GRL Engineers, Inc.

1540 E. Dundee Road, Suite 102 Palatine, IL 60074 USA Phone: (847) 221-2750 Fax: (847) 221-2752

TRANSMITTAL

To: Mr. Kevin Weber	From: Rory Flynn			
Company: Lunda Construction Co.	No. of Sheets: 54			
E-mail: kweber@lundaconstruction.com	Date: January 29, 2015			

RE: Dynamic Testing Results – USH 10 over Little Lake Butte des Morts Structure B-70-403 - Pier 7 Winnebago County, Wisconsin

On January 27, 2015, Pier 7 #1, Pier 7 #36, and Pier 7 #44 at the above structure were dynamically tested during initial driving. The piles were tested during restrike on January 28. Project plans indicated the exterior row piles have a required driving resistance, or ultimate capacity, of 480 kips (240 tons) and the interior row piles have a required driving resistance of 400 kips (200 tons). The piles have a required minimum tip elevation of EL 664. The HP 14x73 H-piles were equipped with driving shoes and were driven with an APE D30-42 hammer (number PD 0256) reportedly operated on fuel setting 4. The reference elevations for the piles were the top of the template at EL 740.5 to EL 740.6. We understand the pier was excavated to an elevation of EL 718.3 to EL 719.3.

Pier 7 #1 was driven to a depth of 90.5 feet, which corresponds to a pile tip elevation of EL 650.1. The blow count over the final increment of driving was 28 blows for 6 inches of penetration at an average hammer stroke of 7.4 feet. The blow count at the beginning of restrike was 5 blows for 3/8 inch of penetration at an average hammer stroke of 7.1 feet.

Pier 7 #36 was driven to a depth of 81.8 feet, which corresponds to a pile tip elevation of EL 658.6. The blow count over the final increment of driving was 42 blows for 10 inches of penetration at an average hammer stroke of 6.6 feet. The blow count at the beginning of restrike was 5 blows for $\frac{1}{2}$ inch of penetration at an average hammer stroke of 7.4 feet

Pier 7 #44 was driven to a depth of 89.8 feet, which corresponds to a pile tip elevation of EL 650.6. The blow count over the final increment of driving was 58 blows for 10 inches of penetration at an average hammer stroke of 6.8 feet. The blow count at the beginning of restrike was 5 blows for 3/8 inch of penetration at an average hammer stroke of 6.9 feet.

Our driving recommendations have been prepared on a blows-per-inch basis. The criteria should be applied only after the minimum pile tip elevation is achieved. For the 480 and 400 kips piles driven with an APE D30-42 hammer (PD 0256) in Pier 7 of the USH 10 bridge over Little Lake Butte des Morts we recommend using the following criteria:

Field Observed Hammer Stroke	Exterior Piles (480 kips) Recommended Minimum Blow Count	Interior Piles (400 kips) Recommended Minimum Blow Count
(feet)	(blows per inch)	(blows per inch)
6.0	8	5
6.5	6	4
7.0	5	3
7.5	4	3
8.0	4	3
8.5	4	3

We recommend the above blow counts at the required stroke be maintained for **three consecutive inches** of driving. We recommend immediately terminating driving **if the blow counts exceed 10** blows over an increment of one inch or less at hammer strokes of 8.0 feet or greater, after satisfying the plan minimum tip requirements. We anticipate the production piles will terminate at depths similar to those of the test piles.

These criteria should not be used for acceptance of piles under restrike and/or redrive conditions. After splicing or any other delays, we recommend not applying the criteria until a full foot of driving has occurred beyond the termination depth associated with the delay, unless the blow count exceeds 10 blows per inch.

Please call if you have any questions on these recommendations.

GRL Engineers, Inc.

Rory Flynn, E,L

Travis Coleman, P.E.

Cc: Jeff Horsfall – jeffrey.horsfall@dot.wi.gov

Attachments:

Dynamic Test Results -(pages 3 - 24)CAPWAP Analysis Results -(pages 25 - 54)

Ba	ae 1
PDIPLOT2 2014.2.48.1 - Printed 28-January-20	0
1 Dii 2012 2014.2.40.1 - 1 liilea 20-Jailaary-20	15

USH 10 OP: RF	0 - B-70-403 -	- PIER 7 #1	I EOID)30-42, HP e: 27-Janua	
CSX: Max Measured Compr. StressSTK: O.E. Diesel HammCSB: Compression Stress at BottomBPM: Blows per MinuteEMX: Max Transferred EnergyRX9: Max Case Method								er Stroke	
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
7	ft 39.00	bl/ft 1	AV3	ksi 13.6	ksi 2.0	k-ft 17	ft 3.7	bpm 60.8	kips 0
	00.00		MAX	21.5	3.1	29	4.9	67.6	0
			MIN	5.9	0.9	6	2.9	52.9	0
19	44.00	2	AV10	15.1	2.9	18	3.9	59.1	1
			MAX	25.2	4.5	36	5.9	64.9	14
			MIN	8.4	1.9	8	3.1	48.4	0
34	49.00	3	AV15	14.8	3.3	16	3.9	58.8	9
			MAX	17.1	3.8	20	4.3	62.0	25
			MIN	11.5	2.7	11	3.5	56.3	0
51	54.00	3	AV17	15.7	3.9	17	4.0	57.8	37
			MAX MIN	17.0 13.5	4.3 3.2	19 13	4.3 3.7	60.3 56.1	55 23
			IVIIIN	13.5	3.2	15	5.7	50.1	23
56	55.00	5	AV5	15.8	4.0	16	4.1	57.6	47
			MAX MIN	16.7 14.1	4.1 3.9	17 13	4.2 3.8	59.3 56.8	55 39
			IVIIIN	14.1	5.5	15	5.0	50.0	
61	56.00	5	AV5	16.5	4.1	17	4.2	56.8	58
			MAX MIN	17.5 15.5	4.4 3.9	19 16	4.3 4.0	57.9 55.8	62 53
66	57.00	5	AV5	16.7	4.1	17	4.2	56.7	58
			MAX MIN	17.5 15.9	4.3 4.1	19 16	4.3 4.1	57.4 55.9	63 53
- 4		_							
71	58.00	5	AV5 MAX	16.3 18.2	4.1 4.2	17 20	4.2 4.5	57.0 58.0	61 65
			MIN	15.4	4.0	15	4.0	55.0	52
77	F0 00	6	A)/6	16.0	4.0	16	4.0	E7 0	64
//	59.00	0	AV6 MAX	16.2 17.3	4.2 4.3	16 19	4.2 4.3	57.0 57.8	64 76
			MIN	15.4	4.0	15	4.0	55.8	51
83	60.00	6	AV6	18.1	4.6	19	4.5	54.9	77
00	00.00	Ū	MAX	19.1	4.9	20	4.7	56.3	79
			MIN	17.0	4.4	17	4.3	53.7	75
89	61.00	6	AV6	17.8	4.6	18	4.5	55.2	78
		-	MAX	19.3	4.9	21	4.8	56.9	85
			MIN	16.3	4.3	16	4.2	53.5	73
95	62.00	6	AV6	18.7	4.8	19	4.6	54.5	83
			MAX	19.3	5.2	21	4.7	55.1	88
			MIN	18.2	4.4	18	4.5	53.8	81
101	63.00	6	AV6	19.8	5.4	21	4.8	53.2	92
			MAX	20.0	5.7	22	4.9	53.5	95

Page 2
PDIPLOT2 2014.2.48.1 - Printed 28-January-2015

USH 10 - B-70-403 - PIER 7 #1 EOID OP: RF

APE D30-42, HP 14 x 73
Data: 27 January 2015

109 64 117 65 127 66 139 67 152 68 164 69 176 70 190 71		N/ft 8 1 8 1 10 A 12 A 13 A	MIN AV8 MAX MIN AV8 MAX MIN AV10 MAX MIN AV12 MAX	CSX ksi 19.5 19.8 20.4 19.0 20.6 21.6 19.6 21.4 22.2 20.8 23.4 24.7 21.5	ksi 5.1 5.8 6.1 5.4 6.7 7.0 6.1 7.7 8.3 6.9 10.4 11.2	k-ft 21 20 21 19 21 23 19 22 23 20 25 27	STK ft 4.8 4.9 5.0 4.6 5.2 4.8 5.2 4.8 5.2 5.4 5.1 5.7 6.1	BPM bpm 53.0 54.2 52.4 52.2 53.3 51.2 51.3 52.0 50.6 49.2 51.2	RX9 kips 89 97 101 92 106 115 100 120 125 111 164
117 65 127 66 139 67 152 68 164 69 176 70 190 71	5.00 6.00 7.00	8 I 10 A 12 A 13 A	MAX MIN AV8 MAX MIN AV10 MAX MIN AV12 MAX	20.4 19.0 20.6 21.6 19.6 21.4 22.2 20.8 23.4 24.7	6.1 5.4 6.7 7.0 6.1 7.7 8.3 6.9 10.4 11.2	21 19 21 23 19 22 23 20 25 27	5.0 4.6 5.2 4.8 5.2 5.4 5.1 5.7	54.2 52.4 52.2 53.3 51.2 51.3 52.0 50.6 49.2	101 92 106 115 100 120 125 111 164
127 66 139 67 152 68 164 69 176 70 190 71	6.00 7.00	10 A 12 A 13 A	MAX MIN MAX MIN MIN	21.6 19.6 21.4 22.2 20.8 23.4 24.7	7.0 6.1 7.7 8.3 6.9 10.4 11.2	23 19 22 23 20 25 27	5.2 4.8 5.2 5.4 5.1 5.7	53.3 51.2 51.3 52.0 50.6 49.2	115 100 120 125 111 164
139 67 152 68 164 69 176 70 190 71	7.00	12 A 13 A	MAX MIN V12 MAX	22.2 20.8 23.4 24.7	8.3 6.9 10.4 11.2	23 20 25 27	5.4 5.1 5.7	52.0 50.6 49.2	125 111 164
152 68 164 69 176 70 190 71		13 A	MAX	24.7	11.2	27			
164 69 176 70 190 71	8.00			-	8.3	22	5.2	47.5	183 128
176 70 190 71			V13 MAX MIN	23.5 24.3 22.8	10.2 10.9 9.5	25 27 24	5.7 6.0 5.5	49.2 49.9 48.1	159 176 140
190 71	9.00	1	V12 MAX MIN	23.7 24.3 22.4	10.5 10.8 10.1	25 26 22	5.7 5.9 5.5	48.9 50.1 48.3	173 184 152
	0.00	1	V12 MAX MIN	23.6 24.2 22.6	10.3 10.7 10.1	25 27 23	5.8 5.9 5.5	48.9 49.9 48.2	178 187 167
204 72	1.00	1	AV14 MAX MIN	23.6 24.2 23.0	10.5 10.7 10.2	25 26 24	5.8 5.9 5.6	48.8 49.5 48.2	190 198 184
	2.00	I		23.3 23.9 22.5	10.0 10.4 9.6	24 25 22	5.7 5.9 5.5	49.0 49.8 48.5	179 190 162
214 73	3.00	I	AV10 MAX MIN	22.8 23.5 22.1	9.5 9.8 9.1	24 25 23	5.6 5.7 5.4	49.6 50.4 49.0	140 159 131
226 74	4.00	1	V12 MAX MIN	22.9 23.5 21.9	9.6 10.4 8.7	24 25 22	5.6 5.8 5.4	49.5 50.6 48.9	140 156 128
235 75	5.00	1	AV9 MAX MIN	22.4 22.7 21.9	8.3 8.8 8.0	24 25 23	5.5 5.5 5.4	50.1 50.5 49.8	115 122 111
243 76	6.00	1	AV8 MAX MIN	22.5 22.9 21.9	8.4 8.7 8.2	24 25 23	5.5 5.6 5.3	50.2 50.8 49.7	118 120 115

