.9	6.7	5.1	30	54.4	83
			MIN	18.9	5.1	4.6	24	51.8	73
42	22.00	5	AV5	19.7	5.6	4.7	25	53.9	81
			MAX	21.1	6.0	5.0	27	54.7	83

5.3

4.5

24

52.1

MIN

18.8

GRL Engineers, Inc. Case Method & iCAP® Results Page 2 PDIPLOT2 2014.2.48.1 - Printed 17-April-2015

USH 10 over LLBDM - WEST ABUTMENT #8 OP: RF

APE D30-42, HP 14 x 73 Date: 16-April-2015

OP: RF							[Date: 16-Ap	ril-2015
BL#	depth ft	BLC bl/ft	TYPE	CSX ksi	CSB ksi	STK ft	EMX k-ft	BPM bpm	RX9 kips
47	23.00	5	AV5 MAX MIN	20.5 21.3 19.5	5.5 6.0 5.2	4.8 4.9 4.5	27 28 25	53.3 54.7 52.7	85 89 78
51	24.00	4	AV4 MAX MIN	21.2 21.9 20.7	6.3 6.4 6.2	5.0 5.1 4.9	28 29 27	52.5 53.0 51.7	84 88 81
56	25.00	5	AV5 MAX MIN	21.1 21.7 20.7	6.5 6.7 6.3	5.0 5.1 4.9	27 29 26	52.3 52.7 51.9	91 94 87
61	26.00	5	AV5 MAX MIN	21.5 22.0 20.3	6.2 6.7 5.8	5.1 5.2 4.8	28 29 26	51.8 53.2 51.1	90 95 84
67	27.00	6	AV6 MAX MIN	22.1 22.4 21.6	6.3 6.8 6.1	5.2 5.3 5.1	28 28 27	51.2 51.8 50.7	98 101 96
73	28.00	6	AV6 MAX MIN	22.0 22.7 21.6	6.8 7.0 6.5	5.2 5.4 5.1	27 29 26	51.2 51.7 50.6	105 107 102
78	29.00	5	AV5 MAX MIN	21.8 22.3 20.7	6.4 6.9 6.0	5.2 5.3 4.9	28 29 26	51.5 52.6 50.8	99 102 93
83	30.00	5	AV5 MAX MIN	21.4 22.1 20.5	6.7 6.9 6.3	5.1 5.2 4.9	28 29 26	51.8 52.8 51.2	90 94 81
88	31.00	5	AV5 MAX MIN	20.8 21.6 20.2	5.7 6.1 5.5	4.9 5.1 4.8	27 28 26	52.8 53.4 51.8	86 97 72
93	32.00	5	AV5 MAX MIN	22.3 23.5 20.3	6.2 6.5 5.9	5.2 5.5 4.8	30 33 26	51.2 53.3 50.1	103 108 92
99	33.00	6	AV6 MAX MIN	21.8 22.7 21.0	6.1 6.5 5.8	5.2 5.4 5.0	28 30 26	51.5 52.4 50.5	101 105 96
105	34.00	6	AV6 MAX MIN	21.3 22.6 19.6	7.0 8.5 5.9	5.0 5.3 4.6	27 29 24	52.3 54.4 50.7	98 105 92
110	35.00	5	AV5 MAX MIN	22.3 23.4 21.7	7.9 8.7 7.0	5.3 5.5 5.1	29 32 27	51.0 51.6 49.9	99 104 96

USH 10 over LLBDM - WEST ABUTMENT #8

APE D30-42, HP 14 x 73

OP: RF			DOTIMENT					Date: 16-Ap	ril-2015
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
	ft	bl/ft		ksi	ksi	ft	k-ft	bpm	kips
115	36.00	5	AV5	22.0	6.3	5.2	29	51.3	92
			MAX MIN	23.2 20.8	6.7	5.5	32 27	52.7 50.0	99 89
			IVIIIN	20.8	6.0	4.9	27	50.0	69
121	37.00	6	AV6	21.8	6.2	5.1	28	51.7	96
			MAX	22.2	6.3	5.2	29	52.5	101
			MIN	21.0	6.1	5.0	27	51.4	93
128	38.00	7	AV7	22.2	6.9	5.2	27	51.2	112
		-	MAX	23.4	8.1	5.6	30	52.2	133
			MIN	21.3	6.2	5.0	25	49.7	96
135	39.00	7	AV7	23.0	7.6	5.4	28	50.3	123
100	00.00		MAX	24.4	8.8	5.8	31	52.2	143
			MIN	21.0	7.0	5.0	25	48.9	113
143	40.00	8	AV8	24.4	9.0	5.8	30	48.7	144
	10100	Ũ	MAX	24.9	10.3	5.9	32	49.3	169
			MIN	24.0	8.5	5.7	29	48.2	132
155	41.00	12	AV12	25.9	10.4	6.3	31	47.1	183
100	1100		MAX	27.6	12.4	6.8	34	49.9	208
			MIN	23.5	8.0	5.5	26	45.2	137
166	42.00	11	AV11	26.9	11.7	6.6	34	45.9	195
			MAX	28.5	12.8	7.1	37	47.1	201
			MIN	25.6	10.5	6.2	32	44.1	188
175	43.00	9	AV9	25.8	10.4	6.2	33	47.3	181
			MAX	26.8	11.9	6.6	35	48.2	191
			MIN	25.1	9.6	5.9	31	45.8	168
183	44.00	8	AV8	23.7	7.7	5.6	29	49.5	148
			MAX	25.8	9.2	6.1	32	51.3	166
			MIN	22.4	7.0	5.2	25	47.6	134
191	45.00	8	AV8	23.6	7.3	5.6	28	49.6	146
			MAX	24.4	7.7	5.8	29	50.1	156
			MIN	23.0	7.1	5.5	27	48.7	139
200	46.00	9	AV9	24.3	7.8	5.8	29	48.7	163
			MAX	25.1	8.2	6.0	31	50.4	169
			MIN	22.7	7.6	5.4	26	47.9	155
209	47.00	9	AV9	24.3	8.0	5.8	29	48.8	173
			MAX	25.1	8.4	6.0	30	50.0	185
			MIN	23.1	7.5	5.5	27	48.1	163
218	48.00	9	AV9	24.7	8.1	5.9	29	48.5	184
			MAX	26.2	8.8	6.2	33	50.1	194
			MIN	23.2	7.7	5.5	26	47.1	175
227	49.00	9	AV9	24.6	8.2	5.9	29	48.4	186

