GRL Engineers, Inc.

1540 E. Dundee Road, Suite 102 Palatine, IL 60074 USA Phone: (847) 221-2750 Fax: (847) 221-2752

TRANSMITTAL

To: Mr. Kevin Weber	From: Al Ziai				
Company: Lunda Construction Co.	No. of Sheets: 61				
E-mail: kweber@lundaconstruction.com	Date: January 15, 2015				

RE: Dynamic Testing Results – USH 10 over Little Lake Butte des Morts Structure B-70-403 - Pier 9 Winnebago County, Wisconsin

On January 14, 2014, Pier 9 #1, Pier 9 #36, and Pier 9 #44 at the above structure were dynamically tested during initial driving. The piles were tested during restrike on January 15. Project plans indicated the exterior row piles have a required driving resistance, or ultimate capacity, of 480 kips (240 tons) and the interior row piles have a required driving resistance of 400 kips (200 tons). The reference elevation for the piles was the top of the ring at EL 740.7. We understand the pier was excavated to elevation of EL 716.6. The piles have a required minimum tip elevation of EL 658.5. The HP 14x73 H-piles were equipped with driving shoes and were driven with an APE D30-42 hammer (number PD 0256) reportedly operated on fuel setting 4.

Pier 9 #1 was driven to a depth of 88.9 feet, which corresponds to a pile tip elevation of EL 651.8. The blow count over the final increment of driving was 10 blows for $2\frac{3}{4}$ inches of penetration at an average hammer stroke of 7.8 feet. The blow count at the beginning of restrike was 5 blows for $\frac{3}{4}$ inch of penetration at an average hammer stroke of 7.7 feet.

Pier 9 #36 was driven to a depth of 90.0 feet, which corresponds to a pile tip elevation of EL 650.7. The blow count over the final increment of driving was 10 blows for $2\frac{3}{4}$ inches of penetration at an average hammer stroke of 7.1 feet. The blow count at the beginning of restrike was 5 blows for $1\frac{1}{8}$ inches of penetration at an average hammer stroke of 8.0 feet

Pier 9 #44 was driven to a depth of 93.7 feet, which corresponds to a pile tip elevation of EL 647.0. The blow count over the final increment of driving was 10 blows for $2\frac{3}{4}$ inches of penetration at an average hammer stroke of 7.2 feet. The blow count at the beginning of restrike was 5 blows per inch of penetration at an average hammer stroke of 7.6 feet

We recommend the production piles at Pier 9 of Structure B-70-403 driven with the APE D30-42 hammer PD0256 obtain the minimum recommended blow count, noted below, based on the field observed hammer stroke. We recommend maintaining the minimum blow count for <u>one full foot</u> of driving at the recommended average hammer stroke. Additionally, all production piles should achieve the minimum pile tip elevation of EL 658.5 for uplift, as indicated on the plans.

Field Observed Hammer Stroke	Exterior Piles (480 kips) Recommended Minimum Blow Count	Interior Piles (400 kips) Recommended Minimum Blow Count
(feet)	(blows per foot)	(blows per foot
` 6.0 [´]	82	56
6.5	61	45
7.0	50	38
7.5	50	38
8.0	50	38

We recommend immediately terminating driving if the blow counts exceed 10 blows over an increment of one inch or less at hammer strokes of 8.0 feet, after satisfying any minimum tip requirements. We anticipate the production piles will terminate at depths similar to those of the test piles.

These criteria should not be used for acceptance of piles under restrike and/or redrive conditions. After splicing or any other delays, we recommend not applying the criteria until a full foot of driving has occurred beyond the termination depth associated with the delay, unless the blow count exceeds 10 blows per inch.

Please call if you have any questions on these recommendations.

GRL Engineers, Inc.

tlzini Al Ziai 1900 Mir-

Travis Coleman, P.E.

Cc: Jeff Horsfall - jeffrey.horsfall@dot.wi.gov

Attachments:

(pages 3 - 35)Dynamic Test Results -CAPWAP Analysis Results - (pages 36 – 61)

GRL Engineers, Inc. - PDIPLOT2 Ver 2014.2.48.0 - Case Method & iCAP® Results

1 - Reported reference EL 740.7

GRL Engineers, Inc. Case Method & iCAP® Results

Page 1
PDIPLOT2 2014.2.48.0 - Printed 15-January-2015

USH 10 - B-70-403 - Pier 9 #1 - EOID OP: AZ Date: 14-January-2015 AR: 21.40 in² SP: 0.492 k/ft3 LE: 92.75 ft EM: 30,000 ksi 1.10 [] WS: 16,807.9 f/s JC: CSX: Max Measured Compr. Stress EMX: Max Transferred Energy CSB: Compression Stress at Bottom **BPM: Blows per Minute** STK: O.E. Diesel Hammer Stroke Max Case Method Capacity (JC=0.9) RX9: BL# depth BLC TYPE CSX CSB STK EMX BPM RX9 blows/ft ksi ksi ft k-ft ft bpm kips 3 40.00 1 AV1 13.4 2.3 3.6 23 60.8 0 0.0 0 0 STD 0.0 0.0 0.0 MAX 13.4 2.3 3.6 23 60.8 0 MIN 13.4 2.3 3.6 23 60.8 0 0 4 41.00 1 AV1 9.9 1.7 3.3 17 63.4 STD 0.0 0.0 0.0 0 0.0 0 MAX 3.3 17 0 9.9 1.7 63.4 MIN 9.9 1.7 3.3 17 63.4 0 5 42.00 AV1 5.0 3.0 0 1 1.1 11 66.2 STD 0.0 0.0 0.0 0 0.0 0 MAX 5.0 11 66.2 0 1.1 3.0 MIN 5.0 3.0 11 66.2 0 1.1 8 44.00 2 AV1 25.3 3.9 6.1 34 47.7 37 STD 0.0 0.0 0.0 0 0.0 0 MAX 25.3 37 3.9 6.1 34 47.7 MIN 25.3 34 37 3.9 6.1 47.7 9 44.50 2 AV1 13.9 2.8 3.6 18 61.2 0 STD 0.0 0 0.0 0 0.0 0.0 MAX 13.9 2.8 3.6 18 61.2 0 0 MIN 13.9 2.8 3.6 18 61.2 10 2 AV1 0 45.00 10.3 2.1 3.4 13 62.8 STD 0.0 0.0 0.0 0 0.0 0 MAX 10.3 2.1 3.4 13 62.8 0 MIN 0 10.3 2.1 3.4 13 62.8 11 45.33 3 AV1 8.7 2.3 3.3 11 63.8 0 STD 0.0 0.0 0 0.0 0 0.0 MAX 0 8.7 2.3 3.3 11 63.8 MIN 8.7 2.3 3.3 11 63.8 0

APE D30-42, HP 14 x 73

GRL Engineers, Inc. Case Method & iCAP® Results

Page 2	
PDIPLOT2 2014.2.48.0 - Printed 15-January-2015	

APE D30-42, HP 14 x 73
Date: 14-January-2015

		13 - Piel 9 # I						J30-42, ПP	
OP: AZ								e: 14-Janua	<u> </u>
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
	ft	blows/ft		ksi	ksi	ft	k-ft	bpm	kips
12	45.67	3	AV1	2.5	0.6	3.2	1	64.0	0
			STD	0.0	0.0	0.0	0	0.0	0
			MAX	2.5	0.6	3.2	1	64.0	0
			MIN	2.5	0.6	3.2	1	64.0	0
14	46.20	5	AV1	24.1	4.0	**	44	**	18
			STD	0.0	0.0	**	0	**	0
			MAX	24.1	4.0	**	44	**	18
			MIN	24.1	4.0	**	44	**	18
18	47.00	5	AV4	16.8	3.4	4.3	22	57.1	37
			STD	5.3	0.8	1.1	13	5.8	7
			MAX	26.0	4.7	6.2	45	60.6	48
			MIN	13.5	2.8	3.6	14	47.1	31
25	48.00	7	AV7	14.6	3.6	4.0	16	58.3	53
			STD	2.4	0.5	0.4	3	2.5	11
			MAX	16.8	4.3	4.4	18	62.7	69
			MIN	10.3	2.6	3.4	10	55.7	35
34	49.00	9	AV9	18.6	5.8	4.7	20	54.0	100
			STD	1.7	1.0	0.4	3	1.9	20
			MAX	20.6	7.4	5.2	23	56.7	125
			MIN	16.4	4.1	4.2	17	51.3	71
45	50.00	11	AV11	21.6	8.5	5.3	24	50.9	173
			STD	1.3	1.4	0.3	2	1.5	28
			MAX	23.5	9.9	5.7	27	53.3	198
			MIN	19.6	5.9	4.8	20	49.1	112
57	51.00	12	AV12	22.9	9.8	5.6	26	49.7	210
			STD	0.5	0.2	0.1	1	0.4	6
			MAX	23.9	10.3	5.7	28	50.1	219
			MIN	21.9	9.5	5.5	24	49.1	197
69	52.00	12	AV12	23.2	9.9	5.6	26	49.4	214
			STD	0.5	0.3	0.1	1	0.5	6
			MAX	24.2	10.5	5.9	28	50.3	222
			MIN	22.6	9.3	5.4	25	48.5	201
78	53.00	9	AV9	23.3	10.1	5.6	27	49.4	214

GRL Engineers, Inc. Case Method & iCAP® Results

Page 3
PDIPLOT2 2014.2.48.0 - Printed 15-January-2015

P: AZ							Date	e: 14-Janua	ry-201
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	R)
	ft	blows/ft		ksi	ksi	ft	k-ft	bpm	kij
			STD	0.5	0.4	0.1	1	0.5	
			MAX	24.6	10.8	5.9	28	50.0	2
			MIN	22.8	9.4	5.5	25	48.5	1
90	54.00	12	AV12	22.5	8.6	5.4	25	50.3	1
			STD	0.8	0.8	0.2	1	0.8	
			MAX	23.8	9.9	5.7	27	51.6	1
			MIN	21.2	7.4	5.1	23	49.0	1
02	55.00	12	AV12	24.2	11.4	5.8	28	48.7	2
			STD	0.6	0.7	0.2	1	0.7	
			MAX	25.2	12.5	6.1	30	50.0	2
			MIN	23.1	9.8	5.5	25	47.7	2
15	56.00	13	AV13	24.4	11.4	5.9	28	48.5	2
			STD	0.7	0.5	0.2	1	0.7	
			MAX	25.2	12.4	6.1	30	49.6	2
			MIN	23.2	10.8	5.6	26	47.7	2
28	57.00	13	AV13	24.6	11.8	5.9	28	48.2	2
			STD	0.5	0.5	0.1	1	0.5	
			MAX	25.5	12.8	6.1	29	49.2	2
			MIN	23.5	11.2	5.7	26	47.4	2
41	58.00	13	AV13	24.2	11.0	5.8	27	48.7	2
			STD	0.4	0.2	0.1	1	0.3	
			MAX	24.9	11.5	5.9	29	49.2	2
			MIN	23.6	10.7	5.7	26	48.2	2
54	59.00	13	AV13	24.2	11.1	5.8	28	48.6	2
			STD	0.6	0.7	0.2	1	0.6	
			MAX	25.4	12.5	6.1	30	49.5	2
			MIN	23.3	10.4	5.6	26	47.5	2
67	60.00	13	AV13	24.7	11.6	5.9	29	48.2	2
			STD	0.6	0.6	0.2	1	0.6	_
			MAX	25.4	12.5	6.1	30	49.3	2
			MIN	23.6	10.8	5.7	26	47.4	2
80	61.00	13	AV13	24.4	11.0	5.8	28	48.6	2
			STD	0.6	0.2	0.1	1	0.5	

GRL Engineers, Inc. Case Method & iCAP® Results

Page 4	4
PDIPLOT2 2014.2.48.0 - Printed 15-January-2015	

APE D30-42, HP 14 x 73
Date: 14-January-2015

OP: AZ							Date	e: 14-Janua	ry-2015
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
	ft	blows/ft		ksi	ksi	ft	k-ft	bpm	kips
			MAX	25.7	11.3	6.1	30	49.6	245
			MIN	23.6	10.6	5.6	25	47.6	219
193	62.00	13	AV13	24.5	10.7	5.8	28	48.7	224
			STD	0.3	0.2	0.1	1	0.3	6
			MAX	25.3	11.1	6.0	31	49.2	234
			MIN	24.0	10.4	5.7	26	47.9	214
206	63.00	13	AV13	24.4	10.8	5.8	28	48.6	220
			STD	0.4	0.1	0.1	1	0.4	5
			MAX	25.1	11.1	6.0	29	49.4	228
			MIN	23.5	10.7	5.6	27	48.0	214
220	64.00	14	AV14	24.6	11.2	5.8	28	48.5	229
			STD	0.5	0.2	0.1	1	0.5	9
			MAX	25.3	11.4	6.0	29	49.6	249
			MIN	23.7	10.8	5.6	25	47.8	217
234	65.00	14	AV14	25.4	12.5	6.1	29	47.7	257
			STD	0.6	0.4	0.1	1	0.5	8
			MAX	26.1	13.4	6.2	31	48.7	270
			MIN	24.1	11.9	5.8	27	47.2	238
248	66.00	14	AV14	25.9	12.4	6.2	30	47.3	254
			STD	0.5	0.3	0.1	1	0.4	4
			MAX	26.8	12.9	6.3	32	48.2	262
			MIN	25.2	11.9	5.9	28	46.7	244
262	67.00	14	AV14	26.0	12.4	6.2	31	47.2	254
			STD	0.3	0.5	0.1	0	0.3	8
			MAX	26.7	13.5	6.4	31	47.6	269
			MIN	25.5	11.6	6.1	30	46.5	240
276	68.00	14	AV14	25.5	12.0	6.1	30	47.5	240
			STD	0.4	0.3	0.1	1	0.4	6
			MAX	26.0	12.8	6.3	31	48.2	249
			MIN	24.9	11.6	5.9	27	47.0	228
288	69.00	12	AV12	26.0	12.1	6.2	31	47.1	232
			STD	0.5	0.3	0.1	1	0.5	8
			MAX	26.9	12.6	6.5	33	47.9	244

