GRL Engineers, Inc.

1540 E. Dundee Road, Suite 102 Palatine, IL 60074 USA Phone: (847) 221-2750 Fax: (847) 221-2752

TRANSMITTAL

To: Mr. Kevin Weber	From: Travis Coleman				
Company: Lunda Construction Co.	No. of Sheets: 47				
E-mail: kweber@lundaconstruction.com	Date: February 26, 2015				

RE: Dynamic Testing Results – USH 10 over Little Lake Butte des Morts Structure B-70-403 - Pier 4 Winnebago County, Wisconsin

On February 24, 2015, Pier 4 #1, Pier 4 #36, and Pier 4 #44 at the above structure were dynamically tested during initial driving. The piles were tested during restrike on February 25. Project plans indicated the exterior row piles have a required driving resistance, or ultimate capacity, of 480 kips (240 tons) and the interior row piles have a required driving resistance of 400 kips (200 tons). The cofferdam reference grade was reported to be EL 741.1 for Pier 4 #1 and EL 741.2 for Pier 4 #36 and Pier 4 #44. It was reported to GRL that the mud line was at EL 718.1. The piles have a required minimum tip elevation of EL 660. The HP 14x73 H-piles were equipped with driving shoes and were driven with an APE D30-42 hammer (number PD 0256) that was reported to be operated on fuel setting 4.

Pier 4 #1 was driven to a depth of 86.2 feet, which corresponds to a pile tip elevation of EL 654.9. The blow count over the final increment of driving was 10 blows for 1³/₈ inches of penetration at an average hammer stroke of 6.9 feet. The blow count at the beginning of restrike was 10 blows for 5⁶/₈ inch of penetration at an average hammer stroke of 7.2 feet.

Pier 4 #36 was driven to a depth of 83.8 feet, which corresponds to a pile tip elevation of EL 657.4. The blow count over the final increment of driving was 10 blows for 2⁷/₈ inches of penetration at an average hammer stroke of 6.2 feet. The blow count at the beginning of restrike was 10 blows for 1⁵/₈ inch of penetration at an average hammer stroke of 6.8 feet.

Pier 4 #44 was driven to a depth of 87.9 feet, which corresponds to a pile tip elevation of EL 653.3. The blow count over the final increment of driving was 10 blows for 1³/₈ inches of penetration at an average hammer stroke of 7.4 feet. The blow count at the beginning of restrike was 10 blows for ⁷/₈ inch of penetration at an average hammer stroke of 7.8 feet.

Our driving recommendations have been prepared on a blows-per-inch basis. The criteria should be applied only after the minimum pile tip elevation is achieved. For the 480 and 400 kips piles driven with an APE D30-42 hammer (PD 0256) in Pier 4 of the USH 10 bridge over Little Lake Butte des Morts we recommend using the following criteria:

We recommend the above blow counts at the required stroke be maintained for **three consecutive inches** of driving. We recommend immediately terminating driving **if the blow counts exceed 10** blows over an increment of one inch or less at hammer strokes of 8.0 feet, after satisfying any minimum tip requirements. We anticipate the production piles will terminate at depths similar to those of the test piles.

These criteria should not be used for acceptance of piles under restrike and/or redrive conditions. After splicing or any other delays, we recommend not applying the criteria until a full foot of driving has occurred beyond the termination depth associated with the delay, unless the blow count exceeds 10 blows per inch.

Please call if you have any questions on these recommendations.

GRL Engineers, Inc.

Travis Coleman, P.E.

Mark A. Rawleng

Mark Rawlings

Cc: Jeff Horsfall - jeffrey.horsfall@dot.wi.gov

Attachments:

Dynamic Test Results -(pages 3 - 26)CAPWAP Analysis Results -(pages 27 - 47)

Page 1 PDIPLOT2 2014.2.48.1 - Printed 25-February-2015

USH OP: 1	10 over Little Lake	e Butte des M	APE D30-42, HP 14 x 73 Date: 24-February-2015						
AR: LE:	21.40 in ² 92.50 ft 16,807.9 f/s							SP: 0 EM: 30	.492 k/ft ³ ,000 ksi 1.00 []
CSX: CSB:	Max Measured C Compression Str Max Transferred	ess at Bottom				BPM: BI	ows per Minu	mmer Stroke	
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
5	ft 39.00	bl/ft 1	AV1 STD MAX MIN	ksi 24.4 0.0 24.4 24.4	ksi 4.0 0.0 4.0 4.0	k-ft 41 0 41 41	ft 5.7 0.0 5.7 5.7	bpm 49.3 0.0 49.3 49.3	kips 0 0 0 0
6	39.33	3	AV1 STD MAX MIN	18.0 0.0 18.0 18.0	3.5 0.0 3.5 3.5	20 0 20 20	4.2 0.0 4.2 4.2	57.0 0.0 57.0 57.0	29 0 29 29
7	39.67	3	AV1 STD MAX MIN	7.7 0.0 7.7 7.7	1.6 0.0 1.6 1.6	5 0 5 5	2.7 0.0 2.7 2.7	69.3 0.0 69.3 69.3	4 0 4 4
9	40.50	2	AV1 STD MAX MIN	22.0 0.0 22.0 22.0	3.7 0.0 3.7 3.7	32 0 32 32	5.2 0.0 5.2 5.2	51.5 0.0 51.5 51.5	10 0 10 10
10	41.00	2	AV1 STD MAX MIN	15.4 0.0 15.4 15.4	2.8 0.0 2.8 2.8	17 0 17 17	3.7 0.0 3.7 3.7	60.1 0.0 60.1 60.1	16 0 16 16
13	42.00	3	AV3 STD MAX MIN	12.3 1.0 13.7 11.6	3.0 0.2 3.3 2.8	14 2 16 13	3.3 0.1 3.5 3.2	63.6 1.2 64.6 61.9	5 1 6 3
16	43.00	3	AV3 STD MAX MIN	14.3 0.8 15.1 13.3	3.4 0.1 3.5 3.2	16 1 18 15	3.6 0.1 3.8 3.4	60.7 1.1 62.2 59.7	30 4 33 23
20	44.00	4	AV4 STD MAX MIN	15.9 1.6 18.1 13.6	3.6 0.2 4.0 3.4	17 1 18 14	3.8 0.2 4.2 3.5	59.4 1.7 61.8 56.9	44 4 50 40
23	45.00	3	AV3 STD MAX MIN	15.7 0.6 16.4 15.0	3.7 0.1 3.8 3.7	19 1 20 17	3.8 0.1 3.9 3.7	59.6 0.5 59.9 58.9	38 5 44 32
27	46.00	4	AV4 STD MAX MIN	16.9 0.8 17.7 15.7	4.1 0.1 4.3 4.0	19 1 20 18	4.0 0.2 4.3 3.8	57.9 1.2 59.7 56.3	48 2 49 44
31	47.00	4	AV4 STD MAX MIN	16.1 0.8 17.0 14.9	4.2 0.3 4.5 3.6	18 1 20 16	3.9 0.0 4.0 3.9	58.4 0.3 58.9 58.0	45 4 50 40
35	48.00	4	AV4	16.9	4.0	19	4.0	58.2	47

Page 2	
PDIPLOT2 2014.2.48.1 - Printed 25-February-2015	

USH 10 over Little Lake Butte des Morts - PIER 4 #1

APE D30-42, HP 14 x 73

USH 10 OP: TC	over Little Lak	e Butte des M	1orts - PIER 4	#1				PE D30-42, HF ate: 24-Febru	
BL#	depth ft	BLC bl/ft	TYPE STD MAX MIN	CSX ksi 0.9 17.8 15.8	CSB ksi 0.3 4.5 3.7	EMX k-ft 20 17	STK ft 0.1 4.1 3.8	BPM bpm 0.8 59.3 57.3	RX9 kips 4 51 43
39	49.00	4	AV4 STD MAX MIN	16.9 0.3 17.3 16.5	3.8 0.1 4.0 3.6	19 1 20 18	4.0 0.1 4.1 3.9	58.1 0.6 58.9 57.2	47 2 50 45
42	50.00	3	AV3 STD MAX MIN	16.8 1.2 17.8 15.2	3.8 0.3 4.2 3.4	20 2 22 18	3.9 0.2 4.1 3.7	58.5 1.3 60.3 57.3	35 2 36 31
46	51.00	4	AV4 STD MAX MIN	16.6 0.3 16.9 16.1	4.0 0.2 4.3 3.7	18 1 19 18	3.9 0.1 4.0 3.8	58.7 0.4 59.2 58.2	43 3 46 40
49	52.00	3	AV3 STD MAX MIN	16.1 0.4 16.7 15.8	3.7 0.1 3.8 3.5	19 0 19 18	3.8 0.1 4.0 3.7	59.3 0.8 60.0 58.2	24 10 33 9
52	53.00	3	AV3 STD MAX MIN	16.7 0.7 17.6 15.9	3.7 0.2 4.1 3.5	20 2 22 18	3.9 0.1 4.1 3.8	58.4 1.0 59.7 57.4	33 6 39 24
56	54.00	4	AV4 STD MAX MIN	16.7 0.6 17.7 16.1	4.0 0.1 4.1 3.8	18 1 19 18	3.9 0.1 4.1 3.9	58.4 0.6 59.0 57.5	51 3 54 47
61	55.00	5	AV5 STD MAX MIN	18.8 0.5 19.2 18.0	4.6 0.3 5.1 4.1	21 1 22 20	4.4 0.1 4.5 4.2	55.5 0.8 57.0 54.9	81 6 88 73
65	56.00	4	AV4 STD MAX MIN	16.7 0.9 17.9 15.9	3.8 0.3 4.2 3.5	19 2 22 17	4.0 0.2 4.3 3.8	57.9 1.2 59.3 56.3	47 6 53 37
68	57.00	3	AV3 STD MAX MIN	16.0 0.5 16.6 15.5	3.9 0.1 4.0 3.9	19 1 20 17	3.8 0.1 3.9 3.8	59.1 0.4 59.4 58.5	46 16 58 24
74	58.00	6	AV6 STD MAX MIN	18.5 0.8 19.6 17.3	4.3 0.1 4.4 4.0	20 1 21 18	4.3 0.2 4.5 4.1	55.8 1.0 57.3 54.7	88 4 96 86
79	59.00	5	AV5 STD MAX MIN	18.4 0.6 18.9 17.4	4.7 0.2 4.9 4.5	21 1 22 19	4.3 0.1 4.5 4.2	55.8 0.7 57.0 55.1	87 3 89 82
84	60.00	5	AV5 STD MAX MIN	19.2 0.3 19.7 18.7	5.0 0.2 5.2 4.7	22 0 23 21	4.5 0.1 4.6 4.4	54.8 0.4 55.4 54.3	96 4 102 93

Page 3 PDIPLOT2 2014.2.48.1 - Printed 25-February-2015

USH 10 over Little Lake Butte des Morts - PIER 4 #1

APE D30-42, HP 14 x 73

	over Little Lak	e Butte des N	/lorts - PIER 4	#1				PE D30-42, HF	
OP: TC	4 -	DL O	TVDE	001/	000			ate: 24-Febru	
BL#	depth ft	BLC bl/ft	TYPE	CSX ksi	CSB ksi	EMX k-ft	STK ft	BPM bpm	RX9 kips
89	61.00	5	AV5	19.5	5.2	23	4.6	54.4	101
00	01.00	0	STD	0.7	0.2	1	0.1	0.7	4
			MAX	20.5	5.6	25	4.8	55.1	106
			MIN	20.5	5.0 5.1	25	4.0 4.5	53.3	96
05	00.00	0							
95	62.00	6	AV6 STD	18.8 0.5	4.6 0.3	21 1	4.4 0.1	55.4 0.6	87 9
			MAX	19.8	5.1	22	4.6	56.0	97
			MIN	18.1	4.2	20	4.3	54.2	70
98	63.00	3	AV3	16.9	4.1	21	4.1	57.4	32
		Ū.	STD	0.5	0.2	1	0.1	0.6	11
			MAX	17.6	4.4	22	4.2	57.9	44
			MIN	16.6	3.9	21	4.0	56.5	17
100	64.00	2	AV2	15.9	3.7	21	3.8	59.2	0
			STD	0.6	0.1	1	0.1	0.9	Ō
			MAX	16.6	3.8	22	4.0	60.1	Õ
			MIN	15.3	3.6	20	3.7	58.3	0
104	65.00	4	AV4	16.9	4.3	19	4.1	57.7	54
101	00.00	•	STD	1.8	0.4	3	0.4	2.5	3
			MAX	19.1	4.8	23	4.6	60.5	56
			MIN	15.1	3.7	16	3.7	54.4	49
107	66.00	3	AV3	16.9	4.0	20	4.0	57.8	20
107	00.00	0	STD	0.7	0.3	1	0.1	0.7	16
			MAX	17.8	4.3	21	4.2	58.5	40
			MIN	16.3	3.7	20	3.9	56.8	0
111	67.00	4	AV4	16.1	3.7	18	3.9	58.7	44
	07.00	•	STD	0.8	0.2	1	0.2	1.1	7
			MAX	17.2	3.9	19	4.1	60.0	, 52
			MIN	15.0	3.5	16	3.7	57.3	33
115	68.00	4	AV4	16.6	3.9	18	4.0	58.0	57
110	00.00	•	STD	0.7	0.3	1	0.2	1.1	21
			MAX	17.7	4.4	20	4.2	59.7	89
			MIN	15.9	3.7	17	3.8	56.7	33
120	69.00	5	AV5	19.6	5.2	23	4.6	54.5	103
			STD	0.6	0.3	1	0.1	0.7	6
			MAX	20.4	5.5	24	4.7	55.4	110
			MIN	18.7	4.6	22	4.4	53.6	93
124	70.00	4	AV4	18.6	4.3	22	4.4	55.6	67
			STD	0.2	0.2	0	0.1	0.5	4
			MAX	18.9	4.5	23	4.5	56.3	73
			MIN	18.3	4.1	22	4.3	55.1	63
129	71.00	5	AV5	18.7	4.4	22	4.4	55.3	82
			STD	0.5	0.2	0	0.1	0.5	3
			MAX	19.4	4.6	22	4.5	55.9	86
			MIN	18.1	4.1	21	4.3	54.7	77
132	72.00	3	AV3	16.5	3.8	20	4.0	57.8	29
		-	STD	1.5	0.2	2	0.3	1.7	16
			MAX	18.4	4.0	22	4.4	59.9	51
			MIN	14.7	3.6	18	3.7	55.7	15
134	73.00	2	AV2	15.4	3.7	20	3.9	58.9	0
			STD	0.4	0.1	0	0.1	0.4	0