GRL Engineers, Inc. Case Method & iCAP® Results

Pag	ie 4
PDIPLOT2 2014.2.48.1 - Printed 17-April-20	

USH 10 over LLBDM - WEST ABUTMENT #8 OP: RF APE D30-42, HP 14 x 73 Date: 16-April-2015

OP: RF							[Date: 16-Ap	ril-2015
BL#	depth ft	BLC bl/ft	TYPE MAX MIN	CSX ksi 25.3 23.6	CSB ksi 8.7 7.9	STK ft 6.0 5.6	EMX k-ft 30 27	BPM bpm 49.5 47.9	RX9 kips 190 182
236	50.00	9	AV9 MAX MIN	24.4 25.6 23.6	8.3 8.9 7.8	5.8 6.1 5.6	28 30 26	48.7 49.5 47.7	188 196 182
245	51.00	9	AV9 MAX MIN	24.7 25.6 23.9	8.4 9.0 7.8	5.9 6.1 5.8	28 31 27	48.3 48.9 47.4	196 205 187
254	52.00	9	AV9 MAX MIN	24.2 24.7 23.8	8.1 8.7 7.9	5.8 5.9 5.6	27 28 26	48.8 49.4 48.2	194 199 189
263	53.00	9	AV9 MAX MIN	25.1 26.2 23.5	8.2 8.4 7.7	5.9 6.2 5.6	29 31 27	48.2 49.7 47.1	198 203 189
272	54.00	9	AV9 MAX MIN	24.6 25.6 23.6	8.5 9.5 8.2	5.9 6.2 5.6	28 30 27	48.3 49.4 47.2	198 207 191
281	55.00	9	AV9 MAX MIN	24.9 25.7 24.4	8.9 9.5 8.5	5.9 6.1 5.8	29 32 28	48.1 48.8 47.5	202 207 197
289	56.00	8	AV8 MAX MIN	24.9 26.5 24.1	8.8 9.9 8.2	5.9 6.4 5.7	29 32 28	48.5 49.3 46.6	202 209 197
298	57.00	9	AV9 MAX MIN	24.8 26.1 23.8	9.2 9.6 8.8	5.9 6.2 5.6	29 31 27	48.5 49.5 47.1	211 219 203
308	58.00	10	AV10 MAX MIN	25.1 26.7 24.2	9.6 10.7 9.0	5.9 6.3 5.7	29 31 26	48.2 49.2 46.9	219 231 208
318	59.00	10	AV10 MAX MIN	25.5 26.5 24.6	9.8 10.5 9.0	6.0 6.3 5.8	29 31 28	48.0 48.9 46.9	224 234 217
329	60.00	11	AV11 MAX MIN	26.1 26.8 25.5	11.1 11.7 10.4	6.2 6.4 6.0	30 32 29	47.3 47.9 46.6	233 240 227
341	61.00	12	AV12 MAX MIN	26.8 27.6 26.3	11.6 12.6 11.0	6.4 6.7 6.2	30 33 29	46.6 47.2 45.5	243 252 238
354	62.00	13	AV13 MAX	27.4 28.2	12.2 12.8	6.5 6.8	31 33	46.2 47.1	250 263

USH 10 over LLBDM - WEST ABUTMENT #8	
OP' RF	

APE D30-42, HP 14 x 73 Date: 16-April-2015

OP: RF							[Date: 16-Ap	ril-2015
BL#	depth ft	BLC bl/ft	TYPE	CSX ksi	CSB ksi	STK ft	EMX k-ft	BPM bpm	RX9 kips
			MIN	26.7	11.7	6.2	29	45.2	243
365	63.00	11	AV11 MAX	27.8 28.7	12.4 12.8	6.6 6.8	32 34	45.9 46.9	249 257
			MIN	26.5	12.8	6.3	30	45.0	242
378	64.00	13	AV13 MAX	28.0 29.2	12.6 13.2	6.6 6.9	32 35	45.8 46.6	252 260
			MIN	26.9	12.1	6.4	31	44.7	247
390	65.00	12	AV12 MAX	27.7 28.8	12.8 13.4	6.6 7.0	32 34	45.8 46.4	249 257
			MIN	27.0	12.3	6.4	31	44.6	243
402	66.00	12	AV12 MAX	28.1 29.1	13.1 13.7	6.7 7.0	33 35	45.4 46.5	255 263
			MIN	27.0	12.5	6.4	30	44.6	203
414	67.00	12	AV12 MAX	28.0 29.0	12.9 14.1	6.7 6.9	32 34	45.5 46.2	254 262
			MIN	27.1	12.2	6.5	31	44.8	246
426	68.00	12	AV12 MAX	28.0 28.9	13.0 14.1	6.7 6.8	32 34	45.6 46.4	256 261
			MIN	27.0	12.4	6.4	31	45.0	249
439	69.00	13	AV13 MAX	28.0 28.7	13.1 14.1	6.6 6.8	32 33	45.7 46.2	259 265
			MIN	27.5	12.5	6.5	31	45.0	254
452	70.00	13	AV13 MAX	27.7 28.7	13.4 14.1	6.6 6.8	31 32	45.7 46.4	254 264
			MIN	26.8	12.7	6.4	30	45.1	247
465	71.00	13	AV13 MAX	28.3 28.9	13.8 14.6	6.8 6.9	32 33	45.3 46.0	256 260
			MIN	27.5	13.4	6.5	31	44.8	249
478	72.00	13	AV13 MAX	28.6 29.1	14.4 15.1	6.8 7.0	32 34	45.0 45.6	257 263
			MIN	28.0	13.5	6.7	31	44.4	250
491	73.00	13	AV13 MAX	28.7 29.8	14.4 15.0	6.9 7.1	33 35	45.0 45.5	258 262
			MIN	28.1	14.0	6.7	31	44.1	252
502	74.00	11	AV11 MAX	28.8 29.8	14.4 14.8	6.9 7.1	33 36	45.0 45.8	248 255
			MIN	27.7	13.9	6.6	31	44.1	239
514	75.00	12	AV12 MAX	28.8 29.7	14.7 15.4	6.9 7.1	33 35	44.9 45.4	246 252
			MIN	28.1	14.3	6.7	32	44.1	240

