GRL Engineers, Inc.

1540 E. Dundee Road, Suite 102 Palatine, IL 60074 USA Phone: (847) 221-2750 Fax: (847) 221-2752

TRANSMITTAL

To: Mr. Kevin Weber	From: Al Ziai
Company: Lunda Construction Co.	No. of Sheets: 50
E-mail: kweber@lundaconstruction.com	Date: December 11, 2014

RE: Dynamic Testing Results – USH 10 over Little Lake Butte des Morts Structure B-70-403 - Pier 3 Winnebago County, Wisconsin

On December 9, 2014, Pier 3 #1, Pier 3 #36, and Pier 3 #44 at the above structure were dynamically tested during initial driving. The piles were tested during restrike on December 10. Project plans indicated the exterior row piles have a required driving resistance, or ultimate capacity, of 480 kips (240 tons) and the interior row piles have a required driving resistance of 400 kips (200 tons). The reference grade at the bottom of the footing excavation was reported to be EL 741.4 for Pier 3 #1 and EL 740.2 for Pier 3 #36 and Pier 3 #44. The piles have a required minimum tip elevation of EL 660. The HP 14x73 H-piles were equipped with driving shoes and were driven with an APE D30-42 hammer (number PD 0256) reportedly operated on fuel setting 4.

Pier 3 #1 was driven to a depth of 71.4 feet, which corresponds to a pile tip elevation of EL 670.0. The blow count over the final increment of driving was 27 blows for 8 inches of penetration at an average hammer stroke of 7.7 feet. The blow count at the beginning of restrike was 5 blows for $\frac{7}{6}$ inch of penetration at an average hammer stroke of 7.9 feet.

Pier 3 #36 was driven to a depth of 70.6 feet, which corresponds to a pile tip elevation of EL 669.6. The blow count over the final increment of driving was 18 blows for 7 inches of penetration at an average hammer stroke of 7.2 feet. The blow count at the beginning of restrike was 5 blows for $1\frac{1}{8}$ inch of penetration at an average hammer stroke of 7.6 feet

Pier 3 #44 was driven to a depth of 72.6 feet, which corresponds to a pile tip elevation of EL 667.6. The blow count over the final increment of driving was 30 blows for $7\frac{1}{2}$ inches of penetration at an average hammer stroke of 7.1 feet. The blow count at the beginning of restrike was 5 blows for $\frac{7}{8}$ inch of penetration at an average hammer stroke of 7.3 feet

Our driving recommendations have been prepared on a blows-per-inch basis. The criteria should be applied only after the minimum pile tip elevation is achieved. For the 480 and 400 kips piles driven with an APE D30-42 hammer (PD 0256) in Pier 3 of the USH 10 bridge over Little Lake Butte des Morts we recommend using the following criteria:

Field Observed Hammer Stroke	Exterior Piles (480 kips) Recommended Minimum Blow Count	Interior Piles (400 kips) Recommended Minimum Blow Count
(feet)	(blows per inch)	(blows per inch)
6.5	6	5
7.0	5	4
7.5	4	4
8.0	4	3
8.5	4	3
9.0	4	3

We recommend the above blow counts at the required stroke be maintained for three consecutive inches of driving. We recommend immediately terminating driving if the blow counts exceed 10 blows over an increment of one inch or less at hammer strokes of 8.0 feet, after satisfying any minimum tip requirements. We anticipate the production piles will terminate at depths similar to those of the test piles. Please note that all the tested piles had a tip elevation of approximately 10 feet above the minimum required pile tip elevation. Based upon the dynamic test results, the designer allowed the minimum pile tip elevation to be revised to EL 671.

These criteria should not be used for acceptance of piles under restrike and/or redrive conditions. After splicing or any other delays, we recommend not applying the criteria until a full foot of driving has occurred beyond the termination depth associated with the delay, unless the blow count exceeds 10 blows per inch.

Please call if you have any questions on these recommendations.

GRL Engineers, Inc.

tlzini Al Ziai 1fi (hi

Travis Coleman, P.E.

Cc: Jeff Horsfall - jeffrey.horsfall@dot.wi.gov

Attachments:

(pages 3 - 20)Dynamic Test Results -CAPWAP Analysis Results - (pages 21 – 50)

PDIPLOT Ver. 2014.1 - Printed: 10-Dec-2014

Test date: 9-Dec-2014

USH 10 - B-70-403 - Pier 3 #1 - EOID APE D30-42, HP 14 x 73 GRL Engineers, Inc.

