GRL Engineers, Inc.

1540 E. Dundee Road, Suite 102 Palatine, IL 60074 USA Phone: (847) 221-2750 Fax: (847) 221-2752

TRANSMITTAL

To: Mr. Kevin Weber	From: Al Ziai
Company: Lunda Construction Co.	No. of Sheets: 55
E-mail: kweber@lundaconstruction.com	Date: December 19, 2014

RE: Dynamic Testing Results – USH 10 over Little Lake Butte des Morts Structure B-70-403 - Pier 5 Winnebago County, Wisconsin

On December 17, 2014, Pier 5 #1, Pier 5 #36, and Pier 5 #44 at the above structure were dynamically tested during initial driving. The piles were tested during restrike on December 18. Project plans indicated the exterior row piles have a required driving resistance, or ultimate capacity, of 480 kips (240 tons) and the interior row piles have a required driving resistance of 400 kips (200 tons). The reference elevation for the piles was the top of the ring at EL 740.4. We understand the pier was excavated to two to three feet below the bottom of footing elevation of EL 720.5. The piles have a required minimum tip elevation of EL 663. The HP 14x73 H-piles were equipped with driving shoes and were driven with an APE D30-42 hammer (number PD 0256) reportedly operated on fuel setting 4.

Pier 5 #1 was driven to a depth of 87.9 feet, which corresponds to a pile tip elevation of EL 652.5. The blow count over the final increment of driving was 10 blows for $1\frac{3}{4}$ inches of penetration at an average hammer stroke of 7.3 feet. The blow count at the beginning of restrike was 5 blows for $\frac{5}{6}$ inch of penetration at an average hammer stroke of 7.9 feet.

Pier 5 #36 was driven to a depth of 86.7 feet, which corresponds to a pile tip elevation of EL 653.7. The blow count over the final increment of driving was 10 blows for $\frac{3}{4}$ inch of penetration at an average hammer stroke of 7.6 feet. The blow count at the beginning of restrike was 5 blows for $\frac{5}{6}$ inch of penetration at an average hammer stroke of 7.5 feet

Pier 5 #44 was driven to a depth of 87.0 feet, which corresponds to a pile tip elevation of EL 653.4. The blow count over the final increment of driving was 43 blows per foot at an average hammer stroke of 7.2 feet. The blow count at the beginning of restrike was 5 blows for $\frac{5}{8}$ inch of penetration at an average hammer stroke of 7.3 feet

Our driving recommendations have been prepared on a blows-per-inch basis. The criteria should be applied only after the minimum pile tip elevation is achieved. For the 480 and 400 kips piles driven with an APE D30-42 hammer (PD 0256) in Pier 5 of the USH 10 bridge over Little Lake Butte des Morts we recommend using the following criteria:

Field Observed	Exterior Piles (480 kips) Recommended Minimum	Interior Piles (400 kips) Recommended Minimum
Hammer Stroke	Blow Count	Blow Count
(feet)	(blows per inch)	(blows per inch)
6.5	7	5
7.0	5	4
7.5	5	4
8.0	4	3
8.5	4	3
9.0	4	3

We recommend the above blow counts at the required stroke be maintained for three consecutive inches of driving. We recommend immediately terminating driving if the blow counts exceed 10 blows over an increment of one inch or less at hammer strokes of 8.0 feet, after satisfying any minimum tip requirements. We anticipate the production piles will terminate at depths similar to those of the test piles.

These criteria should not be used for acceptance of piles under restrike and/or redrive conditions. After splicing or any other delays, we recommend not applying the criteria until a full foot of driving has occurred beyond the termination depth associated with the delay, unless the blow count exceeds 10 blows per inch.

Please call if you have any questions on these recommendations.

GRL Engineers, Inc.

tlzini Al Ziai 1/2 Oku

Travis Coleman, P.E.

Cc: Jeff Horsfall - jeffrey.horsfall@dot.wi.gov

Attachments:

Dynamic Test Results -(pages 3 - 25)CAPWAP Analysis Results - (pages 26 – 55)

PDIPLOT Ver. 2014.1 - Printed: 18-Dec-2014

USH 10 - B-70-403 - Pier 5 #1 - EOID APE D30-42, HP 14 x 73

Test date: 17-Dec-2014

GRL Engineers, Inc.

Case Method & iCAP® Results

USH 10 - B-70-403 - Pier 5 #1 - EOID <u>O</u>

APE D30-42, HP 14 x 73

USH [·] OP: A	10 - B-70-403 - Pi∈ <i>7</i>	er 5 #1 - EOID					A	APE D30-42, H Test date: 17-	
AR: LE:	21.40 in^2 88.90 ft 16,807.9 f/s							SP: C	.492 k/ft3 ,000 ksi
CSX: CSB:	Max Measured Co Compression Stre O.E. Diesel Hamn	ess at Bottom				BPM	: Max Transfe : Blows per Mi Max Case M	rred Energy	1.00
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
end	ft	bl/ft		ksi	ksi	ft **	k-ft	**	kips
1	33.00	1	AV1 MAX	16.0 16.0	1.8 1.8	**	21 21	**	0 0
			MIN	16.0	1.8	**	21	**	0
2	34.00	1	AV1	18.8	2.8	**	39	**	0
			MAX MIN	18.8 18.8	2.8 2.8	**	39 39	**	0 0
4	35.00	2	AV2	11.7	2.0	3.4	39 17	63	0
4	35.00	Z	STD	1.6	0.2	0.2	2	1	0
			MAX	13.3	2.4	3.6	20	64	0
0	00.00	0	MIN	10.1	2.0	3.2	15	61	0
6	36.00	2	AV2 STD	6.2 0.4	1.6 0.0	3.0 0.0	10 0	67 0	0 0
			MAX	6.6	1.6	3.0	11	67	0
			MIN	5.8	1.5	3.0	10	67	0
8	37.00	2	AV1 MAX	2.6 2.6	0.8 0.8	2.9 2.9	2 2	67 67	0 0
			MIN	2.6	0.8	2.9	2	67	0
10	38.00	2	AV2	19.0	3.4	4.8	29	54	0
			STD MAX	3.9 22.9	0.5 4.0	1.0 5.8	8 37	5 59	0 0
			MIN	15.1	2.9	3.8	21	49	0
12	39.00	2	AV2	13.9	2.9	3.8	21	60	0
			STD MAX	0.7 14.6	0.1 3.1	0.1 3.9	2 23	1 61	0 0
			MIN	13.2	2.8	3.6	20	59	0
14	40.00	2	AV2	16.2	3.3	4.1	25	57	0
			STD MAX	0.3 16.5	0.1 3.4	0.0 4.2	1 26	0 58	0 0
			MIN	15.9	3.2	4.1	23	57	0
16	41.00	2	AV2	15.2	3.3	3.9	23	58	0
			STD MAX	0.4 15.6	0.0 3.3	0.1 4.1	1 24	1 59	0 0
			MIN	14.8	3.3	3.8	22	58	0
18	42.00	2	AV2	16.2	3.5	4.1	24 2	57	0
			STD MAX	1.1 17.4	0.2 3.7	0.2 4.3	2 26	1 58	0 0
			MIN	15.1	3.3	3.9	23	56	0
20	43.00	2	AV2	16.7	3.8	4.2	26	57	0
			STD MAX	0.0 16.8	0.0 3.8	0.0 4.2	0 26	0 57	0 0
			MIN	16.7	3.8	4.2	26	57	0
22	44.00	2	AV2	17.0	3.9	4.2	26	57	0
			STD MAX	0.0 17.0	0.1 4.1	0.0 4.2	1 27	0 57	0 0
			MIN	17.0	3.8	4.2	26	57	0
25	45.00	3	AV3	17.4	4.5	4.3	25	56	5
			STD MAX	0.3 17.7	0.2 4.7	0.1 4.4	0 25	0 56	4
			MIN	17.0	4.7	4.4	25	56	11 0
28	46.00	3	AV3	18.0	4.6	4.5	26	55	10
			STD	0.1	0.1	0.0	0	0	3
			MAX MIN	18.1 17.9	4.7 4.5	4.5 4.5	26 26	55 55	13 7
31	47.00	3	AV3	17.6	4.3	4.4	25	56	14
			STD	0.4	0.1	0.1	0	1	9
			MAX MIN	18.2 17.1	4.4 4.2	4.5 4.3	26 25	56 55	25 5
						-			-

USH 10 - B-70-403 - Pier 5 #1 - EOID

Page 2 of 5 PDIPLOT Ver. 2014.1 - Printed: 18-Dec-2014

OP: AZ	- D-70-403 - Pie	#15#1-EUID					F	Test date: 17-l	
BL# end 35	depth ft 48.00	BLC bl/ft 4	TYPE AV4	CSX ksi 18.3	CSB ksi 5.0	STK ft 4.5	EMX k-ft 25	BPM ** 55	RX9 kips 45
		4	STD MAX MIN	0.8 19.4 17.3	0.2 5.3 4.8	0.2 4.8 4.4	1 27 23	1 56 53	43 15 70 29
39	49.00	4	AV4 STD MAX MIN	18.6 0.4 19.1 18.0	5.4 0.2 5.6 5.0	4.6 0.1 4.7 4.5	25 1 26 23	54 1 55 54	56 14 74 41
43	50.00	4	AV4 STD MAX MIN	18.3 0.5 18.9 17.4	4.9 0.2 5.2 4.8	4.5 0.1 4.7 4.3	25 1 27 24	55 1 56 54	29 4 34 24
47	51.00	4	AV4 STD MAX MIN	18.2 0.5 18.8 17.4	4.8 0.2 5.0 4.5	4.5 0.1 4.6 4.3	25 1 26 24	55 1 56 55	31 3 37 28
51	52.00	4	AV4 STD MAX MIN	18.2 0.7 19.1 17.3	4.7 0.2 4.9 4.5	4.5 0.1 4.6 4.3	25 1 26 23	55 1 56 54	37 5 43 31
56	53.00	5	AV5 STD MAX MIN	18.4 0.4 18.8 17.8	4.9 0.2 5.2 4.7	4.5 0.1 4.6 4.5	23 1 24 22	55 0 55 54	61 5 70 53
60	54.00	4	AV4 STD MAX MIN	18.3 0.7 19.4 17.6	5.0 0.3 5.5 4.8	4.5 0.2 4.7 4.3	24 1 26 23	55 1 56 54	57 6 65 50
64	55.00	4	AV4 STD MAX MIN	19.4 0.9 20.7 18.3	5.4 0.3 5.7 4.9	4.6 0.1 4.8 4.4	26 1 27 24	54 1 55 53	58 4 63 51
68	56.00	4	AV4 STD MAX MIN	18.8 0.5 19.5 18.2	5.4 0.3 5.8 4.9	4.6 0.1 4.8 4.5	25 1 27 24	55 1 55 53	65 4 69 59
72	57.00	4	AV4 STD MAX MIN	19.6 0.8 20.9 18.8	5.2 0.3 5.6 4.9	4.7 0.1 4.9 4.6	26 2 28 24	54 1 55 53	74 4 80 69
76	58.00	4	AV4 STD MAX MIN	19.5 0.2 19.6 19.3	5.3 0.0 5.4 5.3	4.7 0.0 4.8 4.6	26 0 26 25	54 0 54 54	83 3 86 79
80	59.00	4	AV4 STD MAX MIN	19.8 0.1 19.9 19.6	5.6 0.1 5.7 5.5	4.8 0.0 4.8 4.7	26 1 27 25	54 0 54 53	89 4 95 85
84	60.00	4	AV4 STD MAX MIN	20.1 0.3 20.4 19.7	5.6 0.1 5.8 5.5	4.8 0.0 4.9 4.8	26 0 26 25	53 0 53 53	91 1 93 90
88	61.00	4	AV4 STD MAX MIN	20.1 0.2 20.4 19.8	5.8 0.1 6.0 5.6	4.8 0.0 4.9 4.8	26 0 26 25	53 0 54 53	93 1 94 90
92	62.00	4	AV4 STD MAX MIN	20.5 0.5 21.2 19.9	6.1 0.2 6.3 5.9	4.9 0.1 5.0 4.8	26 1 28 25	53 0 53 52	96 2 100 94