USH 10 over LLBDM - WEST ABUTMENT #8

APE D30-42, HP 14 x 73 Date: 16-April-2015

OP: RF		-	-	-			[Date: 16-Ap	ril-2015
BL#	depth ft	BLC bl/ft	TYPE	CSX ksi	CSB ksi	STK ft	EMX k-ft	BPM bpm	RX9 kips
525	76.00	11	AV11 MAX MIN	30.1 31.0 29.4	17.5 19.1 15.2	7.3 7.6 7.1	36 38 34	43.7 44.1 42.8	232 243 223
538	77.00	13	AV13 MAX MIN	29.4 31.4 27.5	20.1 21.9 18.0	7.3 7.9 7.0	32 36 30	43.6 44.6 42.1	195 226 155
562	78.00	24	AV24 MAX MIN	30.4 31.4 29.4	22.7 23.9 21.7	7.5 7.8 7.2	33 35 30	43.0 43.9 42.2	254 275 232
586	79.00	24	AV24 MAX MIN	30.5 31.5 29.3	22.2 22.9 21.3	7.5 7.8 7.1	33 35 30	43.1 44.2 42.2	254 269 233
614	80.00	28	AV28 MAX MIN	30.3 31.8 29.3	22.1 23.5 20.8	7.4 7.9 7.1	32 34 30	43.3 44.3 42.1	255 283 236
655	81.00	41	AV41 MAX MIN	31.2 32.2 30.3	25.8 27.0 23.3	7.8 8.2 7.5	34 37 32	42.2 43.2 41.2	353 380 289
690	82.00	35	AV35 MAX MIN	30.2 32.1 15.4	24.5 26.8 12.7	7.8 8.1 7.5	33 37 9	42.4 43.2 41.5	331 407 187
716	82.63	42	AV26 MAX MIN	31.9 33.0 30.6	27.1 28.1 26.1	8.1 8.4 7.6	36 40 33	41.6 42.7 40.7	433 459 411
726	82.77	69	AV10 MAX MIN	32.1 33.4 31.2	27.5 28.5 26.7	8.1 8.6 7.8	37 39 35	41.4 42.2 40.4	465 472 455
736	82.90	80	AV10 MAX MIN	32.3 33.1 31.6	27.7 28.3 27.1	8.3 8.6 8.0	37 39 36	41.1 41.7 40.4	477 487 470
746	83.00	96	AV10 MAX MIN	32.3 32.8 31.9	27.8 28.5 27.3	8.3 8.5 8.1	37 38 36	41.1 41.5 40.6	488 499 478
		Ν	Average laximum /linimum Total n	26.8 33.4 1.4 umber of blo	14.3 28.5 0.5 ows analyze	6.5 8.6 2.8 d: 742	31 42 1	46.5 68.2 40.4	230 499 0
					-				

BL# Sensors

1-746 F3: [D815] 93.0 (0.99); F4: [F607] 93.6 (0.99); A3: [K3550] 360.0 (1.01); A4: [K2524] 360.0 (1.01)

GRL Engineers, Inc. Case Method & iCAP® Results Page 7 PDIPLOT2 2014.2.48.1 - Printed 17-April-2015

USH 10 over LLBDM - WEST ABUTMENT #8 OP: RF APE D30-42, HP 14 x 73 Date: 16-April-2015

BL# Comments

3 Reported Reference EL 777.46 526 LE = 90.00 ft

Time Summary

 Drive
 11 minutes 47 seconds
 8:54 AM - 9:06 AM (4/16/2015) BN 1 - 525

 Stop
 1 hour 9 minutes 25 seconds
 9:06 AM - 10:16 AM

 Drive
 5 minutes 11 seconds
 10:16 AM - 10:21 AM BN 526 - 746

Total time [01:26:23] = (Driving [00:16:58] + Stop [01:09:25])

GRL Engineers, Inc. - PDIPLOT2 Ver 2014.2.48.1 - Case Method & iCAP® Results

Page	1
PDIPLOT2 2014.2.48.1 - Printed 17-April-2015	

USH 10 over LLBDM - WEST ABUTMENT #8-BOR APE D30-42, HP 14 x 7										
<u>OP: F</u>	RF						[Date: 17-Ap	oril-2015	
AR:	21.40 in²								492 k/ft ³	
LE:	90.00 ft							EM: 30,		
<u>WS:</u>	<u>16,807.9 f/s</u>							JC: 1	.00 []	
CSX:	Max Measu	ured Compr.	Stress		EN	IX: Max Tr	ansferred E	nergy		
	Compressi				BP	M: Blows	per Minute			
	O.E. Diese	<u>I Hammer S</u>	troke		RX	(9: Max Ca	ase Method	Capacity (J	IC=0.9)	
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9	
	ft	blows/ft		ksi	ksi	ft	k-ft	bpm	kips	
10	83.09	107	AV9	32.0	29.9	8.6	38	40.3	520	
			MAX	32.7	30.5	8.8	40	40.8	531	
			MIN	30.6	28.5	8.4	36	39.9	507	
20	83.19	107	AV10	32.4	30.1	8.6	38	40.3	529	
			MAX	32.9	31.0	8.8	40	40.7	539	
			MIN	32.0	29.7	8.4	37	39.9	524	
30	83.28	107	AV9	32.3	29.9	8.6	38	40.4	531	
			MAX	32.7	30.5	8.7	39	40.9	545	
			MIN	31.8	29.5	8.4	37	40.1	525	
			Average	32.3	30.0	8.6	38	40.4	527	
			Maximum	32.9	31.0	8.8	40	40.9	545	
			Minimum	30.6	28.5	8.4	36	39.9	507	
			Total n	umber of hl	ows analyze	≏d· 28				