Case Method & iCAP® Results

USH 10 - B-70-403 - Pier 3 #1 - EOID OP: AZ

APE D30-42, HP 14 x 73 Test date: 9-Dec-2014

SP: 0.492 k/ft3 EM: 30,000 ksi

	_	
AR:	21.40 in^2	
LE:	77.00 ft	
WS: 1	6,807.9 f/s	

	BPM:	Max Transferred Blows per Minute Max Case Metho

LE: WS	77.00 ft 16,807.9 f/s							EM: 30 JC:	,000 ksi 1.00
CSX: CSB:	Max Measured Co Compression Stre O.E. Diesel Hamn	ss at Bottom				BPM:	Max Transfe Blows per M Max Case M	rred Energy	
BL# end 7	depth ft	BLC bl/ft 3	TYPE AV1 MAX MIN	CSX ksi 8.2 8.2 8.2 8.2	CSB ksi 1.5 1.6 1.6	STK ft 3.7 3.7 3.7 3.7	EMX k-ft 7 7 7	BPM ** 60 60 60	RX9 kips 0 0
7	35.00	3	AV1 MAX MIN	4.5 4.5 4.5	1.2 1.2 1.2	3.0 3.0 3.0	3 3 3	67 67 67	0 0 0
9	39.00	1	AV1 MAX MIN	12.2 12.2 12.2	2.8 2.8 2.8	3.2 3.2 3.2	15 15 15	64 64 64	0 0 0
10	40.00	1	AV1 MAX MIN	5.7 5.7 5.7	1.8 1.8 1.8	2.8 2.8 2.8	7 7 7	68 68 68	0 0 0
13	41.00	3	AV1 MAX MIN	1.1 1.1 1.1	0.3 0.3 0.3	2.7 2.7 2.7	0 0 0	69 69 69	0 0 0
17	43.00	2	AV2 STD MAX MIN	20.0 6.4 26.3 13.6	3.8 0.7 4.5 3.1	4.7 1.3 6.0 3.4	28 8 37 20	55 8 63 48	0 0 0 0
20	44.00	3	AV3 STD MAX MIN	9.8 1.9 12.3 8.0	2.5 0.3 2.9 2.3	3.2 0.2 3.5 3.0	14 4 19 10	64 2 66 62	0 0 0 0
23	45.00	3	AV3 STD MAX MIN	14.3 1.5 16.0 12.2	3.3 0.2 3.4 3.0	3.7 0.2 4.0 3.4	19 3 23 16	60 2 63 58	0 0 0 0
26	46.00	3	AV3 STD MAX MIN	14.7 1.4 15.7 12.7	3.5 0.4 3.9 2.9	3.7 0.2 3.9 3.5	20 2 21 17	60 1 62 59	0 0 0 0
30	47.00	4	AV4 STD MAX MIN	15.5 0.8 16.8 14.8	3.6 0.2 3.9 3.5	3.8 0.1 4.0 3.7	19 1 20 18	59 1 60 58	6 11 25 0
33	48.00	3	AV3 STD MAX MIN	16.5 0.4 17.0 16.0	3.7 0.1 3.9 3.6	4.0 0.1 4.0 3.9	22 1 23 21	58 0 59 58	0 0 0 0
36	49.00	3	AV3 STD MAX MIN	16.1 0.9 17.3 15.1	3.6 0.1 3.8 3.6	3.9 0.1 4.1 3.7	22 2 24 20	59 1 60 58	0 0 0 0
39	50.00	3	AV3 STD MAX MIN	16.7 0.6 17.4 16.0	3.7 0.1 3.8 3.6	4.0 0.1 4.1 3.9	23 1 24 22	58 1 59 57	0 0 0 0
43	51.00	4	AV4 STD MAX MIN	16.4 0.8 17.2 15.3	3.9 0.1 4.1 3.8	3.9 0.1 4.1 3.8	20 0 20 19	58 1 60 57	11 11 25 1
46	52.00	3	AV3 STD MAX MIN	16.7 0.7 17.4 15.8	3.8 0.1 3.9 3.7	4.0 0.1 4.1 3.8	23 1 24 22	58 1 59 58	1 1 3 0

USH 10 - B-70-403 - Pier 3 #1 - EOID OP: AZ

Pier 3 #1 - EOID

Page 2 of 3 PDIPLOT Ver. 2014.1 - Printed: 10-Dec-2014

APE D30-42, HP 14 x 73 Test date: 9-Dec-2014

OP: AZ	21010011						,	Test date: 9-	
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
end 48	ft 53.00	bl/ft 2	AV2	ksi 16.8	ksi 3.6	ft 4.0	k-ft 25	** 58	kips 0
40	55.00	2	STD	0.3	0.2	0.0	25	0	0
			MAX	17.1	3.8	4.0	25	58	0
			MIN	16.5	3.5	3.9	24	58	0
51	54.00	3	AV3	15.6	3.6	3.8	21	59	0
			STD	0.4	0.2	0.1	0	0	0
			MAX MIN	16.1 15.2	3.9 3.4	3.9 3.7	22 21	60 59	0 0
54	55.00	3	AV3	15.9	3.9	3.8	21	59	
54	55.00	5	STD	0.7	0.1	0.1	1	1	0 0
			MAX	16.7	4.0	4.0	22	60	0
			MIN	15.0	3.7	3.7	20	58	0
60	56.00	6	AV6	15.4	3.8	3.8	18	60	11
			STD	0.7	0.1	0.1	1	1	10
			MAX MIN	16.8 14.5	3.9 3.7	4.0 3.7	20 17	60 58	27 0
61	57.00	1	AV1	15.5	3.3	3.8	29	59	0
01	57.00	1	MAX	15.5	3.3	3.8	29	59	0
			MIN	15.5	3.3	3.8	29	59	0
62	58.00	1	AV1	15.6	3.6	3.7	28	60	0
			MAX	15.6	3.6	3.7	28	60	0
			MIN	15.6	3.6	3.7	28	60	0
66	59.00	4	AV4	17.9	4.3	4.2	23	57	32
			STD MAX	0.3 18.2	0.1 4.4	0.0 4.2	0 24	0 57	4 39
			MIN	17.6	4.2	4.1	23	57	28
68	60.00	2	AV2	17.8	4.3	4.2	27	57	0
			STD	0.3	0.2	0.0	1	0	0
			MAX MIN	18.0	4.5 4.2	4.2 4.1	28 26	57 57	0 0
70	04.00			17.5					
72	61.00	4	AV4 STD	14.8 0.9	3.8 0.1	3.7 0.1	18 1	60 1	1 1
			MAX	16.3	4.0	3.9	20	61	2
			MIN	14.1	3.6	3.6	17	59	0
74	62.00	2	AV2	16.1	4.0	4.0	25	58	0
			STD	1.1	0.2	0.2	2	1	0
			MAX MIN	17.2 15.0	4.2 3.8	4.1 3.8	27 23	60 57	0 0
77	63.00	3	AV3	15.0	4.0	3.7	21	60	0
	05.00	5	STD	1.0	0.3	0.1	1	1	0
			MAX	15.8	4.3	3.9	23	61	0
			MIN	13.5	3.6	3.6	20	59	0
80	64.00	3	AV3	14.4	3.9	3.7	20	60	0
			STD MAX	0.3 14.6	0.1 3.9	0.1 3.8	1 21	0 61	0 0
			MIN	13.9	3.7	3.6	19	60	0
84	65.00	4	AV4	17.5	4.7	4.1	23	57	29
•			STD	0.6	0.3	0.1	1	1	13
			MAX	18.1	5.2	4.3	24	58	50
			MIN	16.6	4.4	4.0	21	56	18
89	66.00	5	AV5 STD	20.3 2.3	6.6 1.6	4.7 0.5	25 4	54 3	105 36
			MAX	2.3	8.7	5.4	31	57	152
			MIN	17.7	4.5	4.2	21	51	51
102	67.00	13	AV13	25.9	12.6	6.0	30	48	284
			STD	1.9	2.6	0.5	3	2	56
			MAX MIN	28.4 22.3	15.6 6.6	6.7 5.1	34 23	52 46	355 170
100	60.00	00							
122	68.00	20	AV20 STD	27.6 0.7	17.2 0.5	6.5 0.2	31 2	46 1	385 11
			MAX	29.1	18.2	6.9	35	47	405
			MIN	26.7	16.0	6.2	28	45	365