USH 10 - B-70-403 - Pier 5 #1 - EOID

Page 3 of 5 PDIPLOT Ver. 2014.1 - Printed: 18-Dec-2014

APE D30-42, HP 14 x 73 Test date: 17-Dec-2014

OP: AZ	D70403 11						I	Test date: 17-l	
BL# end	depth ft	BLC bl/ft	TYPE	CSX ksi	CSB ksi	STK ft	EMX k-ft	BPM	RX9 kips
97	63.00	5	AV5 STD MAX MIN	20.6 0.5 21.4 19.8	6.3 0.3 6.8 6.0	4.9 0.1 5.1 4.8	26 1 28 25	53 0 53 52	100 3 104 94
102	64.00	5	AV5 STD MAX MIN	20.7 0.4 21.3 20.2	6.6 0.2 6.9 6.4	5.0 0.1 5.1 4.9	26 1 27 25	52 0 53 52	102 2 104 99
107	65.00	5	AV5 STD MAX MIN	21.1 0.3 21.6 20.7	6.5 0.2 6.9 6.2	5.0 0.1 5.2 5.0	26 1 28 25	52 0 53 52	104 3 106 99
113	66.00	6	AV6 STD MAX MIN	21.1 0.2 21.4 20.8	6.5 0.2 6.8 6.2	5.1 0.0 5.1 5.1	26 0 26 26	52 0 52 52	105 2 107 102
121	67.00	8	AV8 STD MAX MIN	21.3 0.3 21.7 20.7	6.7 0.2 7.0 6.3	5.2 0.1 5.2 5.1	25 1 26 24	52 0 52 51	109 2 115 107
129	68.00	8	AV8 STD MAX MIN	21.7 0.3 22.2 21.1	7.4 0.3 7.8 6.8	5.2 0.1 5.3 5.1	25 0 25 24	51 0 52 51	110 3 115 106
137	69.00	8	AV8 STD MAX MIN	22.3 0.6 23.9 21.9	8.2 0.5 9.4 7.4	5.4 0.1 5.7 5.3	26 1 28 26	51 0 51 49	127 5 135 117
145	70.00	8	AV8 STD MAX MIN	23.5 0.5 24.1 22.7	9.1 0.4 9.6 8.4	5.7 0.1 5.9 5.5	29 1 30 26	49 1 50 49	148 8 158 136
154	71.00	9	AV9 STD MAX MIN	23.7 0.4 24.2 23.1	9.0 0.3 9.6 8.6	5.7 0.1 5.9 5.5	28 1 30 26	49 0 50 48	149 7 162 140
164	72.00	10	AV10 STD MAX MIN	23.1 0.6 24.0 22.5	8.4 0.3 9.0 7.8	5.5 0.1 5.8 5.3	26 1 28 25	50 1 51 49	138 6 146 131
174	73.00	10	AV10 STD MAX MIN	23.0 0.8 24.2 21.9	8.4 0.8 9.7 7.4	5.5 0.2 5.8 5.2	26 2 29 24	50 1 52 49	138 9 157 129
184	74.00	10	AV10 STD MAX MIN	24.1 0.3 24.6 23.6	9.7 0.4 10.3 9.2	5.8 0.1 6.0 5.7	29 1 30 27	49 0 49 48	159 6 166 148
194	75.00	10	AV10 STD MAX MIN	23.9 0.4 24.7 23.3	9.1 0.2 9.6 8.8	5.7 0.1 5.9 5.5	28 1 29 26	49 0 50 48	144 8 158 134
204	76.00	10	AV10 STD MAX MIN	25.1 0.7 26.3 23.8	10.3 0.7 11.8 9.5	5.9 0.1 6.1 5.6	29 1 31 27	48 1 49 48	154 10 179 142
214	77.00	10	AV8 STD MAX MIN	26.4 0.4 26.7 25.5	11.8 0.4 12.4 11.3	6.2 0.1 6.3 6.1	31 1 32 30	47 0 48 47	178 5 187 170

USH 10 - B-70-403 - Pier 5 #1 - EOID

Page 4 of 5 PDIPLOT Ver. 2014.1 - Printed: 18-Dec-2014

D-70-403 - 1 le	5 # 1 - LOIL	,				,	APE D30-42, H Test date: 17-	
depth ft	BLC bl/ft	TYPE	CSX ksi	CSB ksi	STK ft	EMX k-ft	BPM	RX9 kips 202
78.00	10	STD MAX MIN	20.9 0.6 28.0 25.8	0.7 14.0 11.8	0.3 0.2 6.5 5.9	1 32 30	1 48 46	18 226 176
79.00	12	AV12 STD MAX MIN	27.8 0.4 28.3 27.1	15.2 0.8 16.4 13.8	6.5 0.1 6.7 6.3	31 1 33 29	46 0 47 46	259 16 283 227
80.00	19	AV19 STD MAX MIN	27.9 0.5 28.9 27.0	15.4 0.5 16.2 14.0	6.5 0.1 6.8 6.1	30 1 33 28	46 1 47 45	253 21 285 225
81.00	22	AV22 STD MAX MIN	28.0 0.4 28.8 27.3	16.0 0.6 17.1 15.0	6.5 0.1 6.8 6.3	31 1 33 27	46 0 47 45	261 14 288 239
82.00	11	AV11 STD MAX MIN	28.2 0.5 28.9 27.4	16.1 0.5 16.9 15.2	6.5 0.1 6.8 6.3	31 1 33 29	46 0 47 45	258 6 268 249
83.00	12	AV12 STD MAX MIN	28.4 0.6 29.6 27.3	15.3 0.5 16.1 14.3	6.6 0.2 6.9 6.3	32 1 34 30	46 1 47 45	236 7 246 223
84.00	18	AV18 STD MAX MIN	28.4 0.5 29.4 27.3	16.3 2.1 20.9 14.3	6.6 0.2 7.0 6.3	31 1 33 30	46 1 47 45	268 53 389 218
85.00	48	AV48 STD MAX MIN	29.6 0.7 30.9 28.4	24.2 0.8 25.1 21.6	7.3 0.2 7.8 7.0	35 2 38 31	44 1 45 42	492 24 522 418
86.00	48	AV48 STD MAX MIN	30.0 0.5 31.3 28.8	24.3 0.4 25.4 23.3	7.2 0.2 7.5 6.9	35 1 37 33	44 0 45 43	500 5 510 488
87.00	54	AV54 STD MAX MIN	29.8 0.6 31.1 28.6	25.1 0.7 27.2 23.9	7.1 0.1 7.5 6.9	34 1 36 32	44 0 45 43	512 10 535 491
87.44	57	AV21 STD MAX MIN	29.8 0.5 30.8 28.9	25.9 0.6 26.9 24.6	7.1 0.2 7.4 6.9	34 1 36 32	44 0 45 44	532 9 545 514
87.58	69	AV10 STD MAX MIN	29.8 0.5 30.8 28.9	26.7 0.6 27.8 25.6	7.2 0.1 7.5 7.1	34 1 37 33	44 0 44 43	547 7 558 539
87.73	69	AV10 STD MAX MIN	29.9 0.6 30.9 28.8	27.1 0.5 27.9 26.3	7.3 0.2 7.5 6.9	35 1 36 33	44 0 45 43	556 8 565 542
87.88	69	AV10 STD MAX MIN	30.1 0.4 31.0 29.6	27.5 0.4 28.1 26.9	7.3 0.1 7.4 7.1	35 1 36 34	44 0 44 43	563 4 569 557
		Average Std. Dev. Maximum Minimum	4.8 31.3 2.6	8.3 28.1 0.8	1.1 7.8 2.9	30 4 39 2	48 4 67 42	290 192 569 0
	depth ft 78.00 79.00 80.00 81.00 82.00 83.00 84.00 85.00 85.00 86.00 87.00 87.44 87.58	depth ft BLC bl/ft 78.00 10 79.00 12 80.00 19 81.00 22 82.00 11 83.00 12 84.00 18 85.00 48 86.00 48 87.00 54 87.44 57 87.58 69 87.73 69	ft bl/ft 78.00 10 AV10 78.00 10 AV10 78.00 12 AV12 79.00 12 AV12 STD MAX MIN 80.00 19 AV19 STD MAX MIN 81.00 22 AV22 STD MAX MIN 81.00 22 AV22 STD MAX MIN 82.00 11 AV11 STD MAX MIN 83.00 12 STD MAX MIN MIN 84.00 18 AV18 STD MAX MIN 85.00 48 AV48 STD MAX MIN STD MAX MIN 87.00 54 AV48 STD MAX MIN STD MAX MIN ST.58 69	depth ft BLC bl/ft TYPE ksi 78.00 CSX stp 0.6 78.00 10 AV10 26.9 78.00 10 AV10 26.9 78.00 12 AV12 27.8 79.00 12 AV12 27.8 79.00 12 AV12 27.8 80.00 19 AV19 27.9 STD 0.5 MAX 28.9 MIN 27.0 5TD 0.5 MAX 28.9 MIN 27.0 81.00 22 AV22 28.0 STD 0.4 MAX 28.8 MIN 27.3 82.00 11 AV11 28.2 STD 0.5 MAX 28.9 MIN 27.4 83.00 12 AV12 28.4 STD 0.6 MAX 29.6 STD 0.5 MAX 29.6 STD 0.5 MAX 29.6 STD 0.5	depth ft BLC bl/ft TYPE NTD CSX ksi ksi ksi CSB ksi ksi 78.00 10 AV10 26.9 12.9 78.00 10 AV10 26.9 12.9 78.00 12 AV12 27.8 15.2 79.00 12 AV12 27.8 15.2 STD 0.4 0.8 MAX 28.3 16.4 MIN 27.1 13.8 80.00 19 AV19 27.9 15.4 STD 0.5 0.5 0.5 0.4 0.6 MAX 28.9 16.2 MIN 27.0 14.0 81.00 22 AV22 28.0 16.0 50.5 MAX 28.9 16.2 MIN 27.4 15.2 82.00 11 AV11 28.2 16.1 37.0 5.0 5 MAX 29.6 16.1 MIN 27.3 14.3 84.00 18 AV18 28.4 16.3	depth It BLC buft TYPE AV10 CSX Esp 29 CSB 129 STK 6.3 78.00 10 AV10 26.9 12.9 6.3 78.00 10 AV10 26.9 12.9 6.3 79.00 12 AV12 27.8 15.2 6.5 STD 0.4 0.8 0.1 MAX 28.0 14.0 6.5 STD 0.4 0.8 0.1 MAX 28.9 16.2 6.5 80.00 19 AV19 27.9 15.4 6.5 5 MIN 27.1 13.8 6.3 8 6.3 8 81.00 22 AV22 28.0 16.0 6.5 5 MIN 27.3 15.0 6.3 8 7.1 6.8 6 MIN 27.3 15.0 6.3 6 5 5 6.3 81.00 12 AV11 28.2 16.1 6.5 5 6.3 </td <td>depth ft BLC blft TYPE TVPE CSX ksi CSB ksi STK ft EMX ksi 78.00 10 AV10 28.9 12.9 6.3 31 78.00 10 STD 0.6 0.7 0.2 1 MAX 28.0 11.8 5.9 30 79.00 12 AV12 27.8 15.2 6.5 31 MIN 25.8 11.8 5.9 30 30 30 79.00 12 AV12 27.8 15.2 6.5 31 MIN 27.0 14.0 6.3 29 30 30 80.00 19 AV19 27.9 15.4 6.5 30 MAX 28.9 16.2 6.8 33 33 33 81.00 22 AV22 28.0 16.0 6.5 0.1 1 MAX 28.9 16.2 6.8 33 30 33 30 30</td> <td>Test date: Treft bUft TVFE CSX CSB STK EMA PM 10 bUft AV10 26.9 12.9 6.3 31 47 78.00 10 STD 0.6 0.7 0.2 1 1 MX 28.0 14.0 6.5 32 48 79.00 12 STD 0.4 0.8 0.1 1 0 MX 28.3 16.4 6.7 33 47 MIN 27.1 13.8 6.3 2.9 46 80.00 19 STD 0.5 0.5 1 1 1 MAX 28.9 16.2 6.1 1 1 0 MX 28.0 16.0 6.5 31 46 45 81.00 22 AV22 28.0 16.0 6.5 31 46 81.00 1 AV11 28.2 16.1 6.5</td>	depth ft BLC blft TYPE TVPE CSX ksi CSB ksi STK ft EMX ksi 78.00 10 AV10 28.9 12.9 6.3 31 78.00 10 STD 0.6 0.7 0.2 1 MAX 28.0 11.8 5.9 30 79.00 12 AV12 27.8 15.2 6.5 31 MIN 25.8 11.8 5.9 30 30 30 79.00 12 AV12 27.8 15.2 6.5 31 MIN 27.0 14.0 6.3 29 30 30 80.00 19 AV19 27.9 15.4 6.5 30 MAX 28.9 16.2 6.8 33 33 33 81.00 22 AV22 28.0 16.0 6.5 0.1 1 MAX 28.9 16.2 6.8 33 30 33 30 30	Test date: Treft bUft TVFE CSX CSB STK EMA PM 10 bUft AV10 26.9 12.9 6.3 31 47 78.00 10 STD 0.6 0.7 0.2 1 1 MX 28.0 14.0 6.5 32 48 79.00 12 STD 0.4 0.8 0.1 1 0 MX 28.3 16.4 6.7 33 47 MIN 27.1 13.8 6.3 2.9 46 80.00 19 STD 0.5 0.5 1 1 1 MAX 28.9 16.2 6.1 1 1 0 MX 28.0 16.0 6.5 31 46 45 81.00 22 AV22 28.0 16.0 6.5 31 46 81.00 1 AV11 28.2 16.1 6.5

BL#	depth (ft)	Comments
1	33.00	Reported reference EL 740.39

USH 10 - B-70-403 - Pier 5 #1 - EOID OP: AZ Page 5 of 5 PDIPLOT Ver. 2014.1 - Printed: 18-Dec-2014 APE D30-42, HP 14 x 73 Test date: 17-Dec-2014