GRL Engineers, Inc. Case Method & iCAP® Results

Page 5	
PDIPLOT2 2014.2.48.0 - Printed 15-January-2015	

OP: AZ							Date	e: 14-Janua	ry-2015
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
	ft	blows/ft		ksi	ksi	ft	k-ft	bpm	kips
			MIN	25.2	11.3	6.0	29	46.1	216
300	70.00	12	AV12	24.6	10.5	5.9	28	48.5	186
			STD	0.7	0.6	0.2	1	0.7	14
			MAX	25.8	11.3	6.2	30	49.3	210
			MIN	23.9	9.6	5.7	27	47.2	165
313	71.00	13	AV13	25.5	11.6	6.1	30	47.5	225
			STD	0.5	0.2	0.1	1	0.5	4
			MAX	26.6	11.9	6.4	31	48.4	232
			MIN	24.7	11.3	5.9	27	46.6	217
326	72.00	13	AV13	25.6	11.8	6.1	30	47.4	226
			STD	0.4	0.1	0.1	1	0.4	4
			MAX	26.4	12.0	6.3	32	48.0	232
			MIN	25.1	11.5	6.0	29	46.7	219
339	73.00	13	AV13	25.4	11.6	6.1	30	47.6	217
			STD	0.4	0.2	0.1	1	0.4	5
			MAX	26.2	12.0	6.3	31	48.3	225
			MIN	24.7	11.2	5.9	28	46.8	210
352	74.00	13	AV13	25.4	11.2	6.1	30	47.7	212
			STD	0.4	0.2	0.1	1	0.3	4
			MAX	26.4	11.4	6.3	31	48.1	219
			MIN	24.8	10.8	6.0	29	47.0	203
365	75.00	13	AV13	25.2	10.9	6.0	29	48.1	206
			STD	0.6	0.1	0.1	1	0.5	5
			MAX	25.8	11.2	6.1	30	49.4	214
			MIN	23.4	10.7	5.6	26	47.5	197
378	76.00	13	AV13	25.2	10.9	6.0	29	48.0	205
			STD	0.6	0.2	0.1	1	0.5	3
			MAX	26.0	11.4	6.2	30	48.9	210
			MIN	24.1	10.7	5.8	27	47.2	198
391	77.00	13	AV13	25.4	11.4	6.1	29	47.7	216
			STD	0.6	0.5	0.2	1	0.6	12
			MAX	26.7	12.4	6.4	32	48.9	238
			MIN	24.5	10.7	5.8	27	46.6	197

GRL Engineers, Inc. Case Method & iCAP® Results

Page	6
PDIPLOT2 2014.2.48.0 - Printed 15-January-2018	5

APE D30-42, HP 14 x 73

OP: AZ							Date	e: 14-Janua	ry-2015
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
	ft	blows/ft		ksi	ksi	ft	k-ft	bpm	kips
404	78.00	13	AV13	25.9	12.4	6.2	30	47.3	242
			STD	0.6	0.2	0.1	1	0.5	9
			MAX	27.2	13.0	6.5	33	48.5	261
			MIN	24.6	12.0	5.9	27	46.2	228
417	79.00	13	AV13	25.0	11.2	6.0	29	48.0	203
			STD	0.5	0.3	0.1	1	0.5	8
			MAX	26.1	11.8	6.2	31	49.4	219
			MIN	23.8	10.8	5.6	26	47.3	194
430	80.00	13	AV13	25.5	12.2	6.1	29	47.6	223
			STD	0.7	0.9	0.2	1	0.6	18
			MAX	26.5	13.9	6.4	31	48.7	253
			MIN	24.2	11.1	5.8	27	46.6	196
448	81.00	18	AV18	26.9	15.6	6.5	30	46.3	315
			STD	0.5	1.1	0.1	1	0.4	32
			MAX	27.9	17.0	6.7	32	47.2	358
			MIN	25.9	13.6	6.2	28	45.5	260
469	82.00	21	AV21	27.6	19.0	6.7	32	45.6	391
			STD	0.6	1.2	0.2	1	0.5	25
			MAX	28.8	21.3	7.0	35	46.4	445
			MIN	26.5	17.6	6.4	29	44.4	366
491	83.00	22	AV22	27.9	19.3	6.8	32	45.1	414
			STD	0.8	1.6	0.3	2	0.8	31
			MAX	29.5	21.6	7.3	37	46.5	462
			MIN	26.5	17.1	6.4	29	43.6	372
516	84.00	25	AV25	28.1	20.1	6.8	32	45.1	428
			STD	0.6	0.9	0.2	1	0.5	14
			MAX	29.2	21.8	7.1	34	46.2	455
			MIN	26.8	18.5	6.5	30	44.2	400
537	85.00	21	AV21	27.9	19.7	6.8	32	45.3	412
			STD	0.3	0.5	0.1	1	0.3	10
			MAX	28.3	21.2	6.9	33	45.8	433
			MIN	27.4	19.0	6.6	30	44.9	397

GRL Engineers, Inc. Case Method & iCAP® Results

	Page 7
PDIPLOT2 2014.2.48.0 - Printed 15-January	-2015

APE D30-42, HP 14 x 73 Date: 14-January-2015

DP: AZ		5 - FIEI 9 # I	2018					e: 14-Janua	
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
0211	ft	blows/ft		ksi	ksi	ft	k-ft	bpm	kips
562	86.00	25	AV25	28.7	22.2	7.0	33	44.5	468
			STD	0.8	2.5	0.2	2	0.6	42
			MAX	30.6	26.5	7.5	37	45.5	551
			MIN	27.5	18.1	6.7	31	43.2	405
600	87.00	38	AV38	29.4	25.9	7.3	34	43.8	541
			STD	0.7	0.8	0.2	1	0.6	22
			MAX	31.1	27.5	7.7	37	45.6	585
			MIN	27.4	24.2	6.7	30	42.5	500
636	88.00	36	AV36	29.0	25.7	7.1	33	44.2	528
			STD	0.4	0.6	0.1	1	0.3	18
			MAX	29.8	27.1	7.4	35	44.8	567
			MIN	28.2	24.5	6.9	31	43.5	498
652	88.35	45	AV16	30.5	27.3	7.5	36	43.0	581
			STD	0.5	0.4	0.1	1	0.4	11
			MAX	31.5	28.0	7.9	39	43.7	602
			MIN	29.6	26.4	7.3	34	42.1	567
662	88.50	67	AV10	29.8	27.0	7.3	34	43.6	566
			STD	0.3	0.7	0.1	1	0.3	7
			MAX	30.5	28.7	7.5	35	44.0	578
			MIN	29.4	25.9	7.2	33	43.0	556
672	88.69	53	AV10	30.7	29.5	7.6	36	42.9	622
			STD	0.9	1.4	0.2	2	0.7	24
			MAX	32.1	32.5	8.0	39	43.9	661
			MIN	29.4	27.1	7.2	34	41.8	582
682	88.92	44	AV10	31.4	30.4	7.8	37	42.3	640
			STD	0.4	0.6	0.1	1	0.4	9
			MAX	32.0	31.7	8.0	39	42.8	655
			MIN	30.7	29.6	7.6	36	41.7	625
			Average	25.8	15.3	6.3	30	47.2	313
			Std. Dev.	3.3	6.7	0.8	4	3.2	146
			laximum	32.1	32.5	8.0	45	66.2	661
		I	Minimum	2.5	0.6	3.0	1	41.7	0

Total number of blows analyzed: 677

GRL Engineers, Inc. Case Method & iCAP® Results Page 8 PDIPLOT2 2014.2.48.0 - Printed 15-January-2015

USH 10 - B-70-403 - Pier 9 #1 - EOID OP: AZ APE D30-42, HP 14 x 73 Date: 14-January-2015

BL# Sensors

1-682 F3: [H880] 93.7 (1.00); F4: [F607] 93.6 (1.00); A3: [K2253] 325.0 (1.13); A4: [K2524] 360.0 (1.13)

BL# Comments

3 Reported reference EL 740.7

Time Summary

Drive 15 minutes 16 seconds 1:49 PM - 2:05 PM BN 1 - 682

GRL Engineers, Inc. - PDIPLOT2 Ver 2014.2.48.0 - Case Method & iCAP® Results

GRL Engineers, Inc. Case Method & iCAP® Results

Page 1	
PDIPLOT2 2014.2.48.0 - Printed 15-January-2015	

USH 10 - B-70-403 - Pier 9 #1 - BOR APE D30-42, HP 14 x 73									
OP: A	Z						Date	e: 15-Jan	uary-2015
AR:	21.40 in ²							SP:	0.492 k/ft ³
LE:	92.75 ft							EM: 3	0,000 ksi
WS: 1	l6,807.9 f/s							JC:	0.35 []
CSX:	Max Measu	ured Compr	. Stress		EN	IX: Max Tr	ansferred E	Inergy	
CSB:	Compressi	on Stress at	t Bottom		BP	M: Blows p	per Minute		
STK:	O.E. Diese	I Hammer S	stroke		RX	(9: Max Ca	ase Method	Capacity	(JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
	ft	blows/ft		ksi	ksi	ft	k-ft	bpm	kips
5	89	80	AV4	31.4	30.4	7.7	36	42.6	602
			STD	0.9	0.3	0.3	2	0.8	13
			MAX	32.3	30.7	8.1	39	43.6	620
			MIN	30.3	29.9	7.3	33	41.6	588
10	89	96	AV5	31.3	30.7	7.5	36	43.0	638
			STD	0.7	0.6	0.2	2	0.5	7
			MAX	32.5	31.5	7.9	39	43.5	646
			MIN	30.5	30.1	7.4	34	42.0	630
15	89	96	AV5	31.5	31.0	7.5	35	43.0	640
			STD	0.4	0.3	0.2	3	0.5	23
			MAX	32.0	31.5	7.8	37	43.6	658
			MIN	30.9	30.8	7.3	30	42.4	594
			Average	31.4	30.7	7.6	36	42.9	628
			Std. Dev.	0.7	0.5	0.2	2	0.6	23
		1	Maximum	32.5	31.5	8.1	39	43.6	658
			Minimum	30.3	29.9	7.3	30	41.6	588

Total number of blows analyzed: 14

BL# Sensors

1-15 F3: [D815] 93.0 (1.00); F4: [F607] 93.6 (1.00); A3: [K3550] 360.0 (1.12); A4: [K2524] 360.0 (1.12)

Time Summary

Drive 19 seconds 8:16 AM - 8:16 AM BN 1 - 15

GRL Engineers, Inc. - PDIPLOT2 Ver 2014.2.48.0 - Case Method & iCAP® Results

1 - Reported reference EL 740.7

Page	1
PDIPLOT2 2014.2.48.0 - Printed 15-January-2015	

APE D30-42, HP 14 x 73

		3 - Pier 9 #30	o - EOID					030-42, HI	
OP: A							Date		ary-2015
AR:	21.40 in ²								0.492 k/ft ³
LE:	92.66 ft							EM: 30	0,000 ksi
WS:	16,807.9 f/s							JC:	1.10 []
CSX:	Max Measu	ured Compr.	Stress		EN	IX: Max Tr	ansferred E	nergy	
CSB:	Compression	on Stress at	Bottom		BP	M: Blows p	per Minute		
STK:	O.E. Diese	I Hammer St	roke		RX	(9: Max Ca	ase Method	Capacity	(JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
	ft	blows/ft		ksi	ksi	ft	k-ft	bpm	kips
3	42.00	1	AV1	15.1	2.5	4.0	24	58.2	0
			STD	0.0	0.0	0.0	0	0.0	0
			MAX	15.1	2.5	4.0	24	58.2	0
			MIN	15.1	2.5	4.0	24	58.2	0
4	43.00	1	AV1	15.2	2.3	3.9	23	58.4	0
			STD	0.0	0.0	0.0	0	0.0	0
			MAX	15.2	2.3	3.9	23	58.4	0
			MIN	15.2	2.3	3.9	23	58.4	0
5	44.00	1	AV1	13.7	2.6	3.7	23	60.1	0
			STD	0.0	0.0	0.0	0	0.0	0
			MAX	13.7	2.6	3.7	23	60.1	0
			MIN	13.7	2.6	3.7	23	60.1	0
6	44.50	2	AV1	14.0	2.8	3.8	18	59.5	0
			STD	0.0	0.0	0.0	0	0.0	0
			MAX	14.0	2.8	3.8	18	59.5	0
			MIN	14.0	2.8	3.8	18	59.5	0
7	45.00	2	AV1	14.1	2.6	3.7	17	59.8	0
			STD	0.0	0.0	0.0	0	0.0	0
			MAX	14.1	2.6	3.7	17	59.8	0
			MIN	14.1	2.6	3.7	17	59.8	0
8	45.33	3	AV1	12.1	2.9	3.6	15	61.1	0
			STD	0.0	0.0	0.0	0	0.0	0
			MAX	12.1	2.9	3.6	15	61.1	0
			MIN	12.1	2.9	3.6	15	61.1	0
10	46.00	3	AV2	14.5	3.0	3.8	17	59.4	0
			STD	0.0	0.3	0.0	0	0.1	0
			MAX	14.6	3.3	3.8	17	59.4	0
			MIN	14.5	2.7	3.8	17	59.3	0