Page 4
PDIPLOT2 2014.2.48.1 - Printed 25-February-2015

USH 10 over Little Lake Butte des Morts - PIER 4 #1

APF	D30-42,	ΗP	14 x 73	
/ U L	D00 42,		14 / / 0	

DP: TC			Norts - PIER 4					PE D30-42, HI Date: 24-Febru	
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
	ft	bl/ft		ksi	ksi	k-ft	ft	bpm	kips
			MAX	15.8	3.7	21	3.9	59.3	- (
			MIN	15.0	3.6	20	3.8	58.5	(
138	74.00	4	AV4	14.5	3.6	17	3.8	59.8	29
	71.00	•	STD	0.8	0.0	1	0.1	0.9	14
			MAX	15.7	3.6	18	3.9	60.7	43
			MIN	13.7	3.6	16	3.6	58.8	(
142	75.00	4	AV4	17.4	4.9	20	4.2	57.0	76
		-	STD	2.2	0.6	3	0.5	2.8	4
			MAX	21.2	5.4	25	5.0	59.0	122
			MIN	15.5	3.8	16	3.9	52.2	
153	76.00	11	AV11	22.5	7.9	23	5.3	51.0	174
			STD	0.6	1.0	1	0.1	0.7	2
			MAX	23.3	8.9	24	5.5	52.0	200
			MIN	21.7	5.9	21	5.1	50.0	13
178	77.00	25	AV25	25.0	16.4	26	6.0	48.0	36
			STD	0.9	3.4	2	0.3	1.1	7
			MAX	26.2	20.3	28	6.3	50.3	450
			MIN	23.1	9.0	22	5.4	46.7	22
226	79.00	24	AV45	25.1	16.6	26	6.0	47.8	364
			STD	0.4	1.6	1	0.1	0.4	29
			MAX	26.0	21.3	28	6.2	48.5	41
			MIN	24.4	14.4	19	5.9	47.1	32
253	80.00	27	AV27	24.9	16.3	25	6.0	47.9	363
			STD	0.3	0.8	1	0.1	0.3	18
			MAX	25.4	17.9	27	6.1	48.5	393
			MIN	24.3	15.0	24	5.9	47.4	330
279	81.00	26	AV26	25.1	15.9	26	6.0	47.8	35
			STD	0.3	0.4	1	0.1	0.3	
			MAX	26.0	16.5	27	6.2	48.5	37
			MIN	24.4	15.3	25	5.9	47.2	348
305	82.00	26	AV26	25.6	16.0	27	6.1	47.4	37
			STD	0.3	0.3	1	0.1	0.3	
			MAX	26.2	16.8	28	6.3	48.0	38
			MIN	25.1	15.5	26	6.0	46.9	35
334	83.00	29	AV29	25.4	14.8	27	6.1	47.5	35
			STD	0.4	0.6	1	0.1	0.4	
			MAX	26.2	15.7	29	6.4	48.6	37
			MIN	24.4	13.6	24	5.8	46.5	34
362	84.00	28	AV28	25.6	14.1	27	6.1	47.4	35
			STD	0.3	0.3	0	0.1	0.3	
			MAX	26.1	14.7	28	6.3	48.1	36
			MIN	25.0	13.4	26	6.0	46.9	34:
387	85.71	35	AV25	26.7	18.1	28	6.4	46.4	40
			STD	0.6	2.2	1	0.1	0.5	2
			MAX MIN	27.4 25.6	21.3 14.6	29 27	6.6 6.1	47.5 45.7	45 36
~~-									
397	85.90	53	AV10	27.1	21.6	28	6.5	46.1	46
			STD	0.2	0.4	1	0.1	0.2	
			MAX	27.5	22.4	29	6.6	46.5	479
			MIN	26.7	21.0	27	6.4	45.8	455

USH 10	over Little Lak	e Butte des	Morts - PIER 4	#1			AF	PE D30-42, HF	P 14 x 73
OP: TC							D	ate: 24-Febru	ary-2015
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
	ft	bl/ft		ksi	ksi	k-ft	ft	bpm	kips
407	86.05	64	AV10	27.5	23.6	29	6.7	45.6	510
			STD	0.5	1.4	1	0.1	0.5	33
			MAX	28.4	26.2	31	7.0	46.2	564
			MIN	26.9	22.1	27	6.5	44.6	470
417	86.17	87	AV10	28.2	26.8	29	6.9	44.8	585
			STD	0.3	1.0	2	0.1	0.2	18
			MAX	28.8	28.0	30	7.0	45.2	608
			MIN	27.8	25.5	24	6.8	44.4	554
			Average	22.7	12.4	24	5.5	50.8	268
			Std. Dev.	4.2	6.6	4	1.0	5.0	163
			Maximum	28.8	28.0	41	7.0	69.3	608
			Minimum	7.7	1.6	5	2.7	44.4	0
			Total	number of blo	ows analyzed	: 409			

l otal number of blows analyze

BL# Sensors

1-417 F3: [D815] 93.0 (1.00); F4: [F607] 93.6 (1.00); A3: [K3550] 360.0 (1.07); A4: [K2524] 360.0 (1.07)

BL# Comments

5 Reported reference at El. 741.1

Time Summary

Drive 10 minutes 38 seconds 11:43 AM - 11:54 AM BN 1 - 417

Page 1 PDIPLOT2 2014.2.48.1 - Printed 26-February-2015

пеп -	10 over Little La	ko Putto doo	Morto DIED 4	#1 Doctriko			۸.	PE D30-42, H	D 14 v 72	
03H 0P: T		ike Dulle des			ate: 25-Febru					
AR: 21.40 in ² SP: 0.492 k/										
LE: 92.50 ft EM: 30,000 ksi										
WS: 1	16,807.9 f/s							JC:	1.00 []	
CSX:	Max Measure	d Compr. Stre	SS			STK:	O.E. Diesel Ha	mmer Stroke		
CSB:	Compression	Stress at Bott	om			BPM:	Blows per Minu	ıte		
EMX:	Max Transferr	ed Energy				RX9:	Max Case Meth	nod Capacity	(JC=0.9)	
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9	
	ft	blows/ft		ksi	ksi	k-ft	ft	bpm	kips	
10	86.22	192	AV9	27.0	30.1	27	7.2	44.0	589	
			STD	1.0	1.5	2	0.3	1.0	20	
			MAX	28.5	32.1	30	7.8	46.0	624	
			MIN	24.4	27.0	22	6.5	42.3	559	
20	86.27	192	AV10	26.9	30.2	28	7.1	44.2	595	
			STD	0.6	0.4	1	0.2	0.6	14	
			MAX	27.8	30.8	29	7.4	45.6	610	
			MIN	25.3	29.4	24	6.7	43.4	558	
			Average	27.0	30.2	27	7.2	44.1	592	
Std. Dev. 0.9 1.1 2 0.3 0.8									17	
			Maximum	28.5	32.1	30	7.8	46.0	624	
			Minimum	24.4	27.0	22	6.5	42.3	558	
			Tota	l number of bl	owe analyzed	· 10				

Total number of blows analyzed: 19

BL# Sensors

1-20 F3: [F607] 93.6 (1.00); F4: [D815] 93.0 (1.00); A3: [K2524] 360.0 (1.09); A4: [K3550] 360.0 (1.09)

Time Summary

Drive 25 seconds 8:22 AM - 8:23 AM BN 1 - 20

Page 1 PDIPLOT2 2014.2.48.1 - Printed 25-February-2015

USH OP: T	10 over Little Lak	e Butte des M	lorts - PIER 4	#36				PE D30-42, HF ate: 24-Febru	
AR: LE:	21.40 in ² 93.67 ft 16,807.9 f/s							SP: 0 EM: 30	.492 k/ft³ ,000 ksi 1.00 []
CSX: CSB:	Max Measured C Compression Str Max Transferred	ress at Botton				BPM: Blo	ows per Minu	mmer Stroke	
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
DEn	ft	bl/ft	=	ksi	ksi	k-ft	ft	bpm	kips
6	42.00	1	AV1	25.0	3.3	35	5.3	50.7	0
			STD	0.0	0.0	0	0.0	0.0	0
			MAX	25.0	3.3	35	5.3	50.7	0
			MIN	25.0	3.3	35	5.3	50.7	0
7	43.00	1	AV1	12.9	2.2	17	3.0	66.1	0
			STD	0.0	0.0	0	0.0	0.0	0
			MAX	12.9	2.2	17	3.0	66.1	0
			MIN	12.9	2.2	17	3.0	66.1	0
8	44.00	1	AV1	1.7	0.0	1	2.7	68.9	0
			STD	0.0	0.0	0	0.0	0.0	0
			MAX	1.7	0.0	1	2.7	68.9	0
			MIN	1.7	0.0	1	2.7	68.9	0
10	45.00	2	AV1	26.0	3.9	32	5.6	49.6	40
			STD	0.0	0.0	0	0.0	0.0	0
			MAX	26.0	3.9	32	5.6	49.6	40
			MIN	26.0	3.9	32	5.6	49.6	40
11	45.33	3	AV1	13.6	2.7	15	3.2	64.7	0
			STD	0.0	0.0	0	0.0	0.0	0
			MAX	13.6	2.7	15	3.2	64.7	0
			MIN	13.6	2.7	15	3.2	64.7	0
12	45.67	3	AV1	9.5	2.1	9	2.9	66.9	0
			STD	0.0	0.0	0	0.0	0.0	0
			MAX	9.5	2.1	9	2.9	66.9	0
			MIN	9.5	2.1	9	2.9	66.9	0
13	46.00	3	AV1	7.2	1.9	7	2.8	68.4	0
			STD	0.0	0.0	0	0.0	0.0	0
			MAX	7.2	1.9	7	2.8	68.4	0
			MIN	7.2	1.9	7	2.8	68.4	0
16	47.00	3	AV3	10.9	2.5	13	3.1	65.4	0
			STD	2.4	0.5	3	0.2	2.3	1
			MAX	13.8	3.2	16	3.4	68.4	1
			MIN	7.8	1.9	8	2.8	62.8	0
19	48.00	3	AV3	13.4	2.7	15	3.4	62.8	13
			STD	1.5	0.2	2	0.2	1.7	7
			MAX	15.6	2.9	17	3.7	64.1	19
			MIN	12.4	2.4	13	3.2	60.4	4
21	49.00	2	AV2	14.3	2.6	19	3.5	61.6	0
			STD	0.1	0.0	1	0.0	0.1	0
			MAX	14.3	2.6	20	3.5	61.6	0
			MIN	14.2	2.6	18	3.5	61.5	0
23	50.00	2	AV2	15.8	2.7	20	3.6	60.7	0
			STD	0.6	0.1	1	0.1	1.0	0
			MAX	16.4	2.8	22	3.8	61.7	0
			MIN	15.2	2.5	19	3.5	59.7	0
26	51.00	3	AV3	13.4	2.8	15	3.3	63.3	7