Time Summary

Drive 12 minutes 25 seconds

3:17:02 PM - 3:29:27 PM (12/17/2014) BN 1 - 523

PDIPLOT Ver. 2014.1 - Printed: 18-Dec-2014

Test date: 18-Dec-2014

USH 10 - B-70-403 - Pier 5 #1 - BOR

USH 10 - B-70-403 - Pier 5 #1 - BOR

Page 1 of 1 PDIPLOT Ver. 2014.1 - Printed: 18-Dec-2014

APE D30-42, HP 14 x 73

USH 1	10 - B-70-403 - Pi	er 5 #1 - BOI	R				ŀ	APE D30-42, I	HP 14 x 73
OP: AZ	Z							Test date: 18	-Dec-2014
AR:	21.40 in^2							SP:	0.492 k/ft3
LE:	88.90 ft								0,000 ksi
WS: 1	6,807.9 f/s							JC:	1.00
CSX:	Max Measured C	ompr. Stress	;			EMX	: Max Transfe	rred Energy	
CSB:	Compression Str	ess at Botton	n			BPM	: Blows per M	inute	
STK:	O.E. Diesel Ham	mer Stroke				RX9:	Max Case M	lethod Capacit	ty (JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
end	ft	bl/ft		ksi	ksi	ft	k-ft	**	kips
5	87.93	96	AV4	28.5	27.4	7.9	32	42	528
			STD	0.2	0.8	0.2	0	1	2
			MAX	28.8	28.6	8.2	32	43	530
			MIN	28.2	26.2	7.7	32	41	526
10	87.98	96	AV5	28.4	27.9	7.9	33	42	551
			STD	0.3	0.5	0.1	1	0	6
			MAX	28.7	28.7	8.0	34	42	557
			MIN	27.9	27.1	7.8	33	42	540
15	88.03	96	AV5	28.3	28.8	7.8	32	42	546
			STD	0.4	0.4	0.1	2	0	15
			MAX	28.9	29.2	7.9	33	43	558
			MIN	27.8	28.3	7.7	27	42	516
			Average	28.4	28.1	7.8	32	42	543
			Std. Dev.	0.3	0.8	0.1	1	0	14
			Maximum	28.9	29.2	8.2	34	43	558
			Minimum	27.8	26.2	7.7	27	41	516
				Total nu	mber of blows	analyzed: 14			

Time Summary

Drive 20 seconds

7:54:37 AM - 7:54:57 AM (12/18/2014) BN 1 - 15

1 - Reported reference EL 740.39

CSX (ksi) -EMX (k-ft) RX9 (kips) Max Measured Compr. Stress Max Case Method Capacity (JC=0.9) Max Transferred Energy ~~↓ 1 -A.A.A. <u>____</u> Ρ е n е t r а t i ⁰ 65 n f 70 t Ş BLC (blows/ft) CSB (ksi) -STK (ft) -Compression Stress at Bottom O.E. Diesel Hammer Stroke **Blow Count**

USH 10 - B-70-403 - Pier 5 #36 - EOID APE D30-42, HP 14 x 73 Test date: 17-Dec-2014

USH 10 - B-70-403 - Pier 5 #36 - EOID OP: AZ

Page 1 of 5 PDIPLOT Ver. 2014.1 - Printed: 18-Dec-2014

APE D30-42, HP 14 x 73 Test date: 17-Dec-2014

SP: 0.492 k/ft3 EM: 30,000 ksi

<u>OP: A</u>	Z							Test date: 17	-Dec-2014
AR: LE: WS: 1	21.40 in^2 88.70 ft 16,807.9 f/s								0.492 k/ft3 0,000 ksi 1.00
CSX: CSB:	Max Measured Co Compression Street	ss at Bottom				BPM:	Max Transfe Blows per M	rred Energy	
	O.E. Diesel Hamm			001	000				
BL# end	depth ft	BLC bl/ft	TYPE	CSX ksi	CSB ksi	STK ft	EMX k-ft	BPM	RX9 kips
enu 1	30.00	1	AV1	17.4	2.7	1L **	17	**	kips 0
	00.00	•	MAX	17.4	2.7	**	17	**	Õ
			MIN	17.4	2.7	**	17	**	0
2	31.00	1	AV1	19.2	3.5	**	37	**	0
			MAX	19.2	3.5	**	37	**	0
			MIN	19.2	3.5	**	37	**	0
3	32.00	1	AV1	13.6	2.5	3.6	21	61	0
			MAX	13.6	2.5	3.6	21	61	0
			MIN	13.6	2.5	3.6	21	61	0
4	33.00	1	AV1	7.9	1.6	3.0	13	66	0
			MAX MIN	7.9 7.9	1.6 1.6	3.0 3.0	13 13	66 66	0 0
5	34.00	1	AV1	0.8	0.0	2.6	0	70	0
5	34.00	I	MAX	0.8	0.0	2.6	0	70	0
			MIN	0.8	0.0	2.6	0	70	0
7	36.00	1	AV1	22.3	4.0	5.7	44	49	0
			MAX	22.3	4.0	5.7	44	49	0
			MIN	22.3	4.0	5.7	44	49	0
8	37.00	1	AV1	16.0	3.2	3.8	29	59	0
			MAX	16.0	3.2	3.8	29	59	0 0
		_	MIN	16.0	3.2	3.8	29	59	
10	38.00	2	AV2 STD	12.1 1.0	2.9 0.1	3.4 0.1	17 1	63 1	0 0
			MAX	13.1	3.0	3.5	18	63	0
			MIN	11.1	2.8	3.3	16	62	0
12	39.00	2	AV2	13.8	3.2	3.7	21	61	0
			STD	1.2	0.0	0.2	1	1	0
			MAX	15.0	3.3	3.8	23	62	0
			MIN	12.5	3.2	3.5	20	59	0
15	40.00	3	AV3 STD	15.4 0.3	3.6 0.2	3.9 0.1	21 1	59 0	0 0
			MAX	15.6	3.9	4.0	22	59	0
			MIN	15.0	3.4	3.8	20	58	0
18	41.00	3	AV3	16.6	4.1	4.1	22	58	0
			STD	0.6	0.2	0.1	1	1	0
			MAX	17.4	4.3	4.2	24	58	0 0
	10.00		MIN	15.9	3.9	3.9	21	57	
21	42.00	3	AV3 STD	17.2 0.1	4.4 0.0	4.2 0.0	23 0	57 0	0 0
			MAX	17.4	4.4	4.2	23	57	0
			MIN	17.1	4.3	4.1	23	57	0
24	43.00	3	AV3	17.4	4.5	4.2	23	57	3
			STD	0.5	0.2	0.1	1	1	4
			MAX MIN	18.1 16.8	4.8 4.3	4.4 4.1	25 22	57 56	8 0
07	44.00	0							
27	44.00	3	AV3 STD	17.9 0.1	5.1 0.2	4.4 0.1	25 1	56 0	19 10
			MAX	18.1	5.3	4.5	25	56	32
			MIN	17.7	4.9	4.3	24	55	9
30	45.00	3	AV3	18.5	5.1	4.5	26	55	24
			STD	0.5	0.0	0.1	0	0	10
			MAX MIN	19.1 18.0	5.1 5.1	4.6 4.4	26 25	56 54	37 13
			11111	10.0	0.1	7.7	20	54	15

USH 10 - B-70-403 - Pier 5 #36 - EOID

Page 2 of 5 PDIPLOT Ver. 2014.1 - Printed: 18-Dec-2014

<u>OP: AZ</u>	- D-70-403 - PIE	9 5 #30 - EUIL)				F	Test date: 17-l	
BL# end 33	depth ft 46.00	BLC bl/ft 3	TYPE AV3	CSX ksi 17.6	CSB ksi 5.0	STK ft 4.3	EMX k-ft 23	BPM ** 56	RX9 kips 30
			STD MAX MIN	0.2 17.8 17.4	0.1 5.1 4.8	0.0 4.4 4.3	0 23 23	0 56 56	1 31 30
36	47.00	3	AV3 STD MAX MIN	18.3 0.9 19.5 17.6	5.2 0.3 5.6 4.9	4.5 0.1 4.7 4.4	25 1 27 24	55 1 56 54	19 3 22 15
40	48.00	4	AV4 STD MAX MIN	17.7 0.5 18.3 16.9	4.6 0.1 4.7 4.6	4.3 0.1 4.4 4.2	23 1 23 22	56 0 57 55	15 4 19 8
44	49.00	4	AV4 STD MAX MIN	18.0 0.2 18.3 17.7	4.6 0.2 4.9 4.5	4.4 0.0 4.4 4.3	23 0 23 22	56 0 56 55	25 5 32 19
48	50.00	4	AV4 STD MAX MIN	18.6 0.4 19.3 18.3	5.1 0.2 5.3 4.8	4.5 0.1 4.7 4.5	24 0 25 24	55 0 55 54	24 2 26 21
52	51.00	4	AV4 STD MAX MIN	18.3 0.6 19.3 17.6	5.1 0.2 5.4 4.8	4.5 0.1 4.6 4.3	24 1 25 23	55 1 56 54	28 5 38 24
56	52.00	4	AV4 STD MAX MIN	18.8 0.5 19.4 18.2	5.3 0.2 5.6 4.9	4.6 0.1 4.7 4.4	24 1 25 23	55 1 55 54	31 2 34 29
60	53.00	4	AV4 STD MAX MIN	18.8 0.8 19.9 17.6	5.4 0.4 5.9 5.0	4.6 0.2 4.8 4.4	25 1 26 23	55 1 56 53	40 4 45 34
64	54.00	4	AV4 STD MAX MIN	19.5 0.4 20.0 18.9	5.5 0.1 5.7 5.4	4.7 0.1 4.9 4.6	25 1 27 25	54 1 54 53	50 6 58 43
68	55.00	4	AV4 STD MAX MIN	19.7 0.4 20.3 19.2	5.6 0.1 5.7 5.4	4.7 0.1 4.8 4.6	25 1 26 25	54 0 54 54	59 7 67 51
72	56.00	4	AV4 STD MAX MIN	20.1 0.5 20.5 19.3	5.5 0.2 5.7 5.2	4.8 0.1 4.9 4.6	25 1 26 24	54 1 55 53	66 4 70 59
76	57.00	4	AV4 STD MAX MIN	20.4 0.1 20.5 20.2	5.7 0.2 6.0 5.6	4.8 0.0 4.9 4.8	26 0 26 25	53 0 54 53	72 2 76 70
80	58.00	4	AV4 STD MAX MIN	20.5 0.2 20.8 20.4	5.8 0.0 5.9 5.8	4.9 0.0 4.9 4.9	26 0 26 26	53 0 53 53	77 3 80 73
84	59.00	4	AV4 STD MAX MIN	21.1 0.3 21.6 20.9	6.2 0.1 6.3 6.2	5.0 0.0 5.1 5.0	27 1 28 26	52 0 53 52	83 6 93 78
89	60.00	5	AV5 STD MAX MIN	21.5 0.1 21.6 21.5	6.2 0.2 6.4 5.9	5.0 0.0 5.1 5.0	27 0 27 26	52 0 52 52	90 4 95 83

USH 10 - B-70-403 - Pier 5 #36 - EOID

Page 3 of 5 PDIPLOT Ver. 2014.1 - Printed: 18-Dec-2014

OP: AZ	- B-70-403 - Pie	51 5 #30 - LOIL	5				, ,	APE D30-42, H Test date: 17-	Dec-2014
BL# end	depth ft	BLC bl/ft	TYPE	CSX ksi	CSB ksi	STK ft	EMX k-ft	BPM	RX9 kips
94	61.00	5	AV5 STD MAX MIN	21.8 0.2 22.2 21.5	6.6 0.5 7.5 6.2	5.1 0.1 5.2 5.1	26 1 27 25	52 0 52 51	109 15 130 87
99	62.00	5	AV5 STD MAX MIN	23.0 0.4 23.4 22.3	7.7 0.2 7.8 7.3	5.5 0.1 5.5 5.3	28 1 29 26	50 0 51 50	137 3 141 132
105	63.00	6	AV6 STD MAX MIN	21.8 0.6 22.5 21.1	6.9 0.2 7.3 6.7	5.2 0.1 5.3 5.0	26 1 27 24	51 1 52 51	123 6 131 114
111	64.00	6	AV6 STD MAX MIN	21.6 0.5 22.4 20.9	6.3 0.2 6.6 5.9	5.1 0.1 5.3 5.0	25 1 27 24	52 1 52 51	114 2 116 110
117	65.00	6	AV6 STD MAX MIN	21.4 0.4 22.0 20.8	6.4 0.2 6.6 6.2	5.0 0.1 5.2 4.9	25 1 26 24	52 0 53 51	114 3 118 110
123	66.00	6	AV6 STD MAX MIN	21.6 0.3 22.0 21.2	6.1 0.1 6.3 5.9	5.1 0.1 5.1 5.0	24 1 25 24	52 0 52 52	113 2 116 110
129	67.00	6	AV6 STD MAX MIN	21.9 0.6 22.7 20.9	6.3 0.3 6.5 5.9	5.1 0.1 5.3 4.9	25 1 26 24	52 1 53 51	116 2 119 113
136	68.00	7	AV7 STD MAX MIN	22.2 0.6 23.0 21.1	7.0 0.8 8.4 6.1	5.2 0.2 5.4 4.9	24 1 26 23	51 1 53 50	127 6 137 120
143	69.00	7	AV7 STD MAX MIN	23.1 0.4 23.8 22.5	8.1 0.5 8.7 7.3	5.5 0.1 5.7 5.3	26 1 27 24	50 1 51 49	145 5 153 137
151	70.00	8	AV8 STD MAX MIN	23.4 0.5 23.9 22.7	8.1 0.4 8.7 7.3	5.6 0.1 5.7 5.4	26 1 27 25	50 1 50 49	146 3 149 143
159	71.00	8	AV8 STD MAX MIN	23.4 0.4 24.1 22.9	8.0 0.4 8.6 7.4	5.5 0.1 5.7 5.4	26 1 27 25	50 0 50 49	149 3 154 145
167	72.00	8	AV8 STD MAX MIN	23.0 0.3 23.5 22.4	7.8 0.3 8.3 7.4	5.5 0.1 5.6 5.4	26 0 27 25	50 0 51 50	143 2 147 140
175	73.00	8	AV8 STD MAX MIN	22.7 0.2 23.0 22.3	7.2 0.3 7.6 6.6	5.4 0.1 5.6 5.3	25 1 27 25	50 0 51 50	138 4 144 132
183	74.00	8	AV8 STD MAX MIN	22.7 0.3 23.2 22.4	7.5 0.4 7.9 6.8	5.4 0.1 5.6 5.3	26 1 27 24	50 0 51 50	141 7 153 131
191	75.00	8	AV8 STD MAX MIN	23.2 0.3 23.8 22.9	7.6 0.3 7.9 7.0	5.6 0.1 5.8 5.5	26 1 28 25	50 0 50 49	151 2 154 148