USH 10 - B-70-403 - PIER 7 #1 EOID OP: RF)30-42, HP e: 27-Januai	
BL#	depth ft	BLC bl/ft	TYPE	CSX ksi	CSB ksi	EMX k-ft	STK ft	BPM bpm	RX9 kips
255	77.00	12	AV12 MAX MIN	23.0 24.0 22.1	9.6 10.8 8.6	23 25 22	5.6 5.8 5.3	49.7 50.7 48.7	135 156 122
268	78.00	13	AV13 MAX MIN	23.8 24.6 22.9	11.4 12.9 10.3	24 26 23	5.8 6.0 5.5	48.9 49.9 48.0	171 201 145
290	79.00	22	AV22 MAX MIN	25.3 26.9 23.8	15.5 20.3 12.7	25 28 23	6.2 6.6 5.8	47.3 48.6 45.7	280 400 192
323	80.00	33	AV33 MAX MIN	24.9 27.0 22.9	17.1 20.3 14.7	24 28 20	6.1 6.6 5.6	47.5 49.6 45.7	361 401 323
361	81.00	38	AV38 MAX MIN	25.8 27.2 23.3	18.8 20.7 15.1	26 28 21	6.4 6.8 5.7	46.6 49.2 45.3	383 412 332
396	82.00	35	AV35 MAX MIN	27.0 28.0 25.8	20.4 21.5 19.1	28 30 26	6.8 7.0 6.4	45.3 46.4 44.4	411 425 389
430	83.00	34	AV34 MAX MIN	26.7 27.4 25.9	19.2 20.5 18.0	28 29 26	6.7 6.9 6.5	45.5 46.2 44.7	388 402 364
461	84.00	31	AV31 MAX MIN	26.4 27.2 25.6	18.3 19.2 17.5	27 29 25	6.6 6.8 6.3	45.9 46.7 45.0	371 387 352
496	85.00	35	AV35 MAX MIN	26.7 27.9 25.9	19.5 20.7 18.1	28 30 26	6.7 7.1 6.5	45.4 46.1 44.3	387 412 367
530	86.00	34	AV34 MAX MIN	26.8 27.8 25.5	19.7 20.8 18.0	28 30 25	6.7 7.0 6.3	45.4 46.7 44.5	381 408 337
565	87.00	35	AV35 MAX MIN	26.5 27.2 24.8	19.8 20.5 18.5	27 29 24	6.6 6.8 6.2	45.7 47.3 45.0	357 368 346
607	88.00	42	AV42 MAX MIN	26.9 27.9 26.1	21.9 22.5 20.6	28 30 27	6.8 7.1 6.6	45.0 45.8 44.3	393 405 358
651	89.00	44	AV44 MAX MIN	27.4 28.7 26.7	23.2 24.0 22.2	29 31 28	7.0 7.3 6.8	44.6 45.2 43.6	421 433 397

USH 10 - B-70-403 - PIER 7 #1 EOID							APE [030-42, HP	14 x 73
OP: RF							Date	e: 27-Janua	ry-2015
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
	ft	bl/ft		ksi	ksi	k-ft	ft	bpm	kips
700	90.00	49	AV49	27.7	24.9	29	7.0	44.4	453
			MAX	29.1	27.1	32	7.5	46.6	511
			MIN	25.4	23.2	25	6.4	43.1	419
728	90.50	56	AV28	28.8	28.6	31	7.4	43.5	550
			MAX	31.0	31.4	35	7.9	45.3	613
			MIN	26.6	25.4	26	6.8	41.9	484
			Average	24.5	16.0	25	6.1	48.0	295
		N	laximum	31.0	31.4	36	7.9	67.6	613
		Γ	Minimum	5.9	0.9	6	2.9	41.9	0
Total number of blows analyzed: 722									

BL# Sensors

1-728 F3: [F607] 93.6 (1.00); F4: [D815] 93.0 (1.00); A3: [K2524] 360.0 (1.07); A4: [K3550] 360.0 (1.07)

BL# Comments

- 1 Reported Reference EL 740.56
- 10 Bottom of Excavation EL 718.31

Time Summary

Drive 16 minutes 38 seconds 1:28 PM - 1:45 PM BN 1 - 728

	Page 1
PDIPLOT2 2014.2.48.1 - Printed 29-Janu	ary-2015

USH ⁻ OP: R	10 - B-70-40 F	3 - PIER 7 ;	#1 BOR)30-42, HP e: 28-Januai		
CSX:	Max Measu	ured Compr	. Stress		ST	K: O.E. Di	esel Hamm	er Stroke		
CSB:	CSB: Compression Stress at Bottom					M: Blows p	er Minute			
EMX:	Max Trans	ferred Ener	gy		RX9: Max Case Method Capacity (JC=0.9)					
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9	
	ft	blows/ft		ksi	ksi	k-ft	ft	bpm	kips	
5	90.53	160	AV4	29.6	30.8	31	7.1	44.2	602	
			MAX	30.8	32.5	34	7.5	45.5	631	
			MIN	27.8	28.7	28	6.7	43.0	578	
10	90.56	160	AV5	29.6	30.6	31	7.0	44.6	598	
			MAX	30.1	31.0	32	7.1	45.1	610	
			MIN	29.3	30.1	30	6.8	44.3	586	
15	90.59	160	AV5	29.7	30.5	31	6.9	44.7	602	
			MAX	30.4	31.0	33	7.1	45.1	612	
			MIN	29.2	29.8	30	6.8	44.2	591	
			Average	29.6	30.6	31	7.0	44.6	601	
			Maximum	30.8	32.5	34	7.5	45.5	631	
			Minimum	27.8	28.7	28	6.7	43.0	578	
	Total number of blows analyzed: 14									

Total number of blows analyzed: 14

BL# Sensors

1-15 F3: [F607] 93.6 (1.00); F4: [D815] 93.0 (1.00); A3: [K2524] 360.0 (1.09); A4: [K3550] 360.0 (1.09)

Time Summary

Drive 18 seconds 8:01 AM - 8:02 AM BN 1 - 15

Page 1	
PDIPLOT2 2014.2.48.1 - Printed 27-January-2015	
FDIFLOTZ 2014.2.40.1 - FIIIIeu 27-January-2013	

APE D30-42, HP 14 x 73

USH 10 - B-70-403 - PIER 7 #36 EOID OP' RF

OP: R	F				Date: 27-January-2015					
	Max Measure					TK: O.E. Di	esel Hamm			
	Compression				BPM: Blows per Minute RX9: Max Case Method Capacity (JC=0.9)					
<u>EMX:</u> BL#	Max Transfer	<u>red Energy</u> BLC	TYPE	CSX	CSB	EMX	<u>se Method</u> STK	BPM	<u>C=0.9)</u> RX9	
DL#	depth ft	bl/ft	TIPE	ksi	ksi	⊑ivi⊼ k-ft	ft	bpm	kips	
3	39.00	2	AV1	14.4	2.4	15	3.5	61.6	0	
-		_	MAX	14.4	2.4	15	3.5	61.6	Ō	
			MIN	14.4	2.4	15	3.5	61.6	0	
4	39.50	2	AV1	8.6	1.3	7	3.1	65.4	0	
			MAX MIN	8.6 8.6	1.3 1.3	7 7	3.1 3.1	65.4 65.4	0 0	
6	40.50	2	AV1	25.0	2.2	33	5.4	50.4	0	
			MAX	25.0	2.2	33	5.4	50.4	0	
			MIN	25.0	2.2	33	5.4	50.4	0	
7	41.00	2	AV1	14.9	2.9	18	3.5	61.4	0	
			MAX	14.9	2.9	18	3.5	61.4	0	
			MIN	14.9	2.9	18	3.5	61.4	0	
9	42.00	2	AV2	10.6	2.0	11	3.2	64.3	0	
			MAX	11.1	2.1	11	3.2	64.4	0	
			MIN	10.1	1.9	11	3.2	64.1	0	
12	43.00	3	AV3	13.4	2.9	15	3.6	61.3	0	
			MAX	16.3	3.1	18	3.9	63.8	0	
			MIN	10.4	2.7	12	3.3	58.5	0	
15	44.00	3	AV3	12.9	2.3	13	3.5	62.1	0	
			MAX	13.9	2.6	14	3.5	62.8	0	
			MIN	12.1	2.0	12	3.4	61.5	0	
18	45.00	3	AV3	15.0	2.8	17	3.7	59.8	0	
			MAX	16.6	2.9	18	3.9	61.2	0	
			MIN	13.6	2.6	15	3.6	58.4	0	
21	46.00	3	AV3	13.9	2.6	16	3.6	60.8	0	
			MAX	14.3	2.8	17	3.7	61.4	0	
			MIN	13.2	2.4	15	3.5	60.2	0	
24	47.00	3	AV3	15.2	2.8	17	3.8	59.5	0	
			MAX	15.5	3.3	18	3.9	60.3	0	
			MIN	14.7	2.5	17	3.7	59.0	0	
28	48.00	4	AV4	15.7	2.8	17	3.8	59.2	5	
			MAX	16.1	3.0	18	3.9	60.4	13	
			MIN	14.6	2.7	16	3.7	58.8	0	
32	49.00	4	AV4	16.0	3.0	18	3.9	58.8	8	
			MAX	16.2	3.1	18	3.9	59.4	13	
			MIN	15.6	3.0	17	3.8	58.4	5	
36	50.00	4	AV4	16.1	3.1	18	3.9	58.7	21	
			MAX	16.6	3.3	18	3.9	59.2	29	