Page 2
PDIPLOT2 2014.2.48.1 - Printed 25-February-2015

USH 10 over Little Lake Butte des Morts - PIER 4 #36

APE D30-42, HP 14 x	73

<u>OP: TC</u>	over Little Lak	e Butte des N	Nons - PIER 4	#30				'E D30-42, Hi ate: 24-Febru	
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
	ft	bl/ft	STD	ksi 0.4	ksi 0.1	k-ft 0	ft 0.1	bpm 0.6	kips 5
			MAX	13.9	3.0	15	3.4	64.1	12
			MIN	13.0	2.7	14	3.2	62.6	0
29	52.00	3	AV3	14.6	3.0	16	3.5	61.8	11
			STD	0.6	0.1	0	0.1	0.5	6
			MAX	15.4	3.0	16	3.6	62.3	19
			MIN	14.1	2.8	16	3.4	61.1	7
31	53.00	2	AV2	13.4	2.7	17	3.3	63.2	24
			STD MAX	1.7 15.1	0.3 3.0	3 21	0.3 3.6	2.4 65.6	2 25
			MIN	11.6	2.4	14	3.1	60.8	22
34	54.00	3	AV3	14.9	3.0	18	3.6	61.0	12
			STD	2.6	0.5	3	0.4	3.2	17
			MAX	18.2	3.6	21	4.1	65.0	36
			MIN	11.7	2.5	14	3.1	57.2	0
36	55.00	2	AV2	16.3	3.1	22	3.8	59.5	5
			STD MAX	0.8 17.1	0.1 3.1	0	0.1	0.5 60.0	5
			MIN	15.5	3.0	22 22	3.9 3.7	59.0	10 0
40	56.00	4	AV4	14.0	3.2	15	3.4	62.2	38
			STD	0.5	0.1	1	0.0	0.4	7
			MAX	14.7	3.3	16	3.5	62.7	48
			MIN	13.4	3.0	14	3.4	61.6	31
43	57.00	3	AV3	17.8	4.3	23	4.1	57.5	58
			STD MAX	1.7 19.7	0.3 4.7	2 25	0.3 4.4	2.0 60.1	6 66
			MIN	15.7	3.9	21	3.7	55.4	53
48	58.00	5	AV5	12.7	3.2	14	3.3	63.5	32
			STD	2.7	0.7	3	0.4	3.1	21
			MAX	16.6	4.1	17	3.9	67.4	60
			MIN	9.1	2.3	9	2.9	58.5	0
53	59.00	5	AV5 STD	18.1 1.3	4.7	21	4.2	57.1 1.7	79 12
			MAX	19.8	0.3 5.1	2 23	0.3 4.6	59.0	13 94
			MIN	16.4	4.2	19	3.9	54.6	62
58	60.00	5	AV5	18.0	5.6	21	4.2	56.9	97
			STD	0.3	0.3	1	0.0	0.2	2
			MAX MIN	18.5 17.7	5.9 5.2	21 20	4.2 4.1	57.1 56.5	101 93
62	61.00	4	AV4	18.3	5.5	22	4.2	56.6	94
02	01.00	4	STD	0.8	0.4	1	4.2 0.2	1.0	94 7
			MAX	19.2	6.1	24	4.4	58.1	105
			MIN	17.1	5.0	20	4.0	55.7	85
67	62.00	5	AV5	18.7	5.8	22	4.3	56.1	97
			STD	0.5	0.3	1	0.1	0.6	7
			MAX MIN	19.1 17.8	6.1 5.3	23 21	4.4 4.1	57.4 55.7	106 86
71	63.00	4	AV4	18.3	5.7	22	4.3	56.3	96
11	00.00	-	STD	0.2	0.3	0	4.3 0.0	0.1	90 6
			MAX	18.5	6.1	23	4.3	56.4	100
			MIN	18.1	5.2	22	4.3	56.2	86

Page 3 PDIPLOT2 2014.2.48.1 - Printed 25-February-2015

USH 10 over Little Lake Butte des Morts - PIER 4 #36

APE D30-42, HP 14 x 73

	over Little Lak	e Butte des N	/lorts - PIER 4		PE D30-42, HF				
OP: TC		51.0				= 10/		ate: 24-Febru	
BL#	depth ft	BLC bl/ft	TYPE	CSX ksi	CSB ksi	EMX k-ft	STK ft	BPM bpm	RX9 kips
74	64.00	3	AV3	17.7	4.9	23	4.1	57.2	61
/4	04.00	5				1			
			STD	0.5	0.1		0.1	0.5	6
			MAX	18.2	5.0	24	4.2 4.0	57.8 56 5	69 55
			MIN	17.1	4.8	22	4.0	56.5	55
78	65.00	4	AV4	14.6	4.0	18	3.7	59.9	28
			STD	1.2	0.4	1	0.1	1.0	18
			MAX MIN	16.3 13.2	4.6 3.6	20 17	3.9 3.6	61.2 58.4	48 0
	00.00	0							
80	66.00	2	AV2 STD	9.5 1.6	2.7 0.3	13 2	3.1 0.2	65.3 1.7	0 0
			MAX	11.1	3.0	15	3.3	67.0	0
			MIN	7.9	2.4	11	2.9	63.6	0
82	67.00	2	AV2	12.1	3.2	17	3.3	63.4	0
			STD	2.8	0.5	5	0.3	3.0	0
			MAX	14.9	3.7	22	3.7	66.4	0
			MIN	9.3	2.6	13	3.0	60.4	0
87	68.00	5	AV5	13.0	3.4	15	3.4	62.4	8
			STD	3.0	0.6	4	0.4	3.1	16
			MAX	17.2	4.4	20	3.9	66.8	40
			MIN	9.4	2.8	10	2.9	58.7	0
89	69.00	2	AV2	4.3	1.3	5	2.8	68.2	0
			STD	2.1	0.6	3	0.0	0.0	0
			MAX	6.4	1.9	9	2.8	68.2	0
			MIN	2.2	0.7	2	2.8	68.1	0
91	70.00	2	AV1	26.7	5.1	41	6.2	47.3	55
			STD	0.0	0.0	0	0.0	0.0	0
			MAX	26.7	5.1	41	6.2	47.3	55
			MIN	26.7	5.1	41	6.2	47.3	55
94	71.00	3	AV3	14.3	3.8	17	3.6	61.2	22
			STD	0.7	0.1	1	0.1	0.9	17
			MAX	14.8	4.0	18	3.7	62.0	43
			MIN	13.3	3.6	16	3.5	59.9	0
96	72.00	2	AV2	6.3	1.6	8	3.1	65.7	0
			STD	3.8	1.0	5	0.3	2.5	0
			MAX MIN	10.1 2.5	2.6 0.6	13 3	3.3 2.8	68.1 63.2	0 0
101	70.00	_							
101	73.00	5	AV4	17.5	4.6	20	4.2	57.6	64
			STD	4.8	0.7	7	1.0	5.8	10
			MAX MIN	25.2 13.4	5.3 3.9	31 14	5.9 3.4	62.8 48.3	80 54
109	74.00	7	A) /7	10.1		20	4.4	EE /	111
108	74.00	/	AV7 STD	19.1 1.2	6.2 0.9	20 2	4.4 0.3	55.4 1.4	111 19
			MAX	21.3	0.9 7.8	24	0.3 4.9	57.4	139
			MIN	17.6	4.9	18	4.1	52.8	82
117	75.00	9	AV9	21.6	8.3	23	5.0	52.4	173
/	,0.00	3	STD	0.8	1.0	1	0.2	0.9	19
			MAX	22.7	9.7	24	5.2	53.8	199
			MIN	20.1	6.2	21	4.7	51.1	132
122	76.00	5	AV5	21.4	6.9	25	4.9	52.7	138
		-	STD	0.6	1.2	1	0.1	0.7	18

Page 4 PDIPLOT2 2014.2.48.1 - Printed 25-February-2015

USH 10 OP: TC	over Little Lak	e Butte des I	Morts - PIER 4	#36				E D30-42, HF ate: 24-Febru	
BL#	depth ft	BLC bl/ft	TYPE MAX MIN	CSX ksi 22.0 20.3	CSB ksi 8.4 5.3	EMX k-ft 26 23	STK ft 5.0 4.6	BPM bpm 54.1 52.1	RX9 kips 159 110
127	77.00	5	AV5 STD MAX	20.3 18.6 1.0 19.8	4.6 0.3 5.2	23 21 2 22	4.3 0.2 4.6	56.3 1.4 58.2	85 11 105
			MIN	17.2	4.4	18	4.0	54.6	74
133	78.00	6	AV6 STD MAX MIN	18.6 0.4 19.3 18.0	4.8 0.1 5.0 4.6	20 1 21 19	4.2 0.1 4.4 4.1	56.5 0.6 57.3 55.7	81 5 89 76
139	79.00	6	AV6 STD MAX MIN	19.9 0.2 20.1 19.4	5.5 0.2 5.9 5.1	22 0 23 21	4.5 0.0 4.5 4.4	55.2 0.2 55.6 55.0	90 1 92 88
146	80.00	7	AV7 STD MAX MIN	20.1 0.4 20.6 19.4	6.4 0.4 6.9 5.9	22 1 23 21	4.6 0.1 4.7 4.4	54.6 0.6 55.6 54.0	100 5 106 93
160	81.00	14	AV14 STD MAX MIN	22.2 1.8 25.1 20.0	9.8 2.5 14.0 6.8	23 3 27 19	5.1 0.4 5.7 4.6	52.0 2.0 54.6 49.0	186 66 297 110
188	82.00	28	AV28 STD MAX MIN	25.4 0.4 26.3 24.7	17.2 1.4 18.9 13.7	27 1 30 25	5.9 0.1 6.1 5.7	48.3 0.5 49.3 47.5	381 31 417 308
225	83.00	37	AV37 STD MAX MIN	25.9 0.5 27.4 25.2	18.7 0.5 20.2 17.6	28 1 30 27	6.1 0.1 6.4 5.9	47.6 0.4 48.3 46.4	441 19 472 406
236	83.28	39	AV11 STD MAX MIN	26.0 0.2 26.4 25.7	18.6 0.3 19.0 18.0	27 1 28 26	6.1 0.0 6.1 6.0	47.7 0.2 48.0 47.4	457 9 469 445
246	83.55	37	AV10 STD MAX MIN	26.5 0.4 27.2 25.7	19.2 0.7 20.5 18.4	28 1 29 27	6.2 0.1 6.4 6.0	47.2 0.4 47.9 46.6	475 17 506 455
256	83.79	42	AV10 STD MAX MIN	26.5 0.4 27.3 25.7	19.1 0.5 20.2 18.7	28 1 30 26	6.2 0.1 6.5 6.0	47.2 0.4 47.9 46.3	483 8 496 471
			Average Std. Dev. Maximum Minimum Total	20.5 5.6 27.4 1.7 number of ble	10.2 6.8 20.5 0.0 ows analyzed:	23 6 41 1 248	4.9 1.1 6.5 2.7	54.0 6.3 68.9 46.3	213 184 506 0

BL# Sensors

1-256 F3: [F607] 93.6 (1.00); F4: [D815] 93.0 (1.00); A3: [K2524] 360.0 (1.08); A4: [K3550] 360.0 (1.08)

Page 5 PDIPLOT2 2014.2.48.1 - Printed 25-February-2015

USH 10 over Little Lake Butte des Morts - PIER 4 #36 OP: TC

BL# Comments

6 Reported reference at El. 741.2

Time Summary

Drive 7 minutes 4 seconds 12:15 PM - 12:22 PM BN 1 - 256

APE D30-42, HP 14 x 73 Date: 24-February-2015

Page 1 PDIPLOT2 2014.2.48.1 - Printed 26-February-2015

USH [·]	10 over Little La	ike Butte des	Morts - PIER 4	#36 Restrike			AP	PE D30-42, H	HP 14 x 73
OP: T	С						Da	ate: 25-Febr	uary-2015
AR:	21.40 in ²							SP:	0.492 k/ft ³
LE:	93.67 ft							EM: 3	30,000 ksi
WS: 1	16,807.9 f/s							JC:	1.00 []
CSX:	Max Measure	d Compr. Stre	ess			STK:	O.E. Diesel Ha	mmer Strok	е
CSB:	Compression	Stress at Bot	tom			BPM:	Blows per Minu	ite	
EMX: Max Transferred Energy RX9: Max Case Method Capacity (JC=0.9)									y (JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
	ft	blows/ft		ksi	ksi	k-ft	ft	bpm	kips
10	83.93	74	AV9	25.7	20.7	24	6.8	45.3	466
			STD	1.4	1.1	4	0.6	1.7	33
			MAX	28.4	22.6	31	8.1	48.5	508
			MIN	22.7	18.3	16	5.9	41.4	380
20	84.09	60	AV10	26.5	22.2	28	6.9	44.9	499
			STD	0.6	0.8	2	0.2	0.5	14
			MAX	27.6	23.6	30	7.1	45.7	519
			MIN	25.4	21.0	25	6.6	44.2	473
			Average	26.1	21.5	26	6.8	45.1	483
			Std. Dev.	1.2	1.2	3	0.4	1.3	30
			Maximum	28.4	23.6	31	8.1	48.5	519
			Minimum	22.7	18.3	16	5.9	41.4	380
			Tota	I number of bl	ows analyzed	1: 19			

Total number of blows analyzed: 19

BL# Sensors

1-20 F3: [F607] 93.6 (1.00); F4: [D815] 93.0 (1.00); A3: [K2524] 360.0 (1.09); A4: [K3550] 360.0 (1.09)