USH 10 - B-70-403 - Pier 5 #36 - EOID

Page 4 of 5 PDIPLOT Ver. 2014.1 - Printed: 18-Dec-2014

OP: AZ	- B-70-403 - Pie	9 3 #30 - EOI	D				,	APE D30-42, H Test date: 17-	
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
end 199	ft 76.00	bl/ft 8	AV8	ksi 22.7	ksi 7.4	ft 5.4	k-ft 25	** 50	kips 144
100	70.00	0	STD	0.4	0.3	0.1	1	0	4
			MAX	23.2	7.9	5.6	27	51	150
			MIN	22.2	7.0	5.2	25	50	139
207	77.00	8	AV8	24.6	9.9 1.0	6.0 0.3	28 2	48 1	201
			STD MAX	1.2 26.2	1.0	0.3 6.4	2 31	50	35 249
			MIN	22.7	8.6	5.4	25	47	144
215	78.00	8	AV8	26.9	13.7	6.5	31	46	280
			STD	0.6	1.0	0.1	1	0	14
			MAX MIN	27.5 25.6	14.9 12.3	6.7 6.4	32 30	47 46	299 256
229	79.00	14	AV14	27.2	17.9	6.7	31	46	372
220	10.00		STD	0.4	1.2	0.1	1	0	26
			MAX	27.9	19.9	6.9	33	46	405
			MIN	26.2	15.8	6.5	29	45	315
243	80.00	14	AV14 STD	27.5 0.5	19.1 0.5	6.9 0.2	31 1	45 1	396 10
			MAX	28.3	19.9	7.1	34	46	413
			MIN	26.9	18.2	6.7	29	44	382
257	81.00	14	AV14	27.3	18.2	6.8	31	45	376
			STD MAX	0.6 28.6	0.3 18.9	0.2 7.2	1 34	1 46	10 397
			MIN	26.3	17.6	6.5	28	44	358
273	82.00	16	AV16	27.0	16.8	6.7	31	45	342
			STD	0.5	1.6	0.2	1	1	27
			MAX MIN	27.9 25.9	18.9 13.1	7.0 6.5	34 29	46 45	379 286
291	83.00	18	AV18	27.3	15.3	6.7	32	45	323
20.	00100		STD	0.4	0.8	0.1	1	0	11
			MAX MIN	28.1 26.6	16.9 13.6	7.0 6.5	34 30	46 45	345 302
200	84.00	18	AV18	20.0	16.0	6.8	30		337
309	84.00	10	STD	0.5	1.4	0.0	32 1	45 0	29
			MAX	28.2	18.7	7.0	34	46	390
			MIN	26.6	14.3	6.6	29	44	305
332	85.00	23	AV23 STD	27.3 0.5	17.2 0.8	6.7 0.2	30 1	45 0	359 14
			MAX	28.6	18.9	7.2	34	46	393
			MIN	26.6	14.9	6.5	28	44	323
361	86.00	29	AV29	27.7	20.0	6.9	30	45	390
			STD MAX	0.5 28.7	1.3 22.3	0.2 7.2	1 32	1 47	22 439
			MIN	26.1	17.4	6.4	27	44	352
374	86.35	37	AV13	28.5	24.4	7.2	32	44	485
			STD	0.4	1.1	0.2	1	0	18
			MAX MIN	29.4 27.7	25.8 22.0	7.4 6.9	34 29	45 43	509 443
384	86.60	40	AV10	29.2	26.6	7.4	34	43	526
001	00.00	10	STD	0.4	0.4	0.1	1	0	8
			MAX	29.9	27.3	7.6	36	44	536
204	06 67	160	MIN	28.7	26.0	7.2	33 34	43 43	513
394	86.67	160	AV10 STD	29.6 0.3	27.4 0.3	7.6 0.1	34 1	43 0	552 6
			MAX	30.0	27.8	7.8	35	44	560
			MIN Average	<u>28.8</u> 24.0	<u>26.7</u> 12.3	<u>7.3</u> 5.9	<u>32</u> 28	<u>42</u> 49	<u>540</u> 233
			Std. Dev.	24.0 4.1	6.9	5.9 1.1	28 4	49 5	233 160
			Maximum	30.0	27.8	7.8	44	70	560
			Minimum	0.8 Total nur	0.0 mber of blows a	2.6 analyzed: 393	0	42	0
				iotai iiui		anaiyzeu. 595			

BL#	depth (ft)	Comments
1	30.00	Reported reference EL 740.39

USH 10 - B-70-403 - Pier 5 #36 - EOID OP: AZ Page 5 of 5 PDIPLOT Ver. 2014.1 - Printed: 18-Dec-2014 APE D30-42, HP 14 x 73 Test date: 17-Dec-2014

Time Summary

Drive 8 minutes 50 seconds

2:42:02 PM - 2:50:52 PM (12/17/2014) BN 1 - 394

PDIPLOT Ver. 2014.1 - Printed: 18-Dec-2014

USH 10 - B-70-403 - Pier 5 #36 - BOR APE D30-42, HP 14 x 73 EMX (k-ft) RX9 (kips) Max Transferred Energy 30 40 0 300 450 20 50 60 150 600

Test date: 18-Dec-2014

USH 10 - B-70-403 - Pier 5 #36 - BOR OP: AZ Page 1 of 1 PDIPLOT Ver. 2014.1 - Printed: 18-Dec-2014

APE D30-42, HP 14 x 73

APE D30-4	2, HP	14 X	13
Test date:	18-De	ec-20	14

UP: A	~							Test date: 18	-Dec-2014
AR:	21.40 in^2							SP:	0.492 k/ft3
LE:	88.70 ft							EM: 3	0,000 ksi
WS: 1	16,807.9 f/s							JC:	1.00
CSX:	Max Measured C	Compr. Stress				EMX	X: Max Transfe	rred Energy	
CSB:	Compression Str	ess at Bottom	า			BPN	I: Blows per Mi	inute	
STK:	O.E. Diesel Ham	mer Stroke				RX9		ethod Capacit	y (JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
end	ft	bl/ft		ksi	ksi	ft	k-ft	**	kips
5	86.72	96	AV5	30.2	29.1	7.5	33	43	548
			STD	0.8	0.5	0.3	1	1	8
			MAX	31.1	29.7	7.8	34	44	558
			MIN	29.0	28.3	7.1	30	42	537
10	86.77	96	AV5	30.7	30.1	7.6	34	43	565
			STD	0.5	0.4	0.1	1	0	7
			MAX	31.4	30.7	7.8	35	43	577
			MIN	30.0	29.7	7.5	33	42	558
15	86.83	96	AV5	30.2	29.7	7.4	32	43	562
			STD	0.2	0.4	0.1	1	0	5
			MAX	30.4	30.4	7.6	33	44	570
			MIN	29.9	29.1	7.2	31	43	556
			Average	30.4	29.6	7.5	33	43	558
			Std. Dev.	0.6	0.6	0.2	1	1	10
			Maximum	31.4	30.7	7.8	35	44	577
			Minimum	29.0	28.3	7.1	30	42	537
				Total nu	mber of blows a	analyzed: 15			

Time Summary

Drive 20 seconds

8:04:24 AM - 8:04:44 AM (12/18/2014) BN 1 - 15

1 - Reported reference EL 740.39

APE D30-42, HP 14 x 73 CSX (ksi) -EMX (k-ft) RX9 (kips) — Max Measured Compr. Stress Max Case Method Capacity (JC=0.9) Max Transferred Energy ∽~∤ 1 Р ⁵⁵ е n e 60 t r а t n 70 f t 75 ₹ CSB (ksi) -STK (ft) -BLC (blows/ft) Compression Stress at Bottom O.E. Diesel Hammer Stroke **Blow Count**

USH 10 - B-70-403 - Pier 5 #44 - EOID

21.40 in^2

AR:

USH 10 - B-70-403 - Pier 5 #44 - EOID OP: AZ Page 1 of 4 PDIPLOT Ver. 2014.1 - Printed: 18-Dec-2014