Total number of blows analyzed: 28

BL# Sensors

1-30 F3: [D815] 93.0 (0.97); F4: [F607] 93.6 (0.97); A3: [K3550] 360.0 (1.03); A4: [K2524] 360.0 (1.03)

Time Summary

Drive 43 seconds 6:57 AM - 6:57 AM BN 1 - 30

USH 10 over LLBDM; Pile: WEST ABUTMENT #3 APE D30-42, HP 14 x 73; Blow: 792 GRL Engineers, Inc.

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 over LLEDM; Pile: WEST ABUTMENT #3 APE D30-42, HP 14 x 73; Blow: 792 GRL Engineers, Inc.

			CAPWAP SUMM	ARY RESULT	S				
Total CAPWA	P Capacity:	436.0;	along Shaft	211.0;	at Toe	225.0 k	rips		
Soil	Dist.	Depth	Ru	Force	S	um	Unit		Uni
Sgmnt	Below	Below		in Pile		of Rea	sist.	Re	sist
No.	Gages	Grade			:	Ru (De	epth)	(Area
	ft	ft	kips	kips	ki	ps kir	os/ft		ks
				436.0					
1	16.7	8.1	5.0	431.0	5	.0	0.62		0.1
2	23.3	14.8	5.0	426.0	10	.0	0.75		0.1
3	30.0	21.5	6.0	420.0	16	.0	0.90		0.1
4	36.7	28.1	6.0	414.0	22	.0	0.90		0.1
5	43.3	34.8	7.0	407.0	29	.0	1.05		0.2
6	50.0	41.5	10.0	397.0	39	.0	1.50		0.3
7	56.7	48.1	14.0	383.0	53	.0	2.10		0.4
8	63.3	54.8	25.0	358.0	78	.0	3.75		0.8
9	70.0	61.5	25.0	333.0	103	.0	3.75		0.8
10	76.7	68.1	20.0	313.0	123	.0	3.00		0.6
11	83.3	74.8	18.0	295.0	141		2.70		0.5
12	90.0	81.5	70.0	225.0	211	.0 1	10.50		2.2
Avg. Sha	aft		17.6				2.59		0.5
Тое	e		225.0					1	63.2
Soil Model	Parameters/E	xtensions			Shaft	Тое			
Smith Dampi	ng Factor				0.24	0.07			
- Quake	-	(in)			0.18	0.42			
~ Case Dampin	g Factor				1.33	0.41			
- Damping Typ	e				Viscous	Sm+Visc			
Unloading C	uake	(% of	loading quak	e)	76	115			
Unloading L	level	(% of			78				
Resistance	Gap (included	d in Toe (Quake) (in)			0.03			
Soil Plug W	leight	(kips))			0.121			
	h guality	= 1	.98	(Wave Up M	atch) • F	254 = 0			
CAPWAP mato				Blow Count		53 b/	f+		
			-	Blow Count		46 b/			
CAPWAP matc Observed: F Computed: F		= ().26 in:						
Observed: F Computed: F	Final Set F3(F607) CAL:	93.6; RF: ().97; F4(D815) CA	L: 93.0; RF:	0.97				
Observed: F Computed: F Transducer	Final Set F3(F607) CAL: A3(K2524) CAL:	93.6; RF: (360; RF: 1).97; F4(D815) CA L.02; A4(K3550) CA	L: 93.0; RF: L: 360; RF:	0.97 1.02				
Observed: F Computed: F Transducer max. Top Co	Final Set F3(F607) CAL: A3(K2524) CAL: mp. Stress	93.6; RF: 0 360; RF: 2 = 2	0.97; F4(D815) CA L.02; A4(K3550) CA 33.5 ksi	L: 93.0; RF: L: 360; RF: (T= 36.3	0.97 1.02 ms, max=	1.026 x			
Observed: F Computed: F Transducer max. Top Co max. Comp.	Tinal Set F3(F607) CAL: A3(K2524) CAL: mp. Stress Stress	93.6; RF: (360; RF: 2 = 2 = 2	0.97; F4(D815) CA 1.02; A4(K3550) CA 33.5 ksi 34.3 ksi	L: 93.0; RF: L: 360; RF: (T= 36.3 (Z= 16.7	0.97 1.02 ms, max= ft, T=	1.026 x 37.1 ms)			
Observed: F Computed: F Transducer	Tinal Set F3(F607) CAL: A3(K2524) CAL: mp. Stress Stress Stress	93.6; RF: 0 360; RF: 1 = 1 = 1	0.97; F4(D815) CA L.02; A4(K3550) CA 33.5 ksi	L: 93.0; RF: L: 360; RF: (T= 36.3) (Z= 16.7) (Z= 30.0)	0.97 1.02 ms, max= ft, T= ft, T=	1.026 x 37.1 ms) 63.7 ms)	Top)		

USH 10 over LLEDM; Pile: WEST ABUTMENT #3 APE D30-42, HP 14 x 73; Blow: 792 GRL Engineers, Inc. Test: 16-Apr-2015 09:53 CAPWAP(R) 2014-1 OP: RF