Time Summary

Drive 25 seconds 8:14 AM - 8:14 AM BN 1 - 20

Page 1 PDIPLOT2 2014.2.48.1 - Printed 25-February-2015

LE: 92.42 ft EM: 30.000 ksi CSX: Max Measured Compr. Stress STK: DE: object Hammer: Stroke EMX: Max Transferred Energy RXB Max Case Method Capacity (JC-0.3) BL# depth BLC TYPE CSX CSB 3 40.50 2 AV1 10.6 CSB EMX Max Case Method Capacity (JC-0.3) MIN 13.4 2.7 17 3.4 62.7 0 MIN 13.4 2.7 17 3.4 62.7 0 MIN 13.4 2.7 17 3.4 62.7 0 MIN 8.6 2.0 11 3.0 66.5 0 6 42.00 2 AV1 8.6 2.0 11 3.0 66.5 0 9 43.00 3 AV3 17.0 3.2 2.0 4.1 58.5 16 9 43.00 2 AV2 11.5 2.5 15 3	<u>OP: TC</u> AR:	over Little Lak	e Butte des N	lorts - PIER 4	#44					ary-2015 .492 k/ft³
CSX: Max Measured Compr. Stress STK: DEse Hanner Stroke CSB: compression Stress at Bottom RXP. Max Case Method Capacity (JC=0) BL# depth BLC TYPE CSX CSB Str. BPM Blows Case Method Capacity (JC=0) 3 40.50 2 AV1 13.4 2.7 17 3.4 62.7 0 MIN 13.4 2.7 17 3.4 62.7 0 4 41.00 2 AV1 8.6 2.0 11 3.0 66.5 0 6 42.00 2 AV1 0.8 0.0 0 2.7 69.4 0 9 43.00 3 AV3 17.0 3.2 2.0 4.1 58.5 6 9 43.00 2 AV2 11.5 2.5 15 3.2 64.2 0 9 43.00 2 AV2 11.5 2.5 15 3.2 64.2 <td< th=""><th></th><th>92.42 ft 807.9 f/s</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>		92.42 ft 807.9 f/s								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CSX: M CSB: C	lax Measured (ompression St	ress at Bottor				BPM: B	ows per Minu	mmer Stroke ute	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				TYPE	CSX	CSB				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
MAX MIN 13.4 13.4 2.7 2.7 17 17 3.4 3.4 62.7 62.7 0 4 41.00 2 AV1 STD 8.6 0.0 2.0 11 3.0 0.0 665 0.0 0 6 42.00 2 AV1 MIN 8.6 8.6 2.0 11 3.0 0.0 665 0.0 0 6 42.00 2 AV1 MIN 0.8 0.0 0.0 0.0 0.0 0.0 0.0	3	40.50		AV1	13.4	2.7	17	3.4	62.7	
MIN 13.4 2.7 17 3.4 62.7 0 4 41.00 2 AV1 8.6 2.0 11 3.0 66.5 0 6 42.00 2 AV1 0.8 0.0 0 0 0.0 0.0 0.0 6 42.00 2 AV1 0.8 0.0 0 2.7 69.4 0 0 9 43.00 3 AV3 17.0 3.2 20 4.1 58.5 16 STD 5.8 0.5 8 1.1 64.8 23 9 43.00 2 AV2 15.2 2.0 4.1 58.5 16 STD 5.8 0.5 8 1.1 64.8 23 49.0 0 11 44.00 2 AV2 11.5 2.5 17 3.3 65.2 0 13 45.00 2 AV2 16.2 3.2				STD	0.0	0.0	0	0.0	0.0	0
4 41.00 2 AV1 STD STD MIN 8.6 2.0 11 3.0 3.0 66.5 0.0 0.0 0.0 0.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				MIN	13.4	2.7	17	3.4	62.7	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4	41.00	2	AV1	8.6	2.0	11	3.0	66.5	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				MAX	8.6	2.0	11	3.0	66.5	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				MIN	8.6	2.0	11	3.0	66.5	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	42 00	2	AV1	0.8	0.0	0	2.7	69.4	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-		_							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						0.0	0		69.4	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				MIN	0.8	0.0	0	2.7	69.4	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	43.00	3	AV3	17.0	3.2	20	4.1	58.5	16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				MAX	24.9	3.9	31	5.7	64.1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				MIN	11.3	2.8	13	3.2	49.0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	44.00	2	AV2	11.5	2.5	15	3.2	64.2	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				MAX	12.5	2.5	17	3.3	65.2	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				MIN	10.4	2.4	13	3.1	63.1	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	45.00	2	AV2	16.2	3.2	22	3.8	59.5	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				MAX	16.4	3.2	23	3.8	59.7	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				MIN	15.9	3.1	21	3.8	59.2	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	46.00	3	AV3	14.9	3.3	18	3.6	60.6	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				STD	0.5		1	0.1	0.7	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							19			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				MIN	14.2	3.2	17	3.5	59.8	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	47.00	3	AV3	15.7	3.4	19	3.7	59.9	8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				STD		0.2	0	0.1		4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				MIN	15.3	3.3	19	3.7	59.4	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	48.00	3	AV3	15.3	3.3	18	3.7	60.4	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.7					3
25 49.00 3 AV3 STD 15.5 0.9 3.1 18 2 3.7 60.2 0.2 7 1.2 8 8 MAX 16.6 3.4 19 3.9 61.7 19 MIN 14.4 2.7 16 3.5 58.8 0 28 50.00 3 AV3 STD 14.4 3.1 17 3.6 61.3 7 5 MAX 17.0 3.6 21 4.0 63.9 13 13 MIN 12.3 2.7 13 3.2 58.3 0					16.2		19	3.8		7
STD 0.9 0.3 2 0.2 1.2 8 MAX 16.6 3.4 19 3.9 61.7 19 MIN 14.4 2.7 16 3.5 58.8 0 28 50.00 3 AV3 14.4 3.1 17 3.6 61.3 7 STD 2.0 0.4 3 0.3 2.3 5 MAX 17.0 3.6 21 4.0 63.9 13 MIN 12.3 2.7 13 3.2 58.3 0				MIN	14.7	3.1	17	3.6	59.5	0
STD 0.9 0.3 2 0.2 1.2 8 MAX 16.6 3.4 19 3.9 61.7 19 MIN 14.4 2.7 16 3.5 58.8 0 28 50.00 3 AV3 14.4 3.1 17 3.6 61.3 7 STD 2.0 0.4 3 0.3 2.3 5 MAX 17.0 3.6 21 4.0 63.9 13 MIN 12.3 2.7 13 3.2 58.3 0	25	49.00	3	AV3	15.5	3.1	18	3.7	60.2	7
MIN 14.4 2.7 16 3.5 58.8 0 28 50.00 3 AV3 14.4 3.1 17 3.6 61.3 7 STD 2.0 0.4 3 0.3 2.3 5 MAX 17.0 3.6 21 4.0 63.9 13 MIN 12.3 2.7 13 3.2 58.3 0					0.9	0.3		0.2		8
28 50.00 3 AV3 14.4 3.1 17 3.6 61.3 7 STD 2.0 0.4 3 0.3 2.3 5 MAX 17.0 3.6 21 4.0 63.9 13 MIN 12.3 2.7 13 3.2 58.3 0							19	3.9		
STD2.00.430.32.35MAX17.03.6214.063.913MIN12.32.7133.258.30				MIN	14.4	2.7	16	3.5	58.8	0
STD2.00.430.32.35MAX17.03.6214.063.913MIN12.32.7133.258.30	28	50.00	3	AV3	14.4	3.1	17	3.6	61.3	7
MAX17.03.6214.063.913MIN12.32.7133.258.30				STD	2.0	0.4	3	0.3	2.3	5
					17.0	3.6	21	4.0	63.9	13
30 51.00 2 AV2 14.5 2.7 18 3.5 61.6 0				MIN	12.3	2.7	13	3.2	58.3	0
	30	51.00	2	AV2	14.5	2.7	18	3.5	61.6	0

P	age 2
PDIPLOT2 2014.2.48.1 - Printed 25-February-2	2015

USH 10 over Little Lake Butte des Morts - PIER 4 #44

APE D30-42, HP 14 x 73

OP: TC	over Little Lak			#44				PE D30-42, HI ate: 24-Febru	
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
	ft	bl/ft		ksi	ksi	k-ft	ft	bpm	kips
			STD	1.4	0.2	2	0.2	1.9	0
			MAX	15.9	2.9	20	3.8	63.5	0
			MIN	13.0	2.5	16	3.3	59.7	0
34	52.00	4	AV4	15.9	3.8	19	3.8	59.3	36
			STD	1.3	0.4	2	0.2	1.6	20
			MAX	17.8	4.1	22	4.2	61.0	54
			MIN	14.4	3.1	16	3.6	56.8	1
37	53.00	3	AV3	16.1	3.5	19	3.9	59.1	7
			STD	1.7	0.4	2	0.3	2.1	10
			MAX	18.2	4.1	22	4.3	61.5	20
			MIN	14.1	3.0	17	3.5	56.3	0
40	54.00	3	AV3	14.4	3.1	17	3.5	61.4	10
			STD	0.4	0.0	1	0.1	0.8	6
			MAX	15.0	3.1	18	3.7	62.2	17
			MIN	14.1	3.1	16	3.4	60.3	4
44	55.00	4	AV4	16.6	3.7	19	3.9	58.7	50
			STD	0.8	0.3	1	0.1	0.8	4
			MAX	17.3	4.1	20	4.0	60.1	56
			MIN	15.2	3.3	18	3.7	57.9	46
47	56.00	3	AV3	16.7	3.8	21	4.0	58.3	33
			STD	0.8	0.3	2	0.1	0.9	2
			MAX	17.6	4.2	23	4.1	59.5	34
			MIN	15.6	3.6	19	3.8	57.4	30
50	57.00	3	AV3	14.0	3.0	17	3.5	61.5	3
			STD	0.9	0.2	0	0.1	0.9	4
			MAX	15.1	3.2	17	3.7	62.4	8
			MIN	13.1	2.9	16	3.4	60.2	0
55	58.00	5	AV5	17.4	4.6	20	4.1	57.4	78
			STD	1.9	0.6	3	0.4	2.7	15
			MAX	19.6	5.2	23	4.6	61.7	95
			MIN	14.6	3.6	16	3.5	54.3	54
60	59.00	5	AV5	18.1	5.0	21	4.3	56.2	83
			STD	0.5	0.3	1	0.1	0.7	13
			MAX	18.7	5.2	23	4.5	57.2	96
			MIN	17.3	4.4	20	4.1	55.1	62
65	60.00	5	AV5	18.5	5.1	22	4.4	55.7	88
			STD	0.7	0.4	1	0.1	0.8	9
			MAX MIN	19.5 17.4	5.5 4.4	23 21	4.5 4.2	57.0 54.7	98 73
70	C1 00	F							
70	61.00	5	AV5	18.5	4.7	22	4.4	55.7	83
			STD	0.3	0.2	1	0.1	0.5	9
			MAX MIN	19.1 18.2	4.9 4.4	23 20	4.5 4.3	56.4 54.8	92 66
75	00.00	-							
75	62.00	5	AV5	18.1	4.7	21	4.3	56.3	74
			STD MAX	0.4	0.2 5.1	1	0.1	0.6	8
			MAX	18.6 17.4	5.1 4.4	22 20	4.4 4.1	57.3 55.6	82 61
79	63.00	4	AV4	17.6	4.6	21	4.2	57.0	58
13	03.00	4	AV4 STD	0.6	4.6 0.2	1	4.2 0.1	57.0 0.8	58 4
			MAX	18.5	4.9	23	4.4	57.7	4 65
			MIN	17.0	4.9	20	4.4	55.7	53
			IVIII N	17.0	7.4	20	-1.0	00.7	

Page 3 PDIPLOT2 2014.2.48.1 - Printed 25-February-2015

USH 10 over Little Lake Butte des Morts - PIER 4 #44

APE D30-42, HP 14 x 73

	over Little Lak	e Butte des N	Norts - PIER 4	#44				² E D30-42, HF ate: 24-Febru	
OP: TC BL#	depth	BLC	TYPE	csx	CSB	EMX	STK	BPM	RX9
	ft	bl/ft		ksi	ksi	k-ft	ft	bpm	kips
83	64.00	4	AV4	16.6	4.3	20	4.0	58.0	51
			STD	1.1	0.3	2	0.2	1.4	4
			MAX	17.9	4.8	23	4.3	59.9	56
			MIN	15.1	4.0	18	3.7	56.1	48
86	65.00	3	AV3	14.6	3.3	18	3.7	60.5	3
			STD	0.3	0.1	0	0.1	0.5	3
			MAX	15.0	3.3	18	3.7	60.8	7
			MIN	14.2	3.2	18	3.6	59.8	0
88	66.00	2	AV2	15.5	3.3	21	3.7	59.9	0
			STD	0.5	0.1	0	0.1	0.5	0
			MAX MIN	16.0 15.0	3.4 3.2	21 21	3.8 3.7	60.3 59.4	0 0
91	67.00	3	AV3	14.7	3.2	18	3.6	60.7	1
31	07.00	5	STD	0.3	0.1	0	0.0	0.3	1
			MAX	15.0	3.4	19	3.7	61.1	2
			MIN	14.3	3.1	18	3.6	60.3	0
94	68.00	3	AV3	15.3	3.4	20	3.8	59.7	2
			STD	0.7	0.1	1	0.1	0.7	3
			MAX	16.3	3.4	21	3.9	60.3	6
			MIN	14.6	3.2	19	3.7	58.7	0
98	69.00	4	AV4	17.1	3.9	20	4.0	58.1	54
			STD	1.6	0.3	2	0.3	2.3	5
			MAX	18.2	4.2	22	4.3	62.0	61
			MIN	14.4	3.4	17	3.5	56.2	49
100	70.00	2	AV2	15.2	3.1	21	3.8	59.8	0
			STD	0.2	0.1 3.2	0	0.0	0.2	0
			MAX MIN	15.4 15.0	3.2 3.0	21 20	3.8 3.7	59.9 59.6	0 0
101	74.00								
104	71.00	4	AV4	15.2	3.4 0.1	17 1	3.7	60.2	22 11
			STD MAX	1.4 16.8	3.6	19	0.2 4.0	1.8 62.2	40
			MIN	13.7	3.3	16	3.4	58.1	14
108	72.00	4	AV4	16.1	3.8	19	3.8	59.2	40
100	72.00	7	STD	0.6	0.2	1	0.0	1.0	9
			MAX	17.1	4.1	21	4.0	60.1	50
			MIN	15.6	3.4	17	3.7	57.7	26
115	73.00	7	AV7	19.6	5.8	21	4.5	54.9	115
			STD	1.7	1.1	2	0.4	2.1	19
			MAX	21.4	7.2	23	4.9	58.5	138
			MIN	16.5	4.2	17	3.9	52.7	78
125	74.00	10	AV10	22.0	9.0	23	5.1	51.6	189
			STD	0.6	1.2	1	0.2	0.7	30
			MAX	23.1	11.4	24	5.4	52.7	255
			MIN	21.0	6.7	22	4.9	50.3	146
139	75.00	14	AV14	23.2	11.5	24	5.5	49.9	256
			STD MAX	0.4 23.9	0.7 12.7	1 27	0.1 5.8	0.5 50.6	18 283
			MIN	23.9	10.1	23	5.8	48.9	203
152	76.00	13	AV13	22.7	9.5	24	5.4	50.6	199
102	70.00	10	STD	1.1	2.8	24	0.3	1.4	42