GRL Engineers, Inc. Case Method & iCAP® Results

Page 2
PDIPLOT2 2014.2.48.0 - Printed 15-January-2015

APE D30-42,	HP 14	x 73
-------------	-------	------

OP: AZ Date: 14-Janual									
				007					
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
	ft	blows/ft		ksi	ksi	ft	k-ft	bpm	kips
14	47.00	4	AV4	15.7	3.2	4.1	17	57.3	39
			STD	0.3	0.1	0.1	0	0.4	7
			MAX	16.1	3.3	4.2	18	57.9	48
			MIN	15.3	3.1	4.0	17	56.9	29
22	48.00	8	AV8	17.7	4.5	4.5	18	54.9	80
			STD	1.3	0.8	0.2	2	1.3	18
			MAX	19.4	5.5	4.8	20	57.2	99
			MIN	15.7	3.3	4.1	15	53.2	53
30	49.00	8	AV8	19.8	5.9	5.1	21	51.9	124
			STD	0.5	0.5	0.2	1	0.7	12
			MAX	20.7	6.4	5.3	23	53.1	136
			MIN	19.1	5.1	4.8	19	50.9	101
38	50.00	8	AV8	20.8	6.9	5.2	23	51.1	146
			STD	0.4	0.3	0.1	1	0.4	5
			MAX	21.3	7.4	5.4	24	51.8	153
			MIN	20.1	6.4	5.1	21	50.5	136
46	51.00	8	AV8	21.5	7.4	5.4	23	50.3	153
			STD	0.8	0.3	0.2	2	0.8	4
			MAX	22.7	7.7	5.7	26	51.8	158
			MIN	20.3	6.9	5.1	20	49.1	147
56	52.00	10	AV10	21.1	7.4	5.3	22	50.9	145
			STD	0.7	0.7	0.1	1	0.6	14
			MAX	22.6	8.7	5.6	24	51.8	171
			MIN	20.1	6.5	5.1	21	49.5	131
66	53.00	10	AV10	22.2	8.3	5.6	24	49.6	168
			STD	0.7	0.3	0.2	1	0.8	7
			MAX	23.3	8.8	5.9	26	50.6	182
			MIN	21.1	8.0	5.4	22	48.4	157
76	54.00	10	AV10	22.3	8.5	5.6	24	49.7	168
	2 1.00		STD	0.5	0.3	0.1	1	0.5	4
			MAX	22.9	9.1	5.8	26	50.4	176
			MIN	21.6	8.1	5.4	23	48.6	162
86	55.00	10	AV10	22.7	8.8	5.6	24	49.4	177
00	00.00	10	STD	0.5	0.3	0.1	1	0.5	7
			310	0.5	0.5	0.1	I	0.5	/

GRL Engineers, Inc. Case Method & iCAP® Results

Page) 3
PDIPLOT2 2014.2.48.0 - Printed 15-January-201	5

APE D30-42,	ΗP	14 x	73
-------------	----	------	----

DP: AZ		15 - Piel 9 #5						230-42, пр e: 14-Janua	
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
DL#	deptit ft	blows/ft	TIPE	ksi	ksi	ft	⊑ivi⊼ k-ft		
	11	DIOWS/IL	MAX	23.4	9.2	5.8	25	bpm 50.5	kips 190
			MIN	23.4 21.5	9.2 8.5	5.8 5.4	23 22	50.5 48.7	190
			IVIIIN	21.5	0.0	5.4	22	40.7	107
96	56.00	10	AV10	22.9	8.9	5.7	24	49.3	179
			STD	0.5	0.2	0.1	1	0.5	7
			MAX	23.7	9.5	5.9	25	50.2	187
			MIN	22.1	8.6	5.4	23	48.4	162
109	57.00	13	AV13	23.6	10.3	5.8	25	48.7	220
			STD	0.3	0.6	0.1	1	0.3	14
			MAX	24.1	11.2	6.0	26	49.1	242
			MIN	23.1	9.3	5.7	24	48.0	197
122	58.00	13	AV13	22.8	10.1	5.8	24	48.8	213
			STD	0.3	0.5	0.1	1	0.4	12
			MAX	23.7	11.0	6.0	27	49.5	236
			MIN	22.3	9.5	5.6	23	47.9	197
133	59.00	11	AV11	22.5	9.0	5.7	24	49.3	183
100	00.00		STD	0.3	0.3	0.1	1	0.5	12
			MAX	23.2	9.5	6.0	25	49.9	207
			MIN	22.2	8.6	5.5	23	48.1	169
144	60.00	11	AV11	22.6	9.2	5.6	24	49.3	182
	00.00		STD	0.4	0.1	0.1	- 1	0.4	5
			MAX	23.1	9.4	5.8	25	50.2	193
			MIN	22.0	8.9	5.4	22	48.7	176
156	61.00	12	AV12	22.8	9.3	5.7	24	49.2	189
100	01.00	12	STD	0.5	0.2	0.1	1	0.4	8
			MAX	23.8	9.7	5.9	25	50.1	203
			MIN	22.1	9.0	5.5	23	48.4	177
168	62.00	12	AV12	23.0	9.4	5.8	25	48.7	188
100	02.00	12	STD	0.4	0.4	0.1	1	0.5	9
			MAX	23.7	10.2	6.0	26	49.5	204
			MIN	22.4	8.8	5.6	23	48.0	172
180	63.00	10	۵\/12	22 S	86	57	24	∆ 0 1	166
.00	00.00	12							5
									174
									157
			MIN	22.0	8.2	5.5	23	48.2	1
180	63.00	12	AV12 STD MAX MIN	22.8 0.5 23.6 22.0	8.6 0.2 8.9 8.2	5.7 0.1 5.9 5.5	24 1 25 23	49.1 0.5 49.9 48.2	1

		5 - Fiel 9 #5						030-42, FIF	
OP: AZ				0.01/	000	0.71/		e: 14-Janua	
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
	ft	blows/ft		ksi	ksi	ft	k-ft	bpm	kips
192	64.00	12	AV12	23.1	9.3	5.8	24	48.7	169
			STD	0.4	0.4	0.1	1	0.6	5
			MAX	23.9	10.1	6.1	26	49.5	178
			MIN	22.4	8.8	5.6	23	47.4	161
204	65.00	12	AV12	23.6	10.1	6.0	25	48.0	205
			STD	0.3	0.4	0.1	0	0.4	11
			MAX	24.1	10.8	6.2	26	48.5	224
			MIN	23.0	9.6	5.9	24	47.3	183
216	66.00	12	AV12	23.7	10.6	6.0	26	47.8	215
			STD	0.5	0.2	0.1	1	0.5	8
			MAX	24.6	10.8	6.2	28	48.8	225
			MIN	22.8	10.2	5.8	24	47.3	204
229	67.00	13	AV13	23.4	10.5	6.0	25	48.1	213
			STD	0.2	0.2	0.1	1	0.3	7
			MAX	23.7	10.8	6.1	26	48.5	222
			MIN	23.0	10.0	5.9	24	47.5	200
242	68.00	13	AV13	23.1	9.9	5.9	25	48.2	201
			STD	0.4	0.5	0.1	1	0.4	ç
			MAX	23.8	10.7	6.1	26	48.9	216
			MIN	22.5	9.1	5.8	23	47.4	187
255	69.00	13	AV13	23.0	9.4	5.9	24	48.4	187
			STD	0.4	0.1	0.1	1	0.5	2
			MAX	23.6	9.5	6.1	26	49.5	194
			MIN	22.3	9.2	5.6	23	47.6	180
265	70.00	10	AV10	23.4	9.3	6.0	26	48.1	176
			STD	0.4	0.1	0.1	1	0.5	5
			MAX	24.5	9.6	6.2	27	48.7	182
			MIN	22.9	9.2	5.8	25	47.1	169
276	71.00	11	AV11	23.4	9.4	6.0	26	48.0	175
			STD	0.3	0.2	0.1	1	0.3	3
			MAX	24.2	9.7	6.2	27	48.5	180
			MIN	23.0	9.1	5.9	24	47.3	170
287	72.00	11	AV11	22.5	9.0	5.8	23	48.8	169

GRL Engineers, Inc. Case Method & iCAP® Results

	Page 5
PDIPLOT2 2014.2.48.0 - Printed 15-January	-2015

APE D30-4	2, HP 14 x 73
Date: 14	January 2015

P: AZ							Date	e: 14-Janua	14 X /3
3L#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
, L n	ft	blows/ft		ksi	ksi	ft	k-ft	bpm	kips
		biowont	STD	0.5	0.1	0.1	1	0.5	2
			MAX	23.4	9.1	6.1	26	49.6	173
			MIN	21.7	8.8	5.6	22	47.6	165
				21.7	0.0	0.0		17.0	100
299	73.00	12	AV12	21.9	9.0	5.7	22	49.3	172
			STD	0.3	0.2	0.1	1	0.3	7
			MAX	22.3	9.5	5.8	23	49.7	185
			MIN	21.5	8.7	5.6	20	48.6	163
311	74.00	12	AV12	22.1	9.4	5.7	22	49.2	185
			STD	0.2	0.1	0.0	1	0.1	4
			MAX	22.4	9.6	5.7	23	49.4	188
			MIN	21.7	9.3	5.6	21	49.0	176
323	75.00	12	AV12	22.5	9.1	5.7	23	49.0	169
120	75.00	12	STD	0.4	0.2	0.1	1	0.5	3
			MAX	23.1	9.4	6.0	24	49.8	175
			MIN	21.9	8.8	5.5	24	48.1	164
335	76.00	12	AV/10	22.2	0.1	F 7	22	40.0	175
555	70.00	12	AV12	22.2	9.1	5.7	22 1	49.0 0.4	175 3
			STD MAX	0.5 22.9	0.3 9.7	0.1 5.9	24	0.4 49.6	181
			MIN	22.9 21.5	9.7 8.7	5.9 5.6	24 20	49.0 48.3	171
			IVIIIN	21.5	0.7	5.0	20	40.5	171
348	77.00	13	AV13	22.0	9.2	5.7	21	49.1	183
			STD	0.2	0.2	0.1	1	0.2	4
			MAX	22.4	9.5	5.8	22	49.4	188
			MIN	21.7	8.8	5.6	20	48.7	174
361	78.00	13	AV13	21.8	8.6	5.6	21	49.3	163
			STD	0.4	0.2	0.1	1	0.4	5
			MAX	22.8	9.0	5.9	23	49.9	169
			MIN	21.2	8.4	5.5	20	48.4	152
374	79.00	13	AV13	22.4	9.2	5.8	23	48.6	170
			STD	0.6	0.4	0.2	1	0.7	8
			MAX	23.6	9.9	6.2	25	49.3	187
			MIN	21.6	8.6	5.7	21	47.3	161
387	80.00	13	AV13	23.4	11.9	6.1	23	47.6	237
-			STD	0.6	2.1	0.2		0.7	53
			MAX	24.4	16.0	6.4	24	48.6	340

GRL Engineers, Inc. Case Method & iCAP® Results

Page 6	
PDIPLOT2 2014.2.48.0 - Printed 15-January-2015	

USH 10 - D-70-403 - Piel 9 #30 - EOID APE D30-42, HP 14 X 7.									
OP: AZ	-						Date	e: 14-Janua	ry-2015
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
	ft	blows/ft		ksi	ksi	ft	k-ft	bpm	kips
			MIN	22.7	10.0	5.8	21	46.4	187
412	81.00	25	AV25	25.3	18.4	6.7	25	45.5	385
			STD	0.4	0.5	0.1	1	0.3	8
			MAX	26.1	19.5	6.9	26	46.5	402
			MIN	24.3	17.0	6.4	23	44.8	366
440	82.00	28	AV28	25.6	18.4	6.7	25	45.6	390
			STD	0.3	0.4	0.1	1	0.3	11
			MAX	26.4	19.0	6.9	27	46.2	415
			MIN	25.1	17.4	6.5	23	44.9	370
466	83.00	26	AV26	25.3	17.5	6.5	24	46.0	374
			STD	0.4	0.7	0.1	1	0.4	18
			MAX	26.1	18.9	6.8	26	46.6	415
			MIN	24.8	16.7	6.4	23	45.3	350
492	84.00	26	AV26	24.8	17.6	6.5	23	46.3	375
			STD	0.4	0.5	0.1	1	0.4	14
			MAX	25.6	18.5	6.7	25	47.3	399
			MIN	23.9	16.5	6.2	22	45.5	346
525	85.00	33	AV33	25.1	18.2	6.6	23	46.0	394
			STD	0.5	0.4	0.2	1	0.6	10
			MAX	26.1	19.1	6.9	25	46.8	413
			MIN	24.3	17.5	6.3	22	44.9	377
552	86.00	27	AV27	24.6	16.9	6.4	23	46.4	354
			STD	0.4	0.8	0.1	1	0.3	19
			MAX	25.2	18.3	6.6	25	47.2	384
			MIN	23.6	15.5	6.2	21	45.7	327
576	87.00	24	AV24	24.0	15.8	6.5	22	46.3	321
			STD	0.6	0.4	0.2	1	0.6	9
			MAX	25.3	17.1	6.8	24	47.5	344
			MIN	23.1	15.0	6.1	21	45.2	307
602	88.00	26	AV26	24.4	16.2	6.5	22	46.1	333
			STD	0.6	0.3	0.2	1	0.5	9
			MAX	25.6	16.7	6.8	24	47.0	350
			MIN	23.6	15.4	6.3	20	45.1	318

Pag	je 7
PDIPLOT2 2014.2.48.0 - Printed 15-January-207	15

USH 10 OP: AZ		03 - Pier 9 #3	6 - EOID					030-42, HP e: 14-Janua	
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
	ft	blows/ft		ksi	ksi	ft	k-ft	bpm	kips
628	89.00	26	AV26	24.1	16.0	6.5	22	46.3	329
			STD	0.5	0.5	0.1	1	0.5	11
			MAX	25.1	16.9	6.8	24	47.1	348
			MIN	23.0	15.2	6.2	20	45.2	311
646	89.56	32	AV18	25.4	19.2	6.7	23	45.7	397
			STD	0.9	1.8	0.2	1	0.7	36
			MAX	27.1	22.0	7.0	26	46.9	454
			MIN	23.7	16.5	6.3	21	44.4	348
656	89.77	48	AV10	27.0	22.9	7.1	26	44.2	487
			STD	0.4	0.5	0.1	1	0.3	23
			MAX	27.7	23.7	7.2	27	44.7	523
			MIN	26.5	22.2	6.9	25	43.8	454
666	90.00	44	AV10	27.0	24.1	7.1	25	44.4	524
			STD	0.5	0.5	0.2	1	0.5	8
			MAX	28.0	24.9	7.4	27	45.1	536
			MIN	25.9	23.3	6.8	24	43.4	512
			Average	23.4	12.7	6.0	23	47.9	259
		;	Std. Dev.	2.0	4.8	0.6	2	2.4	108
		Ν	<i>l</i> laximum	28.0	24.9	7.4	28	61.1	536
			Minimum	12.1	2.3	3.6	15	43.4	0
			Total n	umbor of blo	we analyze	d. 661			