BL#

40

45

50

55

60

65

72

79

87

97

107

118

129

62.00

63.00

11

11

AV11

MAX

MIN

AV11

MAX

MIN

23.9

24.6

23.1

24.4

24.9

23.9

9.9

9.4

9.9

10.3

9.5

10.2

25

28

23

27

28

25

5.4

5.5

5.2

5.5

5.6

5.3

50.6

51.5

49.9

50.1

50.7

49.6

155

160

149

158

169

152

P	age 2
PDIPLOT2 2014.2.48.1 - Printed 27-January-2	015

USH 10 -OP: RF

thod & iCA	P® Results	5	PDIPLOT2 2014.2.48.1 - Printed 27-January-2015								
- B-70-403	- PIER 7 #	36 EOID					030-42, HP e: 27-Janua				
depth ft	BLC bl/ft	TYPE MIN	CSX ksi 15.6	CSB ksi 3.0	EMX k-ft 16	STK ft 3.8	BPM bpm 58.4	RX9 kips 15			
51.00	4	AV4 MAX MIN	16.4 17.0 15.7	3.3 3.5 3.0	18 20 16	4.0 4.1 3.9	58.2 59.0 57.5	29 46 19			
52.00	5	AV5 MAX MIN	17.0 17.8 16.2	3.7 4.2 3.5	19 20 17	4.1 4.2 4.0	57.5 58.3 56.6	48 57 37			
53.00	5	AV5 MAX MIN	17.2 18.0 16.5	3.8 4.0 3.7	19 21 18	4.1 4.3 4.0	57.3 58.1 56.3	40 54 29			
54.00	5	AV5 MAX MIN	17.1 17.4 16.9	3.9 4.1 3.8	18 19 18	4.1 4.1 4.0	57.4 57.7 57.1	46 52 37			
55.00	5	AV5 MAX MIN	16.8 17.6 15.9	3.7 3.9 3.6	18 19 16	4.0 4.2 3.9	57.8 58.8 57.0	49 58 42			
56.00	5	AV5 MAX MIN	16.9 18.1 15.5	4.2 4.5 3.7	18 20 15	4.1 4.2 3.8	57.7 59.2 56.5	63 73 51			
57.00	7	AV7 MAX MIN	19.4 20.7 18.3	5.4 5.9 4.8	20 23 19	4.5 4.7 4.3	55.1 56.1 53.9	88 96 77			
58.00	7	AV7 MAX MIN	21.7 22.4 21.0	6.7 7.5 6.1	25 26 23	4.9 5.1 4.8	52.7 53.4 51.9	104 108 97			
59.00	8	AV8 MAX MIN	22.9 23.3 22.3	7.8 8.1 7.5	26 27 24	5.1 5.2 5.0	51.6 52.2 51.1	124 132 117			
60.00	10	AV10 MAX MIN	23.1 24.0 22.3	8.6 9.1 8.2	25 27 23	5.2 5.4 5.0	51.3 52.1 50.6	135 138 130			
61.00	10	AV10 MAX MIN	23.8 24.6 23.0	9.5 9.8 9.1	26 27 24	5.3 5.5 5.1	50.7 51.6 50.0	143 151 136			
00.00		A) / d d	00.0	0.0	05	F 4	50.0	455			

2

Page 3
PDIPLOT2 2014.2.48.1 - Printed 27-January-2015

USH 10 - B-70-403 - PIER 7 #36 EOID OP: RF

APE D30-42, HP 14 x 73
Date: 27-January-2015

OP: RF							Date	e: 27-Janua	ry-2015
BL#	depth ft	BLC bl/ft	TYPE	CSX ksi	CSB ksi	EMX k-ft	STK ft	BPM bpm	RX9 kips
140	64.00	11	AV11 MAX MIN	24.5 24.9 23.9	9.9 10.3 9.2	26 28 24	5.5 5.6 5.4	50.1 50.6 49.5	158 165 149
153	65.00	13	AV13 MAX MIN	24.8 25.6 23.9	10.4 11.0 9.9	26 28 25	5.6 5.7 5.4	49.7 50.4 49.0	167 171 161
166	66.00	13	AV13 MAX MIN	24.7 25.4 24.2	10.3 10.8 9.9	26 27 25	5.6 5.7 5.4	49.6 50.2 49.2	171 182 161
178	67.00	12	AV12 MAX MIN	24.6 25.3 23.7	9.7 11.0 8.7	26 28 25	5.5 5.7 5.3	49.8 50.7 49.1	166 177 155
189	68.00	11	AV11 MAX MIN	24.3 24.5 23.4	9.3 9.7 8.9	26 26 24	5.4 5.5 5.2	50.3 51.2 50.0	153 159 147
201	69.00	12	AV12 MAX MIN	24.5 25.3 23.8	9.5 10.1 9.2	26 27 25	5.5 5.7 5.4	50.0 50.5 49.1	154 158 148
214	70.00	13	AV13 MAX MIN	24.9 26.2 24.3	11.0 12.8 10.0	26 28 25	5.6 5.9 5.5	49.4 49.9 48.4	179 236 153
237	71.00	23	AV23 MAX MIN	25.3 26.2 23.1	14.0 14.5 13.4	26 28 21	5.9 6.1 5.3	48.5 50.8 47.7	271 284 251
258	72.00	21	AV21 MAX MIN	26.4 27.3 25.0	13.7 15.3 12.5	28 29 25	6.1 6.2 5.8	47.7 48.8 47.1	271 309 228
278	73.00	20	AV20 MAX MIN	27.1 27.8 26.2	13.8 14.5 13.3	29 31 27	6.2 6.4 6.0	47.2 47.9 46.5	304 311 294
297	74.00	19	AV19 MAX MIN	27.0 27.9 26.3	13.8 14.3 13.2	29 31 27	6.2 6.5 6.0	47.2 47.9 46.3	304 316 295
318	75.00	21	AV21 MAX MIN	26.9 27.7 26.1	13.7 14.8 12.8	28 30 27	6.2 6.4 6.0	47.3 48.1 46.5	301 318 264
338	76.00	20	AV20 MAX MIN	26.5 27.7 25.7	13.5 14.4 12.4	27 29 25	6.0 6.3 5.9	47.8 48.5 46.8	270 303 236

	Page 4
PDIPLOT2 2014.2.48.1 - Printed 27-January	-2015

USH 10 - B-70-403 - PIER 7 #36 EOID	

USH 10 OP: RF) - B-70-403	- PIER 7 #	36 EOID) 30-42, HP e: 27-Janua	
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
	ft	bl/ft		ksi	ksi	k-ft	ft	bpm	kips
358	77.00	20	AV20	26.5	13.7	27	6.0	47.9	269
			MAX	27.3	14.2	29	6.2	49.1	284
			MIN	25.4	13.2	24	5.7	47.1	253
380	78.00	22	AV22	26.7	13.8	26	6.0	47.8	288
			MAX	27.4	14.4	28	6.3	48.7	312
			MIN	25.7	13.3	24	5.8	47.0	267
400	70.00	00	A) (00	00 F	40 F	07	0.0	47.0	070
400	79.00	20	AV20	26.5	13.5	27	6.0	47.9	272
			MAX	27.5	14.0	29	6.3	48.5	278
			MIN	25.7	13.1	25	5.9	46.9	262
427	80.00	27	AV27	26.8	15.5	27	6.1	47.5	332
			MAX	27.7	17.0	29	6.4	48.4	367
			MIN	25.8	13.4	25	5.9	46.5	272
461	81.00	34	AV34	27.4	18.6	28	6.4	46.6	404
			MAX	28.4	22.8	31	6.7	48.2	476
			MIN	25.7	16.7	25	5.9	45.6	362
503	81.83	50	AV42	28.2	21.2	30	6.6	45.9	455
505	01.00	50	MAX	29.2	23.1	32	6.8	47.6	486
			MIN	26.2	18.9	26	6.1	45.0	416
			Average	24.6	12.2	26	5.7	49.7	237
		N	/laximum	29.2	23.1	33	6.8	49.7 65.4	486
			Minimum	29.2 8.6	1.3		3.1	45.0	480
	VIII III III 0.0 1.3 7 3.1 43.0 0 Total number of blows analyzed: 500								

Total number of blows analyzed: 500

BL# Sensors

1-503 F3: [F607] 93.6 (1.00); F4: [D815] 93.0 (1.00); A3: [K2524] 360.0 (1.09); A4: [K3550] 360.0 (1.09)

BL# Comments

- 3 Reported Reference EL 740.47
- 12 Bottom of Excavation EL 719.31

Time Summary

Drive 10 minutes 45 seconds 1:01 PM - 1:12 PM BN 1 - 503

	Page 1
PDIPLOT2 2014.2.48.1 - Printed 29-J	anuary-2015

USH 1 OP: R	10 - B-70-40 F	3 - PIER 7	#36 BOR		APE D30-42, HP 14 x 73 Date: 28-January-2015				
CSX:	Max Measu	ured Comp	r. Stress		ST	K: O.E. Di	esel Hamm	er Stroke	
CSB:					BF	M: Blows p	er Minute		
EMX:	Max Trans	ferred Ener	gy		RX	(9: Max Ca	se Method	Capacity (J	C=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
	ft	blows/ft		ksi	ksi	k-ft	ft	bpm	kips
5	81.87	120	AV4	30.9	25.0	31	7.4	43.3	529
			MAX	33.0	26.2	37	8.4	44.6	553
			MIN	29.9	24.3	28	7.0	40.9	519
10	81.91	120	AV5	29.9	25.1	28	7.0	44.5	520
			MAX	30.4	25.8	29	7.1	44.8	531
			MIN	29.5	24.8	28	6.9	44.3	512
16	81.96	120	AV6	30.1	25.8	28	6.9	44.8	531
			MAX	30.7	26.5	30	7.1	45.4	542
			MIN	29.3	24.7	26	6.7	44.2	517
			Average	30.2	25.3	29	7.1	44.3	527
			Maximum	33.0	26.5	37	8.4	45.4	553
			Minimum	29.3	24.3	26	6.7	40.9	512
	Total number of blows analyzed: 15								

Total number of blows analyzed: 15

BL# Sensors

1-16 F3: [F607] 93.6 (1.00); F4: [D815] 93.0 (1.00); A3: [K2524] 360.0 (1.09); A4: [K3550] 360.0 (1.09)

Time Summary

Drive 20 seconds 7:51 AM - 7:51 AM BN 1 - 16

Pag	e 1	
PDIPLOT2 2014.2.48.1 - Printed 29-January-201	5	
PDIPLO12 2014.2.48.1 - Printed 29-January-201	5	

USH 10 - B-70-403 - PIER 7 #44 EOID OP' RF

OP: R	P: RF Date: 27-January-2015								
	Max Measure					TK: O.E. Di	esel Hamm		
	CSB: Compression Stress at BottomBPM: Blows per MinuteEMX: Max Transferred EnergyRX9: Max Case Method								-0
<u>EMX:</u> BL#	depth	BLC	TYPE	CSX	CSB	EMX	<u>Ise Methoa</u> STK	BPM	<u>C=0.9)</u> RX9
DL#	ft	bl/ft	1166	ksi	ksi	k-ft	ft	bpm	kips
3	35.00	1	AV1	9.2	1.2	10	3.0	66.5	0
			MAX	9.2	1.2	10	3.0	66.5	0
			MIN	9.2	1.2	10	3.0	66.5	0
4	36.00	1	AV1	5.7	0.9	7	2.7	69.6	0
			MAX	5.7	0.9	7	2.7	69.6	0
			MIN	5.7	0.9	7	2.7	69.6	0
6	37.00	2	AV1	26.0	2.9	34	5.9	48.4	0
			MAX	26.0	2.9	34	5.9	48.4	0
			MIN	26.0	2.9	34	5.9	48.4	0
7	37.50	2	AV1	16.1	2.6	21	3.7	60.4	0
			MAX	16.1	2.6	21	3.7	60.4	0
			MIN	16.1	2.6	21	3.7	60.4	0
8	38.00	2	AV1	13.3	2.1	12	3.4	62.7	0
			MAX	13.3	2.1	12	3.4	62.7	0
			MIN	13.3	2.1	12	3.4	62.7	0
10	39.00	2	AV1	26.1	2.9	38	5.8	48.6	0
			MAX	26.1	2.9	38	5.8	48.6	0
			MIN	26.1	2.9	38	5.8	48.6	0
11	39.50	2	AV1	13.8	2.3	16	3.3	63.1	0
			MAX	13.8	2.3	16	3.3	63.1	0
			MIN	13.8	2.3	16	3.3	63.1	0
12	40.00	2	AV1	14.2	2.4	15	3.6	61.2	0
			MAX	14.2	2.4	15	3.6	61.2	0
			MIN	14.2	2.4	15	3.6	61.2	0
14	41.00	2	AV2	8.8	2.0	8	3.0	66.8	0
			MAX	9.7	2.0	9	3.0	67.6	0
			MIN	8.0	1.9	8	2.9	65.9	0
18	42.00	4	AV4	14.9	2.7	16	3.7	60.2	9
			MAX	19.4	3.2	21	4.4	64.2	23
			MIN	10.8	2.1	11	3.2	55.6	0
22	43.00	4	AV4	12.9	2.7	13	3.4	62.4	2 7
			MAX	16.9	3.0	18	4.0	66.2	7
			MIN	9.4	2.2	8	3.0	58.2	0
26	44.00	4	AV4	14.9	2.8	16	3.7	60.4	5
			MAX	17.3	3.3	18	4.0	63.3	10
			MIN	12.0	2.4	11	3.3	57.9	0
30	45.00	4	AV4	15.8	3.0	17	3.8	59.5	3 6
			MAX	16.8	3.1	19	3.9	60.7	6