Page 4 PDIPLOT2 2014.2.48.1 - Printed 25-February-2015

<u>DP: TC</u>	1 1					=10/		ate: 24-Febru	
BL#	depth ft	BLC bl/ft	TYPE MAX MIN	CSX ksi 24.0 20.7	CSB ksi 12.9 4.8	EMX k-ft 26 20	STK ft 5.7 4.8	BPM bpm 53.1 49.0	RX kip 25 13
158	77.00	6	AV6 STD MAX MIN	20.6 0.3 21.0 20.3	5.0 0.3 5.6 4.6	23 1 23 21	4.8 0.1 4.9 4.7	53.4 0.5 54.0 52.7	120 133 113
166	78.00	8	AV8 STD MAX MIN	20.7 0.3 21.3 20.2	5.4 0.4 5.9 5.0	22 1 23 21	4.8 0.1 4.9 4.7	53.4 0.5 53.9 52.6	12: 12: 12: 11:
174	79.00	8	AV8 STD MAX MIN	21.1 0.3 21.4 20.5	6.4 0.3 7.0 6.0	23 0 23 22	4.9 0.1 5.0 4.8	52.7 0.3 53.5 52.3	12! 13(11]
183	80.00	9	AV9 STD MAX MIN	21.4 0.3 22.2 21.1	7.4 0.1 7.7 7.2	22 1 23 22	5.0 0.1 5.2 4.9	52.1 0.4 52.6 51.3	138 144 130
195	81.00	12	AV12 STD MAX MIN	22.7 1.1 25.2 21.3	10.4 2.0 13.5 7.8	24 2 28 21	5.4 0.3 6.0 5.0	50.4 1.3 52.1 47.8	20 4 26 14
220	82.00	25	AV25 STD MAX MIN	24.8 0.4 25.5 23.4	15.4 1.2 17.4 12.8	26 1 27 23	6.0 0.1 6.2 5.6	47.9 0.5 49.5 47.2	334 24 377 283
250	83.00	30	AV30 STD MAX MIN	25.7 0.5 26.6 24.6	18.3 0.6 19.7 17.2	27 1 29 26	6.3 0.1 6.5 6.0	46.9 0.4 47.8 46.0	389 13 422 370
292	84.00	42	AV42 STD MAX MIN	26.5 0.5 27.6 25.6	22.1 1.2 23.5 19.3	27 1 29 26	6.4 0.1 6.7 6.2	46.4 0.4 47.2 45.5	470 24 511 413
330	85.00	38	AV38 STD MAX MIN	27.0 0.5 27.9 25.7	21.2 1.0 22.9 19.0	29 1 30 26	6.5 0.1 6.8 6.1	46.0 0.4 47.4 45.3	458 1 479 430
367	86.00	37	AV37 STD MAX MIN	27.2 0.5 28.3 25.9	20.1 0.5 20.9 18.9	29 1 31 26	6.7 0.1 7.0 6.3	45.6 0.5 46.7 44.5	45 10 470 43
416	87.00	49	AV49 STD MAX MIN	27.4 0.5 28.6 26.6	20.8 0.5 22.1 19.9	29 1 31 27	6.7 0.1 7.1 6.4	45.5 0.5 46.6 44.3	470 49 464
440	87.45	54	AV24 STD MAX MIN	28.2 0.6 29.6 27.0	22.9 0.9 24.4 21.1	30 1 32 28	6.9 0.2 7.2 6.5	44.8 0.6 46.0 43.9	519 22 553 484

OP: TC	over Little Lak	e Butte des	Morts - PIER 4	#44				PE D30-42, HF ate: 24-Febru	
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
	ft	bl/ft		ksi	ksi	k-ft	ft	bpm	kips
450	87.62	60	AV10	28.9	24.3	31	7.1	44.3	553
			STD	0.3	0.4	1	0.1	0.2	8
			MAX	29.2	24.9	32	7.2	44.6	562
			MIN	28.3	23.5	30	7.0	43.8	538
460	87.76	69	AV10	29.2	25.8	32	7.2	43.9	581
			STD	0.5	0.8	1	0.2	0.5	13
			MAX	30.3	27.1	34	7.5	45.1	602
			MIN	28.2	24.2	30	6.8	43.0	556
470	87.88	87	AV10	29.7	28.9	33	7.4	43.5	619
			STD	0.5	0.8	3	0.2	0.4	14
			MAX	30.2	29.9	35	7.6	44.4	640
			MIN	28.6	27.4	25	7.0	42.9	598
			Average	23.6	14.8	25	5.7	49.9	314
			Std. Dev.	4.9	8.0	5	1.2	5.7	195
			Maximum	30.3	29.9	35	7.6	69.4	640
			Minimum	0.8	0.0	0	2.7	42.9	0
			Total	number of blo	ows analyzed	: 467			

BL# Sensors

1-470 F3: [F607] 93.6 (1.00); F4: [D815] 93.0 (1.00); A3: [K2524] 360.0 (1.07); A4: [K3550] 360.0 (1.07)

BL# Comments

3 Reported reference at El. 741.2

Time Summary

Drive 10 minutes 0 second 12:40 PM - 12:50 PM BN 1 - 470

Page 1 PDIPLOT2 2014.2.48.1 - Printed 25-February-2015

USH [·]	10 over Little La	ake Butte des	Morts - PIER 4	#44 Restrike			AP	PE D30-42, H	P 14 x 73
OP: T								ate: 25-Febru	
AR:	21.40 in ²								0.492 k/ft ³
LE:	92.42 ft							EM: 3	0,000 ksi
WS: 1	6,807.9 f/s							JC:	1.00 []
CSX:	Max Measure	d Compr. Stre	SS			STK:	O.E. Diesel Har	mmer Stroke	•
CSB:	Compression	Stress at Bott	om			BPM:	Blows per Minu	ite	
EMX:	Max Transferr	red Energy				RX9:	Max Case Meth	nod Capacity	(JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
	ft	blows/ft		ksi	ksi	k-ft	ft	bpm	kips
10	87.95	137	AV9	29.5	31.3	31	7.8	42.3	636
			STD	1.8	1.9	5	0.7	1.7	34
			MAX	34.1	36.3	42	9.8	43.5	701
			MIN	28.1	29.7	27	7.4	37.8	595
21	87.99	264	AV9	28.9	33.2	29	7.4	43.5	661
			STD	0.8	1.7	3	0.5	1.4	21
			MAX	30.1	35.4	31	8.1	47.0	690
			MIN	27.3	29.2	22	6.3	41.5	627
32	88.01	528	AV11	29.9	35.8	30	7.3	43.7	698
			STD	0.7	1.0	2	0.2	0.7	16
			MAX	31.2	38.1	33	7.7	45.4	723
			MIN	28.9	34.3	26	6.7	42.5	667
			Average	29.5	33.6	30	7.5	43.2	667
			Std. Dev.	1.2	2.4	3	0.6	1.4	35
			Maximum	34.1	38.1	42	9.8	47.0	723
			Minimum	27.3	29.2	22	6.3	37.8	595
			Tota	I number of bl	owe analyzed	1. 20			

Total number of blows analyzed: 29

BL# Sensors

1-32 F3: [F607] 93.6 (1.00); F4: [D815] 93.0 (1.00); A3: [K2524] 360.0 (1.09); A4: [K3550] 360.0 (1.09)

Time Summary

Drive 1 minute 19 seconds 8:03 AM - 8:05 AM BN 1 - 32

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH10 OVER LLBDM; Pile: PIER 4 #1 EOID APE D30-42, HP 14 x 73; Blow: 414 GRL Engineers, Inc. Test: 24-Feb-2015 11:54 CAPWAP(R) 2014-1 OP: TC

			CAPW	AP SUMMARY	RESULTS			
Total CAP	WAP Capaci	ity: 55	9.0; alor	ng Shaft	61.0; at '	Toe 498	3.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				559.0				
1	13.2	6.8	0.0	559.0	0.0	0.00	0.00	0.00
2	19.8	13.5	0.0	559.0	0.0	0.00	0.00	0.00
3	26.4	20.1	0.0	559.0	0.0	0.00	0.00	0.00
4	33.0	26.7	1.0	558.0	1.0	0.15	0.03	0.28
5	39.6	33.3	2.0	556.0	3.0	0.30	0.06	0.28
6	46.3	39.9	3.0	553.0	6.0	0.45	0.10	0.28
7	52.9	46.5	4.0	549.0	10.0	0.61	0.13	0.28
8	59.5	53.1	4.0	545.0	14.0	0.61	0.13	0.28
9	66.1	59.7	4.0	541.0	18.0	0.61	0.13	0.28
10	72.7	66.3	3.0	538.0	21.0	0.45	0.10	0.28
11	79.3	72.9	3.0	535.0	24.0	0.45	0.10	0.28
12	85.9	79.5	9.0	526.0	33.0	1.36	0.29	0.28
13	92.5	86.1	28.0	498.0	61.0	4.24	0.90	0.28
Avg. Sh	aft		4.7			0.71	0.15	0.28
То	e		498.0				361.27	0.10
Soil Mode	l Paramete	ers/Extens	ions		Sha	aft To	се	
Ouake		(i:	n)		0.	.04 0.3	29	
Case Damp	ing Facto	•			0.	45 1.	30	
Damping T	-				Visco	ous Sm+Vi	SC	
Unloading		(%	of loadi	ing quake)			31	
Reloading		-	of Ru)		1		00	
Unloading		•	of Ru)		_	77		
· · · · · J		cluded in		a) (in)		0.	01	
Soil Plug			ips)	, (,		0.0		
CAPWAP ma	tch qualit	tv =	4.92	(Way	e Up Match)	• RSA = ()	
Observed:	-	-	0.14 i	•	Count	•	, / b/ft	
Computed:			0.10 i		Count	• •	2 b/ft	
Transducer	F3(D815) CAL: 93.0); RF: 1.00	•	L: 93.6; RF:	1.00	. 2,20	
max. Top	-	-	27.9 k		36.2 ms,			
max. Comp	_	= 665	27.9 k		-	T = 42.3 I		
max. Tens			-6.48 k	•	· · · · ·	T = 42.5 T = 61.5 I	•	
max. Energy		=		•	. Measured		•	1.04 in
						- JF DIGPI	() =	

USH10 OVER LLBDM; Pile: PIER 4 #1 EOID APE D30-42, HP 14 x 73; Blow: 414 GRL Engineers, Inc.

D-11-	Die	-					_			
Pile Sgmnt	Dis [.] Belo		max. orce	min. Force	max. Comp.	max. Tens.		nax. sfd.	max. Veloc.	max Displ
No.	Gage		OICE	FOICE	Stress	Stress		ergy	veroc.	DISPI
NO.	-		kips	kips	ksi	ksi		p-ft	ft/s	iı
1	3	.3 5	97.4	-34.9	27.9	-1.63		30.1	14.7	1.0
2			98.0	-36.1	27.9	-1.69		30.0	14.7	1.0
4			99.2	-37.9	28.0	-1.77		29.5	14.6	0.9
6	19		00.5	-41.5	28.1	-1.94		29.0	14.6	0.9
8	26		02.4	-44.8	28.1	-2.09		28.5	14.5	0.9
10	33		06.2	-48.1	28.3	-2.25		27.8	14.4	0.8
12	39	.6 6	07.0	-71.2	28.4	-3.33	3 3	26.7	14.2	0.8
14	46	.3 6	04.6	-100.9	28.2	-4.71		25.3	14.0	0.7
15	49	.6 5	95.1	-110.6	27.8	-5.17	7 3	24.2	13.9	0.7
16	52	.9 5	98.9	-125.4	28.0	-5.86	5 3	23.6	13.8	0.6
17	56	.2 5	84.7	-132.9	27.3	-6.21	L :	22.3	13.6	0.6
18	59	.5 5	88.6	-138.8	27.5	-6.48	3 2	21.6	13.5	0.6
19	62	.8 5	74.8	-134.7	26.9	-6.29) :	20.3	13.4	0.6
20	66	.1 5	78.4	-135.3	27.0	-6.32	2 2	19.6	13.3	0.5
21	69	.4 5	63.9	-131.5	26.3	-6.14	1 :	18.3	13.1	0.54
22	72	.7 5	67.4	-132.1	26.5	-6.17	7 <u>-</u>	17.5	13.0	0.50
23	76	.0 5	58.1	-128.1	26.1	-5.98	3 1	16.3	12.9	0.4
24	79	.3 5	65.0	-128.6	26.4	-6.01	1 1	15.5	12.7	0.44
25	82		99.4	-126.1	28.0	-5.89		14.4	13.2	0.40
26	85		22.7	-126.3	29.1	-5.90		13.6	14.3	0.3
27	89		22.4	-115.6	29.1	-5.40) :	11.9	15.0	0.3
28	92	.5 6	40.6	-115.8	29.9	-5.41	L	9.8	13.7	0.30
Absolute	92	.5			29.9				(Т =	42.3 ms
	59	.5				-6.48	3		(Т =	61.5 ms
J =	0.0	0.2	0.4	0.6	E METHOD 0.8	1.0	1.2	1.	4 1.	6 1.8
RP	623.8	514.0	404.1	294.2	184.3	1.0	1.2	±•		о <u>т</u> .,
RX	711.8	683.1	654.4	626.8	606.7	602.4	598.2	594.	0 589.	7 585.
RU	623.8	514.0	404.1	294.2	184.3	00201	55012	5510		,
	19.1 (ki			632.0 ()						
Current CA						(RP)= 0.2	12; mat	ches R	X20 with	in 5%
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EM		
ft/s	ms	kips	kips	kips	in	in	in		~	s kips/i
14.9	35.97	568.9	604.3	604.3	1.04	0.14	0.14	30.		
			_							
	Depth			LE PROFII	E AND PI E-Modu		Spec. W	Joi aht		Perim
	Deptn ft			rea n²		ksi	-	o/ft ³		fi
	0.0		23	1.4	2999	2.2		92.000		4.7
	92.5			1.4	2999			92.000		4.70
Ioe Area				8.5	in ²					