USH 10 - B-70-403 - Pier 3 #1 - EOID OP: AZ Page 3 of 3 PDIPLOT Ver. 2014.1 - Printed: 10-Dec-2014

APE D30-42, HP 14 x 73

OP: AZ	B 10 100 110						,	Test date: 9-	
BL#	donth	BLC	TYPE	COV	CSB	STK	EMX	BPM	
	depth		TIPE	CSX				DPIVI **	RX9
end	ft	bl/ft		ksi	ksi	ft	k-ft		kips
139	69.00	17	AV17	27.4	16.6	6.5	30	46	369
			STD	0.6	0.3	0.2	1	1	5
			MAX	28.6	16.9	6.9	33	47	379
			MIN	26.6	16.0	6.3	29	45	360
161	70.00	22	AV22	28.6	19.1	6.8	32	45	424
			STD	0.7	2.0	0.2	1	1	41
			MAX	29.6	24.6	7.1	34	47	524
			MIN	27.2	16.8	6.4	30	44	377
194	70.75	44	AV33	30.1	26.9	7.3	34	44	578
			STD	0.7	2.7	0.2	2	1	48
			MAX	31.2	30.7	7.6	36	45	641
			MIN	28.7	20.9	6.9	32	43	475
221	71.42	40	AV27	31.1	31.5	7.7	36	43	654
			STD	0.4	1.1	0.1	1	0	20
			MAX	31.8	33.0	7.9	37	43	686
			MIN	30.4	28.7	7.4	34	42	612
			Average	23.9	15.4	5.8	28	50	306
			Std. Dev.	7.0	10.4	1.6	7	7	251
			Maximum	31.8	33.0	7.9	37	69	686
			Minimum	1.1	0.3	2.7	0	42	0
				Total nu	mher of blows a	nalvzed: 211			

Total number of blows analyzed: 211

BL# depth (ft) Comments

7 37.67 Reference Elevation EL 741.41

Time Summary

Drive 5 minutes 37 seconds

9:53:05 AM - 9:58:42 AM (12/9/2014) BN 1 - 221

PDIPLOT Ver. 2014.1 - Printed: 10-Dec-2014

Test date: 10-Dec-2014

USH 10 - B-70-403 - Pier 3 #1 - BOR APE D30-42, HP 14 x 73

USH 10 - B-70-403 - Pier 3 #1 - BOR OP: AZ Page 1 of 1 PDIPLOT Ver. 2014.1 - Printed: 10-Dec-2014

APE D30-42, HP 14 x 73

VLE D20-4	2, nr	14 X / S
Test date:	10-De	ec-2014

	~							Test date. 10-	Dec-2014
AR:	21.40 in^2).492 k/ft3
LE:	77.00 ft							EM: 30	0,000 ksi
WS: 1	16,807.9 f/s							JC:	1.00
CSX:	Max Measured C	Compr. Stress				EM>	K: Max Transfe	rred Energy	
CSB:	Compression Str	ess at Botton	า			BPN	1: Blows per Mi	nute	
STK:	O.E. Diesel Ham	mer Stroke				RX9	: Max Case M	ethod Capacity	/ (JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
end	ft	bl/ft		ksi	ksi	ft	k-ft	**	kips
6	71.49	69	AV5	31.5	32.9	7.9	38	42	662
			STD	1.1	1.0	0.3	3	1	17
			MAX	32.7	34.0	8.3	40	43	677
			MIN	29.4	31.0	7.4	33	41	631
11	71.57	69	AV5	32.2	34.2	8.1	39	42	693
			STD	0.3	0.5	0.1	1	0	8
			MAX	32.8	35.0	8.4	41	42	705
			MIN	31.9	33.3	8.0	38	41	681
16	71.64	69	AV5	32.2	34.2	8.1	39	42	690
			STD	0.3	0.2	0.1	1	0	8
			MAX	32.7	34.6	8.3	40	42	702
			MIN	31.8	34.0	7.9	39	41	683
			Average	32.0	33.8	8.0	39	42	682
			Std. Dev.	0.7	0.9	0.2	2	1	18
			Maximum	32.8	35.0	8.4	41	43	705
			Minimum	29.4	31.0	7.4	33	41	631
				Total nu	mber of blows a	analyzed: 15			

Time Summary

Drive 20 seconds

7:42:20 AM - 7:42:40 AM (12/10/2014) BN 2 - 16

PDIPLOT Ver. 2014.1 - Printed: 10-Dec-2014

Test date: 9-Dec-2014

USH 10 - B-70-403 - Pier 3 #36 - EOID APE D30-42, HP 14 x 73

USH 10 - B-70-403 - Pier 3 #36 - EOID OP: AZ AR: 21.40 in^2 Page 1 of 3 PDIPLOT Ver. 2014.1 - Printed: 10-Dec-2014