Total number of blows analyzed: 664

BL# Sensors

1-666 F3: [H880] 93.7 (1.00); F4: [F607] 93.6 (1.00); A3: [K2253] 325.0 (1.00); A4: [K2524] 360.0 (1.00)

BL# Comments

3 Reported reference EL 740.7

Time Summary

Drive 14 minutes 11 seconds 1:15 PM - 1:29 PM BN 1 - 666

GRL Engineers, Inc. - PDIPLOT2 Ver 2014.2.48.0 - Case Method & iCAP® Results

Test started: 15-January-2015

Page 1 PDIPLOT2 2014.2.48.0 - Printed 15-January-2015

USH	10 - B-70-40	3 - Pier 9 #3		APE [D30-42, H	P 14 x 73			
OP: AZ Date: 15-January-2015									uary-2015
AR:	AR: 21.40 in ² SP: 0.492 k/ft								
LE: 92.66 ft EM: 30,000 ks									0,000 ksi
WS: 16,807.9 f/s JC: 1.10 [
CSX:	Max Measu	ured Compr.	Stress		EN	MX: Max Tr	ansferred E	nergy	
	Compressi	•				PM: Blows			
STK:	O.E. Diese	l Hammer S	troke		R۷	K9: Max Ca	ase Method	Capacity	(JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
	ft	blows/ft		ksi	ksi	ft	k-ft	bpm	kips
5	90.09	53	AV4	29.5	27.2	8.0	36	41.8	555
			STD	1.3	0.4	0.6	4	1.6	12
			MAX	31.5	27.6	8.7	41	43.5	575
			MIN	28.0	26.6	7.4	32	40.0	546
10	90.19	53	AV5	28.7	27.5	7.2	32	44.1	555
			STD	0.3	0.4	0.0	1	0.1	11
			MAX	29.1	28.0	7.2	33	44.2	567
			MIN	28.3	26.8	7.1	31	43.9	536
15	90.28	53	AV5	29.4	28.6	7.4	34	43.5	592
			STD	0.4	0.7	0.2	1	0.5	14
			MAX	30.2	29.6	7.6	35	44.1	608
			MIN	28.9	27.6	7.1	32	42.9	570
			Average	29.2	27.8	7.5	34	43.2	568
			Std. Dev.	0.9	0.8	0.5	3	1.3	22
		ľ	Maximum	31.5	29.6	8.7	41	44.2	608
			Minimum	28.0	26.6	7.1	31	40.0	536

Total number of blows analyzed: 14

BL# Sensors

1-15 F3: [F607] 93.6 (1.00); F4: [D815] 93.0 (1.00); A3: [K2524] 360.0 (1.11); A4: [K3550] 360.0 (1.11)

Time Summary

Drive 19 seconds 8:04 AM - 8:05 AM BN 1 - 15

1 - Reported reference EL 740.7

Page 1 PDIPLOT2 2014.2.48.0 - Printed 14-January-2015

USH 10 - B-70-403 - Pier 9 #44 - EOID OP: AZ Date: 14-January-2015 AR: 21.40 in² SP: 0.492 k/ft3 LE: 92.00 ft EM: 30,000 ksi WS: 16,807.9 f/s JC: 1.00 [] EMX: Max Transferred Energy CSX: Max Measured Compr. Stress CSB: Compression Stress at Bottom **BPM: Blows per Minute** STK: O.E. Diesel Hammer Stroke RX9: Max Case Method Capacity (JC=0.9) BPM BL# depth BLC TYPE CSX CSB STK EMX RX9 blows/ft ksi ksi ft k-ft ft bpm kips ** ** 1 35.00 1 AV1 18.9 1.9 16 0 ** ** 0.0 0 0 STD 0.0 ** ** MAX 18.9 1.9 16 0 ** ** MIN 18.9 1.9 16 0 ** ** 2 36.00 1 AV1 21.1 2.2 19 0 ** ** STD 0.0 0.0 0 0 ** ** MAX 21.1 2.2 19 0 ** ** MIN 21.1 2.2 19 0 AV1 21.7 2.4 ** 22 ** 0 3 37.00 1 ** ** 0 0 STD 0.0 0.0 ** ** 22 MAX 2.4 0 21.7 ** MIN 22 ** 0 21.7 2.4 ** ** AV1 21.7 22 0 4 38.00 1 2.6 STD 0.0 0.0 ** 0 ** 0 ** 22 ** MAX 21.7 2.6 0 ** ** MIN 22 0 21.7 2.6 ** ** 5 39.00 1 AV1 22.4 2.6 31 0 STD 0.0 ** 0 ** 0 0.0 ** ** MAX 22.4 2.6 31 0 ** ** MIN 31 0 22.4 2.6 7 2 40.00 AV2 14.5 2.3 4.3 20 56.2 0 STD 1.3 0.1 0.3 4 1.9 0 MAX 15.8 2.3 4.6 24 58.0 0 MIN 13.3 2.2 4.0 16 54.3 0 2 9 41.00 AV2 13.6 2.6 3.1 20 65.6 24 STD 8.6 1.0 15 0.0 24 0.0 MAX 22.2 3.1 36 65.6 47 3.6 MIN 4.9 1.5 5 65.6 0 3.1

APE D30-42, HP 14 x 73

GRL Engineers, Inc. Case Method & iCAP® Results

Page 2	
PDIPLOT2 2014.2.48.0 - Printed 14-January-2015	

USH 10 - B-70-403 - Pier 9 #44 - EOID OP: AZ

OP: AZ							Date	e: 14-Janua	ry-2015
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
	ft	blows/ft		ksi	ksi	ft	k-ft	bpm	kips
11	42.00	2	AV2	20.8	3.4	5.5	30	50.2	0
			STD	2.8	0.3	0.7	6	2.9	0
			MAX	23.5	3.7	6.2	36	53.1	0
			MIN	18.0	3.1	4.8	24	47.2	0
13	43.00	2	AV2	14.9	2.7	3.3	17	63.4	19
			STD	7.1	0.8	0.0	10	0.0	19
			MAX	22.0	3.5	3.3	27	63.4	38
			MIN	7.8	2.0	3.3	7	63.4	0
15	44.00	2	AV2	14.5	2.9	4.4	23	55.6	0
			STD	1.6	0.2	0.2	3	1.3	0
			MAX	16.0	3.1	4.6	26	56.8	0
			MIN	12.9	2.7	4.2	20	54.3	0
17	45.00	2	AV2	13.4	2.7	4.0	16	58.7	7
			STD	3.5	0.6	0.6	7	3.9	6
			MAX	16.9	3.2	4.5	23	62.6	13
			MIN	10.0	2.1	3.4	9	54.8	0
19	46.00	2	AV2	23.9	4.2	6.7	39	45.5	26
			STD	1.3	0.3	0.0	0	0.0	26
			MAX	25.2	4.5	6.7	40	45.5	52
			MIN	22.6	3.9	6.7	39	45.5	0
30	47.00	11	AV11	18.4	5.6	5.0	19	52.8	113
			STD	5.0	1.5	0.9	8	4.9	34
			MAX	25.4	7.4	6.7	32	64.8	159
			MIN	5.8	2.2	3.1	3	45.6	38
43	48.00	13	AV13	21.2	9.1	5.5	23	49.8	185
			STD	0.4	0.6	0.1	1	0.6	13
			MAX	21.9	9.9	5.8	25	51.0	198
			MIN	20.2	8.2	5.3	21	48.6	160
56	49.00	13	AV13	21.7	10.1	5.7	24	49.3	210
			STD	0.4	0.3	0.1	1	0.3	5
			MAX	22.5	10.5	5.8	26	50.0	216
			MIN	21.1	9.5	5.5	23	48.9	201
69	50.00	13	AV13	22.0	10.1	5.6	25	49.5	203

GRL Engineers, Inc. Case Method & iCAP® Results

Pa	ge 3
PDIPLOT2 2014.2.48.0 - Printed 14-January-2	015

APE	D3	30-4	42,	ΗP	14 x 73
-					0045

OP: AZ								e: 14-Janua	ry-2015
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
	ft	blows/ft		ksi	ksi	ft	k-ft	bpm	kips
			STD	0.3	0.5	0.1	1	0.3	14
			MAX	22.8	10.7	5.7	26	50.0	218
			MIN	21.6	9.2	5.5	23	49.0	172
82	51.00	13	AV13	21.8	9.5	5.6	24	49.7	190
			STD	0.5	1.0	0.1	1	0.5	21
			MAX	22.8	11.7	5.8	27	50.6	231
			MIN	21.2	8.2	5.4	23	48.8	161
95	52.00	13	AV13	22.8	10.9	5.8	26	48.8	229
			STD	0.3	0.3	0.1	1	0.3	6
			MAX	23.3	11.6	6.0	27	49.3	239
			MIN	22.4	10.5	5.7	25	48.0	221
108	53.00	13	AV13	22.7	10.5	5.7	26	49.3	215
			STD	0.3	0.2	0.1	1	0.3	5
			MAX	23.2	11.0	5.8	28	49.9	224
			MIN	22.3	10.2	5.5	25	48.9	206
121	54.00	13	AV13	23.1	11.0	5.7	26	49.0	229
			STD	0.4	0.2	0.1	1	0.5	6
			MAX	23.7	11.3	6.1	27	49.5	239
			MIN	22.4	10.4	5.6	24	47.7	220
134	55.00	13	AV13	23.0	10.7	5.6	26	49.4	215
			STD	0.3	0.2	0.1	1	0.3	7
			MAX	23.6	11.1	5.8	27	49.9	227
			MIN	22.5	10.2	5.5	24	48.7	205
147	56.00	13	AV13	22.8	10.3	5.6	26	49.4	203
			STD	0.3	0.1	0.1	1	0.5	3
			MAX	23.5	10.5	5.9	28	50.1	209
			MIN	22.3	10.1	5.5	25	48.5	197
161	57.00	14	AV14	23.1	10.9	5.7	26	49.0	226
			STD	0.5	0.5	0.1	1	0.5	14
			MAX	24.3	11.6	6.1	29	49.6	249
			MIN	22.6	10.2	5.6	24	47.6	205
175	58.00	14	AV14	22.8	10.4	5.7	25	49.1	214
			STD	0.5	0.6	0.1	1	0.5	21

GRL Engineers, Inc. Case Method & iCAP® Results

Page 4	
PDIPLOT2 2014.2.48.0 - Printed 14-January-2015	

APE D30-42, HP 14 x 73
Date: 14-January-2015

DP: AZ							Dat	e: 14-Janua	
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RXS
	ft	blows/ft		ksi	ksi	ft	k-ft	bpm	kips
			MAX	23.6	11.4	5.9	26	50.1	245
			MIN	21.8	9.3	5.5	24	48.3	180
186	59.00	11	AV11	22.9	9.8	5.7	27	49.2	185
			STD	0.3	0.3	0.1	1	0.3	8
			MAX	23.4	10.2	5.9	28	49.8	195
			MIN	22.4	9.5	5.5	25	48.5	172
196	60.00	10	AV10	23.0	9.2	5.7	27	49.3	168
			STD	0.3	0.3	0.1	1	0.5	Ę
			MAX	23.6	9.7	5.8	28	49.9	175
			MIN	22.5	8.8	5.5	26	48.6	161
206	61.00	10	AV10	23.1	9.3	5.6	27	49.4	169
			STD	0.6	0.3	0.2	1	0.8	(
			MAX	24.4	10.0	6.1	29	50.4	180
			MIN	22.4	9.0	5.4	25	47.7	158
218	62.00	12	AV12	23.6	10.0	5.8	27	48.9	185
			STD	0.5	0.2	0.1	1	0.5	;
			MAX	24.4	10.2	6.0	29	49.6	19
			MIN	23.1	9.7	5.6	26	47.9	18
230	63.00	12	AV12	23.8	9.8	5.8	27	48.9	18
			STD	0.5	0.1	0.2	1	0.6	:
			MAX	24.6	10.0	6.0	28	49.7	196
			MIN	23.1	9.6	5.6	26	47.9	179
242	64.00	12	AV12	23.7	9.5	5.7	26	49.1	179
			STD	0.5	0.2	0.1	1	0.5	į
			MAX	24.4	9.8	5.9	27	49.7	188
			MIN	23.0	9.1	5.6	23	48.2	172
254	65.00	12	AV12	23.5	9.9	5.7	26	49.2	174
			STD	0.2	0.2	0.1	1	0.2	4
			MAX	23.8	10.2	5.8	27	49.5	18
			MIN	23.1	9.6	5.6	25	48.7	164
268	66.00	14	AV14	24.0	10.7	5.9	26	48.5	209
			STD	0.4	0.4	0.1	1	0.4	14
			MAX	24.9	11.4	6.1	28	49.0	233