APE D30-42, HP 14 x 73 Test date: 17-Dec-2014 SP: 0.492 k/ft3

Test dat

LE:	77.50 ft							EM: 3	0.492 k/ft3 0,000 ksi
	16,807.9 f/s Max Measured C	omor Stroco				EMV	: Max Transfe	JC:	1.00
CSB:	Compression Stre	ess at Bottom				BPM	Blows per M	linute	
<u>STK:</u> BL#	O.E. Diesel Hami depth	mer Stroke BLC	TYPE	CSX	CSB	RX9: STK	Max Case M EMX	lethod Capacit BPM	<u>y (JC=0.9)</u> RX9
end	ft	bl/ft	TIFE	ksi	ksi	ft	k-ft	DF IVI **	kips
1	40.00	1	AV1	21.2	3.3	**	23	**	0
			MAX MIN	21.2 21.2	3.3 3.3	**	23 23	**	0 0
2	41.00	1	AV1	21.4	3.3	**	41	**	0
			MAX MIN	21.4 21.4	3.3 3.3	**	41 41	**	0 0
4	43.00	1	AV1	14.4	2.3	3.6	26	61	0
			MAX MIN	14.4 14.4	2.3 2.3	3.6 3.6	26 26	61 61	0 0
5	44.00	1	AV1	13.7	2.3	3.6	20	61	0
Ŭ	44.00		MAX	13.7	2.1	3.6	23	61	0
_			MIN	13.7	2.1	3.6	23	61	0
6	45.00	1	AV1 MAX	12.0 12.0	2.2 2.2	3.5 3.5	18 18	62 62	0 0
			MIN	12.0	2.2	3.5	18	62	0
12	48.00	2	AV2 STD	9.7 2.6	2.2 0.4	3.2 0.2	12 4	64 2	0
			MAX	12.3	2.6	0.2 3.4	16	66	0 0
			MIN	7.1	1.8	3.0	9	62	0
14	49.00	2	AV1 MAX	0.4 0.4	0.0 0.0	2.8 2.8	0 0	68 68	0 0
			MIN	0.4	0.0	2.8	0	68	0
16	50.00	2	AV1	18.2	3.0	4.4	25	56	0
			MAX MIN	18.2 18.2	3.0 3.0	4.4 4.4	25 25	56 56	0 0
19	51.00	3	AV1	10.7	2.5	3.3	12	64	0
			MAX MIN	10.7 10.7	2.5 2.5	3.3 3.3	12 12	64 64	0 0
22	52.00	3	AV2	13.0	2.5	3.5	12	61	0
~~~	02.00	0	STD	2.3	0.3	0.3	3	2	0
			MAX MIN	15.3 10.7	3.0 2.4	3.8 3.3	18 12	64 59	0 0
25	53.00	3	AV3	12.1	2.9	3.6	16	61	0
			STD	3.3	0.4	0.4	5	3	0
			MAX MIN	16.4 8.5	3.4 2.3	4.2 3.2	22 10	65 57	0 0
28	54.00	3	AV3	15.6	3.5	4.0	21	58	
			STD MAX	1.1 17.1	0.2 3.8	0.2 4.3	1 22	1 59	2 2 5 0
			MIN	14.4	3.2	3.8	19	56	0
31	55.00	3	AV3	17.2	3.7	4.3	24	56	22 9
			STD MAX	0.4 17.5	0.2 3.9	0.1 4.4	1 25	0 57	9 32
			MIN	16.6	3.5	4.2	23	56	10
34	56.00	3	AV3 STD	17.7 0.3	4.2 0.3	4.4 0.1	23 1	55 0	58 7
			MAX	17.9	4.6	4.5	25	56	64
			MIN	17.3	3.9	4.4	22	55	48
37	57.00	3	AV3 STD	18.4 0.7	5.0 0.1	4.6 0.1	25 1	54 1	86 9
			MAX	19.4	5.1	4.8	26	55	98
40	50.00	0	MIN	17.9	4.8	4.5	23	53	75
40	58.00	3	AV3 STD	19.6 0.5	5.8 0.0	5.0 0.1	26 1	52 1	109 3
			MAX	20.3	5.8	5.2	28	53	113
			MIN	19.2	5.7	4.9	25	52	107

USH 10 - B-70-403 - Pier 5 #44 - EOID

Page 2 of 4 PDIPLOT Ver. 2014.1 - Printed: 18-Dec-2014

OP: AZ	- B-70-403 - Pie	er 5 #44 - EOIL					ŀ	APE D30-42, H Test date: 17-	
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
end 43	ft 59.00	bl/ft 3	AV3	ksi 19.8	ksi 6.0	ft 5.1	k-ft 27	** 52	kips 117
		-	STD	0.5	0.1	0.2	1	1	5
			MAX MIN	20.5 19.2	6.1 5.8	5.3 5.0	29 25	53 51	122 111
51	60.00	8	AV8	20.1	6.5	5.2	23	51	140
			STD MAX	0.7 21.6	0.6 7.5	0.2 5.6	1 26	1 52	10 159
			MIN	19.5	5.9	5.0	20	50	130
60	61.00	9	AV9 STD	21.4 0.5	8.0 0.2	5.5 0.1	24 1	50 1	163
			MAX	22.4	0.2 8.3	0.1 5.8	26	51	5 170
			MIN	20.5	7.5	5.3	23	49	156
68	62.00	8	AV8 STD	22.0 0.4	8.5 0.1	5.7 0.1	26 1	49 0	171 4
			MAX	23.0	8.7	5.9	28	50	178
77	63.00	9	MIN AV9	21.6 22.3	8.2 8.0	5.5 5.7	24 27	48 49	166 172
//	03.00	9	STD	0.4	0.3	0.1	1	0	5
			MAX MIN	23.0 21.7	8.4 7.5	6.0 5.6	28 25	50 48	178 164
83	64.00	6	AV6	21.8	7.4	5.5	26	50	156
			STD MAX	0.3 22.3	0.1 7.6	0.1 5.7	0 26	0 50	4 161
			MIN	21.4	7.3	5.4	26	49	149
89	65.00	6	AV6 STD	21.3 0.4	7.1 0.2	5.4 0.1	25 1	50 1	150 3
			MAX	21.9	7.4	5.6	28	51	155
05	00.00	0	MIN	20.9	6.9	5.3	24	50	146
95	66.00	6	AV6 STD	21.0 0.1	6.5 0.3	5.3 0.0	25 1	51 0	141 4
			MAX MIN	21.2 20.8	7.0 6.2	5.4 5.2	26 24	51 51	148 135
101	67.00	6	AV6	20.8	5.9	5.2	24	52	133
		-	STD	0.2	0.2	0.1	1	0	4
			MAX MIN	20.5 20.0	6.1 5.6	5.2 5.0	25 24	52 52	133 123
107	68.00	6	AV6	20.0	5.7	5.0	24	52	125
			STD MAX	0.2 20.5	0.1 5.8	0.1 5.2	1 25	0 53	3 130
			MIN	19.7	5.6	5.0	23	51	122
114	69.00	7	AV7 STD	20.6 0.3	6.7 0.4	5.2 0.1	24 0	51 0	149 5
			MAX	21.0	7.3	5.3	25	52	158
121	70.00	7	MIN AV5	20.2 21.1	5.9 7.1	5.1 5.4	23 26	51 50	142 155
121	70.00	I	STD	0.5	0.5	0.1	1	1	5
			MAX MIN	21.7 20.3	7.5 6.1	5.6 5.3	27 25	51 50	161 148
127	71.00	6	AV6	19.9	5.4	5.1	25	52	125
			STD MAX	0.7 20.8	0.4 6.2	0.2 5.3	2 27	1 53	10 144
			MIN	18.8	4.9	4.8	22	51	112
133	72.00	6	AV6 STD	19.5	5.2	5.0	23	52	129
			MAX	0.5 20.1	0.1 5.5	0.1 5.2	1 25	1 53	4 134
		_	MIN	18.9	5.1	4.9	21	51	125
139	73.00	6	AV6 STD	19.5 0.3	5.5 0.2	5.1 0.1	24 1	52 0	134 3
			MAX	20.0	5.9	5.2	25	52	137
			MIN	19.1	5.2	5.0	23	51	130

USH 10 - B-70-403 - Pier 5 #44 - EOID

Page 3 of 4 PDIPLOT Ver. 2014.1 - Printed: 18-Dec-2014

APE D30-42, HP 14 x 73

USH 10 - OP: AZ	- B-70-403 - Pie	er 5 #44 - EOI	D				1	APE D30-42, H Test date: 17-	
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
end 145	ft 74.00	bl/ft 6	AV6	ksi 20.5	ksi 6.9	ft 5.3	k-ft 25	** 51	kips 146
140	74.00	0	STD	0.6	0.5	0.2	1	1	9
			MAX MIN	21.2 19.5	7.8 6.2	5.5 5.1	26 23	52 50	157 132
153	75.00	8	AV8	20.9	7.8	5.4	20	50	166
100	10.00	U	STD	0.3	0.1	0.1	1	0	2
			MAX MIN	21.3 20.4	8.0 7.6	5.6 5.3	25 23	51 50	170 162
161	76.00	8	AV8	20.5	6.8	5.3	23	51	148
		-	STD	0.7	0.9	0.2	1	1	12
			MAX MIN	21.4 19.8	8.0 5.4	5.6 5.1	25 22	52 50	168 136
169	77.00	8	AV5	20.8	5.9	5.4	23	51	137
			STD	1.1	0.5	0.3	1	1	6
			MAX MIN	22.6 19.4	6.5 5.4	6.0 5.0	25 21	52 48	143 130
177	78.00	8	AV8	21.0	6.6	5.4	22	50	142
			STD MAX	0.3 21.6	0.1 6.7	0.1 5.5	1 24	0 51	5 147
			MIN	20.5	6.3	5.2	22	50	136
185	79.00	8	AV6	21.7	6.8	5.5	24	50	137
			STD MAX	1.3 24.6	1.0 9.0	0.4 6.3	3 31	1 51	5 143
			MIN	20.8	6.2	5.3	22	47	131
203	80.00	18	AV18 STD	25.6 0.8	14.2 1.9	6.3 0.3	26 2	47 1	276 45
			MAX	26.7	16.4	6.9	30	49	45 325
			MIN	23.7	10.4	5.7	23	45	176
222	81.00	19	AV19 STD	26.2 0.4	14.6 1.0	6.4 0.1	27 1	46 1	289 25
			MAX	27.0	16.1	6.7	29	48	321
		10	MIN	25.3	12.5	6.1	25	46	247
238	82.00	16	AV16 STD	25.6 0.6	13.1 0.5	6.2 0.2	27 1	47 1	249 6
			MAX	27.1	14.2	6.6	29	48	259
250	82.00	1.1	MIN	24.4 25.6	12.3	5.9 6.3	24 27	46	239
252	83.00	14	AV14 STD	25.6	12.9 0.5	0.3	27 1	47 1	260 14
			MAX MIN	27.0 24.9	14.0 11.9	6.8 6.0	30 25	48 45	287 243
271	84.00	19	AV19	24.9	15.9	6.4	23	45 46	324
211	04.00	10	STD	0.7	2.2	0.3	1	1	46
			MAX MIN	27.9 24.9	21.1 12.9	7.0 6.0	29 25	48 44	432 261
301	85.00	30	AV30	27.5	21.1	7.0	29	45	431
			STD	0.7	1.2	0.2	2	1	20
			MAX MIN	28.6 26.1	23.4 17.9	7.4 6.5	33 25	46 43	465 380
333	86.00	32	AV32	28.0	23.0	7.1	30	44	456
			STD MAX	0.6 29.1	0.5 24.0	0.2 7.6	1 34	1 45	7 473
			MIN	27.1	21.7	6.9	28	43	442
376	87.00	43	AV43	28.2	25.9	7.2	31	44	509
			STD MAX	0.7 29.5	1.5 28.2	0.2 7.6	1 33	1 46	29 558
			MIN	26.7	22.4	6.7	28	43	444
			Average Std. Dev.	23.7 4.2	13.2 7.7	6.0 1.0	26 4	48 4	264 154
			Maximum	29.5	28.2	7.6	41	68	558
			Minimum	0.4 Total nur	0.0 mber of blows a	2.8 Inalyzed: 359	0	43	0
						,			

BL#depth (ft)Comments140.00Reported reference EL 740.39

USH 10 - B-70-403 - Pier 5 #44 - EOID OP: AZ

BL#	depth (ft)	Comments
185	79.00	LE = 90.25
Time Sur	nmarv	

 Drive
 4 minutes 15 seconds
 11:13:49 AM - 11:18:04 AM (12/17/2014) BN 1 - 164

 Stop
 16 minutes 41 seconds
 11:18:04 AM - 11:34:45 AM

 Drive
 20 seconds
 11:34:45 AM - 11:35:05 AM BN 165 - 182

 Stop
 1 hour 43 minutes 52 seconds
 11:35:05 AM - 11:8:57 PM

 Drive
 4 minutes 13 seconds
 11:18:57 PM - 1:23:10 PM BN 185 - 376

Total time [2:09:21] = (Driving [0:08:48] + Stop [2:00:33])

#### PDIPLOT Ver. 2014.1 - Printed: 18-Dec-2014

Test date: 18-Dec-2014



USH 10 - B-70-403 - Pier 5 #44 - BOR APE D30-42, HP 14 x 73

USH 10 - B-70-403 - Pier 5 #44 - BOR

Page 1 of 1 PDIPLOT Ver. 2014.1 - Printed: 18-Dec-2014

APE D30-42, HP 14 x 73

	0 - D-70-403 - FI	iei 5 #44 - DC	Л				,	AFE D30-42, F	
OP: AZ	-							Test date: 18-	Dec-2014
AR:	21.40 in^2							SP: (	).492 k/ft3
LE:	90.25 ft							EM: 30	),000 ksi
WS: 16	6,807.9 f/s							JC:	1.00
CSX: I	Max Measured C	compr. Stress				EMX	: Max Transfe	rred Energy	
CSB: (	Compression Str	ess at Bottom	า			BPM	: Blows per M	inute	
STK: (	O.E. Diesel Ham	mer Stroke				RX9:	Max Case M	lethod Capacity	/ (JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
end	ft	bl/ft		ksi	ksi	ft	k-ft	**	kips
5	87.05	96	AV5	28.7	27.8	7.3	30	44	545
			STD	1.4	0.8	0.4	3	1	12
			MAX	31.3	29.2	8.1	36	45	562
			MIN	27.3	26.7	7.0	27	42	527
10	87.10	96	AV5	28.6	28.4	7.2	30	44	563
			STD	0.4	0.3	0.2	1	0	5
			MAX	29.3	28.9	7.4	31	45	572
			MIN	28.1	27.9	6.9	29	43	557
15	87.16	96	AV5	28.7	28.1	7.1	29	44	560
			STD	0.3	0.3	0.1	3	0	15
			MAX	29.1	28.5	7.2	31	45	572
			MIN	28.2	27.6	6.9	24	44	532
			Average	28.7	28.1	7.2	30	44	556
			Std. Dev.	0.9	0.6	0.3	2	1	14
			Maximum	31.3	29.2	8.1	36	45	572
			Minimum	27.3	26.7	6.9	24	42	527
				Total nu	mber of blows	analyzed: 15			

Time Summary

Drive 19 seconds

8:12:48 AM - 8:13:07 AM (12/18/2014) BN 1 - 15



USH 10 - B-70-403; Pile: Pier 5 #1 - EOID APE D30-42, HP 14 x 73; Blow: 520 GRL Engineers, Inc.

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 - B-70-403; Pile: Pier 5 #1 - EOID APE D30-42, HP 14 x 73; Blow: 520 GRL Engineers, Inc.

			CAPW	AP SUMMARY	RESULTS				
Total CAPV	MAP Capaci	ty: 593	.0; along	Shaft	88.0; at	Тое	505.0	kips	