APE D30-42, HP 14 x 73

Test date: 9-Dec-2014 SP: 0.492 k/ft3

AR:	21.40 in^2								.492 k/ft3
LE:	77.58 ft 16,807.9 f/s							EM: 30 JC:	,000 ksi 1.00
	Max Measured Co	mor. Stress				FMX:	Max Transfe		1.00
CSB:	Compression Stre O.E. Diesel Hamn	ss at Bottom					Blows per M		(JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
end 7	ft	bl/ft	AV1	ksi 13.7	ksi 2.9	ft 3.3	k-ft 19	**	kips
1	32.00	3	MAX	13.7	2.9 2.9	3.3 3.3	19	63 63	0 0
			MIN	13.7	2.9	3.3	19	63	0
7	33.00	3	AV1	9.4	1.8	3.1	18	65	0
			MAX	9.4	1.8	3.1	18	65	0
			MIN	9.4	1.8	3.1	18	65	0
7	34.00	3	AV1	5.5	1.8	2.8	9	68	0
			MAX MIN	5.5 5.5	1.8 1.8	2.8 2.8	9 9	68 68	0 0
10	37.00	2	AV1	12.6	3.4	3.2	16	65	0
10	37.00	2	MAX	12.6	3.4 3.4	3.2	16	65	0
			MIN	12.6	3.4	3.2	16	65	0
14	38.00	4	AV2	8.6	2.7	3.1	11	66	0
			STD	0.4	0.0	0.1	2	1	0
			MAX MIN	9.1 8.2	2.7 2.6	3.1 3.0	13 10	66 65	0 0
10	00.00	0							
16	39.00	2	AV2 STD	17.3 2.3	3.6 0.2	4.1 0.3	31 2	57 2	0 0
			MAX	19.6	3.8	4.4	33	60	0
			MIN	14.9	3.4	3.8	29	55	0
19	40.00	3	AV3	15.3	3.6	3.7	23	60	0
			STD	0.8	0.1	0.1	0	1	0
			MAX MIN	16.4 14.6	3.8 3.5	3.9 3.7	23 22	60 59	0 0
21	41.00	2	AV2	15.7	3.2		26		
21	41.00	2	STD	0.1	3.2 0.1	3.8 0.0	26 1	59 0	0 0
			MAX	15.8	3.3	3.8	26	59	0
			MIN	15.6	3.1	3.8	25	59	0
25	42.00	4	AV4	15.6	3.5	3.8	21	60	0
			STD MAX	0.7	0.1	0.1	1	1	0
			MIN	16.6 14.7	3.6 3.3	3.9 3.7	23 20	60 59	0 0
28	43.00	3	AV3	15.3	3.5	3.7	22	60	0
20	40.00	5	STD	1.2	0.1	0.1	1	1	0
			MAX	16.7	3.6	3.9	24	61	0
			MIN	13.7	3.4	3.6	21	59	0
31	44.00	3	AV3	16.0	3.6	3.9	24	59	0
			STD MAX	0.8 16.6	0.1 3.8	0.1 4.0	1 24	1 60	0 0
			MIN	14.9	3.5	3.7	23	58	0
34	45.00	3	AV3	17.4	4.0	4.0	25	58	0
			STD	0.9	0.1	0.1	1	1	0
			MAX MIN	18.0	4.1	4.2 3.8	26 23	59 57	0
07	10.00	0		16.0	3.8				0
37	46.00	3	AV3 STD	17.1 1.0	3.9 0.3	4.0 0.2	26 2	58 1	0 0
			MAX	17.9	4.2	4.2	28	59	Ő
			MIN	15.7	3.6	3.8	23	57	0
40	47.00	3	AV3	17.8	4.1	4.1	26	57	1
			STD	1.3	0.2	0.2	2	1	2 3
			MAX MIN	19.6 16.5	4.4 3.9	4.4 3.9	29 25	59 56	3
43	48.00	3	AV3	18.1	4.1	4.2	20	57	0
43	+0.00	5	STD	0.3	4.1 0.1	4.2 0.0	1	0	0
			MAX	18.4	4.3	4.2	28	57	0
			MIN	17.8	3.9	4.1	26	57	0