Page 1

APE D30-42, HP 14 x 73

Page 2
PDIPLOT2 2014.2.48.1 - Printed 29-January-2015

USH 10 - B-70-403 - PIER 7 #44 EOID	

APE D30-42, HP 14 x 73
A = D = T = T
Date: 27- January-2015

OP: RF			-				Date	e: 27-Janua	ry-2015
BL#	depth ft	BLC bl/ft	TYPE MIN	CSX ksi 15.0	CSB ksi 2.7	EMX k-ft 16	STK ft 3.6	BPM bpm 58.4	RX9 kips 0
34	46.00	4	AV4 MAX MIN	15.2 16.0 13.8	2.9 3.0 2.7	16 17 14	3.7 3.8 3.5	60.1 61.7 59.2	11 16 7
38	47.00	4	AV4 MAX MIN	15.6 16.6 14.5	3.1 3.6 2.8	17 19 15	3.8 3.9 3.6	59.7 60.7 58.6	5 7 1
42	48.00	4	AV4 MAX MIN	16.5 17.3 15.3	3.2 3.3 3.0	18 20 16	3.9 4.1 3.8	58.5 59.6 57.5	19 23 14
46	49.00	4	AV4 MAX MIN	17.4 18.4 16.5	3.6 3.9 3.2	20 21 18	4.1 4.2 3.9	57.6 58.6 56.5	20 28 14
50	50.00	4	AV4 MAX MIN	17.2 18.1 16.7	3.6 3.7 3.5	20 21 18	4.0 4.2 3.9	57.8 58.4 56.9	24 26 22
54	51.00	4	AV4 MAX MIN	17.2 18.4 16.4	3.6 3.9 3.3	20 22 19	4.1 4.3 3.9	57.7 58.7 56.3	17 24 10
58	52.00	4	AV4 MAX MIN	17.1 17.9 16.5	3.5 3.6 3.3	20 21 19	4.1 4.2 3.9	57.7 58.4 56.9	18 24 10
62	53.00	4	AV4 MAX MIN	18.3 19.0 17.4	4.0 4.2 3.9	22 24 19	4.2 4.4 4.0	56.6 57.7 55.7	28 38 17
66	54.00	4	AV4 MAX MIN	16.7 17.5 15.7	3.7 3.8 3.6	19 20 18	4.0 4.1 3.8	58.4 59.3 57.5	32 38 25
70	55.00	4	AV4 MAX MIN	17.8 18.3 17.1	3.9 4.1 3.7	21 22 20	4.1 4.2 4.0	57.4 58.1 56.8	21 41 7
74	56.00	4	AV4 MAX MIN	18.3 18.9 17.9	4.5 5.2 4.0	22 22 21	4.2 4.3 4.1	56.7 57.2 55.9	50 72 28
79	57.00	5	AV5 MAX MIN	19.9 20.3 19.3	5.6 6.0 5.2	23 24 22	4.5 4.6 4.3	54.9 55.8 54.4	95 100 90
85	58.00	6	AV6 MAX MIN	20.6 21.8 19.8	6.1 6.5 5.7	23 25 22	4.6 4.9 4.5	54.2 55.0 52.9	104 113 99

USH 10 - B-70-403 - PIER 7 #44 EOID

APE D30-42, HP 14 x 73
Data: 27 January 2015

OP: RF	270100		11 2015				Date	e: 27-Janua	ry-2015
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
	ft	bl/ft		ksi	ksi	k-ft	ft	bpm	kips
93	59.00	8	AV8	21.0	6.6	22	4.7	53.8	111
93	59.00	0	MAX	21.0	7.0	22	4.7 5.0	55.8 55.1	119
			MIN	19.7	6.0	24	4.5	52.3	100
			IVIII N	13.7	0.0	20	4.5	52.5	100
102	60.00	9	AV9	22.0	7.6	24	4.9	52.6	130
			MAX	23.1	8.3	25	5.2	53.9	141
			MIN	20.8	7.2	21	4.7	51.4	118
110	01.00	10	A) (1 O	00.0	0.7	25	F 0	F4 F	
112	61.00	10	AV10	23.0	8.7	25	5.2	51.5	144
			MAX MIN	23.8 22.3	9.4 8.1	26 23	5.3 5.0	52.3 50.7	153 132
				22.5	0.1	23	5.0	50.7	152
122	62.00	10	AV10	23.4	9.8	25	5.3	51.0	152
			MAX	23.9	10.4	26	5.4	51.6	164
			MIN	23.0	9.3	23	5.1	50.5	145
101	~~~~	10	A) (10	00 7	10.0	05	- 0	F0 7	101
134	63.00	12	AV12	23.7	10.0	25	5.3	50.7	161
			MAX MIN	24.4 23.3	10.4 9.5	26 24	5.5 5.3	51.0 50.0	166 157
			IVIIIN	23.5	9.0	24	0.0	50.0	157
146	64.00	12	AV12	23.5	10.0	24	5.3	50.9	163
			MAX	24.2	10.6	26	5.4	51.7	174
			MIN	22.8	9.7	22	5.1	50.3	154
100	05.00	- 4	A \ / 4 A	00.7	0.7	0.4	F 0	F0 7	100
160	65.00	14	AV14	23.7	9.7	24	5.3	50.7	168
			MAX MIN	24.5 22.7	10.2 9.2	27 22	5.5 5.2	51.5 49.9	176 155
				22.1	9.2	22	5.2	49.9	155
175	66.00	15	AV15	24.0	10.5	25	5.4	50.3	174
-		-	MAX	25.0	11.6	27	5.6	51.7	194
			MIN	22.6	9.1	23	5.1	49.4	157
	07.00	4 -							407
190	67.00	15	AV15	24.8	11.2	26	5.6	49.4	197
			MAX MIN	25.4 24.4	11.6 10.4	28 25	5.8 5.5	49.9 48.8	203 191
			IVIIIN	24.4	10.4	25	5.5	40.0	191
203	68.00	13	AV13	23.8	9.9	25	5.4	50.4	173
			MAX	24.2	11.1	26	5.5	50.8	187
			MIN	23.3	9.0	23	5.3	49.9	163
015	<u> </u>	10	A) (1 O	00.4	0.0	25	F 0	50.0	105
215	69.00	12	AV12	23.4 23.9	9.3 9.8	25 25	5.3	50.8	165
			MAX MIN	23.9	9.8 8.9	25 24	5.4 5.2	51.1 50.4	173 153
			IVIII N	20.1	0.5	24	5.2	50.4	155
228	70.00	13	AV13	23.3	9.3	24	5.3	51.0	158
-	-	-	MAX	23.6	9.6	25	5.3	51.3	166
			MIN	22.9	8.8	23	5.2	50.8	150
0.14	74.00	10	A) /4 O	04.0	10.0	~~			
241	71.00	13	AV13	24.0	10.2	26	5.5	50.1	175
			MAX MIN	24.7 23.2	11.1 9.4	27 24	5.7 5.3	51.0 49.2	193 159
				2J.2	3.4	24	0.0	7J.Z	153

USH 10 - B-70-403 - PIER 7 #44 EOID

APE D30-42,	HP 14 x 73
Data: 07 la	

OP: RF) - D-70-403							e: 27-Janua	
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
	ft	bl/ft		ksi	ksi	k-ft	ft	bpm	kips
260	72.00	19	AV19	25.3	12.9	26	5.8	48.6	252
			MAX	26.0	14.0	28	6.0	49.7	279
			MIN	24.3	11.1	25	5.6	47.9	212
284	73.00	24	AV24	25.5	13.9	26	5.9	48.3	284
			MAX	26.5	14.7	28	6.1	49.2	314
			MIN	24.5	13.2	24	5.7	47.6	266
310	74.00	26	AV26	25.9	14.4	27	6.0	47.9	314
			MAX	26.6	14.9	29	6.2	48.4	320
			MIN	25.5	14.0	26	5.9	47.2	307
334	75.00	24	AV24	26.0	14.4	27	6.0	47.8	304
			MAX	26.5	15.1	28	6.2	48.1	309
			MIN	25.5	13.8	26	6.0	47.3	295
357	76.00	23	AV23	25.9	14.1	26	6.0	47.9	292
			MAX	26.4	14.8	28	6.1	48.6	306
			MIN	25.4	13.6	24	5.8	47.5	274
379	77.00	22	AV22	25.8	14.1	26	6.0	48.1	280
			MAX	26.7	15.1	27	6.2	48.8	309
			MIN	25.3	13.3	24	5.8	47.3	255
401	78.00	22	AV22	26.4	14.7	27	6.1	47.6	295
			MAX	27.0	15.4	29	6.3	48.0	311
			MIN	25.9	14.2	25	6.0	47.0	281
421	79.00	20	AV20	26.5	14.3	27	6.1	47.5	274
			MAX	27.5	15.1	30	6.3	48.2	302
			MIN	25.7	13.9	25	5.9	46.7	256
448	80.00	27	AV27	27.1	16.0	28	6.3	46.8	357
			MAX	27.9	18.2	30	6.5	47.3	405
			MIN	26.5	14.2	27	6.2	46.2	272
489	81.00	41	AV41	27.9	20.1	30	6.6	45.9	445
			MAX	29.0	22.7	32	6.9	46.7	481
			MIN	27.2	18.5	28	6.3	44.9	410
529	82.00	40	AV40	27.8	20.2	30	6.5	46.0	448
			MAX	28.8	22.9	32	6.8	47.0	491
			MIN	26.7	18.9	28	6.3	45.1	429
580	83.00	51	AV51	27.9	22.4	30	6.6	45.9	472
			MAX	28.7	24.1	31	6.8	46.7	503
			MIN	27.2	20.8	28	6.3	45.3	448
629	84.00	49	AV49	28.1	21.8	30	6.6	45.9	464
			MAX	28.7	23.2	31	6.7	46.8	485
			MIN	27.1	20.7	28	6.3	45.4	443
668	85.00	39	AV39	28.0	20.0	30	6.6	46.0	430