Soil	Dist.	Depth	Ru	Force	Sum		Unit	Unit	= Smi
Sgmnt	Below	Below		in Pile	of	Res	ist.	Resist	. Dampi
No.	Gages	Grade			Ru	(De	pth)	(Area)	) Fact
	ft	ft	kips	kips	kips	kip	s/ft	ksi	E s/
				593.0					
1	9.9	8.9	0.0	593.0	0.0		0.00	0.00	o o.
2	16.5	15.4	0.0	593.0	0.0		0.00	0.00	o.
3	23.0	22.0	0.0	593.0	0.0		0.00	0.00	o o.
4	29.6	28.6	3.0	590.0	3.0		0.46	0.10	o.
5	36.2	35.2	6.0	584.0	9.0		0.91	0.19	θ Ο.
6	42.8	41.8	7.0	577.0	16.0		1.06	0.23	з о.
7	49.4	48.4	7.0	570.0	23.0		1.06	0.23	з о.
8	56.0	54.9	7.0	563.0	30.0		1.06	0.23	з о.
9	62.6	61.5	7.0	556.0	37.0		1.06	0.23	з о.
10	69.1	68.1	7.0	549.0	44.0		1.06	0.23	з о.
11	75.7	74.7	9.0	540.0	53.0		1.37	0.29	θ Ο.
12	82.3	81.3	15.0	525.0	68.0		2.28	0.48	з о.
13	88.9	87.9	20.0	505.0	88.0		3.04	0.65	50.
Avg. Sh	aft		6.8				1.00	0.21	L 0.
То	e		505.0					366.34	<u> </u>
Soil Model	Paramete	rs/Extensi	ons		S	Shaft	То	e	
Quake		(i)	n)			0.20	0.3	7	
~	ng Factor		-,			0.53	0.7		
Damping Ty	-				Vis	scous	Sm+Vis		
Unloading	-	(%	of loadin	ng guake)		30		7	
Unloading	-		of Ru)	-5 1 <i>)</i>		33			
Soil Plug		-	ips)				0.08	2	
TADWAD mot	ch qualit	v =	2.09	( 141-2)	ve Up Match	-) • P	- A - O		
	Final Set	-	2.05 0.17 in		w Count	=		b/ft	
	Final Set		0.15 in	-	w Count	_		b/ft	
fransducer				-	93.6; RF: 1.00	-	/0	D/IC	
	A3(K2253		RF: 1.14; A4(		360; RF: 1.14				
max. Top (	Comp. Stre	ss =	29.0 ks	si (T	= 36.4 ms,	, max=	1.030	x Top)	
max. Comp.	Stress	=	29.9 ka	si (Z	= 36.2 ft,	, T= З	38.4 ms	;)	
max. Tens.	Stress	=	-5.06 ka	si (Z	= 56.0 ft,	, T= е	52.3 ms	;)	
max. Energ	IV (EMX)	=	36.0 k:	ip-ft; ma	x. Measured	I TOP I	Displ.	(DMX) =	1.07 in

USH 10 - B-70-403; Pile: Pier	5 #1 - EOID
APE D30-42, HP 14 x 73; Blow:	520
GRL Engineers, Inc.	

Test: 17-Dec-2014 15:29 CAPWAP(R) 2014-1 OP: AZ

				EMA TABLE	EXTR	EXTREMA TABLE													
max	max.	max.	max.	max.	min.	max.	Dist.	Pile											
Displ	Veloc.	Trnsfd.	Tens.	Comp.	Force	Force	Below	Sgmnt											
		Energy	Stress	Stress			Gages	No.											
i	ft/s	kip-ft	ksi	ksi	kips	kips	ft												
1.0	15.3	36.0	-1.18	29.0	-25.2	621.6	3.3	1											
1.0	15.2	35.9	-1.26	29.1	-26.9	622.5	6.6	2											
1.0	15.2	35.4	-1.50	29.2	-32.1	624.4	13.2	4											
1.0	15.1	34.8	-2.29	29.3	-49.0	626.9	19.8	6											
0.9	14.9	34.1	-2.78	29.6	-59.4	634.1	26.3	8											
0.9	14.6	32.6	-3.00	29.6	-64.2	633.2	32.9	10											
0.8	14.2	30.4	-3.39	29.0	-72.5	621.5	39.5	12											
0.8	14.0	29.9	-3.95	29.4	-84.6	628.9	42.8	13											
0.7	13.8	28.0	-4.18	28.3	-89.6	606.3	46.1	14											
0.7	13.7	27.4	-4.67	28.7	-99.9	613.5	49.4	15											
0.7	13.5	25.6	-4.84	27.6	-103.6	591.8	52.7	16											
0.7	13.3	24.9	-5.06	28.0	-108.3	598.9	56.0	17											
0.6	13.1	23.2	-4.87	27.0	-104.2	578.0	59.3	18											
0.6	12.9	22.5	-4.88	27.3	-104.4	584.9	62.6	19											
0.6	12.7	20.8	-4.62	26.4	-98.8	565.0	65.9	20											
0.5	12.5	20.1	-4.59	26.8	-98.3	572.9	69.1	21											
0.5	12.3	18.5	-4.31	26.0	-92.4	555.7	72.4	22											
0.5	12.2	17.8	-4.33	26.5	-92.7	566.7	75.7	23											
0.4	13.5	16.0	-4.01	26.2	-85.9	559.9	79.0	24											
0.4	14.3	15.3	-4.02	26.8	-86.1	573.4	82.3	25											
0.4	14.8	13.1	-3.48	26.9	-74.5	576.5	85.6	26											
0.3	14.3	11.5	-3.48	27.6	-74.4	590.3	88.9	27											
38.4 ms	(T =			29.9			36.2	olute											
62.3 ms	(т =		-5.06				56.0												

	CASE METHOD												
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9			
RP	666.8	612.3	557.8	503.4	448.9	394.4	339.9	285.4	230.9	176.4			
RX	728.4	706.6	685.9	665.6	645.3	624.9	604.6	590.8	580.5	570.1			
RU	666.8	612.3	557.8	503.4	448.9	394.4	339.9	285.4	230.9	176.4			
RAU =	RAU = 444.5 (kips); RA2 = 615.2 (kips)												
Current	Current CAPWAP Ru = 593.0 (kips); Corresponding J(RP)= 0.14; J(RX) = 0.68												

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
15.1	36.04	578.5	633.3	636.0	1.07	0.17	0.17	36.1	694.5	1365

PILE PROFILE AND PILE MODEL									
Depth	Area	E-Modulus	Spec. Weight	Perim.					
ft	in ²	ksi	lb/ft ³	ft					
0.0	21.4	29992.2	492.000	4.70					
88.9	21.4	29992.2	492.000	4.70					
Toe Area	198.5	in²							
Top Segment Length	3.29 ft, Top Impe	edance 38 k	tips/ft/s						
Wave Speed: Pile Top 1 Pile Damping 1.00 %,	-								

USH 10 - B-70-403; Pile: Pier 5 #1 - EOID APE D30-42, HP 14 x 73; Blow: 520 GRL Engineers, Inc.

Total volume: 13.212 ft^{3;} Volume ratio considering added impedance: 1.000

90 ms

10 L/c

88.9 ft

87.9 ft

198.5 in²

4.70 ft

1.18

27.2 ksi

28.1 ksi

-3.18 ksi

0.16 in

0.25 in

0.33 s/ft

0.06 s/ft

21.4 in²



USH 10 - B-70-403; Pile: Pier 5 #1 - BOR APE D30-42, HP 14 x 73; Blow: 6 GRL Engineers, Inc.

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 - B-70-403; Pile: Pier 5 #1 - BOR APE D30-42, HP 14 x 73; Blow: 6 GRL Engineers, Inc.

					RESULTS					
otal CAPW	AP Capacit	ty: 545	.0; along	Shaft	140.0; at	Тое	405.0	kips		
Soil	Dist.	Depth	Ru	Force	Sun	-	Unit	Unit		Smit
Sgmnt	Below	Below		in Pile	of	Re	esist.	Resist	. I	Dampin
No.	Gages	Grade			Ru	. (I	)epth	(Area	)	Facto
	ft	ft	kips	kips	kips	ki ki	.ps/ft	ksi	£	s/f
				545.0						
1	9.9	8.9	0.0	545.0	0.0		0.00	0.0	0	0.0
2	16.5	15.5	0.0	545.0	0.0		0.00	0.0	0	0.0
3	23.0	22.1	0.0	545.0	0.0		0.00	0.0	0	0.0
4	29.6	28.7	4.0	541.0	4.0		0.61	0.1	3	0.3
5	36.2	35.3	6.0	535.0	10.0		0.91	0.19	9	0.3
6	42.8	41.8	7.0	528.0	17.0		1.06	0.2	3	0.3
7	49.4	48.4	10.0	518.0	27.0		1.52	0.3	2	0.3
8	56.0	55.0	12.0	506.0	39.0		1.82	0.3	9	0.3
9	62.6	61.6	12.0	494.0	51.0		1.82	0.3	9	0.3
10	69.1	68.2	14.0	480.0	65.0		2.13	0.4	5	0.3
11	75.7	74.8	15.0	465.0	80.0		2.28	0.48	в	0.3
12	82.3	81.4	15.0	450.0	95.0		2.28	0.48	в	0.3
13	88.9	87.9	45.0	405.0	140.0		6.83	1.4	5	0.3
Avg. Sha	aft		10.8				1.59	0.34	4	0.3
Toe	9		405.0					293.8	0	0.0
oil Model	Parameter	rs/Extensi	ons			Shaft	Тс	e		
uake		(i:	n)			0.16	0.2	5		
ase Dampi	ng Factor	·				1.22				
amping Ty	-				Vi	scous	Sm+Vis	c		
nloading	=	(%	of loadir	a auake)		100		2		
eloading			of Ru)	5 1		100		0		
nloading			of Ru)			23				
-		luded in T	-	(in)			0.0	6		
oil Plug			ips)				0.02			
	ch quality	<i>y</i> =	1.18	-	we Up Mato					
	Final Set	=	0.12 ir	-	w Count	=		b/ft		
omputed:	Final Set	=	0.12 ir	n; Blo	w Count	=	103	b/ft		
ax. Top C	omp. Stres	ss =	27.2 ks	si (1	= 36.0 ms	, max	= 1.030	x Top)		
ax. Comp.	-	=	28.1 ks			-	37.6 ms			
ax. Tens.	Stress	=	-3.18 ks	si (2	i= 49.4 ft	, T=	61.3 ms	5)		
	y (EMX)	=	32.4 ki	-	x. Measure	-		-		

USH 10 - B-70-4	403; Pile: Pier	5	#1	-	BOR
APE D30-42, HP	14 x 73; Blow:	6			
GRL Engineers,	Inc.				

Test: 18-Dec-2014 07:54 CAPWAP(R) 2014-1 OP: AZ

EXTREMA TABLE											
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.			
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.			
No.	Gages			Stress	Stress	Energy					
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in			
1	3.3	583.2	-21.5	27.2	-1.00	32.4	14.4	0.98			
2	6.6	583.6	-22.3	27.3	-1.04	32.1	14.4	0.97			
4	13.2	584.8	-23.6	27.3	-1.10	31.6	14.3	0.93			
6	19.8	586.2	-27.5	27.4	-1.29	30.9	14.2	0.88			
8	26.3	594.6	-34.8	27.8	-1.63	30.0	14.0	0.83			
10	32.9	586.2	-48.3	27.4	-2.26	28.1	13.6	0.78			
12	39.5	571.2	-59.3	26.7	-2.77	25.7	13.1	0.72			
13	42.8	582.6	-66.0	27.2	-3.08	25.2	12.9	0.69			
14	46.1	557.3	-66.0	26.0	-3.08	23.3	12.5	0.66			
15	49.4	570.3	-68.1	26.6	-3.18	22.7	12.2	0.63			
16	52.7	532.6	-62.3	24.9	-2.91	20.3	11.9	0.60			
17	56.0	545.5	-64.9	25.5	-3.03	19.7	11.6	0.57			
18	59.3	505.9	-57.7	23.6	-2.70	17.2	11.2	0.54			
19	62.6	513.4	-59.3	24.0	-2.77	16.6	10.9	0.51			
20	65.9	497.8	-52.0	23.3	-2.43	14.4	10.6	0.48			
21	69.1	508.7	-53.4	23.8	-2.50	13.8	10.2	0.44			
22	72.4	503.2	-44.8	23.5	-2.09	11.6	9.9	0.41			
23	75.7	513.5	-46.1	24.0	-2.15	11.0	9.6	0.39			
24	79.0	499.5	-37.1	23.3	-1.73	9.2	9.5	0.36			
25	82.3	507.0	-38.2	23.7	-1.78	8.6	9.9	0.33			
26	85.6	497.6	-33.0	23.2	-1.54	7.1	10.2	0.30			
27	88.9	507.4	-33.6	23.7	-1.57	4.9	9.2	0.27			
Absolute	29.6			28.1			(T =	37.6 ms)			
	49.4				-3.18		(T =	61.3 ms)			

CASE METHOD										
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	720.3	677.8	635.2	592.7	550.1	507.6	465.0	422.5	379.9	337.4
RX	743.2	712.9	682.9	658.2	637.5	616.8	596.6	577.4	560.4	544.9
RU	725.1	683.0	640.9	598.8	556.7	514.7	472.6	430.5	388.4	346.3
RAU = 333.5 (kips); RA2 = 572.1 (kips)										
Current CAPWAP Ru = 545.0 (kips); Corresponding J(RP)= 0.41; J(RX) = 0.90										

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
14.1	35.85	540.0	605.8	605.8	0.98	0.13	0.12	32.6	706.7	2176

PILE PROFILE AND PILE MODEL										
Depth	Area	E-Modulus	Spec. Weight	Perim.						
ft	in ²	ksi	lb/ft ³	ft						
0.0	21.4	29992.2	492.000	4.70						
88.9	21.4	29992.2	492.000	4.70						
Toe Area	198.5	in²								
Top Segment Length	3.29 ft, Top Impe	dance 38 k	ips/ft/s							
Wave Speed: Pile Top 1 Pile Damping 1.00 %,	•	-								