USH 10 - B-70-403 - Pier 3 #36 - EOID

Page 2 of 3 PDIPLOT Ver. 2014.1 - Printed: 10-Dec-2014

APE D30-42, HP 14 x 73

OP: AZ	- D-70-403 - PIE	5 #30 - LOIL	5				F	Test date: 9-	
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
end 47	ft 49.00	bl/ft 4	AV4	ksi 18.6	ksi 4.3	ft 4.3	k-ft 25	** 56	kips 14
			STD	0.3	0.2	0.1	0	0	3
			MAX MIN	18.9 18.1	4.5 4.1	4.3 4.1	26 24	57 56	18 9
50	50.00	3	AV3	17.2	4.0	4.0	25	58	0
			STD MAX	0.8 17.8	0.2 4.1	0.1 4.1	1 27	1 59	0 0
			MIN	16.2	3.7	3.8	24	57	0
53	51.00	3	AV3 STD	17.9 1.2	4.0 0.3	4.1 0.2	26 1	57 1	0 0
			MAX	19.5	4.4	4.4	27	59	0
56	52.00	3	MIN AV3	16.4 17.1	3.7 4.0	3.9 4.0	25 25	56 58	0 0
00	02.00	Ũ	STD	1.0	0.2	0.2	1	1	0
			MAX MIN	18.4 16.2	4.3 3.8	4.3 3.9	27 24	59 56	0 0
59	53.00	3	AV3	17.2	3.9	4.0	25	58	0
			STD MAX	0.9 18.2	0.2 4.1	0.2 4.2	2 27	1 60	0 0
			MIN	16.0	3.7	3.8	23	57	0
61	54.00	2	AV2	16.8	3.6	4.0	28	58	0
			STD MAX	0.6 17.5	0.1 3.7	0.1 4.1	2 30	1 59	0 0
			MIN	16.2	3.5	3.9	27	58	0
63	55.00	2	AV2 STD	17.9 0.6	3.6 0.2	4.1 0.1	31 1	57 1	0 0
			MAX	18.5	3.8	4.2	32	58	0
66	56.00	3	MIN AV3	17.3 15.4	3.4 3.7	4.0 3.8	29 22	57 60	0 0
00	00.00	0	STD	0.6	0.2	0.1	1	1	0
			MAX MIN	16.2 14.9	3.9 3.4	3.9 3.7	24 21	60 59	0 0
68	57.00	2	AV2	16.2	3.3	3.9	27	59	0
			STD MAX	0.7 16.9	0.1 3.4	0.1 4.0	1 28	1 60	0 0
			MIN	15.4	3.1	3.8	26	58	0
71	58.00	3	AV3	15.2	3.5	3.7	22	60	0
			STD MAX	0.7 16.2	0.1 3.6	0.1 3.9	0 23	1 61	0 0
			MIN	14.4	3.3	3.6	22	59	0
74	59.00	3	AV3 STD	17.7 1.2	4.2 0.4	4.1 0.2	27 1	57 1	8 12
			MAX MIN	18.8 16.1	4.6 3.7	4.3 3.9	28 26	59 56	25 0
78	60.00	4	AV4	17.3	4.1	4.1	24	57	
			STD	0.7	0.1	0.1	2	1	2 3
			MAX MIN	18.0 16.4	4.2 4.0	4.3 4.0	26 22	58 56	6 0
80	61.00	2	AV2	17.8	4.3	4.2	31	57	0
			STD MAX	0.7 18.5	0.1 4.4	0.1 4.3	0 31	1 58	0 0
			MIN	17.1	4.2	4.1	31	56	0
83	62.00	3	AV3 STD	14.9 0.9	3.5 0.3	3.8 0.1	23 1	59 1	0 0
			MAX	16.0	3.9	4.0	23	60	0
00	<u>00.00</u>	0	MIN	13.8	3.2	3.7	22	58	0
86	63.00	3	AV3 STD	11.8 1.5	3.1 0.1	3.4 0.2	18 3	63 2	0 0
			MAX MIN	13.3 9.8	3.2 2.9	3.6 3.1	21 15	65 61	0 0
			IVIIIN	5.0	2.3	5.1	13	01	U

USH 10 - B-70-403 - Pier 3 #36 - EOID

Page 3 of 3 PDIPLOT Ver. 2014.1 - Printed: 10-Dec-2014

APE D30-42, HP 14 x 73

OP: AZ								Test date: 9-	Dec-2014
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
end	ft	bl/ft		ksi	ksi	ft	k-ft	**	kips
88	64.00	2	AV2	13.5	3.1	3.6	24	61	.0
			STD	1.2	0.0	0.2	2	1	0
			MAX	14.7	3.1	3.8	27	62	0
			MIN	12.3	3.1	3.5	22	59	0
90	65.00	2	AV2	15.0	3.4	3.8	26	60	0
			STD	1.1	0.2	0.2	2	1	0
			MAX	16.1	3.6	3.9	28	61	0
			MIN	13.8	3.2	3.6	24	58	0
92	66.00	2	AV2	13.4	3.1	3.6	23	61	0
			STD	0.1	0.0	0.0	1	0	0
			MAX	13.5	3.1	3.6	24	61	0
			MIN	13.3	3.1	3.6	22	61	0
94	67.00	2	AV2	8.3	2.3	3.1	15	65	0
			STD	0.9	0.2	0.0	1	0	0
			MAX	9.1	2.5	3.1	17	66	0
			MIN	7.4	2.2	3.1	14	65	0
98	68.00	4	AV4	18.8	4.6	4.5	33	57	33
			STD	10.2	2.3	1.5	23	8	58
			MAX	27.8	7.1	6.4	59	67	133
			MIN	2.0	0.8	2.9	1	46	0
108	69.00	10	AV10	24.6	9.0	5.4	29	50	182
			STD	0.8	0.8	0.2	2	1	17
			MAX	26.6	10.3	5.9	33	52	213
			MIN	23.0	7.7	5.1	26	49	163
128	70.00	20	AV20	28.9	19.7	6.6	35	46	419
			STD	1.0	4.3	0.4	2	1	77
			MAX	30.2	24.1	7.1	38	49	496
			MIN	26.6	11.2	5.9	31	44	270
146	70.58	31	AV18	30.6	26.1	7.2	38	44	554
			STD	0.6	1.8	0.2	1	1	33
			MAX	32.0	30.8	7.6	41	45	638
			MIN	29.6	23.6	6.9	36	43	506
			Average	20.3	9.3	4.8	28	55	148
			Std. Dev.	6.9	8.8	1.4	8	7	217
			Maximum	32.0	30.8	7.6	59	68	638
			Minimum	2.0	0.8	2.8	1	43	0
				Total nur	mber of blows a	analyzed: 138			