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s

Pile Damping 1.00 %, Time Incr 0.197 ms, 2L/c 11.0 ms

Total volume: 13.747 ft^{3;} Volume ratio considering added impedance: 1.000

600

USH1	LO OVER L	LBDI	м;	Pi	le:	PIER	4	#1	BOR
APE	D30-42,	HP 3	14	\mathbf{x}	73;	Blow:	3	3	
GRL	Engineer	s, 1	Inc						

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH10 OVER LLBDM; Pile: PIER 4 #1 BOR APE D30-42, HP 14 x 73; Blow: 3 GRL Engineers, Inc. Test: 25-Feb-2015 08:22 CAPWAP(R) 2014-1 OP: TC

				AP SUMMARY	RESULTS			
Total CAP	WAP Capaci	ity: 59	1.0; alor	ng Shaft	76.0; at		5.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				591.0				
1	13.2	6.9	0.0	591.0	0.0	0.00	0.00	0.00
2	19.8	13.5	0.0	591.0	0.0	0.00	0.00	0.00
3	26.4	20.1	1.0	590.0	1.0	0.15	0.03	0.34
4	33.0	26.7	2.0	588.0	3.0	0.30	0.06	0.34
5	39.6	33.3	3.0	585.0	6.0	0.45	0.10	0.34
6	46.3	39.9	4.0	581.0	10.0	0.61	0.13	0.34
7	52.9	46.5	5.0	576.0	15.0	0.76	0.16	0.34
8	59.5	53.1	5.0	571.0	20.0	0.76	0.16	0.34
9	66.1	59.8	4.0	567.0	24.0	0.61	0.13	0.34
10	72.7	66.4	3.0	564.0	27.0	0.45	0.10	0.34
11	79.3	73.0	3.0	561.0	30.0	0.45	0.10	0.34
12	85.9	79.6	12.0	549.0	42.0	1.82	0.39	0.34
13	92.5	86.2	34.0	515.0	76.0	5.15	1.10	0.34
Avg. Sh	aft		5.8			0.88	0.19	0.34
То	e		515.0				373.60	0.13
Soil Mode	l Paramete	ers/Extens	ions		Sh	aft 1	loe	
Quake		(i	n)		0	.05 0.	. 20	
Case Damp:	ing Factor	•	,				.75	
Damping T	-	-				ous Sm+Vi	-	
Unloading		(%	of loadi	ng quake)	1200	41	51	
Reloading			of Ru)	ing quante,			L00	
Unloading			of Ru)			44	200	
-		cluded in		(in)			.01	
Soil Plug			ips)	, (111)		0.1		
CAPWAP mat	tch muali	tv =	3.83	(Way	e Up Match) • RSA -	0	
Observed:	-	-	0.06 i		Count		2 b/ft	
Computed:			0.02 i	-	Count	_	4 b/ft	
Transducer	F3(F607) CAL: 93.0	5; RF: 1.00	; F4(D815) CA ; A4(K3550) CA	L: 93.0; RF:	1.00	1 0/10	
max. Top			28.3 k		36.4 ms,		6 v Ton)	
max. Comp	-	=======================================	32.5 k	•	92.5 ft,			
max. Tens		=		•	-	T = 42.1 T = 62.5	-	
max. Iens		=		ip-ft; max				1.01 in
max. Hiler	21 (191172)	-	50.5 M	The reader	. Meabured	TOP DISPI	• (Din)=	T.OT TH

USH10 OVER LLBDM; Pile: PIER 4 #1 BOR APE D30-42, HP 14 x 73; Blow: 3 GRL Engineers, Inc. Test: 25-Feb-2015 08:22 CAPWAP(R) 2014-1 OP: TC

				EXT	REMA TABL	E				
Pile	e Dist	t. 1	nax.	min.	max.	max	. I	max.	max.	max.
Sgmnt	: Belo	ow Fo	orce	Force	Comp.	Tens	. Trns	sfd.	Veloc.	Displ.
No.	. Gage	es			Stress	Stres	s Ene	ergy		
	1	ft I	kips	kips	ksi	ks	i kij	o−ft	ft/s	in
1	L 3	.3 6	06.4	-27.7	28.3	-1.2	9	30.3	14.8	0.99
2			07.2	-29.1	28.4	-1.3		30.0	14.8	0.97
4			09.0	-31.5	28.4	-1.4		29.5	14.7	0.93
6			12.2	-34.0	28.6	-1.5		29.0	14.6	0.89
8			17.9	-36.8	28.9	-1.7		28.3	14.5	0.85
10			19.8	-38.6	29.0	-1.8		27.1	14.3	0.80
12			18.2	-51.9	28.9	-2.4		25.5	14.0	0.74
14			13.0	-79.7	28.6	-3.7		23.8	13.7	0.68
15			96.4	-87.9	27.9	-4.1		22.3	13.5	0.65
16			03.5	-100.4	28.2	-4.6		21.6	13.3	0.62
17			81.6	-106.0	27.2	-4.9		20.0	13.2	0.59
18			87 . 7	-116.1	27.5	-5.4		19.3	13.0	0.56
19			65.6	-118.8	26.4	-5.5		17.7	12.9	0.52
20			70.7	-124.1	26.7	-5.8		17.0	12.7	0.49
21			57 . 6	-122.0	26.5	-5.7		15.6	12.6	0.46
22			77.9	-122.0	20.5	-5.7		14.7	12.5	0.40
23			75.8	-121.5	26.9	-5.6		13.5	12.3	0.38
24			06.5	-124.6	28.3	-5.8		12.6	12.0	0.35
25			22.4		20.3					0.31
25			22.4 27.5	-123.6	29.1	-5.7		11.4 10.5	11.7 11.9	0.31
20			38.2	-124.0 -114.6		-5.7		8.7	11.9	0.28
28			95.2	-114.0	29.8 32.5	-5.3		6.9	10.4	0.24
			55.2	-114.5		-0.5	5			
Absolute	92 79				32.5	-5.8	`	-		42.1 ms) 62.5 ms)
	19	• 3				-5.8	2	()	-	02.5 ms)
				CA	SE METHOD)				
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
RP	762.3	679.6	596.8	514.1	431.3					
RX	789.6	720.4	674.2	651.5	631.8	616.7	603.4	592.0	580.6	570.6
RU	767.8	686.1	604.5	522.8	441.2					
RAU =	444.6 (ki	ips); R	A2 =	654.4 (kips)					
Current C		_			_	(RP) = 0.	41: J(R	(x) = 1.	42	
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX		
ft/s	ms	kips	kips	kips	in	in	in	kip-ft		kips/in
14.9	36.17	569.2	606.8	610.6	1.01	0.06	0.06	30.5	682.9	2711
			PI	LE PROFI	LE AND PI	LE MODEL				
	Depth			rea	E-Modu		Spec. N	Veight		Perim.
	ft			n ²		ksi	-	o/ft ³		ft
	0.0		2	1.4	2999	2.2	49	92.000		4.70
	92.5			1.4	2999			92.000		4.70
Toe Area			19	8.5	in^2					
Top Segme	nt Length	1 3		Top Imp		38 k	ips/ft/	s		
		-					-			

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s

Pile Damping 1.00 %, Time Incr 0.197 ms, 2L/c 11.0 ms

Total volume: 13.747 ft^{3;} Volume ratio considering added impedance: 1.000

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH10 OVER LLBDM; Pile: PIER 4 #36 BOR APE D30-42, HP 14 x 73; Blow: 4 GRL Engineers, Inc. Test: 25-Feb-2015 08:14 CAPWAP(R) 2014-1 OP: TC