GRL Engineers, Inc. Case Method & iCAP® Results

Page 5
PDIPLOT2 2014.2.48.0 - Printed 14-January-2015

USH 10 - B-70-403 - Pier 9 #44 - EOID OP: AZ

OP: AZ							Date	e: 14-Janua	ry-2015
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
	ft	blows/ft		ksi	ksi	ft	k-ft	bpm	kips
			MIN	23.6	10.2	5.7	25	47.7	188
283	67.00	15	AV15	24.2	11.7	6.0	26	48.0	240
			STD	0.3	0.2	0.1	1	0.3	5
			MAX	25.1	12.0	6.2	28	48.7	246
			MIN	23.7	11.4	5.8	25	47.2	229
298	68.00	15	AV15	24.1	11.2	5.9	26	48.2	229
200	00.00	10	STD	0.4	0.4	0.1	1	0.4	9
			MAX	24.7	11.7	6.1	28	48.8	243
			MIN	23.5	10.4	5.8	20 25	47.6	243
			IVIIIN	20.0	10.4	0.0	20	47.0	212
309	69.00	11	AV11	23.8	10.4	5.9	27	48.5	200
			STD	0.6	0.2	0.2	2	0.7	4
			MAX	24.9	10.6	6.2	30	49.3	205
			MIN	23.1	10.0	5.7	25	47.2	190
319	70.00	10	AV10	23.8	9.9	5.9	27	48.5	184
			STD	0.6	0.2	0.1	1	0.6	6
			MAX	25.0	10.3	6.2	30	49.3	196
			MIN	23.0	9.6	5.7	25	47.3	178
329	71.00	10	AV10	23.7	9.5	5.8	27	48.6	176
529	71.00	10	STD	0.5	9.5 0.1	0.1	1	40.0 0.5	2
			MAX	0.5 24.7	0.1 9.8	6.1	30	0.5 49.1	ے 179
			MIN	24.7	9.8 9.4	5.7	30 26	49.1 47.4	179
			IVIIIN	23.1	9.4	5.7	20	47.4	170
340	72.00	11	AV11	23.3	9.4	5.7	27	49.0	171
			STD	0.3	0.1	0.1	1	0.2	2
			MAX	23.8	9.6	5.9	28	49.3	175
			MIN	22.9	9.2	5.7	26	48.5	169
351	73.00	11	AV11	23.6	9.3	5.8	27	48.9	173
			STD	0.4	0.1	0.1	1	0.4	2
			MAX	24.5	9.5	6.0	28	49.5	175
			MIN	23.1	9.2	5.6	25	48.0	169
362	74.00	11	AV11	24.0	9.6	5.9	28	48.5	180
502	74.00	11	STD	24.0 0.4	9.8 0.1	0.1	20 1	48.5 0.4	4
			MAX	0.4 24.4	10.0	6.0	30	0.4 49.2	4 185
			MIN		9.4		30 26		174
			IVIIIN	23.4	9.4	5.7	20	47.9	174

GRL Engineers, Inc. Case Method & iCAP® Results

Page 6	
PDIPLOT2 2014.2.48.0 - Printed 14-January-2015	

OP: AZ							Date	e: 14-Janua	ry-2015
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
	ft	blows/ft		ksi	ksi	ft	k-ft	bpm	kips
373	75.00	11	AV11	23.8	9.5	5.8	27	48.6	174
			STD	0.6	0.4	0.2	1	0.6	5
			MAX	24.7	10.2	6.1	30	49.3	182
			MIN	23.1	9.1	5.7	26	47.6	166
384	76.00	11	AV9	24.4	10.3	6.1	29	47.7	196
			STD	0.5	0.3	0.1	1	0.4	10
			MAX	25.3	10.9	6.3	30	48.3	212
			MIN	23.7	9.9	5.9	27	47.0	178
395	77.00	11	AV11	24.1	9.8	5.9	28	48.2	182
			STD	0.4	0.2	0.1	1	0.5	3
			MAX	24.9	10.2	6.2	30	48.9	188
			MIN	23.4	9.5	5.8	26	47.3	178
406	78.00	11	AV11	23.9	10.2	5.9	27	48.3	195
			STD	0.5	0.2	0.1	1	0.5	4
			MAX	25.1	10.4	6.2	30	49.3	203
			MIN	23.1	9.8	5.7	25	47.2	187
417	79.00	11	AV11	23.6	9.7	5.8	26	48.7	184
			STD	0.3	0.2	0.1	1	0.3	4
			MAX	24.1	10.0	5.9	28	49.2	193
			MIN	23.2	9.4	5.7	26	48.3	179
429	80.00	12	AV12	23.3	9.9	5.7	25	48.9	194
			STD	0.3	0.2	0.1	0	0.3	5
			MAX	23.9	10.2	5.9	26	49.3	200
			MIN	23.0	9.6	5.7	24	48.4	184
441	81.00	12	AV12	22.8	9.3	5.6	24	49.6	170
			STD	0.4	0.2	0.1	1	0.5	6
			MAX	23.7	9.8	5.8	26	50.4	182
			MIN	22.1	9.0	5.4	23	48.7	164
453	82.00	12	AV12	23.0	9.1	5.7	25	49.3	168
			STD	0.5	0.2	0.1	1	0.6	5
			MAX	24.1	9.5	5.9	27	50.2	179
			MIN	22.2	8.8	5.4	22	48.2	161

GRL Engineers, Inc. Case Method & iCAP® Results

Pag	je 7
PDIPLOT2 2014.2.48.0 - Printed 14-January-20	15

USH 10 - B-70-403 - Pier 9 #44 - EOID OP: AZ

OP: AZ							Date	e: 14-Janua	ry-2015
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
	ft	blows/ft		ksi	ksi	ft	k-ft	bpm	kips
465	83.00	12	AV12	23.4	9.9	5.7	25	49.0	188
			STD	0.5	0.2	0.1	1	0.5	5
			MAX	24.1	10.3	5.9	26	49.8	199
			MIN	22.5	9.6	5.5	23	48.2	176
481	84.00	16	AV16	23.8	11.7	5.9	24	48.5	237
			STD	0.7	2.4	0.2	1	0.9	48
			MAX	25.3	16.0	6.4	27	49.5	325
			MIN	22.9	9.6	5.6	23	46.4	194
509	85.00	28	AV28	25.7	18.9	6.5	27	46.2	406
			STD	0.4	0.9	0.1	1	0.4	25
			MAX	26.4	20.6	6.8	29	47.3	443
			MIN	24.5	16.0	6.2	25	45.2	336
539	86.00	30	AV30	26.3	19.9	6.6	27	45.7	424
			STD	0.6	1.1	0.2	1	0.6	22
			MAX	27.7	22.2	7.0	30	46.7	467
			MIN	25.3	17.4	6.3	25	44.4	373
569	87.00	30	AV30	26.4	20.4	6.7	28	45.6	430
			STD	0.3	0.5	0.1	1	0.3	9
			MAX	27.2	21.2	6.9	30	46.0	442
			MIN	25.9	19.3	6.5	26	44.7	409
599	88.00	30	AV30	26.5	20.8	6.7	28	45.4	442
			STD	0.4	0.4	0.1	1	0.4	9
			MAX	27.5	21.6	7.0	31	46.1	458
			MIN	25.7	20.0	6.5	26	44.5	425
627	89.00	28	AV28	27.8	20.8	6.8	31	45.2	456
			STD	1.2	0.6	0.1	3	0.4	24
			MAX	29.8	22.0	7.0	36	46.0	507
			MIN	26.1	19.2	6.5	27	44.4	398
650	90.00	23	AV23	28.4	20.4	6.7	34	45.6	443
			STD	0.5	0.5	0.1	1	0.4	11
			MAX	29.5	21.2	6.9	36	46.1	463
			MIN	27.3	19.5	6.5	32	44.7	424
				-	-	-			
673	91.00	23	AV21	27.0	18.8	6.6	31	45.8	408

GRL Engineers, Inc. Case Method & iCAP® Results

Pa	age 8
PDIPLOT2 2014.2.48.0 - Printed 14-January-2	2015

USH 10 - B-70-403 -	Pier 9 #44 - EOID
---------------------	-------------------

APE	D3	-0	42	, HP	14 x	73
_					_	

OP: AZ	01010			Date: 14-January-2015					
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
	ft	blows/ft		ksi	ksi	ft	k-ft	bpm	kips
			STD	1.2	0.9	0.1	3	0.5	27
			MAX	28.9	20.5	6.8	35	46.5	459
			MIN	24.8	17.2	6.4	24	45.0	362
701	92.00	28	AV26	26.4	19.3	6.5	29	46.3	410
			STD	1.6	1.1	0.1	3	0.4	32
			MAX	28.7	21.4	6.6	33	47.3	469
			MIN	22.8	17.7	6.2	23	45.7	369
742	93.00	41	AV41	24.7	21.8	6.6	26	46.0	459
			STD	0.8	1.6	0.2	2	0.8	37
			MAX	26.2	24.3	7.0	30	47.6	520
			MIN	23.3	19.4	6.1	24	44.4	396
752	93.26	38	AV10	26.0	23.9	6.9	29	44.9	512
			STD	0.4	0.3	0.1	1	0.4	9
			MAX	26.5	24.2	7.0	31	45.6	525
			MIN	25.4	23.4	6.7	28	44.4	500
762	93.48	46	AV10	26.4	24.6	7.0	29	44.5	527
			STD	0.5	0.6	0.2	1	0.5	11
			MAX	27.3	25.7	7.4	32	45.2	548
			MIN	25.7	23.6	6.8	28	43.5	510
772	93.71	44	AV10	26.8	26.1	7.2	31	43.9	538
			STD	0.4	0.4	0.1	1	0.3	7
			MAX	27.7	26.8	7.4	33	44.5	550
			MIN	26.2	25.5	7.0	30	43.4	522
			Average	24.2	13.9	6.1	27	47.8	283
		:	Std. Dev.	2.5	5.6	0.6	3	2.3	131
			/laximum	29.8	26.8	7.4	40	65.6	550
		l	Minimum	4.9	1.5	3.1	3	43.4	0
			Total n	umber of bl	ows analyze	ed: 766			

lotal number of blows analyzed:

- BL# Sensors
- 1-693 F3: [F607] 93.6 (1.00); F4: [F590] 95.0 (1.00); A3: [K2524] 360.0 (1.10); A4: [K2253] 325.0 (1.10)
- 694-694 F3: [F607] 93.6 (1.00); F4: [H880] 93.7 (1.00); A3: [K2524] 360.0 (1.10); A4: [K2253] 325.0 (1.10)

695-696 F3: [F607] 93.6 (1.00); F4: [F590] 95.0 (1.00); A3: [K2524] 360.0 (1.10);

GRL Engineers, Inc. Case Method & iCAP® Results Page 9 PDIPLOT2 2014.2.48.0 - Printed 14-January-2015

USH 10 - B-70-403 - Pier 9 #44 - EOID OP: AZ APE D30-42, HP 14 x 73 Date: 14-January-2015

A4: [K2253] 325.0 (1.10) 697-772 F3: [F607] 93.6 (1.00); F4: [H880] 93.7 (1.00); A3: [K2524] 360.0 (1.10); A4: [K2253] 325.0 (1.10)

BL# Comments

1 Reported reference EL 740.7

Time Summary

 Drive
 21 minutes
 10 seconds
 12:07 PM - 12:28 PM (1/14/2015) BN 1 - 696

 Stop
 21 minutes
 6 seconds
 12:28 PM - 12:49 PM

 Drive
 1 minute
 39 seconds
 12:49 PM - 12:51 PM BN 697 - 772

Total time [00:43:56] = (Driving [00:22:49] + Stop [00:21:06])

GRL Engineers, Inc. - PDIPLOT2 Ver 2014.2.48.0 - Case Method & iCAP® Results

Page 1 PDIPLOT2 2014.2.48.0 - Printed 15-January-2015

USH 10 - B-70-403 - Pier 9 #44 - BOR									P 14 x 73
OP: AZ Date: 15-January-20						uary-2015			
AR:	21.40 in²							SP:	0.492 k/ft ³
LE:	92.00 ft							EM: 3	0,000 ksi
WS:	16,807.9 f/s							JC:	0.35 []
CSX:	Max Measu	ured Compr.	Stress		EN	/X: Max Tr	ansferred E	Inergy	
CSB:	Compressi	on Stress at	Bottom		BF	M: Blows	per Minute		
STK:	O.E. Diese	l Hammer S	troke		RX	(9: Max Ca	ase Method	Capacity	(JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
	ft	blows/ft		ksi	ksi	ft	k-ft	bpm	kips
5	94.01	60	AV4	27.6	26.5	7.6	30	42.8	527
			STD	1.0	0.6	0.5	3	1.3	15
			MAX	29.2	27.5	8.5	35	43.9	540
			MIN	26.4	25.8	7.2	28	40.6	502
10	94.10	60	AV5	28.1	26.9	7.6	31	42.9	529
			STD	0.6	0.3	0.2	1	0.5	7
			MAX	29.1	27.2	7.8	32	43.5	538
			MIN	27.3	26.3	7.4	30	42.2	518
15	94.18	60	AV5	28.7	27.5	7.5	32	43.0	542
			STD	0.3	0.3	0.1	1	0.3	6
			MAX	29.3	28.1	7.8	34	43.3	551
			MIN	28.4	27.1	7.4	31	42.4	533
			Average	28.2	27.0	7.6	31	42.9	533
			Std. Dev.	0.8	0.6	0.3	2	0.8	12
Maximum				29.3	28.1	8.5	35	43.9	551
Minimum 26.4 25.8 7						7.2	28	40.6	502

Total number of blows analyzed: 14

BL# Sensors

1-15 F3: [D815] 93.0 (1.00); F4: [F607] 93.6 (1.00); A3: [K3550] 360.0 (1.09); A4: [K2524] 360.0 (1.09)

Time Summary

Drive 19 seconds 8:28 AM - 8:28 AM BN 1 - 15

at Ru

700.0
USH 10 - B-70-403; Pile: Pier 9 #1 - EOID APE D30-42, HP 14 x 73; Blow: 675 GRL Engineers, Inc.

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

USH 10 - B-70-403; Pile: Pier 9 #1 - EOID APE D30-42, HP 14 x 73; Blow: 675 GRL Engineers, Inc. Test: 14-Jan-2015 14:05 CAPWAP(R) 2014-1 OP: AZ