BL# depth (ft) Comments

Reference Elevation EL 740.16

Time Summary

7

Drive 3 minutes 49 seconds

35.00

10:23:33 AM - 10:27:22 AM (12/9/2014) BN 1 - 146

PDIPLOT Ver. 2014.1 - Printed: 10-Dec-2014

Test date: 10-Dec-2014

USH 10 - B-70-403 - Pier 3 #36 - BOR APE D30-42, HP 14 x 73

USH 10 - B-70-403 - Pier 3 #36 - BOR

Page 1 of 1 PDIPLOT Ver. 2014.1 - Printed: 10-Dec-2014

APE D30-42, HP 14 x 73

OP: A	Z							Test date: 10-	Dec-2014
AR:	21.40 in^2							SP: (0.492 k/ft3
LE:	77.58 ft							EM: 30	0,000 ksi
WS: 1	6,807.9 f/s							JC:	1.00
CSX:	Max Measured	Compr. Stress				STK	O.E. Diesel I	Hammer Stroke	е
CSB:	Compression St	ress at Bottom	า			BPM	: Blows per M	inute	
EMX:	Max Transferred	dEnergy				RX9	Max Case M	ethod Capacity	y (JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
end	ft	bl/ft		ksi	ksi	k-ft	ft	**	kips
5	70.67	53	AV5	30.5	27.5	35	7.6	42.8	577
			STD	0.7	0.5	2	0.3	0.7	8
			MAX	31.3	28.2	37	7.9	44.0	591
			MIN	29.4	26.6	33	7.2	42.0	570
9	70.77	53	AV5	30.7	27.3	36	7.5	43.1	581
			STD	0.5	1.1	1	0.2	0.5	17
			MAX	31.3	28.6	38	7.7	43.9	603
			MIN	29.9	25.6	33	7.2	42.6	558
15	70.86	53	AV5	30.1	25.9	33	7.2	43.8	554
			STD	0.2	0.4	3	0.1	0.2	16
			MAX	30.5	26.7	35	7.4	44.0	572
			MIN	29.9	25.5	26	7.2	43.5	530
			Average	30.4	26.9	34	7.4	43.2	571
			Std. Dev.	0.6	1.0	3	0.2	0.7	19
			Maximum	31.3	28.6	38	7.9	44.0	603
			Minimum	29.4	25.5	26	7.2	42.0	530
				Total nu	umber of blows	analyzed: 15			

Time Summary

Drive 19 seconds

7:51:46 AM - 7:52:05 AM (12/10/2014) BN 1 - 15

Test date: 9-Dec-2014

USH 10 - B-70-403 - Pier 3 #44 - EOID APE D30-42, HP 14 x 73

USH 10 - B-70-403 - Pier 3 #44 - EOID OP: AZ

Page 1 of 3 PDIPLOT Ver. 2014.1 - Printed: 10-Dec-2014

AR:	21.40 in^2
LE:	77.50 ft

-0.	
	APE D30-42, HP 14 x 73
	Test date: 9-Dec-2014
	SP: 0.492 k/ft3
	EM: 30,000 ksi
	JC: 1.00
· O	E Diesel Hammer Stroke

	77.50 ft 16,807.9 f/s							JC:),000 ksi 1.00
CSB:	Max Measured Co Compression Stre Max Transferred E	ess at Bottom				BPM:	Blows per M	Hammer Stroke inute lethod Capacity	
BL# end 7	depth ft 30.00	BLC bl/ft 3	TYPE AV1 MAX MIN	CSX ksi 13.3 13.3 13.3	CSB ksi 3.0 3.0 3.0	EMX k-ft 18 18 18	STK ft 3.4 3.4 3.4	BPM ** 62.9 62.9 62.9 62.9	RX9 kips 0 0 0
7	31.00	3	AV1 MAX MIN	11.8 11.8 11.8	2.8 2.8 2.8	16 16 16	3.3 3.3 3.3	63.0 63.0 63.0	0 0 0
7	32.00	3	AV1 MAX MIN	10.3 10.3 10.3	2.7 2.7 2.7	14 14 14	3.2 3.2 3.2	64.1 64.1 64.1	0 0 0
9	33.00	3	AV1 MAX MIN	11.7 11.7 11.7	3.0 3.0 3.0	17 17 17	3.4 3.4 3.4	62.8 62.8 62.8	0 0 0
12	34.00	3	AV2 STD MAX MIN	13.7 1.0 14.6 12.7	3.2 0.2 3.5 3.0	20 2 22 19	3.6 0.1 3.7 3.5	60.8 1.1 61.9 59.8	0 0 0 0
17	35.00	5	AV5 STD MAX MIN	15.0 1.0 15.9 13.1	3.7 0.1 3.9 3.5	18 1 19 17	3.8 0.1 3.9 3.5	59.8 1.1 61.7 58.6	15 9 25 0
20	36.00	3	AV3 STD MAX MIN	16.1 0.6 16.8 15.4	3.8 0.2 4.0 3.6	24 1 24 23	3.9 0.1 4.1 3.8	58.5 0.7 59.2 57.6	4 1 6 2
23	37.00	3	AV3 STD MAX MIN	16.8 0.9 18.0 16.1	4.1 0.1 4.3 3.9	24 1 26 24	4.0 0.1 4.2 3.9	57.9 0.9 58.7 56.6	22 4 26 17
27	38.00	4	AV4 STD MAX MIN	17.2 0.9 18.5 16.0	4.3 0.2 4.5 4.1	24 2 26 21	4.1 0.2 4.4 3.9	57.2 1.1 58.5 55.5	49 10 60 38
32	39.00	5	AV5 STD MAX MIN	17.1 0.6 18.1 16.4	4.6 0.2 4.8 4.3	22 1 24 22	4.1 0.1 4.3 4.0	57.2 0.6 57.7 56.1	58 7 67 46
36	40.00	4	AV4 STD MAX MIN	17.7 0.5 18.6 17.4	4.4 0.1 4.5 4.2	25 0 25 24	4.2 0.1 4.4 4.1	56.7 0.6 57.1 55.7	34 4 38 28
40	41.00	4	AV4 STD MAX MIN	17.6 0.7 18.8 17.0	4.3 0.1 4.5 4.1	24 1 26 23	4.2 0.1 4.4 4.1	56.8 0.7 57.4 55.6	36 8 44 23
44	42.00	4	AV4 STD MAX MIN	17.8 0.6 18.4 16.8	4.3 0.2 4.5 4.1	24 1 26 23	4.2 0.1 4.4 4.1	56.5 0.7 57.5 55.8	43 9 58 33
47	43.00	3	AV3 STD MAX MIN	18.2 0.3 18.4 17.7	4.3 0.1 4.4 4.3	27 1 27 26	4.3 0.1 4.4 4.2	56.2 0.5 56.8 55.7	19 5 26 15
50	44.00	3	AV3 STD MAX MIN	18.0 0.4 18.4 17.6	4.4 0.1 4.5 4.3	25 1 26 24	4.2 0.1 4.3 4.2	56.5 0.3 56.9 56.1	26 2 28 23