Sgmnt Below in Pile of Resist. Resist. Date No. Gages Grade Ru (Depth) (Area) I ft ft kips kips kips kips/ft ksf 1 13.4 3.6 0.0 451.0 0.0 0.00 0.00 2 20.1 10.2 0.0 451.0 0.0 0.00 0.00 3 26.8 16.9 0.0 441.0 10.0 0.90 0.19 6 46.8 37.0 6.0 443.0 10.0 0.90 0.19 7 53.5 43.7 6.0 423.0 28.0 0.90 0.19 8 60.2 50.4 6.0 423.0 28.0 0.90 0.19 9 66.9 57.1 6.0 417.0 34.0 0.90 0.22 11 80.3 70.5 8.0 402.0 1.20 0.25 <	Soil	Dist.		1.0; alor	Force	86.0; at	Unit	5.0 kips Unit	Smitl
No. Gages ft Grade ft Ru ft Ru ft Ru ft Ru ft Ru ft Ru kips Ru kips <th></th> <th></th> <th>Depth</th> <th>Ru</th> <th></th> <th>Sum</th> <th></th> <th></th> <th></th>			Depth	Ru		Sum			
ft ft kips kips kips kips/ft ksf 1 13.4 3.6 0.0 451.0 0.0 0.00 0.00 2 20.1 10.2 0.0 451.0 0.0 0.00 0.00 3 26.8 16.9 0.0 451.0 0.0 0.00 0.00 4 33.5 23.6 4.0 447.0 4.0 0.60 0.13 5 40.1 30.3 6.0 441.0 10.0 0.90 0.19 6 46.8 37.0 6.0 423.0 22.0 0.90 0.19 7 53.5 43.7 6.0 423.0 28.0 0.90 0.19 9 66.9 57.1 6.0 417.0 34.0 0.90 0.19 10 73.6 63.8 7.0 410.0 41.0 1.05 0.22 11 80.3 70.5 8.0 402.0 49.0 <t< th=""><th></th><th></th><th></th><th></th><th>in Pile</th><th></th><th></th><th></th><th>Damping Factor</th></t<>					in Pile				Damping Factor
451.0 1 13.4 3.6 0.0 451.0 0.0 0.00 0.00 2 20.1 10.2 0.0 451.0 0.0 0.00 0.00 3 26.8 16.9 0.0 451.0 0.0 0.00 0.00 4 33.5 23.6 4.0 447.0 4.0 0.60 0.13 5 40.1 30.3 6.0 441.0 10.0 0.90 0.19 6 46.8 37.0 6.0 435.0 16.0 0.90 0.19 7 53.5 43.7 6.0 429.0 22.0 0.90 0.19 8 60.2 50.4 6.0 423.0 28.0 0.90 0.19 9 66.9 57.1 6.0 417.0 34.0 0.90 0.19 10 73.6 63.8 7.0 410.0 41.0 1.05 0.22 11 80.3 70.5 8.0 402.0 49.0 1.20 0.25 12 87.0 77.2	NO.	1.00 m		1	1.1	100 - 211 TO 100 TO			s/f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		It	IL	kips	kips	kips	kips/it	KSI	s/I
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					451.0	0.0			0.00
5 40.1 30.3 6.0 441.0 10.0 0.90 0.19 6 46.8 37.0 6.0 435.0 16.0 0.90 0.19 7 53.5 43.7 6.0 429.0 22.0 0.90 0.19 8 60.2 50.4 6.0 423.0 28.0 0.90 0.19 9 66.9 57.1 6.0 417.0 34.0 0.90 0.19 10 73.6 63.8 7.0 410.0 41.0 1.05 0.22 11 80.3 70.5 8.0 402.0 49.0 1.20 0.25 12 87.0 77.2 12.0 390.0 61.0 1.79 0.38 13 93.7 83.8 25.0 365.0 86.0 3.74 0.80 Avg. Shaft 6.6 1.03 0.22 Toe 365.0 264.78 365.0 264.78 Soil Model Parameters/Extensions Shaft Toe Quake (in) 0.07 0.38<	3	26.8	16.9	0.0	451.0	0.0	0.00	0.00	0.00
6 46.8 37.0 6.0 435.0 16.0 0.90 0.19 7 53.5 43.7 6.0 429.0 22.0 0.90 0.19 8 60.2 50.4 6.0 423.0 28.0 0.90 0.19 9 66.9 57.1 6.0 417.0 34.0 0.90 0.19 10 73.6 63.8 7.0 410.0 41.0 1.05 0.22 11 80.3 70.5 8.0 402.0 49.0 1.20 0.25 12 87.0 77.2 12.0 390.0 61.0 1.79 0.38 13 93.7 83.8 25.0 365.0 86.0 3.74 0.80 Avg. Shaft 6.6 1.03 0.22 264.78 Soil Model Parameters/Extensions Shaft Toe 264.78 Quake (in) 0.07 0.38 1.34 Damping Type Viscous Sm+Visc Viscous Sm+Visc Unloading Quake (% of Ru) 100 93	4	33.5	23.6	4.0	447.0	4.0	0.60	0.13	0.28
7 53.5 43.7 6.0 429.0 22.0 0.90 0.19 8 60.2 50.4 6.0 423.0 28.0 0.90 0.19 9 66.9 57.1 6.0 417.0 34.0 0.90 0.19 10 73.6 63.8 7.0 410.0 41.0 1.05 0.22 11 80.3 70.5 8.0 402.0 49.0 1.20 0.25 12 87.0 77.2 12.0 390.0 61.0 1.79 0.38 13 93.7 83.8 25.0 365.0 86.0 3.74 0.80 Avg. Shaft 6.6 1.03 0.22 Toe 365.0 86.0 3.74 0.80 Avg. Shaft 6.6 1.03 0.22 Quake (in) 0.07 0.38 0.63 1.34 Quake (in) 0.63 1.34 0.63 1.34 Damping Type Viscous Sm+Visc 100 93 100 100	5	40.1	30.3	6.0	441.0	10.0	0.90	0.19	0.28
8 60.2 50.4 6.0 423.0 28.0 0.90 0.19 9 66.9 57.1 6.0 417.0 34.0 0.90 0.19 10 73.6 63.8 7.0 410.0 41.0 1.05 0.22 11 80.3 70.5 8.0 402.0 49.0 1.20 0.25 12 87.0 77.2 12.0 390.0 61.0 1.79 0.38 13 93.7 83.8 25.0 365.0 86.0 3.74 0.80 Avg. Shaft 6.6 1.03 0.22 Toe 365.0 86.0 3.74 0.80 Soil Model Parameters/Extensions Shaft Toe Quake (in) 0.07 0.38 0.63 1.34 Damping Type Viscous Sm+Visc 0.63 1.34 Damping Quake (% of loading quake) 100 93 93 Reloading Level (% of Ru) 100 100 0.07	6	46.8	37.0	6.0	435.0	16.0	0.90	0.19	0.28
9 66.9 57.1 6.0 417.0 34.0 0.90 0.19 10 73.6 63.8 7.0 410.0 41.0 1.05 0.22 11 80.3 70.5 8.0 402.0 49.0 1.20 0.25 12 87.0 77.2 12.0 390.0 61.0 1.79 0.38 13 93.7 83.8 25.0 365.0 86.0 3.74 0.80 Avg. Shaft 6.6 1.03 0.22 Toe 365.0 264.78 Soil Model Parameters/Extensions Shaft Toe Quake (in) 0.07 0.38 Case Damping Factor 0.63 1.34 Damping Type Viscous Sm+Visc Unloading Quake (% of loading quake) 100 93 Reloading Level (% of Ru) 100 100 Resistance Gap (included in Toe Quake) (in) 0.07 0.07	7	53.5	43.7	6.0	429.0	22.0	0.90	0.19	0.28
10 73.6 63.8 7.0 410.0 41.0 1.05 0.22 11 80.3 70.5 8.0 402.0 49.0 1.20 0.25 12 87.0 77.2 12.0 390.0 61.0 1.79 0.38 13 93.7 83.8 25.0 365.0 86.0 3.74 0.80 Avg. Shaft 6.6 1.03 0.22 Toe 365.0 264.78 Soil Model Parameters/Extensions Shaft Toe Quake (in) 0.07 0.38 Case Damping Factor 0.63 1.34 Damping Type Viscous Sm+Visc Unloading Quake (% of loading quake) 100 93 Reloading Level (% of Ru) 100 100 Resistance Gap (included in Toe Quake) (in) 0.07 0.07	8	60.2	50.4	6.0	423.0	28.0	0.90	0.19	0.28
11 80.3 70.5 8.0 402.0 49.0 1.20 0.25 12 87.0 77.2 12.0 390.0 61.0 1.79 0.38 13 93.7 83.8 25.0 365.0 86.0 3.74 0.80 Avg. Shaft 6.6 1.03 0.22 Toe 365.0 264.78 Soil Model Parameters/Extensions Shaft Toe Quake (in) 0.07 0.38 Case Damping Factor 0.63 1.34 Damping Type Viscous Sm+Visc Unloading Quake (% of loading quake) 100 93 Reloading Level (% of Ru) 100 100 Resistance Gap (included in Toe Quake) (in) 0.07 0.07	9	66.9	57.1	6.0	417.0	34.0	0.90	0.19	0.28
12 87.0 77.2 12.0 390.0 61.0 1.79 0.38 13 93.7 83.8 25.0 365.0 86.0 3.74 0.80 Avg. Shaft 6.6 1.03 0.22 Toe 365.0 264.78 Soil Model Parameters/Extensions Shaft Toe Quake (in) 0.07 0.38 Case Damping Factor 0.63 1.34 Damping Type Viscous Sm+Visc Unloading Quake (% of loading quake) 100 93 Reloading Level (% of Ru) 100 100 Resistance Gap (included in Toe Quake) (in) 0.07 0.07	10	73.6	63.8	7.0	410.0	41.0	1.05	0.22	0.28
13 93.7 83.8 25.0 365.0 86.0 3.74 0.80 Avg. Shaft 6.6 1.03 0.22 Toe 365.0 264.78 Soil Model Parameters/Extensions Shaft Toe Quake (in) 0.07 0.38 Quake (in) 0.63 1.34 Damping Factor 0.63 1.34 Damping Type Viscous Sm+Visc Unloading Quake (% of loading quake) 100 93 Reloading Level (% of Ru) 100 100 Resistance Gap (included in Toe Quake) (in) 0.07 0.07	11	80.3	70.5	8.0	402.0	49.0	1.20	0.25	0.28
Avg. Shaft6.61.030.22Toe365.0264.78Soil Model Parameters/ExtensionsShaftToeQuake(in)0.070.38Case Damping Factor0.631.34Damping TypeViscousSm+ViscUnloading Quake(% of loading quake)10093Reloading Level(% of Ru)100100Resistance Gap (included in Toe Quake) (in)0.070.07	12	87.0	77.2	12.0	390.0	61.0	1.79	0.38	0.28
Toe365.0264.78Soil Model Parameters/ExtensionsShaftToeQuake(in)0.070.38Case Damping Factor0.631.34Damping TypeViscousSm+ViscUnloading Quake(% of loading quake)10093Reloading Level(% of Ru)100100Resistance Gap (included in Toe Quake) (in)0.070.07	13	93.7	83.8	25.0	365.0	86.0	3.74	0.80	0.28
Soil Model Parameters/ExtensionsShaftToeQuake(in)0.070.38Case Damping Factor0.631.34Damping TypeViscousSm+ViscUnloading Quake(% of loading quake)10093Reloading Level(% of Ru)100100Resistance Gap (included in Toe Quake) (in)0.070.07	Avg. Sha	aft		6.6			1.03	0.22	0.28
Quake(in)0.070.38Case Damping Factor0.631.34Damping TypeViscous Sm+ViscUnloading Quake(% of loading quake)10093Reloading Level(% of Ru)100100Resistance Gap (included in Toe Quake) (in)0.070.07	Toe	9		365.0				264.78	0.14
Case Damping Factor0.631.34Damping TypeViscousSm+ViscUnloading Quake(% of loading quake)10093Reloading Level(% of Ru)100100Resistance Gap (included in Toe Quake) (in)0.07	Soil Model	Paramete	rs/Extens:	ions		Sh	naft T	oe	
Case Damping Factor0.631.34Damping TypeViscousSm+ViscUnloading Quake(% of loading quake)10093Reloading Level(% of Ru)100100Resistance Gap (included in Toe Quake) (in)0.07	make		(1)	n)		c	07 0	38	
Damping TypeViscous Sm+ViscUnloading Quake(% of loading quake)100Reloading Level(% of Ru)100100Resistance Gap (included in Toe Quake) (in)0.07		ng Factor							
Unloading Quake (% of loading quake) 100 93 Reloading Level (% of Ru) 100 100 Resistance Gap (included in Toe Quake) (in) 0.07									
Reloading Level(% of Ru)100100Resistance Gap (included in Toe Quake) (in)0.07			(%	of loadi	ng guake)				
Resistance Gap (included in Toe Quake) (in) 0.07	전 방법 위험 위험 가슴을 걸려 변경에 들었다.				ing quane,		77-75-75	T. T.	
	-				(in)				
					., (11)				
CAPWAP match quality = 3.68 (Wave Up Match) ; RSA = 0		ah mali		3 60	/Me	. IIn Match	1 . DCA - (ñ	
Observed: Final Set = 0.16 in; Blow Count = 74 b/ft		-	-			7			
Computed: Final Set = 0.13 in; Blow Count = 74 b/ft	States and an unit of the state of the second states of the second states and the second states of the second stat	Charles and the second second			Constraint Constraints Constraints	and the second second second			

max. Top Comp. Stress	=	28.1	ksi	(T=	36.2 ms,	max	= 1.027 x Top)
max. Comp. Stress	=	28.8	ksi	(Z=	33.5 ft,	T=	38.0 ms)
max. Tens. Stress	=	-1.77	ksi	(Z=	33.5 ft,	T=	99.5 ms)
max. Energy (EMX)	=	31.2	kip-ft;	max.	Measured	Top	Displ. $(DMX) = 1.06$ in

USH10 OVER LLBDM; Pile: PIER 4 #36 BOR APE D30-42, HP 14 x 73; Blow: 4 GRL Engineers, Inc. Test: 25-Feb-2015 08:14 CAPWAP(R) 2014-1 OP: TC

				EXT	REMA TABL	E				
	Pile		max.	min.	max.	max.		ax.	max.	max.
	Sgmnt			Force	Comp.	Tens.	Trns		Veloc.	Displ.
	No.	Gages		• •	Stress	Stress		rgy	c , /	0.00
		ft	kips	kips	ksi	ksi	kip	-It	ft/s	in
	1			-27.6	28.1	-1.29		1.2	14.8	1.06
	2	6.7		-28.1	28.1	-1.31		1.1	14.8	1.04
	4			-29.8	28.2	-1.39		0.6	14.7	1.00
	6	20.1		-32.5	28.2	-1.52		9.9	14.6	0.96
	8	26.8		-35.0	28.4	-1.63		9.3	14.5	0.92
	10	33.5		-37.9	28.8	-1.77		8.5	14.2	0.87
	12	40.1		-35.8	28.5	-1.67		6.8	13.9	0.82
	14	46.8		-31.2	27.7	-1.46		4.6	13.6	0.76
	15	50.2		-25.1	26.6	-1.17		2.9	13.4	0.74
	16	53.5	574.7	-25.6	26.9	-1.20		2.5	13.3	0.71
	17	56.9	552.9	-22.2	25.8	-1.04	2	0.9	13.1	0.68
	18	60.2	557.6	-28.9	26.1	-1.35	2	0.4	12.9	0.66
	19	63.6	536.0	-23.9	25.0	-1.12	1	8.9	12.8	0.63
	20	66.9	540.9	-30.7	25.3	-1.43	1	8.4	12.6	0.60
	21	70.3	520.5	-26.2	24.3	-1.22	1	7.0	12.4	0.58
	22	73.6	525.8	-31.7	24.6	-1.48	1	6.5	12.3	0.55
	23	76.9	502.0	-26.5	23.5	-1.24	1	5.0	12.1	0.52
	24	80.3	509.4	-30.7	23.8	-1.44	1	4.6	11.9	0.50
	25	83.6	483.4	-23.1	22.6	-1.08	1	3.1	12.6	0.47
	26	87.0	482.5	-28.1	22.5	-1.31	1	2.6	13.7	0.44
	27	90.3	486.6	-15.7	22.7	-0.73	1	0.9	14.6	0.42
	28	93.7	501.0	-19.4	23.4	-0.91		8.7	14.1	0.39
bs	olute	33.5			28.8			(1	C =	38.0 ms)
	2070/70/2070/1	33.5				-1.77		(48)	c =	99.5 ms)
				CA	SE METHOD					
J =		0.0	0.2 0	.4 0.6	0.8	1.0	1.2	1.4	1.6	5 1.8
P			62.5 343		105.2					
x			87.0 544		514.2	500.7	487.2	479.0	471.9	464.7
U			62.5 343		105.2					
UAS	= 4		s); RA2 =	548.8 (
	rent CA	PWAP Ru =	451.0 (kip	os); Corres	ponding J	(RP) = 0.22	2; mate	ches RX	20 with:	in 5%
Jur.		100000000000000000000000000000000000000	T1*Z F	T1 FMX	DMX	DFN	SET	EMX	QUS	S KEB
Jul	VMX	TVP V				and the second sec				kips/in
Jul	VMX ft/s			ne kine	in	in	1 n			, wrbs/ru
Jul	ft/s	ms	kips ki		in 1.06	in 0.17				1177
JUL.		ms		.6 608.6	1.06	0.17	1n 0.16	31.3		2 1177
Jui	ft/s	ms 36.03 5	kips ki	.6 608.6 PILE PROFI	1.06 LE AND PI	0.17 LE MODEL	0.16	31.3		
	ft/s	ms	kips ki	.6 608.6	1.06 LE AND PI E-Modu	0.17 LE MODEL	0.16 pec. W	31.3		Perim.
	ft/s	ms 36.03 5 Depth	kips ki	.6 608.6 PILE PROFI Area	1.06 LE AND PI E-Modu	0.17 LE MODEL lus S ksi	0.16 pec. W lb	31.3 eight		

Top Segment Length 3.35 ft, Top Impedance 38 kips/ft/s

198.5

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s

 in^2

Pile Damping 1.00 %, Time Incr 0.199 ms, 2L/c 11.1 ms Total volume: 13.920 ft^{3;} Volume ratio considering added impedance: 1.000

Toe Area

Pile Top

Load (kips)

0

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH10 OVER LLBDM; Pile: PIER 4 #44 EOID APE D30-42, HP 14 x 73; Blow: 466 GRL Engineers, Inc. Test: 24-Feb-2015 12:50 CAPWAP(R) 2014-1 OP: TC