			CAPW	AP SUMMARY	RESULTS			
Total CAP	WAP Capac:	ity: 63	9.0; alor	ng Shaft	49.0; at	Toe 590	.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				639.0				
1	13.3	9.4	0.0	639.0	0.0	0.00	0.00	0.00
2	19.9	16.0	0.0	639.0	0.0	0.00	0.00	0.00
3	26.5	22.7	2.0	637.0	2.0	0.30	0.06	0.21
4	33.1	29.3	2.0	635.0	4.0	0.30	0.06	0.21
5	39.8	35.9	2.0	633.0	6.0	0.30	0.06	0.21
6	46.4	42.5	3.0	630.0	9.0	0.45	0.10	0.21
7	53.0	49.2	3.0	627.0	12.0	0.45	0.10	0.21
8	59.6	55.8	3.0	624.0	15.0	0.45	0.10	0.21
9	66.3	62.4	3.0	621.0	18.0	0.45	0.10	0.21
10	72.9	69.0	3.0	618.0	21.0	0.45	0.10	0.21
11	79.5	75.7	3.0	615.0	24.0	0.45	0.10	0.21
12	86.1	82.3	5.0	610.0	29.0	0.75	0.16	0.21
13	92.8	88.9	20.0	590.0	49.0	3.02	0.64	0.21
Avg. Sh	aft		3.8			0.55	0.12	0.21
То	e		590.0				428.01	0.03
Soil Mode	l Paramete	ers/Extens	ions		Sha	aft To	be	
Quake		(i:	n)		0	.12 0.4	45	
Case Damp	ing Factor	r			0	.27 0.4	16	
Damping T	ype				Visc	ous Sm+Vis	SC	
Unloading	Quake	(%	of loadi	ing quake)		30 3	30	
Reloading	Level	(%	of Ru)			-99	0	
Resistanc	e Gap (ind	cluded in '	Toe Quake	e) (in)		0.0	01	
Soil Plug	Weight	(k	ips)			0.00	00	
CAPWAP ma	tch quali	ty =	4.37	(Wav	e Up Match)	; RSA = 0	1	
	Final Set	-	0.27 i		Count		b/ft	
Computed:	Final Set	t =	0.31 i	in; Blow	Count	= 38	b/ft	
Transducer				; F4(F607) CA ; A4(K2524) CA	L: 93.6; RF: L: 360; RF:			
max. Top	-	-	30.5 1		36.1 ms,) x Top)	
max. Comp	-	=	31.8 k	•	-	т= 43.6 п		
max. Tens		=		•	-	T= 62.5 m	-	
max. Ener		=	37.6 k	ip-ft; max	. Measured		•	1.22 in

USH 10 - B-70-403; Pile: Pier 9 #1 - EOID APE D30-42, HP 14 x 73; Blow: 675 GRL Engineers, Inc. Test: 14-Jan-2015 14:05 CAPWAP(R) 2014-1 OP: AZ

		-			REMA TABL					
Pile	Dis		max.	min.	max.	max		max.	max.	max
Sgmnt	Bel		orce	Force	Comp.	Tens			Veloc.	Displ
No.	Gag		1-1	1-4	Stress	Strea		ergy	6 h / m	
			kips	kips	ksi	ks		p-ft	ft/s	i
1			53.8	-62.5	30.5	-2.9		37.6	16.3	1.2
2			54.3	-69.7	30.6	-3.2		37.5	16.2	1.2
4			55.5	-89.0	30.6	-4.1		37.2	16.2	1.1
6	19		57.6	-95.1	30.7	-4.4		36.7	16.1	1.1
8	26		62.0	-96.5	30.9	-4.5		36.0	16.0	1.1
10	33		57.8	-89.6	30.7	-4.1		34.7	15.8	1.0
12	39		54.2	-84.3	30.6	-3.9		33.3	15.7	1.0
14	46	.4 6	51.7	-88.5	30.4	-4.1	14	31.8	15.5	0.9
15	49	.7 6	42.5	-101.6	30.0	-4.5	74	30.6	15.4	0.9
16	53	.0 6	45.3	-111.2	30.1	-5.1	19	30.0	15.3	0.9
17	56	.3 6	36.3	-110.8	29.7	-5.1	18	28.7	15.2	0.8
18	59	.6 6	39.1	-111.8	29.9	-5.2	22	28.1	15.1	0.8
19	62	.9 6	30.2	-108.8	29.4	-5.0	08	26.7	15.0	0.8
20	66		33.2	-107.4	29.6	-5.0		26.0	14.9	0.7
21	69		24.5	-100.6	29.2	-4.7		24.7	15.0	0.7
22	72		27.6	-99.8	29.3	-4.6		23.9	15.6	0.7
23	76		19.1	-96.4	28.9	-4.5		22.5	15.2	0.6
24			23.5	-97.5	29.1	-4.5		21.6	16.5	0.6
25	82		14.0	-91.6	28.7	-4.2		20.2	18.2	0.5
26	86		46.4	-89.9	30.2	-4.2		19.2	19.4	0.5
20	89		64.4	-80.9	31.0	-3.7		18.1	19.9	0.5
28	92		80.1	-79.7	31.8	-3.7		16.6	18.9	0.5
							-			
Absolute	92 59				31.8	-5.2	.		T = T =	43.6 ms 62.5 ms
	55	••				511		,	-	0200 mb
				CAS	SE METHOD					
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7		
RP	552.3	479.6	406.9	334.2	261.5	188.8	116.1	43.4		
RX	734.0	714.5	696.5	680.5	667.8	660.0	654.2	649.0		
עט	552.3	479.6	406.9	334.2	261.5	188.8	116.1	43.4	0.	00.
RAU = 5	61.6 (ki	ips); R	A2 =	685.0 ()	kips)					
Current CA	PWAP Ru	= 639.0	(kips)	; Corres	ponding J	(RP)= 0	.00; J(H	ex) = 0.	90	
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX		
ft/s	ms	kips	kips	kips	in	in	in		_	s kips/i
16.1	35.87	616.5	662.7	665.2	1.22	0.28	0.27	37.8	607.	1 134
			PI	LE PROFII	LE AND PI	LE MODEI	L			
	Depth		A	rea	E-Modu	lus	Spec.	-		Perim
	ft		iı	n²		ksi	1	b/ft³		f
	0.0 92.8			1.4 1.4	2999 2999			92.000 92.000		4.7 4.7
Too 3	52.0			8.5	in ²					
Гoe Area			т98	o. J	TTT_					

Pile Damping 1.00 %, Time Incr 0.197 ms, 2L/c 11.0 ms

Total volume: 13.784 ft^{3;} Volume ratio considering added impedance: 1.000

USH 10 - B-70-403; Pile: Pier 9 #1 - BOR APE D30-42, HP 14 x 73; Blow: 6 GRL Engineers, Inc.

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

USH 10 - B-70-403; Pile: Pier 9 #1 - BOR APE D30-42, HP 14 x 73; Blow: 6 GRL Engineers, Inc. Test: 15-Jan-2015 08:16 CAPWAP(R) 2014-1 OP: AZ

			CAPW	AP SUMMARY	RESULTS			
Total CAP	WAP Capac	ity: 64	7.0; alor	ng Shaft	112.0; at	Toe 535	5.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				647.0				
1	13.3	9.5	0.0	647.0	0.0	0.00	0.00	0.00
2	19.9	16.1	4.0	643.0	4.0	0.60	0.13	0.29
3	26.5	22.7	4.0	639.0	8.0	0.60	0.13	0.29
4	33.1	29.4	4.0	635.0	12.0	0.60	0.13	0.29
5	39.8	36.0	4.0	631.0	16.0	0.60	0.13	0.29
6	46.4	42.6	5.0	626.0	21.0	0.75	0.16	0.29
7	53.0	49.2	7.0	619.0	28.0	1.06	0.22	0.29
8	59.6	55.9	9.0	610.0	37.0	1.36	0.29	0.29
9	66.3	62.5	10.0	600.0	47.0	1.51	0.32	0.29
10	72.9	69.1	10.0	590.0	57.0	1.51	0.32	0.29
11	79.5	75.7	10.0	580.0	67.0	1.51	0.32	0.29
12	86.1	82.4	11.0	569.0	78.0	1.66	0.35	0.29
13	92.8	89.0	34.0	535.0	112.0	5.13	1.09	0.29
Avg. Sh	aft		8.6			1.26	0.27	0.29
То	e		535.0				388.11	0.04
Soil Mode	l Paramete	ers/Extens	ions		Sh	aft T	oe	
Quake		(i:	n)		0	.13 0.3	27	
Case Damp	ing Facto	-			0	.85 0.	56	
Damping T	-				Visc	ous Sm+Vi	sc	
Unloading	Quake	(%	of loadi	ng quake)		100	30	
Reloading	Level	(%	of Ru)			100	0	
Unloading	Level	(%	of Ru)			20		
Resistanc	e Gap (ind	cluded in	-	e) (in)		0.	02	
CAPWAP ma	tah analit	ty =	1.97	(142	ve Up Match) • PGA - (<u> </u>	
Observed:	-	-	0.12 i		w Count	-	, 5 b/ft	
Computed:			0.09 i	-	w Count		2 b/ft	
Transducer				•	AL: 93.6; RF:		. 2720	
	A3(K355	0) CAL: 360); RF: 1.12;	; A4(K2524) C				
max. Top	—		31.9 k		= 36.1 ms,			
max. Comp		=	32.6 k	-	= 19.9 ft,		-	
max. Tens		=	-4.86 k	•	= 46.4 ft,		•	
max. Energ	gy (EMX)	=	38.9 k	ip-ft; max	x. Measured	Top Displ	(DMX) =	1.07 in

USH 10 - B-70-403; Pile: Pier	9	#1	-	BOR
APE D30-42, HP 14 x 73; Blow:	6			
GRL Engineers, Inc.				

Test: 15-Jan-2015 08:16 CAPWAP(R) 2014-1 OP: AZ

					REMA TABL					
Pile			max.	min.	max.	max		nax.	max.	max
Sgmnt			orce	Force	Comp.	Tens			Veloc.	Displ
No.	Gage		kips	kips	Stress ksi	Stres ks		ergy p-ft	ft/s	iı
								-		
1			82.3	-27.1	31.9	-1.2		38.9	16.7	1.08
2			83.2	-28.7	31.9	-1.3		38.7	16.7	1.00
4			87.1	-30.9	32.1	-1.4		38.2	16.5	1.03
6			98.0	-32.6	32.6	-1.5		37.5	16.2	0.98
8			85.9	-41.7	32.0	-1.9		35.6	15.9	0.93
10			74.6	-73.3	31.5	-3.4		33.6	15.6	0.88
12			65.2	-97.4	31.1	-4.5		31.5	15.3	0.8
14				-104.0	30.8	-4.8		29.5	14.9	0.7
15				-100.2	30.0	-4.6		27.8	14.6	0.74
16				-101.1	30.5	-4.7		27.1	14.4	0.70
17			27.6	-96.7	29.3	-4.5		25.0	14.1	0.67
18	59.	6 6	38.6	-97.6	29.8	-4.5	56 3	24.3	13.8	0.64
19	62.	9 6	05.8	-90.8	28.3	-4.2	24 :	22.0	13.5	0.60
20	66.	3 63	16.9	-91.5	28.8	-4.2	28 2	21.2	13.2	0.57
21	69.	6 5	80.5	-84.3	27.1	-3.9	94 :	18.8	12.8	0.53
22	72.	9 5	91.6	-85.6	27.6	-4.0	00 :	17.9	12.6	0.50
23		2 5	74.5	-79.2	26.8	-3.7	70 :	15.7	12.3	0.46
24		5 5	91.7	-80.5	27.6	-3.7	6	14.9	12.0	0.43
25			92.4	-73.3	27.7	-3.4		12.9	13.1	0.39
26			24.7	-73.9	29.2	-3.4		12.0	14.1	0.36
27			19.9	-66.9	29.0	-3.1		10.1	14.4	0.32
28			26.2	-67.0	29.3	-3.1		7.9	13.0	0.28
Absolute	19.	9			32.6			(т	: =	37.1 ms)
	46.				5210	-4.8	36		' =	61.7 ms)
					E METHOD					
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	
RP	766.9	711.0	655.0	599.1	543.1	487.2	431.2	375.3	319.3	
RX	809.0	782.9	765.5	748.1	730.7	713.3	695.9	678.5	661.2	
RU	768.4	712.6	656.8	601.0	545.2	489.4	433.6	377.8	322.0	266.2
	50.2 (ki			671.8 (}						
Current CA	PWAP Ru	= 647.0	(kips);	; Corresp	onding J	(RP)= 0.	.21; J(F	(x) = 0.8	39	
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEE
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/ir
16.5	35.87	630.3	696.1	696.1	1.07	0.13	0.12	39.0	782.3	2140
			דדם	F PROFIT	E AND PI	LE MODET				
	Depth			ea	E-Modu	-	Spec. N	Veight		Perim.
	ft		in			ksi	-	o/ft ³		ferima
	0.0		21	.4	2999	2.2	4	92.000		4.70

Top Segment Length 3.31 ft, Top Impedance 38 kips/ft/s Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.197 ms, 2L/c 11.0 ms

USH 10 - B-70-403; Pile: Pier 9 #36 - EOID APE D30-42, HP 14 x 73; Blow: 666 GRL Engineers, Inc.