Page 5	
PDIPLOT2 2014.2.48.1 - Printed 29-January-2015	

USH 10 - B-70-403 - PIER 7 #44 EOID	

APE D30-42, HP 14 x 73
Datas 07 January 2015

OP: RF							Date	e: 27-Janua	ry-2015
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
	ft	bl/ft		ksi	ksi	k-ft	ft	bpm	kips
			MAX	28.7	21.5	32	6.8	47.0	449
			MIN	27.0	18.6	28	6.3	45.3	401
708	86.00	40	AV40	27.7	19.3	29	6.5	46.2	410
			MAX	28.7	20.2	31	6.7	47.3	428
			MIN	26.5	18.3	28	6.2	45.4	393
740	07.00	20	A) (20	07.7	10.0	20	<u>с</u> г	40.0	400
746	87.00	38	AV38	27.7	19.9	29	6.5	46.2	408
			MAX	29.1	24.9	32	6.9	47.7	472
			MIN	26.0	18.3	26	6.1	44.9	382
780	88.00	34	AV34	27.9	19.7	30	6.5	46.1	404
			MAX	28.9	22.0	33	6.8	47.3	431
			MIN	26.7	18.0	27	6.2	45.2	376
825	89.00	45	AV45	28.6	22.1	31	6.7	45.4	460
020	00.00	10	MAX	29.3	24.1	32	6.9	46.3	491
			MIN	27.6	20.3	29	6.5	44.8	426
883	89.83	70	AV58	28.9	26.2	31	6.8	45.2	521
			MAX	30.2	28.4	34	7.1	46.3	563
			MIN	27.5	24.3	29	6.5	44.1	493
			Average	25.7	16.0	27	6.0	48.4	325
			/laximum	30.2	28.4	38	7.1	69.6	563
		I	Minimum	5.7	0.9	7	2.7	44.1	0
			Total n	umber of blo	ws analyze	n- 820			

Total number of blows analyzed: 879

BL# Sensors

1-883 F3: [F607] 93.6 (1.00); F4: [D815] 93.0 (1.00); A3: [K2524] 360.0 (1.09); A4: [K3550] 360.0 (1.09)

BL# Comments

- 3 Reported Reference EL 740.47
- 12 Bottom of Excavation EL 719.31

Time Summary

Drive 19 minutes 7 seconds 12:28 PM - 12:47 PM BN 1 - 883

	Page 1
PDIPLOT2 2014.2.48.1 - Printed 29-Janu	ary-2015

	USH 10 - B-70-403 - PIER 7 #44 BOR APE D30-42, HP 14 x 73 OP: RF Date: 28-January-2015											
CSX:	Max Measu	ured Compi	r. Stress		ST	K: O.E. Di	esel Hamm	er Stroke				
CSB:	Compressi	on Stress a	t Bottom		BF	PM: Blowsp	per Minute					
EMX:	Max Trans	ferred Ener	gy		Rک	(9: Max Ca	se Method	Capacity (J	C=0.9)			
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9			
	ft	blows/ft		ksi	ksi	k-ft	ft	bpm	kips			
5	89.86	160	AV4	28.4	25.9	28	6.9	44.8	526			
			MAX	29.7	26.9	30	7.2	45.8	543			
			MIN	26.3	23.7	24	6.6	44.0	493			
10	89.90	160	AV5	29.1	26.6	29	7.0	44.7	547			
			MAX	29.4	26.9	30	7.1	45.1	558			
			MIN	28.9	26.2	29	6.8	44.3	539			
17	89.94	160	AV7	28.7	26.6	28	6.8	45.2	544			
			MAX	29.5	27.2	30	7.0	45.7	555			
			MIN	28.2	26.1	28	6.6	44.4	528			
			Average	28.8	26.4	29	6.9	44.9	541			
Maximum 29.7 27.2 30 7.2 45.8 558												
Minimum 26.3 23.7 24 6.6 44.0 493												
			Total r	number of bl	ows analvz	ed: 16						

Total number of blows analyzed: 16

BL# Sensors

1-17 F3: [F607] 93.6 (1.00); F4: [D815] 93.0 (1.00); A3: [K2524] 360.0 (1.09); A4: [K3550] 360.0 (1.09)

Time Summary

Drive 21 seconds 7:41 AM - 7:41 AM BN 1 - 17

2.50

3.00

Force Msd

Velocity Msd

360

480

600

USH 10 - B-70-403; Pile: PIER 7 #1 EOID APE D30-42, HP 14 x 73; Blow: 728 GRL Engineers, Inc.

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 - B-70-403; Pile: PIER 7 #1 EOID APE D30-42, HP 14 x 73; Blow: 728 GRL Engineers, Inc.

			CAPW	AP SUMMARY	RESULTS					
Total CAPV	WAP Capaci	ty: 580	.0; along	g Shaft	65.0; at	Тое	515.0	kips		
Soil	Dist.	Depth	Ru	Force	Sum		Unit	Uni	t	Smit
Sgmnt	Below	Below		in Pile	of	Res	sist.	Resist	. Da	mpin
No.	Gages	Grade			Ru	(De	epth)	(Area) F	acto
	ft	ft	kips	kips	kips	kiŗ	os/ft	ks	£	s/f
				580.0						
1	6.6	4.4	0.0	580.0	0.0		0.00	0.0	0	0.0
2	13.3	11.0	0.0	580.0	0.0		0.00	0.0	0	0.0
3	19.9	17.6	0.0	580.0	0.0		0.00	0.0	0	0.0
4	26.5	24.3	3.0	577.0	3.0		0.45	0.1	0	0.2
5	33.1	30.9	2.0	575.0	5.0		0.30	0.0	6	0.2
6	39.8	37.5	3.0	572.0	8.0		0.45	0.1	0	0.2
7	46.4	44.1	5.0	567.0	13.0		0.75	0.1	6	0.2
8	53.0	50.8	5.0	562.0	18.0		0.75	0.1	6	0.2
9	59.6	57.4	5.0	557.0	23.0		0.75	0.1	6	0.2
10	66.3	64.0	4.0	553.0	27.0		0.60	0.1	3	0.2
11	72.9	70.6	4.0	549.0	31.0		0.60	0.1	3	0.2
12	79.5	77.3	6.0	543.0	37.0		0.91	0.1	9	0.2
13	86.1	83.9	8.0	535.0	45.0		1.21	0.2	6	0.2
14	92.8	90.5	20.0	515.0	65.0		3.02	0.6	4	0.2
Avg. Sh	aft		4.6				0.72	0.1	5	0.2
То	e		515.0					373.6	0	0.1
Soil Model	l Paramete	rs/Extensi	ons		5	haft	То	e		
Quake		(i:	n)			0.19	0.3	4		
Case Dampi	ing Factor					0.43	1.4	8		
Damping Ty	ype				Vis	cous	Sm+Vis	с		
Unloading	Quake	(%	of loadi	ng quake)		56	3	4		
Unloading	Level	(%	of Ru)			91				
Resistance	e Gap (inc	luded in T	oe Quake)) (in)			0.0	1		
Soil Plug	Weight	(k:	ips)		c	.020				
CAPWAP mat	tch qualit	y =	2.11	(Wa	ve Up Match	1) ; R	.SA = 0			
Observed:	Final Set	=	0.21 i	n; Blo	w Count	=	56	b/ft		
Computed:	Final Set	=	0.25 i	n; Blo	w Count	=	48	b/ft		
max. Top (Comp. Stre	ss =	30.5 k	si (T	= 26.8 ms,	max=	1.046	x Top)		
max. Comp.	. Stress	=	31.9 k	si (Z	= 92.8 ft,	т=	32.7 ms)		
max. Tens.	. Stress	=	-5.72 k	si (Z	= 53.0 ft,	т=	52.8 ms)		
max. Energ	JY (EMX)	=	35.3 k	ip-ft; ma	x. Measured	l Top I	Displ.	(DMX)=	1.08 i	n

USH 10 - B-70-403; Pile: PIER 7 #1 EOID APE D30-42, HP 14 x 73; Blow: 728 GRL Engineers, Inc.

EXTREMA TABLE												
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.				
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.				
No.	Gages			Stress	Stress	Energy						
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in				
1	3.3	653.0	-35.1	30.5	-1.64	35.3	16.4	1.09				
2	6.6	653.7	-42.3	30.5	-1.98	35.1	16.4	1.08				
4	13.3	655.3	-58.3	30.6	-2.72	34.7	16.4	1.05				
6	19.9	659.3	-74.8	30.8	-3.49	34.2	16.3	1.01				
8	26.5	666.5	-88.5	31.1	-4.13	33.5	16.1	0.96				
10	33.1	658.1	-90.9	30.7	-4.24	32.0	15.9	0.91				
12	39.8	657.7	-91.1	30.7	-4.26	30.7	15.6	0.86				
14	46.4	655.1	-109.1	30.6	-5.10	29.0	15.3	0.81				
15	49.7	637.2	-113.4	29.8	-5.30	27.4	15.1	0.78				
16	53.0	643.0	-122.5	30.0	-5.72	26.8	15.0	0.75				
17	56.3	625.7	-119.6	29.2	-5.59	25.2	14.8	0.72				
18	59.6	630.9	-122.3	29.5	-5.71	24.6	14.7	0.69				
19	62.9	613.2	-118.1	28.6	-5.52	23.0	14.5	0.66				
20	66.3	620.2	-118.6	29.0	-5.54	22.3	14.4	0.62				
21	69.6	616.6	-114.7	28.8	-5.36	20.9	14.0	0.59				
22	72.9	617.6	-116.4	28.9	-5.44	20.1	13.9	0.56				
23	76.2	600.9	-111.7	28.1	-5.22	18.7	13.9	0.52				
24	79.5	608.4	-112.4	28.4	-5.25	17.9	13.7	0.49				
25	82.8	627.6	-105.9	29.3	-4.95	16.3	14.8	0.45				
26	86.1	650.7	-106.7	30.4	-4.99	15.5	16.2	0.42				
27	89.4	649.1	-97.7	30.3	-4.57	13.8	16.1	0.38				
28	92.8	683.0	-98.7	31.9	-4.61	13.0	14.3	0.35				
Absolute	92.8			31.9			(T =	32.7 ms)				
	53.0				-5.72		(T =	52.8 ms)				

				CAS	E METHOD	1				
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
RP	713.3	659.2	605.1	551.0	497.0	442.9	388.8	334.7	280.6	226.5
RX	762.0	732.6	709.4	694.0	678.5	663.0	647.5	633.6	621.0	611.6
RU	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
RAU =	415.4 (ki	.ps); RA	.2 = 6	14.0 (ki	ps)					

Current CAPWAP Ru = 580.0 (kips); Corresponding J(RP)= 0.49; matches RX20 within 5%

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
16.3	26.61	621.3	659.9	659.9	1.08	0.21	0.21	35.4	656.4	1580

PILE PROFILE AND PILE MODEL											
Dept	h	Spec. Weight	Perim.								
f	t	in ²	ksi	lb/ft ³	ft						
0.	0	21.4	29992.2	492.000	4.70						
92.	8	21.4	29992.2	492.000	4.70						
Toe Area		198.5	in²								

USH 10 - B-70-4	03; Pile: PIER	7 #1 EOID
APE D30-42, HP	14 x 73; Blow:	728
GRL Engineers,	Inc.	