			EXTI	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.3	716.3	-10.8	33.5	-0.51	37.5	17.7	0.97
2	6.7	717.3	-11.8	33.5	-0.55	37.3	17.7	0.96
4	13.3	728.3	-19.6	34.0	-0.92	36.8	17.4	0.92
6	20.0	715.0	-22.1	33.4	-1.03	35.1	17.0	0.88
8	26.7	703.9	-23.0	32.9	-1.08	33.3	16.6	0.84
10	33.3	688.6	-22.8	32.2	-1.06	31.4	16.2	0.79
12	40.0	675.4	-22.1	31.6	-1.03	29.6	15.8	0.75
13	43.3	685.7	-25.2	32.0	-1.18	29.3	15.5	0.72
14	46.7	663.2	-20.0	31.0	-0.93	27.7	15.2	0.70
15	50.0	676.6	-23.1	31.6	-1.08	27.3	14.9	0.68
16	53.3	645.6	-15.9	30.2	-0.74	25.4	14.5	0.66
17	56.7	668.0	-17.9	31.2	-0.84	25.1	14.0	0.63
18	60.0	628.5	-6.0	29.4	-0.28	22.8	13.4	0.61
19	63.3	652.1	-9.1	30.5	-0.43	22.4	12.8	0.59
20	66.7	573.3	0.0	26.8	0.00	19.0	12.3	0.57
21	70.0	590.2	0.0	27.6	0.00	18.7	11.8	0.55
22	73.3	516.5	0.0	24.1	0.00	15.7	11.4	0.52
23	76.7	530.2	0.0	24.8	0.00	15.4	11.1	0.50
24	80.0	476.4	0.0	22.3	0.00	13.1	10.7	0.48
25	83.3	478.0	0.0	22.3	0.00	12.9	11.3	0.47
26	86.7	383.4	0.0	17.9	0.00	11.0	12.5	0.45
27	90.0	383.4	0.0	17.9	0.00	5.2	12.5	0.43
Absolute	16.7			34.3			(T =	37.1 ms)
	30.0				-1.23		(T =	63.7 ms)

	CASE METHOD										
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	
RP	801.9	749.2	696.5	643.8	591.1	538.4	485.7	433.0	380.3	327.6	
RX	801.9	749.2	696.5	643.8	591.1	538.4	493.6	466.9	452.5	442.0	
RU	834.4	730.2	626.1	521.9	417.7	313.6	209.4	105.2	1.1	0.0	

RAU = 253.4 (kips); RA2 = 530.7 (kips)

Current CAPWAP Ru = 436.0 (kips); Corresponding J(RP)= 1.39; matches RX20 within 5%

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
17.7	36.29	649.7	705.5	715.7	0.98	0.23	0.23	37.6	747.6	577

	PILE PROFI	LE AND PILE MODEL		
Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in²	ksi	lb/ft ³	ft
0.0	21.4	29992.2	492.000	4.70
90.0	21.4	29992.2	492.000	4.70
Toe Area	198.5	in²		
Top Segment Length	3.33 ft, Top Impe	dance 38 ki	ps/ft/s	
Wave Speed: Pile Top 3 Pile Damping 1.00 %	•	-	07.9 ft/s	

USH 10 over LLBDM; Pile: WEST ABUTMENT #3 APE D30-42, HP 14 x 73; Blow: 792 GRL Engineers, Inc.

Total volume: 13.375 ft^{3;} Volume ratio considering added impedance: 1.000

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 over LLBDM; Pile: WEST ABUTMENT #3-BOR APE D30-42, HP 14 x 73; Blow: 3 GRL Engineers, Inc.

			CAPWAP SUMMA	ARY RESULT	'S		
Total CAPWA	P Capacity:	496.0;	along Shaft	211.0	; at Toe	285.0 kips	
Soil	Dist.	Depth	Ru	Force	Sur	n Unit	Unit
Sgmnt	Below	Below		in Pile	ot	Resist.	Resist.
No.	Gages	Grade			Ru	ı (Depth)	(Area)
	ft	ft	kips	kips	kips	s kips/ft	ksf
				496.0			
1	16.7	8.2	3.0	493.0	3.0	0.37	0.08
2	23.3	14.9	3.0	490.0	6.0	0.45	0.10
3	30.0	21.5	3.0	487.0	9.0	0.45	0.10
4	36.7	28.2	6.0	481.0	15.0	0.90	0.19
5	43.3	34.9	8.0	473.0	23.0	1.20	0.26
6	50.0	41.5	9.0	464.0	32.0) 1.35	0.29
7	56.7	48.2	22.0	442.0	54.(3.30	0.70
8	63.3	54.9	25.0	417.0	79.() 3.75	0.80
9	70.0	61.5	25.0	392.0	104.0) 3.75	0.80
10	76.7	68.2	22.0	370.0	126.0	3.30	0.70
11	83.3	74.9	30.0	340.0	156.0	4.50	0.96
12	90.0	81.5	55.0	285.0	211.0	8.25	1.76
Avg. Sha	ıft		17.6			2.59	0.55
Тое			285.0				206.75
Soil Model	Parameters/E	Extensions			Shaft	Тое	
Smith Dampi	ng Factor				0.26	0.13	
Quake	5	(in)			0.22	0.31	
Case Dampin	g Factor	(,			1.44	0.97	
Damping Typ	-				Viscous 8	Sm+Visc	
Unloading Q		(% of	loading quak	e)	73	107	
Reloading L		(% of 1		,	100	100	
Unloading L		(% of 1	•		97		
-	Gap (include	•				0.01	
Soil Plug W		(kips)	2 , (,		0.025	0.081	
CAPWAP matc	h guality	= 1	.96 (Wave In N	Match) ; RS	a – 0	
Observed: F				Blow Count		69 b/ft	
Computed: F				Blow Count		85 b/ft	
Transducer			0.97; F2(D815)			05 D/IC	
	A1(K2524) CAI		1.03; A2(K3550); RF: 1.03		
max. Top Co	mp. Stress	= 3	2.4 ksi	(T= 36.3	ms, max=	1.021 x Top)	
max. Comp.	Stress	= 3	3.1 ksi	(Z= 16.7	ft, T= 3	37.1 ms)	
max. Tens.	Stress	= -2	.57 ksi	(Z= 43.3	ft, T= 6	52.1 ms)	
max. Energy	(EMX)	= 3	6.8 kip-ft;	max. Meas	ured Top I	Displ. (DMX)=	0.98 in