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

USH 10 - B-70-403; Pile: Pier 9 #36 - EOID APE D30-42, HP 14 x 73; Blow: 666 GRL Engineers, Inc. Test: 14-Jan-2015 13:29 CAPWAP(R) 2014-1 OP: AZ

		_		AP SUMMARY				
		ity: 54			66.0; at		80.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit		
Sgmnt	Below	Below		in Pile	of	Resist.		Damping
No.	Gages	Grade	1	1-1	Ru	(Depth)		
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				546.0				
1	6.6	4.0	0.0	546.0	0.0	0.00	0.00	0.00
2	13.2	10.6	0.0	546.0	0.0	0.00		
3	19.9	17.2	2.0	544.0	2.0	0.30	0.06	0.25
4	26.5	23.8	2.0	542.0	4.0	0.30	0.06	0.25
5	33.1	30.4	3.0	539.0	7.0	0.45	0.10	0.25
6	39.7	37.1	3.0	536.0	10.0	0.45	0.10	0.25
7	46.3	43.7	3.0	533.0	13.0	0.45	0.10	0.25
8	52.9	50.3	3.0	530.0	16.0	0.45	0.10	0.25
9	59.6	56.9	3.0	527.0	19.0	0.45	0.10	0.25
10	66.2	63.5	3.0	524.0	22.0	0.45	0.10	0.25
11	72.8	70.1	3.0	521.0	25.0	0.45	0.10	0.25
12	79.4	76.8	3.0	518.0	28.0	0.45	0.10	0.25
13	86.0	83.4	5.0	513.0	33.0	0.76	0.16	0.25
14	92.7	90.0	33.0	480.0	66.0	4.99	1.06	0.25
Avg. Sh	aft		4.7			0.73	0.16	0.25
То	e		480.0				348.21	0.03
Soil Mode	l Paramete	ers/Extens	ions		sh	aft	Тое	
Quake		(i	n)		ſ).13 0	.37	
Case Damp	ing Factor	-	,				.38	
Damping T	-	-			Visc		ith	
Unloading		(%	of load	ng quake)	VIDO	85	30	
Unloading	~		of Ru)	ing quake)		63	50	
-		°∪ cluded in		(in)			.01	
Soil Plug	-		ips)	-) (111)	0.	040	.01	
CAPWAP ma	tch qualit	tv =	3.40	(Way	e Up Match) : RSA =	0	
Observed:			0.27	-	Count		44 b/ft	
Computed:			0.23	-	Count		52 b/ft	
Transducer	F3(H880) CAL: 93.	7; RF: 1.00	; F4(F607) CA ; A4(K2524) CA	L: 93.6; RF:	1.00		
max. Top			27.2		36.2 ms,		13 x Top)	
max. Comp	-	=	27.6	•		T= 37.2		
max. Tens		=	-2.31	•			-	
max. Energy		=		ip-ft; max	-		•	1.03 in
	51 ()						(/-	

USH 10 - B-70-	403; Pile: Pier	9 #36 - EOID
APE D30-42, HP	14 x 73; Blow:	666
GRL Engineers,	Inc.	

Test: 14-Jan-2015 13:29 CAPWAP(R) 2014-1 OP: AZ

Pile	Dist	. :	max.	min.	max.	max	. :	max.	max.	max
Sgmnt	Belo		orce	Force	Comp.	Tens		sfd.	Veloc.	Displ
No.	Gage				Stress	Stress		ergy		
	f		kips	kips	ksi	ks:		p-ft	ft/s	i
1	3.	3 5	83.2	-30.1	27.2	-1.4	1	28.3	14.4	1.0
2	6.	6 5	83.8	-32.8	27.3	-1.5	3	28.2	14.4	1.0
4	13.	2 5	85.9	-37.7	27.4	-1.70	5	27.9	14.3	1.0
6	19.	95	90.6	-40.9	27.6	-1.93	1	27.5	14.2	0.9
8	26.	55	87.5	-39.6	27.4	-1.8	5	26.5	14.0	0.9
10	33.	15	89.1	-36.9	27.5	-1.7	2	25.4	13.7	0.8
12	39.	75	81.7	-33.9	27.2	-1.5	В	24.1	13.5	0.8
14	46.	3 5	70.6	-33.0	26.7	-1.54	4	22.8	13.4	0.7
15	49.	65	60.9	-42.1	26.2	-1.9	7	21.9	13.3	0.7
16	52.	95	64.0	-49.4	26.3	-2.3	1	21.4	13.3	0.7
17	56.	35	54.6	-48.6	25.9	-2.2	7	20.4	13.1	0.7
18	59.	65	57.7	-46.4	26.1	-2.1	7	19.9	13.1	0.6
19	62.	95	48.4	-40.8	25.6	-1.9	D	18.9	12.9	0.6
20	66.	2 5	52.6	-40.8	25.8	-1.9	D	18.3	12.8	0.6
21	69.	55	49.9	-39.4	25.7	-1.84	4	17.3	12.5	0.6
22	72.	8 5	54.4	-38.5	25.9	-1.80	0	16.8	12.4	0.5
23	76.	15	37.7	-35.1	25.1	-1.64	4	15.8	12.5	0.5
24	79.	4 5	40.2	-37.6	25.2	-1.7	5	15.2	12.6	0.5
25	82.	75	31.7	-38.2	24.8	-1.79	9	14.1	14.6	0.4
26	86.	0 5	35.8	-39.5	25.0	-1.8	5	13.5	15.1	0.4
27	89.	4 5	35.4	-34.6	25.0	-1.62	2	12.2	16.0	0.4
28	92.	75	46.4	-36.6	25.5	-1.7	1	9.4	15.3	0.4
Absolute	19.	9			27.6				(т =	37.2 ms
	52.	9				-2.3	1		(T =	62.4 ms
_					E METHOD					
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6		.70.	
RP	535.1	473.9	412.6	351.4	290.2	229.0	167.7	106		
RX	617.4	601.6	588.7	581.5	574.2	567.0	559.7	552		
RU	535.1	473.9	412.6	351.4	290.2	229.0	167.7	106	.5 45.	.3 0.
	34.0 (ki			582.8 (k						
Current CA	PWAP Ru :	= 546.0	(kips);	; Corresp	onding J	(RP)= 0.	00; J(H	RX) = (0.79	
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	El	MX QU	JS KE
ft/s	ms	kips	kips	kips	in	in	in	kip-1	Et kig	os kips/i
14.7	36.03	559.7	587.7	587.7	1.03	0.27	0.27	28	.4 522.	5 133

		PILE PRO	FILE AND FILE MOI		
	Depth	Area	E-Modulus	Spec. Weight	Perim.
	ft	in ²	ksi	lb/ft ³	ft
	0.0	21.4	29992.2	492.000	4.70
	92.7	21.4	29992.2	492.000	4.70
Toe Area		198.5	in ²		

USH 10 - B-70-403; Pile: Pier 9 #36 - EOID APE D30-42, HP 14 x 73; Blow: 666 GRL Engineers, Inc.

Segmnt	Dist.Im	pedance	Imped.		Tension	Compression		Perim.	Wave	Soil
Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
	ftki	.ps/ft/s	%	in		in		ft	ft/s	kips
1	3.3	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.000
11	36.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.010
12	39.7	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.000
13	43.0	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.010
14	46.3	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.000
23	76.1	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.020
24	79.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.000
28	92.7	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.000

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.197 ms, 2L/c 11.0 ms Total volume: 13.770 ft³; Volume ratio considering added impedance: 1.000

Force Msd

Velocity Msd

90 ms

92.7 ft

90.1 ft

198.5 in²

4.70 ft

29992 ksi

16808 ft/s

16808 ft/s

3.85

29.4 ksi

29.7 ksi

-3.71 ksi

0.06 in

0.42 in

0.27 s/ft

0.03 s/ft

492.0 lb/ft3

21.4 in²

9 L/c

USH 10 - B-70-403; Pile: Pier 9 #36 - BOR APE D30-42, HP 14 x 73; Blow: 4 GRL Engineers, Inc.

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

USH 10 - B-70-403; Pil	le: Pier 9 #36 - BOR
APE D30-42, HP 14 x 73	3; Blow: 4
GRL Engineers, Inc.	

				AP SUMMARY				
		ity: 57			79.0; at		0.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				579.0				
1	6.6	4.0	0.0	579.0	0.0	0.00	0.00	0.00
2	13.2	10.7	1.0	578.0	1.0	0.15	0.03	0.27
3	19.9	17.3	3.0	575.0	4.0	0.45	0.10	0.27
4	26.5	23.9	3.0	572.0	7.0	0.45	0.10	0.27
5	33.1	30.5	4.0	568.0	11.0	0.60	0.13	0.27
6	39.7	37.1	4.0	564.0	15.0	0.60	0.13	0.27
7	46.3	43.7	4.0	560.0	19.0	0.60	0.13	0.27
8	52.9	50.4	5.0	555.0	24.0	0.76	0.16	0.27
9	59.6	57.0	5.0	550.0	29.0	0.76	0.16	0.27
10	66.2	63.6	5.0	545.0	34.0	0.76	0.16	0.27
11	72.8	70.2	5.0	540.0	39.0	0.76	0.16	0.27
12	79.4	76.8	5.0	535.0	44.0	0.76	0.16	0.27
13	86.0	83.5	5.0	530.0	49.0	0.76	0.16	0.27
14	92.7	90.1	30.0	500.0	79.0	4.53	0.96	0.27
Avg. Sh	aft		5.6			0.88	0.19	0.27
То	e		500.0				362.72	0.03
Soil Mode	l Paramete	ers/Extens	ions		Sh	aft 1	ľoe	
Quake		(i:	n)			0.06 0.	.42	
~	ing Factor	•	,				. 39	
Damping T	-	L			Visc		ith	
		(%	of loods		VISC	100s 5ml	32	
Unloading Reloading			of Ru)	lng quake)		100	0	
Unloading		•	of Ru)			46	U	
-		ہ) ' cluded in		e) (in)			.06	
	tch qualit	-	3.85	•	e Up Match			
	Final Set		0.23 i		Count		3 b/ft	
-	Final Set		0.19 i	•	Count		3 b/ft	
Transducer				; F4(D815) CA ; A4(K3550) CA				
max. Top	-	-	29.4		36.0 ms,		(מסד א 9 (
max. Comp	-	=	29.7	-	-	T= 37.2		
max. Tens		=	-3.71 k	•	•			
max. Energ		=		ip-ft; max			•	1.11 in
						·		

USH 10 - B-70-4	03; Pile: Pier	9	#36	-	BOR
APE D30-42, HP	14 x 73; Blow:	4			
GRL Engineers,	Inc.				

Test: 15-Jan-2015 08:04 CAPWAP(R) 2014-1 OP: AZ

- 1 -										
Pile	Dist		max.	min.	max.	max		nax.	max.	max
Sgmnt	Belo		orce	Force	Comp.	Tens			Veloc.	Displ
No.	Gage		kips	kips	Stress ksi	Stres ks		ergy p-ft	ft/s	ir
1	3.		29.5	-37.0	29.4	-1.7		<u>9 10</u> 34.1	15.4	1.10
2	5.		30.0	-39.2	29.4	-1.8		34.1	15.4	1.09
4	13.		33.3	-58.6	29.4	-2.7		33.8	15.2	1.06
6	19.		35.3	-74.8	29.7	-3.4		33.0	15.0	1.02
8	26.		27.8	-77.2	29.3	-3.6		31.6	14.8	0.98
10	33.		21.6	-66.7	29.0	-3.1		30.2	14.6	0.94
12	39.		10.4	-57.7	28.5	-2.6		28.5	14.3	0.89
14	46.		99.9	-58.3	28.0	-2.7		26.7	14.1	0.84
15	49.		86.2	-62.2	27.4	-2.9		25.4	13.9	0.82
16	52.		90.5	-76.8	27.6	-3.5		24.9	13.8	0.79
17	56.		72.1	-76.3	26.7	-3.5		23.3	13.7	0.76
18	59.		76.1	-79.5	26.9	-3.7		22.8	13.6	0.74
19	62.		57.6	-74.5	26.1	-3.4		21.3	13.4	0.71
20	66.		61.4	-72.2	26.2	-3.3		20.7	13.3	0.68
20	69.		43.0	-64.4	25.4	-3.0		19.2	13.2	0.65
22	72.		46.6	-65.2	25.5	-3.0		18.6	14.0	0.62
23	76.		28.3	-61.6	24.7	-2.8		17.0	13.7	0.59
23	79.		31.6	-59.9	24.8	-2.8		16.4	14.1	0.56
25	82.		22.8	-52.4	24.4	-2.4		14.9	16.0	0.53
26	86.		34.5	-46.7	25.0	-2.1		14.1	17.2	0.49
20	89.		51.0	-35.9	25.7	-1.6		12.6	17.7	0.46
28	92.		66.9	-34.0	26.5	-1.5		9.3	16.8	0.44
bsolute	19.	٥			29.7			(7		37.2 ms)
DBOILLE	59.				23.7	-3.7	'1	-		63.0 ms)
				CAS	E METHOD					
「 =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	B 0.9
P	539.2	470.2	401.2	332.2	263.2	194.2	125.2	56.2	0.0	0.0
x	666.2	643.4	623.0	607.6	597.1	586.7	576.6	567.5	559.0	553.4
υ	539.2	470.2	401.2	332.2	263.2	194.2	125.2	56.2	0.0	0.0
2AU = 36	56.9 (ki	ps); R	A2 =	616.8 (k	ips)					
urrent CA	WAP Ru	= 579.0	(kips)	; Corresp	onding J	(RP)= 0.	.00; J(F	(x) = 0.1	58	
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QU	
ft/s	ms	kips	kips	kips	in	in		kip-ft		s kips/ir
15.4	35.83	588.8	640.3	640.3	1.11	0.23	0.23	34.2	613.8	8 1389
			PTI	E PROFII	E AND PI	LE MODEI				
	Depth			ea	E-Modu		Spec. N	Veight		Perim.
	ft		in			ksi	-	o/ft ³		ft
	0.0		21	.4	2999	2.2	49	92.000		4.70
	92.7		21	.4	2999	2.2	49	92.000		4.70

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.197 ms, 2L/c 11.0 ms

Total volume: 13.770 ft^{3;} Volume ratio considering added impedance: 1.000

90 ms

92.0 ft

92.0 ft

21.4 in²

4.70 ft

4.18

26.4 ksi

26.9 ksi

0.18 in

0.45 in

0.24 s/ft

0.03 s/ft

USH 10 - B-70-403; Pile: Pier 9 #44 - EOID APE D30-42, HP 14 x 73; Blow: 767 GRL Engineers, Inc.