				AP SUMMARY I			•	
and the second states	www.execution.com	ity: 54		WARK INTO A CONTRACT	80.0; at 1	and the second s	0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Dampin
No.	Gages	Grade			Ru	(Depth)	(Area)	Facto
	ft	ft	kips	kips	kips	kips/ft	ksf	s/f
				541.0				
1	13.2	8.6	0.0	541.0	0.0	0.00	0.00	0.0
2	19.8	15.2	0.0	541.0	0.0	0.00	0.00	0.0
3	26.4	21.8	0.0	541.0	0.0	0.00	0.00	0.0
4	33.0	28.4	2.0	539.0	2.0	0.30	0.06	0.2
5	39.6	35.0	2.0	537.0	4.0	0.30	0.06	0.2
6	46.2	41.6	3.0	534.0	7.0	0.45	0.10	0.2
7	52.8	48.2	4.0	530.0	11.0	0.61	0.13	0.2
8	59.4	54.8	4.0	526.0	15.0	0.61	0.13	0.2
9	66.0	61.4	4.0	522.0	19.0	0.61	0.13	0.2
10	72.6	68.0	6.0	516.0	25.0	0.91	0.19	0.2
11	79.2	74.6	8.0	508.0	33.0	1.21	0.26	0.2
12	85.8	81.2	12.0	496.0	45.0	1.82	0.39	0.2
13	92.4	87.8	35.0	461.0	80.0	5.30	1.13	0.2
Avg. Sh	aft		6.2			0.91	0.19	0.2
То	е		461.0				334.42	0.1
Soil Mode	l Paramete	ers/Extens	ions		Sha	ft T	oe	
Quake		(i:	n)		0.	05 0.	33	
	ing Factor					59 1.		
Damping T						us Sm+Vi		
Jnloading		(%	of loadi	ng quake)			04	
Reloading			of Ru)				00	
-		cluded in ') (in)	-	0.		
Soil Plug			ips)	/ (/		0.0		
· · · · · · · · · · · · · · · · · · ·	···· · ···	•==				(1977) A. A.	5-51 	
	tch qualit	-	3.16		e Up Match)	53		
	Final Set		0.14 i		Count		b/ft	
	Final Set		0.10 i		Count		2 b/ft	
Fransducer				F4 (D815) CAL A4 (K3550) CAL	L: 93.0; RF: 1 L: 360; RF: 1			
nax. Top	Comp. Stre	ess =	29.8 k	si (T=	36.1 ms, 1	max= 1.01	6 х Тор)	
max. Comp	. Stress	-	30.3 k	si (Z=	92.4 ft, 5	r= 43.4 r	ns)	
max. Tens		=	-4.35 k		79.2 ft, 5			
	gy (EMX)	=		ip-ft; max		Comment States and States	1	N DECEMBER OF THE

USH10 OVER LLBDM; Pile: PIER 4 #44 EOID APE D30-42, HP 14 x 73; Blow: 466 GRL Engineers, Inc. Test: 24-Feb-2015 12:50 CAPWAP(R) 2014-1 OP: TC

	Pile	Dist		max.	min.	max.	max.	. r	nax.	max.	max.
	Sgmnt	Belo	w I	Force	Force	Comp.	Tens.	Trns	sfd.	Veloc.	Displ
	No.					Stress	Stress		ergy	c. /	
			t	kips	kips	ksi	ksi		o-ft	ft/s	iı
	1			637.5	-25.2	29.8	-1.18		34.4	15.8	1.10
	2			538.0 538.9	-27.2	29.8 29.8	-1.27		34.3 33.8	15.7 15.7	1.09
	6			539.9 539.9	-32.8	29.8	-1.80		33.3	15.6	1.0
	8			541.7	-44.7	30.0	-2.09		32.7	15.6	0.9
	10			546.8	-50.4	30.2	-2.35		32.0	15.4	0.92
	12			641.6	-55.1	30.0	-2.57		30.6	15.2	0.87
	14			538.4	-62.4	29.8	-2.91		29.1	15.0	0.82
	15	49.	5 6	528.0	-63.6	29.3	-2.97	1 2	27.8	14.9	0.79
	16			531.6	-66.3	29.5	-3.10		27.2	14.7	0.76
	17			616.1	-64.7	28.8	-3.02		25.7	14.6	0.73
	18			619.6	-72.2	28.9	-3.37		25.0	14.5	0.70
	19			504.4	-73.5	28.2	-3.43		23.4	14.3	0.66
	20			508.9	-81.2	28.4	-3.79		22.7	14.2	0.63
	21			595.4	-81.8	27.8	-3.82		21.2	14.0	0.60
	22 23			502.7 581.3	-88.8 -86.8	28.2 27.2	-4.15		20.4 18.6	13.9 13.6	0.56
	23			595.6	-93.0	27.2	-4.35		17.8	13.6	0.33
	25			605.0	-86.8	28.3	-4.05		15.8	15.2	0.46
	26			634.6	-92.7	29.6	-4.33		15.1	16.5	0.43
	27			532.2	-80.3	29.5	-3.75		2.9	16.9	0.40
	28			547.8	-84.7	30.3	-3.96		9.8	15.7	0.36
her	lute	92.	4			30.3			(*	r =	43.4 ms)
1030	fuce	79.				50.5	-4.35	5	/50	r =	62.8 ms)
- 2018						E METHOD					
J =		0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.	6 1.8
P		637.5 756.7	515.1 722.3	392.7 688.8	270.3 658.1	147.8 640.5	631.1	622.0	613.4	604.	7 596.0
RU U		637.5	515.1	392.7	270.3	147.8	031.1	022.0	015.4	004.	/ 590.0
LAU					674.1 ()						
		106.6 (ki				2.5					
						sponding	J(RP) = 0	.16;			
RWX	requir	es highe:	r damp:	ing; see	PDA-W						
	VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QU	s kee
	ft/s	ms	kips	kips	kips	in	in		kip-ft		s kips/in
	16.0	35.94	609.3	640.2	640.2	1.11	0.14	0.14	34.6	663.	8 1773
				PII	E PROFII	E AND PI	LE MODEL				
		Depth			ea	E-Modu		Spec. V	leight		Perim.
		ft		ir	l ²		ksi		o/ft ³		ft
		0.0		21	. 4	2999	2.2	49	2.000		4.70
		92.4		21	4	2999	2.2	49	2.000		4.70
loe	Area			198	.5	in ²					
Гор	Segmer	nt Length		3.30 ft,	Top Impe	edance	38 k:	ips/ft/	S		
lave	Speed	l: Pile T	Op 1680	07.9. El:	astic 168	807.9, Ov	erall 16	807.9 f	t/s		
						ns, 2L/c					
						nsidering		mpedanc	e: 1.00	0	

EXTREMA TABLE

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH10 OVER LLBDM; Pile: PIER 4 #44 BOR APE D30-42, HP 14 x 73; Blow: 3 GRL Engineers, Inc. Test: 25-Feb-2015 08:03 CAPWAP(R) 2014-1 OP: TC

			C	APWAP SUMMA	RY RESU	JLTS			
Total CA	PWAP Capa	acity:	627.0;	along Shaft	82	.0; at Toe	545.0) kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith	Quake
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping	
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor	
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft	in
				627.0					
1	13.2	8.7	0.0	627.0	0.0	0.00	0.00	0.00	0.04
2	19.8	15.3	0.0	627.0	0.0	0.00	0.00	0.00	0.04
3	26.4	21.9	3.0	624.0	3.0	0.45	0.10	0.27	0.04
4	33.0	28.5	3.0	621.0	6.0	0.45	0.10	0.27	0.04
5	39.6	35.1	4.0	617.0	10.0	0.61	0.13	0.27	0.04
6	46.2	41.7	6.0	611.0	16.0	0.91	0.19	0.27	0.04
7	52.8	48.3	6.0	605.0	22.0	0.91	0.19	0.27	0.04
8	59.4	54.9	5.0	600.0	27.0	0.76	0.16	0.27	0.04
9	66.0	61.5	5.0	595.0	32.0	0.76	0.16	0.27	0.04
10	72.6	68.1	6.0	589.0	38.0	0.91	0.19	0.27	0.04
11	79.2	74.7	4.0	585.0	42.0	0.61	0.13	0.27	0.04
12	85.8	81.3	5.0	580.0	47.0	0.76	0.16	0.27	0.04
13	92.4	87.9	35.0	545.0	82.0	5.30	1.13	0.27	0.04
Avg. Sh	naft		6.3			0.93	0.20	0.27	0.04
Тс	be		545.0				395.36	0.11	0.31
Soil Mod	el Paramo	eters/Ext	tensions			Shaft	Toe		
Case Dam	ping Fac	tor				0.58	1.57		
Damping	Type					Viscous	Sm+Visc		
Unloadin	g Quake		(% of 1	oading quake	∍)	68	30		
Reloadin			(% of R	u)		100	100		
Unloadin	g Level		(% of R	u)		14			
Resistan	ce Gap (:	included	in Toe Q	uake) (in)			0.01		
	g Weight		(kips)				0.004		
CAPWAP m	atch qua	lity	= 2.	86 (Wave Ur	Match) ;	RSA = 0		
	: Final S				low Cou		137 b	/ft	
	: Final S			525 grad - 573	low Cou	ten right in the second	215 b	123223	
Transducer		607) CAL:	and the second second second second	1.00; F4(D815)				,	
	A3 (K	2524) CAL:	360; RF:	1.10; A4 (K3550)	CAL:	360; RF: 1.10	D		
max. Top	Comp. St	tress	= 33	.5 ksi	T	5.1 ms, max			
max. Com	p. Stress	5	= 36	.2 ksi	(Z= 92	2.4 ft, T=	42.0 ms)		
max. Ten	s. Stress	S	= -5.	80 ksi	(Z= 72	2.6 ft, T=	60.9 ms))	
max. Ene	rgy (EMX))	= 42	.6 kip-ft; n	max. Me	easured Top	Displ.	(DMX) = 1.	16 in

USH10 OVER LLBDM; Pile: PIER 4 #44 BOR APE D30-42, HP 14 x 73; Blow: 3 GRL Engineers, Inc. Test: 25-Feb-2015 08:03 CAPWAP(R) 2014-1 OP: TC

					EXTR	EMA TABL	5					
	Pile			nax.	min.	max.	max.		nax.	max.	max.	
	Sgmnt			orce	Force	Comp.	Tens.			Veloc.	Displ.	
	No.	Gage				Stress	Stress		ergy	. (0.00	
-		9	t 1	kips	kips	ksi	ksi	L KI	o-ft	ft/s	ir	
	1	3.		17.6	-20.7	33.5	-0.97		12.6	17.7	1.15	
	2	6.	6 73	18.5	-21.4	33.6	-1.00) 4	12.4	17.6	1.13	
	4	13.		20.3	-24.4	33.6	-1.14		11.8	17.6	1.09	
	6	19.		24.3	-27.8	33.8	-1.30		11.1	17.5	1.05	
	8	26.		32.6	-30.4	34.2	-1.42		10.4	17.2	1.01	
	10	33.		24.5	-41.9	33.8	-1.96		38.6	17.0	0.95	
	12	39.	6 7:	19.5	-74.1	33.6	-3.46	5 3	36.6	16.7	0.89	
	14	46.	2 7	11.7	-102.5	33.2	-4.79	. 3	34.4	16.3	0.84	
	15	49.	5 6	87.1	-112.5	32.1	-5.26	5 3	32.1	16.1	0.80	
	16	52.	8 6	92.8	-119.5	32.4	-5.58	3 3	31.3	15.9	0.77	
	17	56.	1 6	67.6	-117.9	31.2	-5.51	L 2	29.0	15.8	0.73	
	18	59.	4 6	73.1	-119.4	31.4	-5.58	3 2	28.2	15.6	0.70	
	19	62.	7 6	53.7	-119.6	30.5	-5.59) 2	26.3	15.4	0.66	
	20	66.	0 6	59.9	-122.7	30.8	-5.73	3 2	25.4	15.3	0.63	
	21	69.	3 6	41.7	-122.4	30.0	-5.72	2 2	23.5	15.1	0.59	
	22	72.	6 6	47.1	-124.2	30.2	-5.80) 2	22.6	14.9	0.55	
	23	75.		29.6	-120.6	29.4	-5.63		20.5	14.8	0.51	
	24	79.	2 6	59.1	-123.0	30.8	-5.75	5 1	19.5	14.6	0.48	
	25	82.		88.4	-120.8	32.2	-5.64		17.9	16.0	0.44	
	26	85.		05.5	-122.2	33.0	-5.71		16.9	16.9	0.40	
	27	89.		0.80	-121.8	33.1	-5.69		15.3	16.6	0.36	
	28	92.		75.1	-123.2	36.2	-5.76		12.4	14.5	0.32	
Aha	solute	92.	4			36.2			(1	c =	42.0 ms)	
		72.				00.2	-5.80)	,613	· =	60.9 ms)	
						SE METHOD						
J =		0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	5 1.8	
RP		785.7	663.3	541.0	418.6	296.3						
RX		894.1	816.2	774.1	743.7	714.4	691.8	675.0	660.4	645.9	631.3	
RU		785.7	663.3	541.0	418.6	296.3						
		78.8 (ki			775.9 ()	20						
Cui						ponding J						
	VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS		
	ft/s	ms	kips	kips	kips	in	in		kip-ft		kips/in	
	17.6	35.74	671.4	726.0	729.7	1.16	0.09	0.09	42.6	819.2	1817	
				PII	LE PROFII	E AND PI	LE MODEL					
		Depth			rea	E-Modu	E-Modulus S		Spec. Weight		Perim.	
		ft			in ²		ksi		lb/ft ³		ft	
		0.0		21	L.4	2999	2.2	49	2.000		4.70	
		92.4		21	L.4	2999	2 2	40	2.000		4.70	

Top Segment Length 3.30 ft, Top Impedance 38 kips/ft/s

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s

Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c 11.0 ms

Total volume: 13.735 ft^{3;} Volume ratio considering added impedance: 1.000