USH 10 - B-70-403 - Pier 3 #44 - EOID

Page 2 of 3 PDIPLOT Ver. 2014.1 - Printed: 10-Dec-2014

APE D30-42, HP 14 x 73

OP: AZ	- B-70-403 - Pie							APE D30-42, F Test date: 9-	
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
end	ft	bl/ft		ksi	ksi	k-ft	ft	**	kips
54	45.00	4	AV4	18.3	4.3	25	4.3	56.1	29
			STD	0.7	0.0	1	0.1	0.8	3
			MAX	19.4	4.4	26	4.5	57.1	32
			MIN	17.5	4.3	24	4.1	54.9	26
58	46.00	4	AV4	18.4	4.4	25	4.3	56.0	34
			STD	0.9	0.1	1	0.1	0.9	6
			MAX	19.6	4.5	26	4.5	57.3	43
			MIN	17.2	4.4	23	4.1	54.8	29
62	47.00	4	AV4	18.5	4.5	25	4.3	56.1	44
			STD	1.3	0.2	2	0.2	1.3	5
			MAX	19.9	4.7	27	4.5	57.6	50
	10.00		MIN	16.9	4.3	23	4.1	54.7	38
66	48.00	4	AV4	18.6	4.5	26	4.4	55.7	40
			STD	0.8	0.2	1	0.1	0.8	5
			MAX	19.7	4.8	27	4.5	56.6	47
			MIN	17.8	4.3	24	4.2	54.7	33
70	49.00	4	AV4	18.3	4.4	25	4.3	56.2	35
			STD	0.6	0.1	1	0.1	0.6	6
			MAX MIN	19.4 17.8	4.6 4.3	27 23	4.5 4.2	56.6 55.1	43 29
74	50.00	4							
74	50.00	4	AV4	18.2	4.4	24	4.3	56.3 1.1	36
			STD MAX	1.0 19.8	0.2 4.7	2 27	0.2 4.6	57.5	3 39
			MIN	17.3	4.7	23	4.0	54.6	39
77	51.00	3	AV3	18.2	4.3	26	4.3	56.1	19
	51.00	5	STD	0.1	4.3 0.1	0	4.3 0.0	0.2	2
			MAX	18.3	4.4	26	4.3	56.3	21
			MIN	18.0	4.2	26	4.3	55.9	16
81	52.00	4	AV4	18.0	4.3	23	4.3	56.3	22
-			STD	0.6	0.2	1	0.1	0.8	7
			MAX	19.0	4.5	25	4.5	56.9	29
			MIN	17.3	4.1	22	4.2	55.0	11
84	53.00	3	AV3	17.1	4.1	24	4.1	57.3	9
			STD	0.9	0.1	2	0.2	1.0	7
			MAX	18.2	4.2	26	4.3	58.5	16
			MIN	16.0	4.0	21	3.9	56.1	0
87	54.00	3	AV3	17.2	4.2	25	4.2	57.0	0
			STD	0.9	0.1	1	0.1	0.9	0
			MAX	18.3	4.3	26	4.3	58.1	0
			MIN	16.2	4.1	24	4.0	56.0	0
90	55.00	3	AV3	17.2	4.1	24	4.2	57.0	0
			STD	0.6	0.1	1	0.1	0.7	0
			MAX	18.1	4.3	25	4.3	57.8	0
			MIN	16.6	4.0	24	4.0	56.1	0
93	56.00	3	AV3	17.2	4.2	24	4.1	57.2	2
			STD	0.6	0.1	1	0.1	0.6	2
			MAX MIN	18.0	4.5 4.1	25 24	4.3 4.0	57.8 56.4	5 0
				16.6				56.4	
97	57.00	4	AV4	17.5	4.4	22	4.2	56.7	13
			STD	0.3	0.1	0	0.1	0.4	3
			MAX MIN	17.9 17.2	4.5 4.3	22 22	4.3 4.1	57.1 56.1	16 8
100	50.00	0							
100	58.00	3	AV3 STD	18.8	4.7	27	4.4	55.3	15
				0.2	0.0	0	0.0	0.3	17
			MAX MIN	19.0 18.6	4.8 4.7	27 26	4.5 4.4	55.7 55.1	39 0
102	50.00	0				20			
102	59.00	2	AV2 STD	18.6 0.4	4.9 0.0	29 1	4.4 0.1	55.5 0.6	3 3
			MAX	18.9	4.9	30	4.5	56.1	6
			MIN	18.2	4.8	28	4.3	55.0	0
				10.2	7.0	20	4.0	00.0	0