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

USH 10 - B-70-403; Pile: Pier 9 #44 - EOID APE D30-42, HP 14 x 73; Blow: 767 GRL Engineers, Inc. Test: 14-Jan-2015 12:51 CAPWAP(R) 2014-1 OP: AZ

				AP SUMMARY		_		
		ity: 57			54.0; at		20.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade	1	1.1	Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				574.0				
1	6.6	6.6	0.0	574.0	0.0	0.00	0.00	0.00
2	13.1	13.1	0.0	574.0	0.0	0.00	0.00	0.00
3	19.7	19.7	2.0	572.0	2.0	0.30	0.06	0.24
4	26.3	26.3	3.0	569.0	5.0	0.46	0.10	0.24
5	32.9	32.9	3.0	566.0	8.0	0.46	0.10	0.24
6	39.4	39.4	3.0	563.0	11.0	0.46	0.10	0.24
7	46.0	46.0	3.0	560.0	14.0	0.46	0.10	0.24
8	52.6	52.6	3.0	557.0	17.0	0.46	0.10	0.24
9	59.1	59.1	4.0	553.0	21.0	0.61	0.13	0.24
10	65.7	65.7	4.0	549.0	25.0	0.61	0.13	0.24
11	72.3	72.3	4.0	545.0	29.0	0.61	0.13	0.24
12	78.9	78.9	4.0	541.0	33.0	0.61	0.13	0.24
13	85.4	85.4	4.0	537.0	37.0	0.61	0.13	0.24
14	92.0	92.0	17.0	520.0	54.0	2.59	0.55	0.24
Avg. Sh	aft		3.9			0.59	0.12	0.24
То	е		520.0				377.22	0.03
Soil Mode	l Paramete	ers/Extens	ions		sł	aft	Гое	
Quake		(i					.45	
Case Damp:	ing Easton	-	11)				.41	
Damping T	-	L			Visc		ith	
Unloading		(%	of loods	ng quake)	VISC	30 30	30	
Unloading	~		of Ru)	ing quake)		30 94	30	
-		•	•	(im)		-	.01	
Soil Plug	-	cluded in (k	ips)	e) (1n)	0.	040	•01	
CAPWAP mat	tah avalit	tv =	4.18	(War	e Up Match)	0	
Observed:			0.27 i	-	Count		4 b/ft	
Computed:			0.27 i	-	Count		89 b/ft	
Transducer	F3(F607) CAL: 93.0	5; RF: 1.00	; F4(H880) CA ; A4(K2253) CA	L: 93.7; RF:	1.00	59 D/IC	
max. Top	Comp. Stre	ess =	26.4 1	si (T=	36.4 ms,	max= 1.0	17 х Тор)	
max. Comp	-	=	26.9 1	•	•			
max. Tens		=	-4.57	•	•		•	
max. Energ		=		ip-ft; max			•	1.13 in
				•			•	1.13 in

USH 10 - B-70-	403; Pile: Pier	9 #44 - EOID
APE D30-42, HP	14 x 73; Blow:	767
GRL Engineers,	Inc.	

Test: 14-Jan-2015 12:51 CAPWAP(R) 2014-1 OP: AZ

Pile	Dist	. 1	max.	min.	max.	max		max.	max.	max
Sgmnt			orce	Force	Comp.	Tens		sfd.	Veloc.	Displ
No.	Gage		orce	FOICE	Stress	Stress		ergy	veroc.	DISPI
NO.	-		kips	kips	ksi	ksi		p-ft	ft/s	iı
-								-		
1			65.4	-53.6	26.4	-2.51		31.8	13.9	1.1
4			66.1	-47.9	26.4	-2.24		31.8	13.9	1.1
46			69.4 75.0	-58.2 -63.4	26.6 26.9	-2.72		31.5 31.0	13.8 13.6	1.09
8						-2.96				1.0
			73.0	-55.4	26.8	-2.59		30.0	13.4	
10			73.4	-38.9	26.8	-1.82		28.7	13.1	0.9
12			69.0 EC 0	-36.4	26.6	-1.70		27.3	12.9	0.9
14			56.8	-77.4	26.0	-3.62		25.9	12.9	0.88
15			45.6	-90.9	25.5	-4.24		24.9	12.8	0.85
16			49.3	-97.7	25.7	-4.57		24.4	12.7	0.83
17			41.0	-88.5	25.3	-4.13		23.4	12.6	0.80
18			45.3	-83.2	25.5	-3.89		22.9	12.5	0.78
19			33.2	-77.3	24.9	-3.61		21.6	12.4	0.75
20			37.5	-77.1	25.1	-3.60		21.0	12.3	0.72
21			25.6	-71.9	24.6	-3.36		19.7	12.4	0.69
22			29.9	-72.2	24.8	-3.37		19.0	13.4	0.60
23			18.4	-65.1	24.2	-3.04		17.7	13.8	0.62
24			24.3	-65.8	24.5	-3.08		17.1	13.9	0.59
25			30.6	-55.4	24.8	-2.59		15.8	15.2	0.50
26			41.6	-49.0	25.3	-2.29		15.0	15.9	0.53
27			47.4	-35.2	25.6	-1.64		13.8	16.3	0.50
28	92.	.0 50	67.3	-29.5	26.5	-1.38	3	12.3	15.4	0.48
Absolute	19.	.7			26.9			(т =	37.3 ms
	52.	. 6				-4.57	7	(т =	62.9 ms
				CAS	E METHOD					
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.		
RP	497.0	436.4	375.8	315.2	254.6	194.0	133.5	72.9		
RX	634.2	611.8	601.8	591.8	581.8	571.9	563.3	557.		
RU	497.0	436.4	375.8	315.2	254.6	194.0	133.5	72.	9 12.	3 0.0
RAU = 4	171.3 (ki	ps); R	A2 =	602.9 ()	tips)					
Current CA	APWAP Ru	= 574.0	(kips);	; Corres	onding J	(RP)= 0.	00; J(H	ex) = 0	.48	
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EM	K QU	S KEI
ft/s	ms	kips	kips	kips	in	in	in	kip-f	t kip	s kips/i
13.9	36.36	530.6	572.2	572.2	1.13	0.28	0.27	31.9	9 546.	1 118:

		FILE FRO	LINE WAD LINE WOL		
	Depth	Area	E-Modulus	Spec. Weight	Perim.
	ft	in ²	ksi	lb/ft ³	ft
	0.0	21.4	29992.2	492.000	4.70
	92.0	21.4	29992.2	492.000	4.70
Toe Area		198.5	in ²		

USH	10 - B-70-4	403; Pile: Pier	9 #44 - EOID
APE	D30-42, HP	14 x 73; Blow:	767
GRL	Engineers,	Inc.	

Segmnt	Dist.Impedance Imped		Impedance Imped. Tension Compression		ression	Perim.	Wave	Soil		
Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
	ftki	ps/ft/s	%	in		in		ft	ft/s	kips
1	3.3	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	.6807.9	0.000
12	39.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	6807.9	0.010
16	52.6	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	6807.9	0.000
28	92.0	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	6807.9	0.000

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.195 ms, 2L/c 10.9 ms Total volume: 13.672 ft³; Volume ratio considering added impedance: 1.000

USH 10 - B-70-403; Pile: Pier 9 #44 - BOR2 APE D30-42, HP 14 x 73; Blow: 5 GRL Engineers, Inc.

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

USH 10 - B-70-403; Pile: Pier 9 #44 - BOR2 APE D30-42, HP 14 x 73; Blow: 5 GRL Engineers, Inc. Test: 15-Jan-2015 08:28 CAPWAP(R) 2014-1 OP: AZ

			CAPW	AP SUMMARY	RESULTS			
Total CAP	WAP Capaci	ity: 56	4.0; alor	lg Shaft	84.0; at	Toe 480	0.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				564.0				
1	6.6	6.6	0.0	564.0	0.0	0.00	0.00	0.00
2	13.1	13.1	1.0	563.0	1.0	0.15	0.03	0.26
3	19.7	19.7	2.0	561.0	3.0	0.30	0.06	0.26
4	26.3	26.3	2.0	559.0	5.0	0.30	0.06	0.26
5	32.9	32.9	4.0	555.0	9.0	0.61	0.13	0.26
6	39.4	39.4	5.0	550.0	14.0	0.76	0.16	0.26
7	46.0	46.0	5.0	545.0	19.0	0.76	0.16	0.26
8	52.6	52.6	5.0	540.0	24.0	0.76	0.16	0.26
9	59.1	59.1	5.0	535.0	29.0	0.76	0.16	0.26
10	65.7	65.7	5.0	530.0	34.0	0.76	0.16	0.26
11	72.3	72.3	5.0	525.0	39.0	0.76	0.16	0.26
12	78.9	78.9	6.0	519.0	45.0	0.91	0.19	0.26
13	85.4	85.4	6.0	513.0	51.0	0.91	0.19	0.26
14	92.0	92.0	33.0	480.0	84.0	5.02	1.07	0.26
Avg. Sh	aft		6.0			0.91	0.19	0.26
То	e		480.0				348.21	0.03
Soil Mode	l Paramete	ers/Extens	ions		Sh	aft T	oe	
Quake		(i:					34	
Case Damp:	ing Roato	•	11)				38	
Damping T	-	-			Visc			
Unloading		(%	of loods	.ng quake)			34	
		-		ing quake)				
Reloading		•	of Ru)			100	0	
Unloading		*) ا cluded in	of Ru) Too Ouske	(in)		46 0.	0.2	
Resistance	e Gap (Ind	Judea III	IOE QUARE	;) (1II)		0.	02	
CAPWAP mat	tch qualit	-y =	2.50	(Wav	e Up Match); RSA = ()	
Observed:		-	0.20 i	•	Count	= 60) b/ft	
Computed:			0.17 i	•	Count		9 b/ft	
Transducer				; F4(F607) CA				
_	-			; A4(K2524) CA			.	
max. Top	-		27.2 k	•	36.2 ms,			
max. Comp		=	27.4 k	•		T= 37.1 1	•	
max. Tens		=	-3.37 k		· · · · · ·	T= 62.4		
max. Energ	gy (EMX)	=	29.9 k	ip-ft; max	. Measured	Top Displ	(DMX) = 1	1.01 in

USH 10 - B-70-4	03; Pile: Pier	9 #44 - BOR2
APE D30-42, HP	14 x 73; Blow:	5
GRL Engineers,	Inc.	

Test: 15-Jan-2015 08:28 CAPWAP(R) 2014-1 OP: AZ

					EMA TABL					
Pile			max.	min.	max.	maz		max.	max.	max
Sgmnt			orce	Force	Comp.	Tens		sfd.	Veloc.	Displ
No.	Gage		kips	kips	Stress ksi	Stres ks		ergy p-ft	ft/s	i
1			81.9	-22.2	27.2	-1.0		29.9	14.2	1.0
2			83.2	-22.2	27.2	-1.0		29.9	14.2	1.0
4			87.1	-23.0	27.2	-1.1		29.8 29.5	14.2	0.9
- 6			87.6	-24.3	27.4	-1.1		28.8	13.9	0.9
8			84.4	-24.3	27.4	-1.1		27.8	13.9	0.9
10			84.2	-25.0	27.3	-1.1		26.7	13.5	0.8
10			76.3	-48.3	27.3	-2.2		25.2	13.2	0.8
14			64.7	-68.5	26.4	-3.2		23.5	12.9	0.76
15			48.3	-71.1	20.4	-3.3		22.2	12.9	0.73
16			53.5	-72.2	25.9	-3.3		21.7	12.6	0.7
10			37.5	-65.0	25.9	-3.0		21.7	12.0	0.68
18					25.1	-2.8		20.4 19.9		
10			42.6	-60.0					12.4	0.6
			27.2	-53.1	24.6	-2.4		18.5	12.2	0.63
20			32.2	-54.5	24.9	-2.5		18.0 16.8	12.1	0.60
21			17.1	-51.7	24.2	-2.4			11.9	0.5
22 23			22.9 08.9	-56.4 -52.5	24.4 23.8	-2.6		16.2 14.9	11.8 11.6	0.5
23				-52.5	23.8	-2.4			12.1	0.5
			20.5					14.2		
25 26			23.2	-47.7 -47.2	24.4 24.8	-2.2		12.8 12.2	13.6 14.6	0.4
20			31.9 42.1	-39.0	24.0	-2.2		10.8		
27			42.1 57.6	-39.0	25.3	-1.6		8.2	14.8 13.9	0.38
Absolute	19.				27.4				т =	37.1 ms
ADBOILLE	52.				2/ • 1	-3.3	37		T =	62.4 ms
				CAS	E METHOD					
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	550.2	492.7	435.2	377.7	320.2	262.7	205.2	147.7	90.2	32.0
RX	660.2	641.9	623.6	605.4	587.1	570.7	557.9	546.0	537.2	530.0
RU	550.2	492.7	435.2	377.7	320.2	262.7	205.2	147.7	90.2	32.0
RAU = 4	27.7 (ki	.ps); R	A2 =	590.1 (k	ips)					
Current CA	PWAP Ru	= 564.0	(kips);	; Corresp	onding J	(RP)= 0	.00; J(F	ex) = 0	.55	
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX		KEI
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	: kips	kips/in
14.2	35.97	542.3	582.9	592.6	1.01	0.20	0.20	30.0	595.3	1500
			577							
	Donth				E AND PI E-Modu		Spec. 1	Voight		Perim
	Depth ft		Ar in	2 ²		ksi	-	weignt b/ft ³		ft Perim.
	0.0			.4	2999			92.000		4.70
	92.0			.4	2999			92.000		4.70
Toe Area			198	.5	in²					
fop Segmen		۱ 3								

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s

Pile Damping 1.00 %, Time Incr 0.195 ms, 2L/c 10.9 ms

Total volume: 13.672 ft^{3;} Volume ratio considering added impedance: 1.000