Segmnt	Dist.In	pedance	Imped.		Tension	Comp	ression	Perim.	Wave	Soil
Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
	ftki	lps/ft/s	\$	in		in		ft	ft/s	kips
1	3.3	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16807.9	0.000
23	76.2	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16807.9	0.020
24	79.5	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16807.9	0.000
28	92.8	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16807.9	0.000

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.197 ms, 2L/c 11.0 ms Total volume: 13.784 ft³; Volume ratio considering added impedance: 1.000

USH 10 - B-70-403; Pile: PIER 7 #1 BOR APE D30-42, HP 14 x 73; Blow: 3 GRL Engineers, Inc.

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 - B-70-403; Pile: PIER 7 #1 BOR APE D30-42, HP 14 x 73; Blow: 3 GRL Engineers, Inc.

				CAPWAP SUMM	ARY RESU	LTS			
'otal CAI	PWAP Capa	city:	600.0;	along Shaft	90.0); at Toe	510.0	kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith	Qual
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping	
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor	
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft	j
				600.0					
1	6.6	4.5	0.0	600.0	0.0	0.00	0.00	0.00	0.1
2	13.2	11.1	0.0	600.0	0.0	0.00	0.00	0.00	0.1
3	19.9	17.7	0.0	600.0	0.0	0.00	0.00	0.00	0.1
4	26.5	24.3	4.0	596.0	4.0	0.60	0.13	0.28	0.1
5	33.1	30.9	4.0	592.0	8.0	0.60	0.13	0.28	0.1
6	39.7	37.6	4.0	588.0	12.0	0.60	0.13	0.28	0.1
7	46.3	44.2	5.0	583.0	17.0	0.76	0.16	0.28	0.1
8	53.0	50.8	5.0	578.0	22.0	0.76	0.16	0.28	0.1
9	59.6	57.4	10.0	568.0	32.0	1.51	0.32	0.28	0.1
10	66.2	64.0	10.0	558.0	42.0	1.51	0.32	0.28	0.1
11	72.8	70.7	9.0	549.0	51.0	1.36	0.29	0.28	0.1
12	79.4	77.3	9.0	540.0	60.0	1.36	0.29	0.28	0.1
13	86.1	83.9	10.0	530.0	70.0	1.51	0.32	0.28	0.1
14	92.7	90.5	20.0	510.0	90.0	3.02	0.64	0.28	0.1
Avg. Sh	aft		6.4			0.99	0.21	0.28	0.1
Тс	e		510.0				369.97	0.08	0.1
oil Mode	el Parame	ters/Ext	ensions			Shaft	Тое	1	
ase Dam	ping Fact	or				0.66	1.07	,	
amping 1	Гуре					Viscous	Viscous	ł	
Inloading	g Quake		(% of	loading quak	e)	46	30	I	
Inloading	g Level		(% of :	Ru)		51			
esistand	ce Gap (i	ncluded	in Toe Q	uake) (in)			0.00	I	
Soil Plug	g Weight		(kips)			0.020			
APWAP ma	atch qual	itv	= 1	.51	(Wave Up	Match) ;	RSA = 0		
	: Final S	-			Blow Cou		160 k	o/ft	
	: Final S			-	Blow Cou		137 k		
ransducer	-	07) CAL: 524) CAL:	93.6; RF: 0	.98; F4(D815) CA .09; A4(K3550) CA	-	F: 0.98 F: 1.09			
lax. Top	Comp. St	-		9.3 ksi		.8 ms, max	= 1.037 -	(TOP)	
	o. Stress			0.4 ksi		.7 ft, T=			
			- 5	VII NDI	-	-	-		
ax. Teng	s. Stress		= -5	.35 ksi	(Z= 59	.6 ft, T=	51.0 ms)		

USH 10 - B-70-403; Pile: PIER 7 #1 BOR APE D30-42, HP 14 x 73; Blow: 3 GRL Engineers, Inc.

	EXTREMA TABLE												
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.					
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.					
No.	Gages			Stress	Stress	Energy							
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in					
1	3.3	627.6	-26.1	29.3	-1.22	32.9	15.7	0.98					
2	6.6	628.4	-28.8	29.4	-1.35	32.6	15.6	0.97					
4	13.2	630.1	-34.2	29.4	-1.60	32.1	15.6	0.92					
6	19.9	635.0	-39.4	29.7	-1.84	31.3	15.5	0.88					
8	26.5	645.9	-43.9	30.2	-2.05	30.6	15.2	0.83					
10	33.1	636.0	-62.4	29.7	-2.92	28.7	14.9	0.78					
12	39.7	627.3	-89.8	29.3	-4.20	26.8	14.6	0.72					
14	46.3	620.5	-107.7	29.0	-5.03	25.0	14.2	0.66					
15	49.6	603.4	-109.7	28.2	-5.12	23.4	14.0	0.63					
16	53.0	612.3	-114.0	28.6	-5.33	22.7	13.8	0.60					
17	56.3	601.0	-112.1	28.1	-5.24	21.3	13.5	0.57					
18	59.6	611.3	-114.5	28.6	-5.35	20.6	13.2	0.54					
19	62.9	578.8	-105.9	27.0	-4.95	18.5	12.9	0.50					
20	66.2	589.7	-107.4	27.6	-5.02	17.7	12.6	0.47					
21	69.5	576.0	-98.9	26.9	-4.62	15.7	12.1	0.43					
22	72.8	586.2	-100.2	27.4	-4.68	14.8	12.0	0.40					
23	76.1	577.7	-92.5	27.0	-4.32	13.1	11.9	0.36					
24	79.4	613.8	-94.2	28.7	-4.40	12.2	11.6	0.33					
25	82.7	629.2	-86.5	29.4	-4.04	10.8	11.3	0.29					
26	86.1	639.8	-87.3	29.9	-4.08	10.0	10.8	0.26					
27	89.4	622.8	-79.0	29.1	-3.69	8.8	10.0	0.22					
28	92.7	650.6	-80.1	30.4	-3.74	8.0	8.4	0.19					
Absolute	92.7			30.4			(T =	32.7 ms)					
	59.6				-5.35		(T =	51.0 ms)					

CASE METHOD										
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
RP	817.5	733.8	650.0	566.3	482.6					
RX	830.0	764.4	706.2	663.5	632.8	606.1	581.4	557.4	534.0	510.6
RU	816.6	732.7	648.8	564.8	480.9					

RAU = 373.6 (kips); RA2 = 606.1 (kips)

Current CAPWAP Ru = 600.0 (kips); Corresponding J(RP)= 0.52; J(RX) = 1.05

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
15.5	26.78	593.5	642.7	642.7	0.96	0.07	0.08	33.1	764.8	3495

PILE PROFILE AND PILE MODEL								
Dept	th 2	Area	E-Modulus	Spec. Weight	Perim.			
:	Et :	in ²	ksi	lb/ft ³	ft			
0	.0	21.4	29992.2	492.000	4.70			
92	.7	21.4	29992.2	492.000	4.70			
Toe Area	1	98.5 in	2					

USH 10 - B-70-4	03; Pile: PIER	7 :	#1 BOR
APE D30-42, HP	14 x 73; Blow:	3	
GRL Engineers,	Inc.		

Segmnt	Dist.Impedance		Imped.	Tension		Compression		Perim.	Wave	Soil
Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
	ftki	.ps/ft/s	%	in		in		ft	ft/s	kips
1	3.3	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16807.9	0.000
23	76.1	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16807.9	0.020
24	79.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16807.9	0.000
28	92.7	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16807.9	0.000

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.197 ms, 2L/c 11.0 ms Total volume: 13.772 ft³; Volume ratio considering added impedance: 1.000

USH 10 - B-70-403; Pile: PIER 7 #36 EOID APE D30-42, HP 14 x 73; Blow: 501 GRL Engineers, Inc.

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result.
USH 10 - B-70-4	403; Pile:	PIER 7	#36 EOID
APE D30-42, HP	14 x 73; B	low: 50	01
GRL Engineers,	Inc.		

			CAPWA	P SUMMARY	RESULTS			
otal CAPWAR	P Capacity	: 434.	.0; along	Shaft	79.0; at T	oe 355.0) kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Dampin
No.	Gages	Grade			Ru	(Depth)	(Area)	Facto
	ft	ft	kips	kips	kips	kips/ft	ksf	s/f
				434.0				
1	19.8	9.2	0.0	434.0	0.0	0.00	0.00	0.0
2	26.4	15.8	0.0	434.0	0.0	0.00	0.00	0.0
3	33.0	22.4	3.0	431.0	3.0	0.45	0.10	0.2
4	39.6	29.0	4.0	427.0	7.0	0.61	0.13	0.2
5	46.2	35.6	4.0	423.0	11.0	0.61	0.13	0.2
6	52.8	42.2	4.0	419.0	15.0	0.61	0.13	0.2
7	59.4	48.8	5.0	414.0	20.0	0.76	0.16	0.2
8	66.0	55.4	5.0	409.0	25.0	0.76	0.16	0.2
9	72.6	62.0	12.0	397.0	37.0	1.82	0.39	0.2
10	79.2	68.6	14.0	383.0	51.0	2.12	0.45	0.2
11	85.8	75.2	14.0	369.0	65.0	2.12	0.45	0.2
12	92.4	81.8	14.0	355.0	79.0	2.12	0.45	0.2
Avg. Shaf	t		6.6			0.97	0.21	0.2
Тое			355.0				257.53	0.1
Soil Model I	Parameters	/Extensio	ons		Sł	naft To	be	
Quake		(in	ı)		(0.19 0.3	35	
Case Damping	g Factor				(0.52 0.9	93	
Damping Type	9				Visc	cous Sm+Vi	SC	
Unloading Qu	ıake	(%	of loadir	ng quake)		89	39	
Soil Plug We	eight	(ki	.ps)		0	.060 0.00	65	
CAPWAP match	quality	=	2.97	(Wa	ve Up Match) ; RSA = 0		
Observed: Fi	inal Set	=	0.24 ir	n; Blo	v Count	= 50	b/ft	
Computed: Fi	inal Set	=	0.28 ir	a; Blo	v Count	= 43	b/ft	
max. Top Com	-		27.5 ka	-	= 26.7 ms,			
max. Comp. S		=	28.3 ka	-	= 29.7 ft,		-	
max. Tens. S	Stress	=	-4.52 ka	si (Z:	= 72.6 ft,	T= 53.6 m	s)	
max. Energy	(EMX)	=	30.5 ki	.p-ft; max	. Measured	Top Displ.	(DMX) = 1	.00 in

			EXTI	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.3	587.6	-36.8	27.5	-1.72	30.5	14.8	1.02
2	6.6	587.9	-39.1	27.5	-1.83	30.4	14.7	1.01
4	13.2	588.6	-43.2	27.5	-2.02	30.1	14.7	0.98
6	19.8	589.5	-47.3	27.5	-2.21	29.6	14.6	0.94
8	26.4	604.1	-60.9	28.2	-2.84	29.0	14.3	0.90
10	33.0	599.7	-74.9	28.0	-3.50	28.5	14.3	0.86
12	39.6	596.4	-80.5	27.9	-3.76	27.2	14.0	0.82
14	46.2	588.0	-80.1	27.5	-3.74	25.6	13.8	0.77
15	49.5	577.3	-76.8	27.0	-3.59	24.4	13.6	0.74
16	52.8	592.4	-78.8	27.7	-3.68	23.9	13.3	0.72
17	56.1	585.3	-76.9	27.3	-3.59	22.8	12.9	0.69
18	59.4	580.2	-83.6	27.1	-3.91	22.4	13.1	0.67
19	62.7	559.1	-85.6	26.1	-4.00	21.1	13.1	0.64
20	66.0	567.2	-91.5	26.5	-4.27	20.7	12.9	0.61
21	69.3	558.8	-90.8	26.1	-4.24	19.5	12.6	0.59
22	72.6	569.2	-96.8	26.6	-4.52	19.0	12.3	0.56
23	75.9	536.5	-84.1	25.1	-3.93	17.1	12.0	0.54
24	79.2	546.9	-85.6	25.6	-4.00	16.6	11.7	0.51
25	82.5	508.3	-73.2	23.7	-3.42	14.6	13.0	0.49
26	85.8	493.6	-73.7	23.1	-3.44	14.3	14.0	0.47
27	89.1	485.0	-64.6	22.7	-3.02	12.5	14.7	0.44
28	92.4	498.4	-65.0	23.3	-3.04	11.4	14.4	0.42
Absolute	29.7			28.3			(T =	28.3 ms)
	72.6				-4.52		(T =	53.6 ms)