USH 10 - B-70-403; Pile: Pier 5 #1 - BOR APE D30-42, HP 14 x 73; Blow: 6 GRL Engineers, Inc.

Total volume: 13.212 ft^{3;} Volume ratio considering added impedance: 1.000


USH 10 - B-70-403; Pile: Pier 5 #36 - EOID APE D30-42, HP 14 x 73; Blow: 393 GRL Engineers, Inc.

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

USH 10 - B-70-403; Pile: Pier 5 #36 - EOID APE D30-42, HP 14 x 73; Blow: 393 GRL Engineers, Inc.

otal CADE	WAP Capaci	Hw. 566	.0; along	Chaft	81.0; at :	Toe 485.0	) kips	
	_	-			-		-	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Dampin
No.	Gages	Grade			Ru	(Depth)	(Area)	Facto
	ft	ft	kips	kips	kips	kips/ft	ksf	s/f
				566.0				
1	9.9	7.8	0.0	566.0	0.0	0.00	0.00	0.0
2	16.4	14.4	0.0	566.0	0.0	0.00	0.00	0.0
3	23.0	21.0	5.0	561.0	5.0	0.76	0.16	0.2
4	29.6	27.5	8.0	553.0	13.0	1.22	0.26	0.2
5	36.1	34.1	8.0	545.0	21.0	1.22	0.26	0.2
6	42.7	40.7	8.0	537.0	29.0	1.22	0.26	0.2
7	49.3	47.2	8.0	529.0	37.0	1.22	0.26	0.2
8	55.8	53.8	8.0	521.0	45.0	1.22	0.26	0.2
9	62.4	60.4	6.0	515.0	51.0	0.91	0.19	0.2
10	69.0	67.0	6.0	509.0	57.0	0.91	0.19	0.2
11	75.6	73.5	6.0	503.0	63.0	0.91	0.19	0.2
12	82.1	80.1	6.0	497.0	69.0	0.91	0.19	0.2
13	88.7	86.7	12.0	485.0	81.0	1.83	0.39	0.2
Avg. Sh	aft		6.2			0.93	0.20	0.2
То	e		485.0				351.84	0.0
oil Model	l Paramete	rs/Extensi	ons		s	haft T	oe	
Juake		(i1	1)			0.20 0.	38	
Lase Dampi	ing Factor		-			0.42 0.	76	
amping Ty	ype				Vis	cous Sm+Vi	sc	
 Jnloading		(%	of loadi	ng quake)		100	47	
Jnloading			of Ru)	5 1		34		
APWAP mat	tch qualit	y =	3.26	(Wa	ve Up Match	1) ; RSA = 0	)	
bserved:	Final Set	=	0.08 i	n; Blo	w Count	= 160	b/ft	
Computed:	Final Set	=	0.11 i	-	w Count	= 106	b/ft	
ransducer	F3(F590)	CAL: 95.0;	RF: 1.00; F4	(F607) CAL:	93.6; RF: 1.00			
	A3(K2253	) CAL: 325;	RF: 1.06; A4	(K2524) CAL:	360; RF: 1.06			
nax. Top (	Comp. Stre	ss =	29.4 k	si (T	= 36.2 ms,	max= 1.025	х Тор)	
max. Comp.	. Stress	=	30.1 k	si (Z	= 23.0 ft,	T= 37.3 m	s)	
max. Tens.	. Stress	=	-3.73 k	si (Z	= 69.0 ft,	T= 62.9 m	s)	
_	JY (EMX)	=	25 2 1	ip-ft; ma		Top Displ.	(	00 -

USH 10 - B-70-	403; Pile: Pier	5 #36 - EOID
APE D30-42, HP	14 x 73; Blow:	393
GRL Engineers,	Inc.	

Test: 17-Dec-2014 14:50 CAPWAP(R) 2014-1 OP: AZ

			EXTI	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.3	628.7	-16.2	29.4	-0.76	35.3	15.5	1.08
2	6.6	629.4	-20.5	29.4	-0.96	35.2	15.5	1.07
4	13.1	631.2	-36.1	29.5	-1.68	34.8	15.4	1.03
6	19.7	638.9	-51.0	29.8	-2.38	34.2	15.2	0.99
8	26.3	632.0	-65.6	29.5	-3.07	32.5	14.8	0.95
10	32.9	615.2	-72.4	28.7	-3.38	30.1	14.4	0.90
12	39.4	599.1	-71.7	28.0	-3.35	27.8	14.1	0.84
13	42.7	605.3	-71.7	28.3	-3.35	27.2	13.9	0.82
14	46.0	583.7	-66.6	27.3	-3.11	25.4	13.7	0.79
15	49.3	589.9	-66.1	27.6	-3.09	24.8	13.5	0.76
16	52.6	568.9	-61.2	26.6	-2.86	23.1	13.3	0.73
17	55.8	574.3	-62.8	26.8	-2.93	22.5	13.2	0.70
18	59.1	552.6	-66.4	25.8	-3.10	20.8	13.0	0.68
19	62.4	557.2	-77.0	26.0	-3.60	20.2	12.9	0.65
20	65.7	542.5	-79.6	25.3	-3.72	18.7	12.8	0.62
21	69.0	547.1	-79.8	25.6	-3.73	18.1	12.9	0.58
22	72.3	533.0	-75.4	24.9	-3.52	16.7	12.7	0.55
23	75.6	537.6	-75.3	25.1	-3.52	16.1	13.7	0.52
24	78.8	521.7	-70.4	24.4	-3.29	14.8	15.7	0.49
25	82.1	538.8	-70.7	25.2	-3.30	14.1	16.3	0.46
26	85.4	547.7	-66.3	25.6	-3.10	12.9	16.8	0.43
27	88.7	562.4	-66.4	26.3	-3.10	12.1	16.0	0.40
Absolute	23.0			30.1			(T =	37.3 ms)
	69.0				-3.73		(T =	62.9 ms)

				CAS	E METHOD	1				
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	578.3	513.2	448.2	383.2	318.2	253.2	188.2	123.2	58.1	0.0
RX	691.3	671.3	651.9	636.2	622.4	610.2	597.9	585.7	573.5	562.3
RU	578.3	513.2	448.2	383.2	318.2	253.2	188.2	123.2	58.1	0.0
RAU =	460.5 (ki	ps); RA	2 = 6	37.7 (ki	ps)					

Current CAPWAP Ru = 566.0 (kips); Corresponding J(RP)= 0.02; J(RX) = 0.87

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
15.5	35.96	593.0	635.4	638.6	1.06	0.08	0.08	35.4	746.7	1276

Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in²	ksi	lb/ft ³	ft
0.0	21.4	29992.2	492.000	4.70
88.7	21.4	29992.2	492.000	4.70
Toe Area	198.5	$in^2$		
Top Segment Length	3.29 ft, Top Impe	edance 38 1	kips/ft/s	
Wave Speed: Pile Top Pile Damping 1.00 %	-	-		

Total volume: 13.182 ft^{3;} Volume ratio considering added impedance: 1.000



USH 10 - B-70-403; Pile: Pier 5 #36 - BOR APE D30-42, HP 14 x 73; Blow: 4 GRL Engineers, Inc.

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

USH 10 - B-70-403; Pile: Pier 5 #36 - BOR APE D30-42, HP 14 x 73; Blow: 4 GRL Engineers, Inc.

			CAPW	AP SUMMARY	RESULTS					
Total CAPV	VAP Capaci	ty: 558	.0; along	Shaft	133.0; at	Тое	425.0	kips		
Soil	Dist.	Depth	Ru	Force	Sum		Unit	Uni	t Sn	nith
Sgmnt	Below	Below		in Pile	of	Re	sist.	Resist	. Damp	ping
No.	Gages	Grade			Ru	(D	epth)	(Area	) Fac	ctor
	ft	ft	kips	kips	kips	ki	ps/ft	ks	f s	s/ft
				558.0						
1	9.9	7.9	0.0	558.0	0.0		0.00	0.0	o c	0.00
2	16.4	14.4	0.0	558.0	0.0		0.00	0.0	o c	0.00
3	23.0	21.0	4.0	554.0	4.0		0.61	0.1	з с	0.33
4	29.6	27.6	6.0	548.0	10.0		0.91	0.1	9 0	0.33
5	36.1	34.1	11.0	537.0	21.0		1.67	0.3	б С	0.33
6	42.7	40.7	12.0	525.0	33.0		1.83	0.3	9 C	0.33
7	49.3	47.3	12.0	513.0	45.0		1.83	0.3	9 0	0.33
8	55.8	53.9	13.0	500.0	58.0		1.98	0.4	2 0	0.33
9	62.4	60.4	14.0	486.0	72.0		2.13	0.4	5 C	0.33
10	69.0	67.0	12.0	474.0	84.0		1.83	0.3	9 C	0.33
11	75.6	73.6	12.0	462.0	96.0		1.83	0.3	9 C	0.33
12	82.1	80.1	12.0	450.0	108.0		1.83	0.3	9 C	0.33
13	88.7	86.7	25.0	425.0	133.0		3.80	0.8	1 0	0.33
Avg. Sh	aft		10.2				1.53	0.3	з с	0.33
То	e		425.0					308.3	1 C	0.07
Soil Model	Paramete	rs/Extensi	ons			Shaft	То	e		
Quake		(i1	n)			0.17	0.1	8		
Case Dampi	ing Factor					1.15	0.7	8		
Damping Ty	zpe				Vi	scous	Sm+Vis	с		
Unloading	Quake	(%	of loadin	ng quake)		100	3	9		
Reloading		(%	of Ru)			100		0		
Unloading	Level	(%	of Ru)			33				
Resistance	Gap (inc	luded in T	oe Quake)	(in)			0.0	1		
Soil Plug	Weight	(k:	ips)				0.01	7		
CAPWAP mat	ch qualit	v =	1.35	( Wa	ve Up Matc	h) : ī	RSA = 0			
Observed:			0.12 in		w Count	=		b/ft		
Computed:			0.10 in	-	w Count	=		b/ft		
Transducer		CAL: 93.6;		-	95.0; RF: 1.00			2720		
	A3(K2524		RF: 1.09; A4(		325; RF: 1.09					
max. Top (	Comp. Stre	ss =	29.3 ks	si (1	'= 36.2 ms	, max=	= 1.036	x Top)		
max. Comp.	Stress	=	30.4 ka	si (2	a= 23.0 ft	, T=	37.3 ms	)		
max. Tens.	Stress	=	-2.60 ka	si (2	a= 55.8 ft	, T=	61.4 ms	)		
max. Energ	JY (EMX)	=	31.3 k:	ip-ft; ma	x. Measure	d Top	Displ.	(DMX)=	0.89 in	

USH 10 - B-70-403; Pile: Pier	5	#36	-	BOR
APE D30-42, HP 14 x 73; Blow:	4			
GRL Engineers, Inc.				

Test: 18-Dec-2014 08:04 CAPWAP(R) 2014-1 OP: AZ

			EXT	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	i
1	3.3	627.3	-13.8	29.3	-0.64	31.3	15.1	0.9
2	6.6	628.5	-15.3	29.4	-0.72	31.1	15.1	0.8
4	13.1	631.2	-19.1	29.5	-0.89	30.6	15.0	0.8
6	19.7	642.5	-22.1	30.0	-1.03	30.0	14.7	0.8
8	26.3	636.0	-36.2	29.7	-1.69	28.3	14.3	0.7
10	32.9	628.7	-45.9	29.4	-2.14	26.2	13.7	0.7
12	39.4	598.7	-48.2	28.0	-2.25	23.2	12.9	0.6
13	42.7	611.9	-53.7	28.6	-2.51	22.6	12.6	0.6
14	46.0	566.0	-48.4	26.4	-2.26	20.1	12.2	0.5
15	49.3	579.0	-53.5	27.0	-2.50	19.5	11.9	0.5
16	52.6	536.9	-51.0	25.1	-2.38	17.2	11.5	0.5
17	55.8	550.0	-55.6	25.7	-2.60	16.6	11.1	0.4
18	59.1	507.2	-50.3	23.7	-2.35	14.4	10.8	0.4
19	62.4	518.8	-52.3	24.2	-2.45	13.8	10.4	0.4
20	65.7	498.6	-43.3	23.3	-2.02	11.8	10.1	0.4
21	69.0	499.5	-44.0	23.3	-2.06	11.1	9.8	0.3
22	72.3	485.6	-36.5	22.7	-1.70	9.5	9.5	0.3
23	75.6	491.3	-37.0	23.0	-1.73	8.9	9.2	0.3
24	78.8	488.1	-30.8	22.8	-1.44	7.5	9.8	0.2
25	82.1	505.5	-31.4	23.6	-1.47	7.0	10.4	0.2
26	85.4	496.6	-28.9	23.2	-1.35	5.8	10.6	0.2
27	88.7	503.7	-29.1	23.5	-1.36	4.8	9.5	0.2
lute	23.0			30.4			(T =	37.3 ms
	55.8				-2.60		(т =	61.4 ms

				CAS	E METHOD					
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	762.4	716.8	671.2	625.6	580.0	534.4	488.8	443.2	397.6	352.0
RX	790.5	754.3	718.7	684.8	653.3	627.2	606.1	587.3	570.4	554.3
RU	773.2	728.6	684.1	639.6	595.1	550.6	506.1	461.6	417.1	372.5
RAU =	255.7 (ki	.ps); RA	.2 = 5	65.9 (ki	ps)					
Current	CAPWAP Ru	= 558.0	(kips);	Correspo	nding J(	RP)= 0.4	5; J(RX)	= 0.88		

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
15.2	35.77	581.4	636.9	639.2	0.89	0.13	0.12	31.5	742.3	2500

Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in ²	ksi	lb/ft ³	ft
0.0	21.4	29992.2	492.000	4.70
88.7	21.4	29992.2	492.000	4.70
Toe Area	198.5	$in^2$		
Top Segment Length	3.29 ft, Top Im	pedance 38 1	kips/ft/s	

Pile Damping 1.00 %, Time Incr 0.195 ms, 2L/c 10.6 ms

Total volume: 13.182 ft^{3;} Volume ratio considering added impedance: 1.000



USH 10 - B-70-403; Pile: Pier 5 #44 - EOID APE D30-42, HP 14 x 73; Blow: 189 GRL Engineers, Inc.

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

USH 10 - B-70-403; Pile: Pier 5 #44 - EOID APE D30-42, HP 14 x 73; Blow: 189 GRL Engineers, Inc.

			CAPW	AP SUMMARY	RESULTS				
Total CAPV	VAP Capaci	ty: 504	.0; along	g Shaft	49.0; at 1	Toe 4	55.0	kips	