USH 10 over LLBDM; Pile: WEST ABUTMENT #3-BOR APE D30-42, HP 14 x 73; Blow: 3 GRL Engineers, Inc. Test: 17-Apr-2015 07:07 CAPWAP(R) 2014-1 OP: RF

				REMA TABL					
Pile			min.	max.	max		nax.	max.	max
Sgmnt			Force	Comp. Stress	Tens Stress			Veloc.	Displ
No.	Gage: f		kips	ksi	ks:		ergy o-ft	ft/s	i
1		-	-11.4	32.4	-0.5		36.8	17.2	0.98
2			-11.4	32.4	-0.5		36.5	17.1	0.90
4			-28.9	32.9	-1.3		35.8	16.9	0.9
- 6			-36.3	32.5	-1.6		34.2	16.7	0.8
8			-43.0	32.2	-2.0		32.7	16.4	0.8
10			-49.1	32.2	-2.2		31.1	16.0	0.0
10			-50.2	32.2	-2.3		29.0	15.5	0.70
13			-55.0	32.3	-2.5		28.5	15.2	0.6
14			-48.0	30.9	-2.2		26.6	14.9	0.6
14			-40.0	30.9	-2.2		26.0	14.9	0.6
16			-44.0	30.9	-2.0		24.2	13.8	0.5
10			-44.0	30.9	-2.0		23.6	13.3	0.5
18			-24.0	28.7	-2.2		20.4	12.7	0.5
19			-24.0	28.7	-1.2		.0.4 .9.9	12.7	0.5
20			-2/.4	29.9	-0.0		.9.9 .6.8	11.6	0.4
20			-1.1	20.3	-0.1		16.3	11.0	0.4
21			0.0	27.5	0.0		.3.7	10.6	0.4
23			0.0	24.8	0.00		.3.3	10.0	0.4
23			-0.0	22.3	-0.00		1.2	9.8	0.38
25			-0.0	21.9	-0.00		10.8	10.4	0.30
26			-0.0	19.5	-0.00		8.6	11.1	0.34
27			-0.0	20.2	-0.00		5.7	10.3	0.3
Absolute	16.	7		33.1			(1	C =	37.1 ms
mborace	43.			55.1	-2.5	7	•	 [=	62.1 ms
							-		
			CAS	E METHOD					
J =	0.0	0.2 0.4	1 0.6	0.8	1.0	1.2	1.4	1.0	5 1.8
RP	825.8	781.9 738.0		650.2	606.3	562.4	518.5	474.0	6 430.
RX	825.8	781.9 738.0	694.1	650.2	606.7	569.3	541.2	514.8	8 498.0
RU	853.6	767.0 680.4	1 593.7	507.1	420.5	333.9	247.2	160.	6 74.0
RAU = 2	235.4 (kip	ps); RA2 =	578.2 ()	kips)					
Current CA	APWAP Ru =	= 496.0 (kips); Corresp	onding J	(RP)= 1.	50; J(R	x) = 1.8	83	
VMX	TVP	VT1*Z FT1	L FMX	DMX	DFN	SET	EMX	QU	s kei
ft/s	ms	kips kips	s kips	in	in	in	kip-ft	kip	s kips/in
16.9	36.29	604.7 682.0	704.7	0.98	0.18	0.18	37.1	768.	B 950

		PILE PRO	FILE AND PILE MOI	DEL	
	Depth	Area	E-Modulus	Spec. Weight	Perim.
	ft	in²	ksi	lb/ft ³	ft
	0.0	21.4	29992.2	492.000	4.70
	90.0	21.4	29992.2	492.000	4.70
Toe Area		198.5	in²		

USH 10 over LLBDM; Pile: WEST ABUTMENT #3-BOR APE D30-42, HP 14 x 73; Blow: 3 GRL Engineers, Inc.

Segmnt	t Dist.Impedance		Imped.		Tension	Comp	ression	Perim.	Wave	Soil
Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
	ftki	.ps/ft/s	%	in		in		ft	ft/s	kips
1	3.3	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.000
23	76.7	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.015
24	80.0	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.010
25	83.3	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.000
27	90.0	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.000

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.198 ms, 2L/c 10.7 ms Total volume: 13.375 ft³; Volume ratio considering added impedance: 1.000

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 over LLBDM; Pile: WEST ABUTMENT #8 APE D30-42, HP 14 x 73; Blow: 745 GRL Engineers, Inc.

			3	RY RESULTS	PWAP SUMM	L L		
	kips	360.0	at Toe	137.0;	ong Shaft	497.0; al	P Capacity:	Total CAPWAR
Uni	Unit	ım	Su	Force	Ru	Depth	Dist.	Soil
Resist	sist.	of Re	0	in Pile		Below	Below	Sgmnt
(Area	epth)	Ru (D	R			Grade	Gages	No.
ks	ps/ft	os ki	kip	kips	kips	ft	ft	
				497.0				
0.0	0.21	.0	2.	495.0	2.0	9.7	16.7	1
0.1	0.45	.0	5.	492.0	3.0	16.3	23.3	2
0.1	0.75	.0	10.	487.0	5.0	23.0	30.0	3
0.2	1.05	.0	17.	480.0	7.0	29.7	36.7	4
0.2	1.35	.0	26.	471.0	9.0	36.3	43.3	5
0.3	1.80	.0	38.	459.0	12.0	43.0	50.0	6
0.4	2.10	.0	52.	445.0	14.0	49.7	56.7	7
0.4	2.10	.0	66.	431.0	14.0	56.3	63.3	8
0.3	1.80	.0	78.	419.0	12.0	63.0	70.0	9
0.3	1.80	.0	90.	407.0	12.0	69.7	76.7	10
0.3	1.80	.0	102.	395.0	12.0	76.3	83.3	11
1.1	5.25	.0	137.	360.0	35.0	83.0	90.0	12
0.3	1.65				11.4		ft	Avg. Sha
261.1					360.0			Тое
		Тое	Shaft			ensions	Parameters/Ex	Soil Model H
		0.08	0.28				ng Factor	Smith Dampir
		0.40	0.18			(in)		Quake
		0.75	0.99				Factor	Case Damping
		Sm+Visc	Viscous					Damping Type
		122	100)	ding qual	(% of lo	ıake	Unloading Qu
		100	100	•		(% of Ru		Reloading Le
			99			(% of Ru		Unloading Le
		0.07					Sap (included	-
		0.185			-, , ,	(kips)		Soil Plug We
		SA = 0	tch) ; RS	Vave IIn Ma	1	= 1.5	guality	CAPWAP match
	/ft	96 b	=	Low Count	in;			Observed: Fi
		86 b/	=	Low Count	in;			Computed: Fi
		00 D/			-		F3(D815) CAL:	Transducer
						360; RF: 1.01	A3(K3550) CAL:	
	Top)	1.017 x	ms, max=	T= 36.3	ksi	= 32.	mp. Stress	max. Top Con
		37.1 ms)	ft, T= 3	Z= 16.7	ksi	= 32.	Stress	max. Comp. S
		64.3 ms)	ft, T= 6	Z= 36.7	ksi	= -1.8	Stress	max. Tens. S
.04 in	– (YMC	Dienl (T	red Top D	Mood	1-1-6-	= 37.	()	max. Energy