				CAS	E METHOD					
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
RP	555.7	434.9	314.0	193.2	72.4					
RX	609.3	557.9	511.2	489.2	468.0	455.9	451.7	447.4	443.3	439.3
RU	555.7	434.9	314.0	193.2	72.4					

RAU = 378.2 (kips); RA2 = 498.4 (kips)

Current CAPWAP Ru = 434.0 (kips); Corresponding J(RP)= 0.20; matches RX20 within 5%

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
14.8	26.51	564.1	595.9	599.2	1.00	0.24	0.24	30.6	591.2	1009

	PILE PROFILE AND PILE MODEL										
Dept	h Area	a E-Modulus	s Spec. Weight	Perim.							
f	t in ²	ksi	i lb/ft ³	ft							
0.	0 21.	4 29992.2	492.000	4.70							
92.	4 21.	4 29992.2	492.000	4.70							
Toe Area	198.	5 in ²									

Segmnt	Dist.In	pedance	Imped.		Tension	Comp	ression	Perim.	Wave	Soil
Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
	ftki	.ps/ft/s	%	in		in		ft	ft/s	kips
1	3.3	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16807.9	0.000
10	33.0	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16807.9	0.020
11	36.3	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16807.9	0.000
18	59.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16807.9	0.020
20	66.0	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16807.9	0.000
28	92.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16807.9	0.000

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c 11.0 ms Total volume: 13.735 ft³, Volume ratio considering added impedance: 1.000

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result.

	MAP Capacity	. 5/5	0. 21077	chaft	213.0; at	T 00	332.0	kips	
								-	
Soil	Dist.	Depth	Ru	Force	Sum		Unit	Unit	
Sgmnt	Below	Below		in Pile	of		ist.	Resist.	-
No.	Gages	Grade			Ru		pth)	(Area)	
	ft	ft	kips	kips	kips	kip	s/ft	ksf	s/f
				545.0					
1	19.8	9.2	0.0	545.0	0.0		0.00	0.00	0.0
2	26.4	15.8	0.0	545.0	0.0		0.00	0.00	0.0
3	33.0	22.4	5.0	540.0	5.0		0.76	0.16	0.3
4	39.6	29.0	5.0	535.0	10.0		0.76	0.16	0.3
5	46.2	35.6	6.0	529.0	16.0		0.91	0.19	0.3
6	52.8	42.2	6.0	523.0	22.0		0.91	0.19	0.3
7	59.4	48.8	6.0	517.0	28.0		0.91	0.19	0.3
8	66.0	55.4	12.0	505.0	40.0	:	1.82	0.39	0.3
9	72.6	62.0	28.0	477.0	68.0		4.24	0.90	0.3
10	79.2	68.6	45.0	432.0	113.0		6.82	1.45	0.3
11	85.8	75.2	50.0	382.0	163.0		7.57	1.61	0.3
12	92.4	81.8	50.0	332.0	213.0		7.57	1.61	0.3
Avg. Sh	aft		17.8			:	2.60	0.55	0.3
То	e		332.0					240.84	0.1
Soil Model	Parameters	/Extensio	ns		:	Shaft	То	e	
Juake		(in)			0.08	0.2	0	
-	ng Factor	•				1.67	0.8	7	
- Damping Ty	7pe				Vi	scous	Sm+Vis	с	
Jnloading	- Ouake	(%	of loadir	ng quake)		100	3	0	
Jnloading			of Ru)	5 1		31			
Soil Plug		(ki			(0.135	0.05	1	
APWAP mat	ch quality		1.43	(Wa	ve Up Matc	h) • R9	a = 0		
	Final Set	=	0.10 ir	-	w Count	=		b/ft	
	Final Set	=	0.11 in	-	w Count	=		b/ft	
nax. Top (Comp. Stress	=	31.5 ks	si (I	= 26.7 ms	, max=	1.040	х Тор)	
max. Comp.	Stress	=	32.8 ks	si (2	= 29.7 ft	, T= 2	.8.3 ms)	
max. Tens.	Stress	=	-5.33 ks	si (2	= 66.0 ft	, T= 5	2.2 ms)	

			EXTI	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.3	674.1	-32.3	31.5	-1.51	35.9	16.8	1.00
2	6.6	674.8	-35.7	31.5	-1.67	35.4	16.7	0.97
4	13.2	676.3	-42.4	31.6	-1.98	34.4	16.6	0.92
6	19.8	678.1	-48.3	31.7	-2.26	33.4	16.6	0.87
8	26.4	692.6	-54.1	32.4	-2.53	32.4	16.2	0.81
10	33.0	697.1	-65.9	32.6	-3.08	31.4	16.0	0.76
12	39.6	682.0	-78.0	31.9	-3.64	29.0	15.6	0.70
14	46.2	670.8	-89.6	31.3	-4.19	26.7	15.1	0.64
15	49.5	650.2	-91.3	30.4	-4.26	25.0	14.8	0.61
16	52.8	665.8	-98.3	31.1	-4.59	24.3	14.4	0.57
17	56.1	638.3	-100.6	29.8	-4.70	22.6	14.1	0.54
18	59.4	642.8	-106.4	30.0	-4.97	22.0	14.1	0.51
19	62.7	630.5	-108.7	29.5	-5.08	20.4	13.7	0.48
20	66.0	652.9	-114.0	30.5	-5.33	19.7	13.2	0.45
21	69.3	625.7	-109.2	29.2	-5.10	17.6	12.4	0.41
22	72.6	657.9	-111.1	30.7	-5.19	16.9	11.6	0.38
23	75.9	590.3	-95.5	27.6	-4.46	13.8	10.6	0.35
24	79.2	620.1	-97.0	29.0	-4.53	13.3	9.5	0.32
25	82.5	492.6	-72.5	23.0	-3.39	9.8	8.5	0.30
26	85.8	497.5	-73.6	23.2	-3.44	9.4	8.4	0.27
27	89.1	439.6	-47.7	20.5	-2.23	6.5	9.0	0.25
28	92.4	446.2	-48.8	20.8	-2.28	4.4	8.7	0.22
Absolute	29.7			32.8			(T =	28.3 ms)
	66.0				-5.33		(T =	52.2 ms)

				CAS	E METHOD	1				
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
RP	853.1	759.4	665.7	572.0	478.4					
RX	857.2	768.5	682.4	614.2	566.8	538.0	521.0	510.5	506.1	502.0
RU	853.5	759.9	666.3	572.7	479.1					

RAU = 222.5 (kips); RA2 = 639.4 (kips)

Current CAPWAP Ru = 545.0 (kips); Corresponding J(RP)= 0.66; J(RX) = 0.92

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
16.5	26.51	631.1	690.3	690.3	1.00	0.10	0.10	36.2	791.2	1660

PILE PROFILE AND PILE MODEL										
Depth	Area	E-Modulus	Spec. Weight	Perim.						
ft	in ²	ksi	lb/ft ³	ft						
0.0	21.4	29992.2	492.000	4.70						
92.4	21.4	29992.2	492.000	4.70						
Toe Area	198.5	ln^2								

Segmnt	Dist.In	pedance	Imped.		Tension	Comp	ression	Perim.	Wave	Soil
Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
	ftki	.ps/ft/s	%	in		in		ft	ft/s	kips
1	3.3	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16807.9	0.000
10	33.0	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16807.9	0.020
11	36.3	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16807.9	0.000
18	59.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16807.9	0.020
19	62.7	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16807.9	0.000
26	85.8	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16807.9	0.020
27	89.1	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16807.9	0.025
28	92.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16807.9	0.050

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c 11.0 ms Total volume: 13.735 ft³, Volume ratio considering added impedance: 1.000

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result.

			CAPW	AP SUMMARY	RESULTS			
Total CAPW	AP Capacity	: 565	.0; along	Shaft	70.0; at :	Toe 495.	0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Facto
	ft	ft	kips	kips	kips	kips/ft	ksf	s/f
				565.0				
1	6.6	4.4	0.0	565.0	0.0	0.00	0.00	0.0
2	13.1	11.0	0.0	565.0	0.0	0.00	0.00	0.0
3	19.7	17.5	0.0	565.0	0.0	0.00	0.00	0.0
4	26.3	24.1	4.0	561.0	4.0	0.61	0.13	0.2
5	32.9	30.7	4.0	557.0	8.0	0.61	0.13	0.2
6	39.4	37.3	4.0	553.0	12.0	0.61	0.13	0.2
7	46.0	43.8	5.0	548.0	17.0	0.76	0.16	0.2
8	52.6	50.4	5.0	543.0	22.0	0.76	0.16	0.2
9	59.1	57.0	6.0	537.0	28.0	0.91	0.19	0.2
10	65.7	63.5	5.0	532.0	33.0	0.76	0.16	0.2
11	72.3	70.1	5.0	527.0	38.0	0.76	0.16	0.2
12	78.9	76.7	8.0	519.0	46.0	1.22	0.26	0.2
13	85.4	83.3	9.0	510.0	55.0	1.37	0.29	0.2
14	92.0	89.8	15.0	495.0	70.0	2.28	0.49	0.2
Avg. Sha	ft		5.0			0.78	0.17	0.2
Тое			495.0				359.09	0.0
Soil Model	Parameters	/Extensi	ons		s	haft T	oe	
Quake		(ir	1)			0.16 0.	36	
Case Dampir	ng Factor					0.42 0.	91	
Damping Typ	pe				Vis	cous Sm+Vi	sc	
Unloading 🤉	Quake	(%	of loadi	ng quake)		51	51	
Unloading I	Level	(%	of Ru)			75		
Soil Plug V	Weight	(ki	.ps)		0	.040		
CAPWAP mate	ch quality	=	2.60	(Wa	ve Up Match); RSA = 0)	
Observed: H		=	0.17 i		v Count) b/ft	
Computed: H	Final Set	=	0.19 i	-	v Count		b/ft	
max. Top Co	omp. Stress	=	29.2 k	si (T:	= 26.8 ms,	max= 1.030	х Тор)	
max. Comp.	Stress	=	30.1 k	si (Z:	= 23.0 ft,	T= 28.0 m	IS)	
max. Tens.	Stress	=	-4.73 k	si (Z:	= 72.3 ft,	T= 53.8 m	IS)	
max. Energy	/ (EMX)	=	34.1 k	ip-ft; max	. Measured	Top Displ.	(DMX) = 1	.05 in