Soil	Dist.	Depth	Ru	Force	Sum	Un	it	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resis	t.	Resist.	Damping
No.	Gages	Grade			Ru	(Dept	h)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/	ft	ksf	s/ft
				504.0					
1	10.0	6.8	0.0	504.0	0.0	Ο.	00	0.00	0.00
2	16.7	13.5	0.0	504.0	0.0	0.	00	0.00	0.00
3	23.4	20.1	0.0	504.0	0.0	Ο.	00	0.00	0.00
4	30.1	26.8	3.0	501.0	3.0	Ο.	45	0.10	0.21
5	36.8	33.5	6.0	495.0	9.0	Ο.	90	0.19	0.21
6	43.5	40.2	5.0	490.0	14.0	Ο.	75	0.16	0.21
7	50.1	46.9	5.0	485.0	19.0	ο.	75	0.16	0.21
8	56.8	53.6	4.0	481.0	23.0	Ο.	60	0.13	0.21
9	63.5	60.3	4.0	477.0	27.0	Ο.	60	0.13	0.21
10	70.2	66.9	3.0	474.0	30.0	Ο.	45	0.10	0.21
11	76.9	73.6	3.0	471.0	33.0	Ο.	45	0.10	0.21
12	83.6	80.3	4.0	467.0	37.0	ο.	60	0.13	0.21
13	90.3	87.0	12.0	455.0	49.0	1.	80	0.38	0.21
Avg. Sha	aft		3.8			0.	56	0.12	0.21
То	e		455.0					330.07	0.07
Soil Model	L Paramete	rs/Extensi	ons		S	haft	Тое	3	
Quake		(i)	n)			0.25	0.43	3	
Case Dampi	ing Factor					0.27	0.83	3	
Damping Ty	гре				Vis	cous SI	n+Viso	2	
Unloading	Quake	(%	of loadi	ng quake)		30	30	)	
Unloading	Level	(%	of Ru)			57			
Resistance	e Gap (inc	luded in T	oe Quake)	(in)			0.03	3	
Soil Plug			ips)		0	.020			
CAPWAP mat	ch qualit	v =	4.41	(Wa	ve Up Match	) : RSA	= 0		
Observed:	-	-	0.28 i		w Count	=		b/ft	
Computed:			0.32 i	-	w Count	=		b/ft	
Transducer		CAL: 93.6;		-	95.0; RF: 1.00	—		.,	
	A3(K2524			(K2253) CAL:	325; RF: 1.03				
max. Top (	Comp. Stre	ss =	27.2 k	si (T	= 36.0 ms,	max= 1	.022 3	K Top)	
max. Comp.	. Stress	=	27.8 k	si (Z	= 30.1 ft,	T= 37	.8 ms	)	
max. Tens.	. Stress	=	-4.96 k	si (Z	= 56.8 ft,	T= 62	8 ms	)	
max. Energ	JY (EMX)	=	30.7 k	ip-ft; ma	x. Measured	Top Di	spl.	(DMX)=	1.09 in

USH 10 - B-70-4	03; Pile: Pier	5 #44 - EOID
APE D30-42, HP	14 x 73; Blow:	189
GRL Engineers,	Inc.	

Test: 17-Dec-2014 13:23 CAPWAP(R) 2014-1 OP: AZ

max	max.	max.	max.	max.	min.	max.	Dist.	Pile
Displ	Veloc.	Trnsfd.	Tens.	Comp.	Force	Force	Below	Sgmnt
		Energy	Stress	Stress			Gages	No.
: iı	ft/s	kip-ft	ksi	ksi	kips	kips	ft	
1.1	14.5	30.7	-1.23	27.2	-26.3	583.2	3.3	1
1.10	14.5	30.6	-1.77	27.3	-37.9	583.6	6.7	2
1.0	14.5	30.2	-2.91	27.3	-62.3	584.3	13.4	4
1.0	14.4	29.7	-3.89	27.4	-83.4	585.7	20.1	6
0.9	14.2	29.2	-4.49	27.6	-96.2	591.5	26.7	8
0.94	14.0	27.9	-4.37	27.6	-93.4	590.0	33.4	10
0.8	13.7	25.9	-4.05	26.9	-86.7	576.7	40.1	12
0.8	13.6	25.5	-4.01	27.1	-85.7	581.1	43.5	13
0.84	13.5	24.2	-4.26	26.5	-91.1	567.2	46.8	14
0.82	13.4	23.7	-4.78	26.7	-102.3	571.1	50.1	15
0.79	13.2	22.3	-4.93	26.1	-105.5	557.9	53.5	16
0.70	13.0	21.8	-4.96	26.5	-106.1	566.5	56.8	17
0.73	12.9	20.7	-4.75	26.1	-101.7	557.8	60.2	18
0.70	12.9	20.1	-4.74	26.0	-101.4	555.8	63.5	19
0.6	12.9	18.9	-4.53	25.3	-97.0	542.3	66.9	20
0.64	13.1	18.3	-4.52	25.5	-96.8	545.7	70.2	21
0.6	13.2	17.3	-4.37	25.2	-93.4	538.6	73.5	22
0.58	14.0	16.7	-4.37	25.3	-93.6	542.0	76.9	23
0.5	15.3	15.8	-4.24	24.8	-90.7	531.8	80.2	24
0.5	16.4	15.5	-4.23	24.6	-90.6	525.6	83.6	25
0.50	17.2	15.0	-4.02	25.3	-86.1	542.4	86.9	26
0.48	16.1	14.7	-4.01	26.1	-85.9	558.5	90.3	27
37.8 ms	(T =			27.8			30.1	Absolute
62.8 ms	(T =		-4.96				56.8	

	CASE METHOD											
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8		
RP	492.2	360.8	229.4	98.1	0.0							
RX	656.6	627.4	599.6	573.9	555.0	539.4	523.7	508.1	492.5	476.8		
RU	492.2	360.8	229.4	98.1	0.0							

RAU = 424.9 (kips); RA2 = 562.5 (kips)

Current CAPWAP Ru = 504.0 (kips); Corresponding J(RP)= 0.00; J(RX) = 1.45

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
14.5	35.80	553.7	595.3	595.3	1.09	0.28	0.28	30.6	536.3	1138

	PILE PRO	FILE AND PILE MOD	EL	
Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in ²	ksi	lb/ft ³	ft
0.0	21.4	29992.2	492.000	4.70
90.3	21.4	29992.2	492.000	4.70
Toe Area	198.5	$in^2$		

APE D30-	-42, HP 1	14 x 73;	Blow: 189	)				C	APWAP(R)	2014-1
GRL Engi	ineers,	Inc.								OP: AZ
Segmnt	Dist.Im	pedance	Imped.		Tension	Comp	ression	Perim.	Wave	Soil
Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
	ftki	.ps/ft/s	%	in		in		ft	ft/s	kips
1	3.3	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	L6807 <b>.</b> 9	0.000
19	63.5	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	L6807.9	0.010
21	70.2	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	L6807.9	0.000
27	90.3	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	L6807.9	0.000

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.199 ms, 2L/c 10.7 ms Total volume: 13.412 ft³, Volume ratio considering added impedance: 1.000

USH 10 - B-70-403; Pile: Pier 5 #44 - EOID

Test: 17-Dec-2014 13:23



USH 10 - B-70-403; Pile: Pier 5 #44 - BOR APE D30-42, HP 14 x 73; Blow: 4 GRL Engineers, Inc.

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

USH 10 - B-70-403; Pile: Pier	5	#44	-	BOR
APE D30-42, HP 14 x 73; Blow:	4			
GRL Engineers, Inc.				

				s	KESULI	SUMMARY		0111				
	kips	490.0	Тое	at :	77.0;	aft	ng Sł	0; alo	567.	ty:	P Capaci	otal CAPW
Smi	Unit	Unit		Sum	i	Force		Ru	oth	De	Dist.	Soil
Dampi	Resist.	sist.	Rea	of		n Pile	i		Low	Be	Below	Sgmnt
Fact	(Area)	epth)	(De	Ru					ade	Gr	Gages	No.
S/	ksf	ps/ft	kip	ips	k	kips		kips	ft		ft	
						567.0						
0.	0.00	0.00		0.0		567.0		0.0	5.8		10.0	1
0.	0.00	0.00		0.0		567.0		0.0	3.5	1	16.7	2
0.	0.00	0.00		0.0		567.0		0.0	0.2	2	23.4	3
0.	0.06	0.30		2.0		565.0		2.0	5.9	2	30.1	4
0.	0.10	0.45		5.0		562.0		3.0	3.6	3	36.8	5
0.	0.22	1.05		2.0	1	555.0		7.0	0.2	4	43.5	6
0.	0.22	1.05		9.0	1	548.0		7.0	5.9	4	50.1	7
0.	0.25	1.20		7.0	2	540.0		8.0	3.6	5	56.8	8
0.	0.25	1.20		5.0	3	532.0		8.0	0.3	6	63.5	9
0.	0.25	1.20		3.0	4	524.0		8.0	7.0	6	70.2	10
0.	0.25	1.20		1.0	5	516.0		8.0	3.7	7	76.9	11
0.	0.25	1.20		9.0	5	508.0		8.0	0.4	8	83.6	12
0.	0.57	2.69		7.0	7	490.0		18.0	7.0	8	90.3	13
0.	0.19	0.88						5.9			Et	Avg. Sha
0.	355.46							490.0				Тое
	1	Тое	Shaft	s				ns	tensic	ers/Ex	Paramete	oil Model
		0.23	0.05					)	(in			Jake
		0.64	0.60							:	g Factor	ase Dampi
		Sm+Visc	scous	Vis							e	amping Ty
		30	34			quake)	ling	of load	(%		uake	nloading
		0	100					of Ru)	(%		evel	eloading
			39					of Ru)	(%		evel	nloading
		0.01				n)	e) (i	e Quake	in To	luded	Gap (inc	esistance
		2SA = 0	h) • F	atch	∍ I⊺n M	(Wa		2.76	=		h mualit	APWAP mat
	o/ft	96 b	=		Count		in:	0.12	=	-	_	served:
		137 b	=		Count		-	0.09	=			mputed:
	.,			1.00		7) CAL:	F4(F60		95.0; R	) CAL:		ansducer
	(TOP)	1.019 x				(T		26.9	=			ах. Тор С
		37.6 ms)		-		(z		27.4	=		_	ax. Comp.
		62.0 ms)		-		(1 (2		-4.65	=			ax. Tens.
			,	,	20.0	, Δ			-			

USH 10 - B-70-403; Pil	le: Pier 5 #44 - BOR
APE D30-42, HP 14 x 73	3; Blow: 4
GRL Engineers, Inc.	

Test: 18-Dec-2014 08:12 CAPWAP(R) 2014-1 OP: AZ

				EMA TABLE	EXTR			
max	max.	max.	max.	max.	min.	max.	Dist.	Pile
Displ	Veloc.	Trnsfd.	Tens.	Comp.	Force	Force	Below	Sgmnt
		Energy	Stress	Stress			Gages	No.
i	ft/s	kip-ft	ksi	ksi	kips	kips	ft	
0.9	13.9	27.1	-1.02	26.9	-21.8	575.6	3.3	1
0.9	13.9	27.0	-1.04	26.9	-22.4	576.2	6.7	2
0.8	13.8	26.5	-1.14	27.0	-24.3	577.6	13.4	4
0.8	13.7	26.0	-1.83	27.1	-39.1	579.2	20.1	6
0.8	13.6	25.3	-2.18	27.3	-46.8	583.7	26.7	8
0.7	13.4	24.1	-3.06	27.1	-65.4	580.5	33.4	10
0.6	13.0	22.6	-3.87	27.0	-82.9	578.1	40.1	12
0.6	12.8	22.1	-4.36	27.3	-93.3	584.5	43.5	13
0.6	12.6	20.4	-4.34	26.1	-92.8	558.7	46.8	14
0.6	12.4	19.8	-4.52	26.4	-96.8	565.1	50.1	15
0.5	12.2	18.1	-4.46	25.3	-95.4	540.9	53.5	16
0.5	12.0	17.4	-4.65	25.6	-99.5	547.8	56.8	17
0.5	11.7	15.7	-4.30	24.3	-92.0	519.7	60.2	18
0.4	11.5	15.1	-4.32	24.6	-92.6	526.3	63.5	19
0.4	11.3	13.5	-3.99	23.6	-85.3	504.6	66.9	20
0.4	11.1	12.8	-3.94	24.0	-84.4	514.3	70.2	21
0.3	10.9	11.2	-3.57	23.8	-76.3	508.6	73.5	22
0.3	10.8	10.5	-3.57	23.9	-76.4	511.4	76.9	23
0.3	12.6	9.1	-3.22	23.9	-68.9	512.1	80.2	24
0.3	13.2	8.5	-3.20	25.2	-68.5	540.5	83.6	25
0.2	13.6	7.1	-2.86	25.1	-61.2	537.2	86.9	26
0.2	12.4	6.2	-2.84	25.7	-60.9	550.6	90.3	27
37.6 ms	(T =			27.4			30.1	olute
62.0 ms	(T =		-4.65				56.8	

	CASE METHOD											
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9		
RP	581.2	528.0	474.8	421.5	368.3	315.1	261.8	208.6	155.4	102.2		
RX	689.5	658.5	630.4	606.2	593.6	581.1	568.5	556.1	547.9	540.3		
RU	581.2	528.0	474.8	421.5	368.3	315.1	261.8	208.6	155.4	102.2		
RAU =	378.2 (ki	.ps); RA	.2 = 5	53.3 (ki	ps)							
Current	CAPWAP Ru	= 567.0	(kips);	Correspo	nding J(	RP)= 0.0	3; J(RX)	= 0.61				

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
13.9	35.80	529.4	584.2	584.2	0.93	0.13	0.12	27.2	618.4	2227

PILE PROFILE AND PILE MODEL										
Depth	Area	E-Modulus	Spec. Weight	Perim.						
ft	in²	ksi	lb/ft ³	ft						
0.0	21.4	29992.2	492.000	4.70						
90.3	21.4	29992.2	492.000	4.70						
Toe Area	198.5	in²								
Top Segment Length 3.34 ft, Top Impedance 38 kips/ft/s										
Wave Speed: Pile Top 1 Pile Damping 1.00 %,		-								

USH 10 - B-70-403; Pile: Pier 5 #44 - BOR APE D30-42, HP 14 x 73; Blow: 4 GRL Engineers, Inc.

Total volume: 13.412 ft^{3;} Volume ratio considering added impedance: 1.000