USH 10 over LLBDM; Pile: WEST ABUTMENT #8 APE D30-42, HP 14 x 73; Blow: 745 GRL Engineers, Inc. Test: 16-Apr-2015 10:21 CAPWAP(R) 2014-1 OP: RF

				EMA TABLE	EXTR			
max.	max.	max.	max.	max.	min.	max.	Dist.	Pile
Displ.	Veloc.	Trnsfd.	Tens.	Comp.	Force	Force	Below	Sgmnt
		Energy	Stress	Stress			Gages	No.
ir	ft/s	kip-ft	ksi	ksi	kips	kips	ft	
1.03	17.1	37.4	-0.51	32.0	-11.0	685.2	3.3	1
1.02	17.0	37.3	-0.66	32.1	-14.1	686.1	6.7	2
0.98	16.8	36.8	-1.12	32.3	-24.0	692.2	13.3	4
0.94	16.6	35.8	-1.38	32.2	-29.6	689.7	20.0	6
0.90	16.3	34.3	-1.62	32.0	-34.8	686.0	26.7	8
0.85	15.8	32.4	-1.63	31.6	-35.0	676.0	33.3	10
0.80	15.2	30.0	-1.59	30.8	-34.1	659.9	40.0	12
0.77	14.9	29.6	-1.79	31.5	-38.3	673.2	43.3	13
0.75	14.6	27.3	-1.32	29.9	-28.2	639.6	46.7	14
0.72	14.2	26.8	-1.53	30.6	-32.7	654.5	50.0	15
0.70	13.8	24.2	-0.92	28.5	-19.6	609.0	53.3	16
0.67	13.4	23.7	-1.06	29.1	-22.7	623.7	56.7	17
0.64	13.1	21.0	-0.36	26.7	-7.6	570.5	60.0	18
0.62	12.8	20.5	-0.53	27.2	-11.4	582.8	63.3	19
0.59	12.5	18.0	0.00	24.8	0.0	530.4	66.7	20
0.57	12.2	17.5	0.00	25.3	0.0	541.1	70.0	21
0.54	12.0	15.4	0.00	23.3	0.0	498.8	73.3	22
0.51	11.7	15.0	0.00	23.8	0.0	509.4	76.7	23
0.49	11.7	13.1	0.00	22.0	0.0	471.9	80.0	24
0.46	12.6	12.6	0.00	21.9	0.0	469.4	83.3	25
0.44	13.6	10.9	0.00	21.2	0.0	453.6	86.7	26
0.41	13.6	7.8	0.00	22.0	0.0	470.1	90.0	27
37.1 ms)	(T =			32.5			16.7	olute
64.3 ms)	(T =		-1.89				36.7	

				CAS	E METHOD	1				
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
RP	745.6	626.8	507.9	389.1	270.2					
RX	749.7	634.0	569.7	531.5	507.9	492.1	478.4	464.7	451.0	441.7
RU	745.6	626.8	507.9	389.1	270.2					

RAU = 368.6 (kips); RA2 = 583.1 (kips)

Current CAPWAP Ru = 497.0 (kips); Corresponding J(RP) = 0.42; J(RX) = 0.93

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
17.1	36.09	654.1	685.8	691.5	1.04	0.13	0.13	37.7	774.2	1075

	PILE PROFI	LE AND PILE MODEI	L .	
Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in ²	ksi	lb/ft ³	ft
0.0	21.4	29992.2	492.000	4.70
90.0	21.4	29992.2	492.000	4.70
Toe Area	198.5	in ²		
Top Segment Length	3.33 ft, Top Impe	dance 38 ki	ips/ft/s	
Wave Speed: Pile Top 1 Pile Damping 1.00 %,		-	307.9 ft/s	

USH 10 over LLBDM; Pile: WEST ABUTMENT #8 APE D30-42, HP 14 x 73; Blow: 745 GRL Engineers, Inc.

Total volume: 13.375 ft^{3;} Volume ratio considering added impedance: 1.000

CAPWAP(R) 2014-1 Licensed to GRL Engineers, Inc.

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 over LLBDM; Pile: WEST ABUTMENT #8-BOR APE D30-42, HP 14 x 73; Blow: 3 GRL Engineers, Inc.