		EXTREMA TABLE												
max	max.	max.	max.	max.	min.	max.	Dist.	Pile						
Displ	Veloc.	Trnsfd.	Tens.	Comp.	Force	Force	Below	Sgmnt						
		Energy	Stress	Stress			Gages	No.						
ir	ft/s	kip-ft	ksi	ksi	kips	kips	ft							
1.07	15.7	34.1	-1.38	29.2	-29.5	626.0	3.3	1						
1.00	15.6	34.1	-1.46	29.3	-31.2	626.7	6.6	2						
1.03	15.6	33.7	-1.69	29.4	-36.1	628.3	13.1	4						
0.99	15.2	33.2	-1.90	30.1	-40.6	643.8	19.7	6						
0.95	15.2	32.6	-2.33	29.9	-50.0	640.5	26.3	8						
0.90	15.0	31.0	-2.97	29.5	-63.6	631.3	32.9	10						
0.86	14.7	29.4	-3.54	29.1	-75.9	622.9	39.4	12						
0.81	14.4	27.6	-3.54	28.8	-75.8	617.1	46.0	14						
0.78	14.0	26.1	-3.33	28.5	-71.3	610.7	49.3	15						
0.75	13.9	25.7	-3.33	28.7	-71.2	613.4	52.6	16						
0.72	13.9	24.2	-3.38	27.6	-72.3	591.5	55.9	17						
0.69	13.8	23.6	-3.86	27.8	-82.6	595.8	59.1	18						
0.60	13.6	22.0	-3.94	27.0	-84.3	576.9	62.4	19						
0.63	13.5	21.4	-4.39	27.2	-94.0	581.6	65.7	20						
0.60	13.4	20.0	-4.51	26.5	-96.6	567.3	69.0	21						
0.51	13.2	19.4	-4.73	26.8	-101.2	572.9	72.3	22						
0.54	13.0	18.0	-4.48	26.2	-95.8	561.7	75.6	23						
0.51	13.8	17.3	-4.48	26.6	-95.9	568.8	78.9	24						
0.48	15.2	15.6	-4.06	25.7	-86.9	550.3	82.1	25						
0.44	16.5	14.9	-4.06	27.4	-86.9	586.6	85.4	26						
0.41	16.9	13.2	-3.59	27.5	-76.8	587.9	88.7	27						
0.38	15.6	12.1	-3.59	28.2	-76.8	603.0	92.0	28						
28.0 ms)	(T =			30.1			23.0	olute						
53.8 ms)	(T =		-4.73				72.3							

	CASE METHOD												
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8			
RP	583.7	522.7	461.8	400.8	339.8	278.8	217.8	156.9	95.9	34.9			
RX	704.3	684.1	663.8	646.3	629.2	613.9	600.7	587.6	574.4	561.3			
RU	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
RAU =	426.9 (ki	.ps); RA	.2 = 6	34.9 (ki	ps)								
Current	CAPWAP Ru	= 565.0	(kips);	Correspo	nding J(RP)= 0.0	6; J(RX)	= 1.74					
VM	X TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB			

VMX	TVP	A.T.T.*.Z	FTT	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
15.4	26.59	587.6	636.4	636.4	1.05	0.17	0.17	34.0	670.1	1364

	PILE P	ROFILE AND PILE MO	ODEL	
Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in ²	ksi	lb/ft ³	ft
0.0	21.4	29992.2	492.000	4.70
92.0	21.4	29992.2	492.000	4.70
Toe Area	198.5	in ²		

Segmnt	Dist.In	npedance	Imped.		Tension Compression		Perim. Wave	Wave	Soil	
Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
	ftki	.ps/ft/s	%	in		in		ft	ft/s	kips
1	3.3	38.20	0.00	0.00	0.000	-0.00	0.000	4.70 1	L6807.9	0.000
8	26.3	38.20	0.00	0.00	0.000	-0.00	0.000	4.70 1	L6807.9	0.020
9	29.6	38.20	0.00	0.00	0.000	-0.00	0.000	4.70 1	L6807 . 9	0.000
17	55.9	38.20	0.00	0.00	0.000	-0.00	0.000	4.70 1	L6807 . 9	0.020
18	59.1	38.20	0.00	0.00	0.000	-0.00	0.000	4.70 1	L6807 . 9	0.000
28	92.0	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.000

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.195 ms, 2L/c 10.9 ms Total volume: 13.672 ft³, Volume ratio considering added impedance: 1.000

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result.

				CAPWAP SUMM					
otal CA	PWAP Capa	city:	522.0;	along Shaft	172.0	; at Toe	350.0	kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith	Qua
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping	
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor	
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft	
				522.0					
1	6.6	4.4	0.0	522.0	0.0	0.00	0.00	0.00	0.
2	13.1	11.0	0.0	522.0	0.0	0.00	0.00	0.00	0.
3	19.7	17.6	0.0	522.0	0.0	0.00	0.00	0.00	0.
4	26.3	24.1	4.0	518.0	4.0	0.61	0.13	0.30	0.
5	32.9	30.7	5.0	513.0	9.0	0.76	0.16	0.30	0.
6	39.4	37.3	6.0	507.0	15.0	0.91	0.19	0.30	0.
7	46.0	43.9	10.0	497.0	25.0	1.52	0.32	0.30	0.
8	52.6	50.4	10.0	487.0	35.0	1.52	0.32	0.30	0.
9	59.1	57.0	10.0	477.0	45.0	1.52	0.32	0.30	0.
10	65.7	63.6	12.0	465.0	57.0	1.83	0.39	0.30	Ο.
11	72.3	70.1	20.0	445.0	77.0	3.04	0.65	0.30	Ο.
12	78.9	76.7	25.0	420.0	102.0	3.80	0.81	0.30	Ο.
13	85.4	83.3	25.0	395.0	127.0	3.80	0.81	0.30	Ο.
14	92.0	89.9	45.0	350.0	172.0	6.85	1.46	0.30	0.
Avg. Sh	haft		12.3			1.91	0.41	0.30	0.
Тс	e		350.0				253.90	0.08	0.
oil Mod	el Parame	eters/Ext	ensions			Shaft	Toe	1	
ase Damj	ping Fact	or				1.35	0.77		
amping	Гуре					Viscous	Sm+Visc		
nloading	g Quake		(% of	loading quak	e)	96	30		
eloading	g Level		(% of :	Ru)		-100	100		
nloading	g Level		(% of :	Ru)		25			
esistan	ce Gap (i	ncluded	in Toe Q	uake) (in)			0.00		
oil Plug	g Weight		(kips)			0.040	0.005		
	atch qual	ity	= 1	.56	(Wave IIn	Match) ;	RSA = 0		
	: Final S	-	_		Blow Cou		160 k	o∕f t	
	: Final S			-	Blow Cou		151 k		
ansducer				-	L: 93.0; RI		151 1	, 20	
		2524) CAL:		.09; A4(K3550) CA		F: 1.09			
-	Comp. St			8.5 ksi		.8 ms, max		_	
-	p. Stress			9.6 ksi		.0 ft, T=			
ax. Ten	s. Stress	5	= -3	.84 ksi	(Z= 65	.7 ft, T=	51.6 ms)		
	rgy (EMX)		= 2	9.5 kip-ft;		_			

		EXTREMA TABLE													
max	max.	max.	max.	max.	min.	max.	Dist.	Pile							
Displ	Veloc.	Trnsfd.	Tens.	Comp.	Force	Force	Below	Sgmnt							
		Energy	Stress	Stress			Gages	No.							
ir	ft/s	kip-ft	ksi	ksi	kips	kips	ft								
0.88	15.0	29.5	-1.28	28.5	-27.4	611.0	3.3	1							
0.86	15.0	29.2	-1.40	28.6	-29.9	612.0	6.6	2							
0.82	14.9	28.7	-1.62	28.7	-34.7	614.3	13.1	4							
0.78	14.4	28.0	-1.84	29.5	-39.5	630.7	19.7	6							
0.73	14.4	27.3	-2.03	29.5	-43.5	630.4	26.3	8							
0.68	14.1	25.7	-2.14	29.1	-45.8	623.0	32.9	10							
0.63	13.6	23.8	-2.22	28.7	-47.6	614.0	39.4	12							
0.58	13.0	21.8	-2.77	28.4	-59.2	607.4	46.0	14							
0.55	12.4	19.8	-2.77	27.1	-59.4	579.1	49.3	15							
0.52	12.2	19.2	-3.17	27.4	-67.8	586.2	52.6	16							
0.49	12.1	17.3	-3.17	25.5	-67.8	544.9	55.9	17							
0.40	11.8	16.7	-3.52	26.0	-75.3	555.6	59.1	18							
0.43	11.5	15.0	-3.56	24.5	-76.1	524.4	62.4	19							
0.40	11.1	14.5	-3.84	25.3	-82.1	541.8	65.7	20							
0.38	10.6	12.8	-3.71	23.8	-79.4	510.0	69.0	21							
0.35	10.1	12.2	-3.79	24.8	-81.1	530.3	72.3	22							
0.32	9.5	10.1	-3.36	22.1	-71.8	473.3	75.6	23							
0.29	9.0	9.6	-3.43	23.1	-73.4	493.5	78.9	24							
0.26	8.5	7.6	-2.90	21.7	-62.1	465.5	82.1	25							
0.24	9.3	7.1	-2.92	22.5	-62.6	482.2	85.4	26							
0.21	9.5	5.5	-2.34	21.2	-50.1	453.7	88.7	27							
0.19	8.3	3.9	-2.35	21.6	-50.2	462.4	92.0	28							
28.0 ms)	(T =			29.6			23.0	olute							
51.6 ms)	(T =		-3.84				65.7								

	CASE METHOD												
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8			
RP	765.4	728.4	691.3	654.3	617.3	580.3	543.3	506.3	469.3	432.3			
RX	765.4	728.4	693.8	660.9	627.9	604.7	585.1	568.3	551.5	534.6			
RU	798.8	727.7	656.7	585.6	514.6	443.5	372.5	301.5	230.4	159.4			
RAU =	198.2 (ki	lps); RA	.2 = 5	557.5 (ki	ps)								
Current	CAPWAP Ru	= 522.0	(kips);	Correspo	nding J()	RP)= 1.3	2; J(RX)	= 1.96					
VM	X TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB			
ft/	s ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in			
14.	8 26.78	547.4	606.5	619.3	0.88	0.08	0.08	29.8	745.0	2146			

	PILE PROFILE AND PILE MODEL											
	Depth	Area	E-Modulus	Spec. Weight	Perim.							
	ft	in ²	ksi	lb/ft ³	ft							
	0.0	21.4	29992.2	492.000	4.70							
	92.0	21.4	29992.2	492.000	4.70							
Toe Area		198.5	in^2									

Segmnt	Dist.Im	npedance	Imped.		Tension	Comp	ression	Perim.	Wave	Soil
Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
	ftki	.ps/ft/s	%	in		in		ft	ft/s	kips
1	3.3	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	L6807.9	0.000
8	26.3	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	L6807.9	0.020
9	29.6	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	L6807.9	0.000
17	55.9	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	L6807.9	0.020
18	59.1	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	L6807.9	0.000
28	92.0	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	L6807.9	0.000

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.195 ms, 2L/c 10.9 ms Total volume: 13.672 ft³, Volume ratio considering added impedance: 1.000