			CAPWAP SUMM	ARY RESULT	S		
Total CAPWA	P Capacity:	520.0;	along Shaft	150.0;	at Toe	370.0 kips	
Soil	Dist.	Depth	Ru	Force	St	um Unit	: Unit
Sgmnt	Below	Below		in Pile	c	of Resist.	Resist.
No.	Gages	Grade			1	Ru (Depth)	(Area)
	ft	ft	kips	kips	kij	ps kips/ft	ksf
				520.0			
1	16.7	9.7	2.0	518.0	2	.0 0.21	0.04
2	23.3	16.4	3.0	515.0	5	.0 0.45	5 0.10
3	30.0	23.0	5.0	510.0	10	.0 0.75	5 0.16
4	36.7	29.7	7.0	503.0	17	.0 1.05	5 0.22
5	43.3	36.4	9.0	494.0	26	.0 1.35	5 0.29
6	50.0	43.0	12.0	482.0	38	.0 1.80	0.38
7	56.7	49.7	15.0	467.0	53	.0 2.25	5 0.48
8	63.3	56.4	15.0	452.0	68	.0 2.25	5 0.48
9	70.0	63.0	12.0	440.0	80	.0 1.80	0.38
10	76.7	69.7	10.0	430.0	90	.0 1.50	0.32
11	83.3	76.4	20.0	410.0	110	.0 3.00	0.64
12	90.0	83.0	40.0	370.0	150	.0 6.00	1.28
Avg. Sha	aft		12.5			1.81	0.38
Тое	2		370.0				268.41
Soil Model	Parameters/E	xtensions			Shaft	Тое	
Smith Dampi	ng Factor				0.27	0.12	
- Quake	-	(in)			0.22	0.36	
Case Dampin	g Factor				1.06	1.16	
Damping Typ	-				Viscous	Sm+Visc	
Unloading Q		(% of	loading quak	e)	90	109	
Reloading L	evel	(% of	Ru)	-	100	100	
Resistance	Gap (include	d in Toe (Quake) (in)			0.05	
Soil Plug W	eight	(kips))			0.131	
CAPWAP matc	h guality	= 1	L.33	(Wave Up M	atch) : R	SA = 0	
Observed: F				Blow Count		107 b/ft	
Computed: F			-	Blow Count		101 b/ft	
Transducer	F1(D815) CAL:	93.0; RF: (0.97; F2(F607) CA	AL: 93.6; RF:	0.97	101 2,10	
	A1(K3550) CAL:		1.03; A2(K2524) CA				
max. Top Co	-		31.2 ksi		-	1.017 x Top)	
max. Comp.			31.7 ksi	-	ft, T=	-	
max. Tens.			2.28 ksi	-	ft, T=	-	
max. Energy	(EMX)	= 3	37.5 kip-ft;	max. Meas	ured Top	Displ. (DMX)=	1.05 in

USH 10 over LLBDM; Pile: WEST ABUTMENT #8-BOR APE D30-42, HP 14 x 73; Blow: 3 GRL Engineers, Inc. Test: 17-Apr-2015 06:57 CAPWAP(R) 2014-1 OP: RF

			EXTI	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.3	667.7	-23.6	31.2	-1.10	37.5	16.6	1.03
2	6.7	668.6	-25.5	31.2	-1.19	37.3	16.6	1.01
4	13.3	674.3	-29.2	31.5	-1.37	36.7	16.5	0.97
6	20.0	671.8	-32.7	31.4	-1.53	35.5	16.2	0.93
8	26.7	668.2	-39.9	31.2	-1.86	33.9	15.9	0.88
10	33.3	658.7	-42.9	30.8	-2.01	31.8	15.4	0.82
12	40.0	643.5	-42.2	30.1	-1.97	29.4	14.9	0.77
13	43.3	657.1	-47.6	30.7	-2.22	28.9	14.5	0.74
14	46.7	624.7	-38.7	29.2	-1.81	26.7	14.3	0.71
15	50.0	641.5	-42.9	30.0	-2.00	26.2	13.8	0.69
16	53.3	600.6	-29.7	28.1	-1.39	23.6	13.4	0.66
17	56.7	617.5	-34.3	28.8	-1.60	23.1	13.0	0.63
18	60.0	565.8	-16.8	26.4	-0.78	20.3	12.7	0.60
19	63.3	579.5	-21.1	27.1	-0.99	19.8	12.3	0.57
20	66.7	528.6	-4.9	24.7	-0.23	17.3	12.0	0.55
21	70.0	539.7	-8.3	25.2	-0.39	16.8	11.7	0.52
22	73.3	502.0	0.0	23.5	0.00	14.9	11.5	0.49
23	76.7	518.0	0.0	24.2	0.00	14.4	11.1	0.46
24	80.0	494.6	0.0	23.1	0.00	12.9	10.7	0.43
25	83.3	503.9	0.0	23.5	0.00	12.4	11.6	0.41
26	86.7	487.2	0.0	22.8	0.00	10.3	12.4	0.38
27	90.0	506.0	0.0	23.6	0.00	7.6	11.7	0.36
Absolute	16.7			31.7			(T =	37.1 ms)
	36.7				-2.28		(T =	62.7 ms)

	CASE METHOD									
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
RP	787.2	738.0	688.8	639.6	590.4	541.3	492.1	442.9	393.7	344.6
RX	787.2	738.0	692.2	650.8	625.0	599.3	573.5	547.8	531.7	518.1
RU	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
RAU =	353.2 (ki	.ps); RA	.2 = 5	77.8 (ki	ps)					
Current	CAPWAP Ru	= 520.0	(kips);	Correspo	nding J(RP)= 1.0	9; J(RX)	= 1.77		

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
16.5	36.09	631.9	671.6	671.6	1.05	0.11	0.11	37.8	778.6	1194

	PILE PROFI	LE AND PILE MODEI	-	
Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in²	ksi	lb/ft ³	ft
0.0	21.4	29992.2	492.000	4.70
90.0	21.4	29992.2	492.000	4.70
Toe Area	198.5	in ²		
Top Segment Length	3.33 ft, Top Impe	dance 38 ki	ps/ft/s	
Wave Speed: Pile Top 1 Pile Damping 1.00 %,		•	807.9 ft/s	

USH 10 over LLBDM; Pile: WEST ABUTMENT #8-BOR APE D30-42, HP 14 x 73; Blow: 3 GRL Engineers, Inc.

Total volume: 13.375 ft^{3;} Volume ratio considering added impedance: 1.000