USH 10 - B-70-403 - Pier 3 #44 - EOID

Page 3 of 3 PDIPLOT Ver. 2014.1 - Printed: 10-Dec-2014

APE D30-42, HP 14 x 73

OP: AZ	- B-70-403 - Pie	er 3 #44 - EOI	D					APE D30-42, F Test date: 9-	
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
end	ft	bl/ft		ksi	ksi	k-ft	ft	**	kips
105	60.00	3	AV3	18.1	4.7	26	4.3	56.0	4
		-	STD	0.5	0.1	0	0.1	0.7	5
			MAX	18.8	4.8	26	4.5	56.6	11
			MIN	17.6	4.5	26	4.2	55.0	0
109	61.00	4	AV4	17.7	4.5	23	4.3	56.2	11
			STD	1.1	0.1	1	0.2	1.1	8
			MAX	19.2	4.7	24	4.5	57.9	22
			MIN	16.1	4.3	21	4.0	54.7	0
111	62.00	2	AV2	16.4	3.9	25	4.1	57.7	0
			STD	0.4	0.0	1	0.1	0.6	0
			MAX	16.7	4.0	26	4.1	58.3	0
			MIN	16.0	3.9	24	4.0	57.1	0
114	63.00	3	AV3	12.0	3.5	17	3.5	62.1	0
			STD	1.8	0.2	2	0.2	1.8	0
			MAX	14.6	3.8	20	3.8	63.7	0
			MIN	10.6	3.2	15	3.3	59.5	0
117	64.00	3	AV3	15.5	4.2	22	4.0	58.3	0
			STD	2.0	0.4	3	0.3	2.3	0
			MAX	18.1	4.6	26	4.4	60.7	0
			MIN	13.2	3.6	19	3.6	55.3	0
119	65.00	2	AV2	12.0	3.4	18	3.5	61.8	0
			STD	0.9	0.0	1	0.0	0.4	0
			MAX	12.9	3.5	18	3.5	62.2	0
			MIN	11.2	3.4	17	3.4	61.5	0
121	66.00	2	AV1	10.9	3.2	16	3.4	62.3	0
			MAX MIN	10.9 10.9	3.2 3.2	16 16	3.4 3.4	62.3 62.3	0 0
100		_							
130	68.00	5	AV1	22.0	8.7	24	5.0	52.5	183
			MAX MIN	22.0 22.0	8.7 8.7	24 24	5.0 5.0	52.5 52.5	183 183
		10							
143	69.00	13	AV13	25.8	11.9	29	6.0	47.9	262
			STD	1.3	3.1	2	0.4	1.4	68
			MAX MIN	28.2 24.3	18.1 8.8	33 26	6.7 5.6	49.6 45.4	402 198
164	70.00	01							
164	70.00	21	AV21 STD	28.1 0.5	19.0 1.2	32 1	6.7 0.1	45.4 0.5	425 22
			MAX	29.0	21.4	34	7.0	46.7	477
			MIN	23.0	16.4	29	6.3	44.6	375
189	71.00	25	AV25	27.6	18.4	30	6.5	46.0	428
105	71.00	20	STD	0.7	1.7	2	0.2	0.7	27
			MAX	29.5	22.5	34	7.1	46.9	492
			MIN	26.8	16.8	28	6.3	44.2	400
226	72.00	37	AV37	28.8	24.5	32	6.9	44.7	539
			STD	0.5	1.1	1	0.2	0.5	22
			MAX	30.1	26.7	35	7.3	45.6	577
			MIN	27.9	22.2	30	6.7	43.6	490
255	72.60	48	AV29	29.5	27.5	33	7.1	44.2	588
			STD	0.6	1.3	1	0.2	0.5	21
			MAX	30.8	29.7	36	7.5	45.4	630
			MIN	28.3	25.6	31	6.7	43.0	561
			Average	22.9	13.3	28	5.5	51.0	261
			Std. Dev.	5.9	9.5	5	1.4	6.3	241
			Maximum Minimum	30.8 10.3	29.7 2.7	36 14	7.5 3.2	64.1 43.0	630 0
			WITH HUTUIT		2.7 mber of blows a		5.2	43.0	0

Total number of blows analyzed: 240

BL# depth (ft) Comments

7 32.33 Reference El

52.55

Reference Elevations EL 740.16

Time Summary

Drive 5 minutes 36 seconds

10:42:26 AM - 10:48:02 AM (12/9/2014) BN 1 - 256

PDIPLOT Ver. 2014.1 - Printed: 10-Dec-2014

Test date: 10-Dec-2014

USH 10 - B-70-403 - Pier 3 #44 - BOR APE D30-42, HP 14 x 73

USH 10 - B-70-403 - Pier 3 #44 - BOR

Page 1 of 1 PDIPLOT Ver. 2014.1 - Printed: 10-Dec-2014

APE D30-42, HP 14 x 73

OP: A	Z							Test date: 10	-Dec-2014
AR:	21.40 in^2							SP:	0.492 k/ft3
LE:	77.50 ft							EM: 3	0,000 ksi
WS: 1	6,807.9 f/s							JC:	1.00
CSX:	Max Measured C	Compr. Stress	3			STK:	O.E. Diesel I	Hammer Stroke	е
	Compression Str					BPM	: Blows per M	inute	
EMX:	Max Transferred	Energy				RX9:	Max Case M	lethod Capacit	y (JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
end	ft	bl/ft		ksi	ksi	k-ft	ft	**	kips
5	72.70	69	AV5	30.1	27.9	33	7.3	43.5	549
			STD	0.8	1.2	1	0.2	0.6	16
			MAX	31.0	28.8	34	7.6	44.6	558
			MIN	28.6	25.5	30	7.0	42.9	516
10	72.78	69	AV5	30.3	29.1	33	7.4	43.4	575
			STD	0.2	0.3	0	0.1	0.2	4
			MAX	30.6	29.4	34	7.4	43.7	581
			MIN	30.1	28.5	33	7.3	43.3	569
15	72.85	69	AV5	31.2	29.9	34	7.6	42.7	600
			STD	0.5	1.0	3	0.1	0.4	20
			MAX	31.8	31.0	38	7.8	43.3	625
			MIN	30.5	28.1	28	7.4	42.2	564
			Average	30.6	29.0	33	7.4	43.2	575
			Std. Dev.	0.7	1.2	2	0.2	0.6	26
			Maximum	31.8	31.0	38	7.8	44.6	625
			Minimum	28.6	25.5	28	7.0	42.2	516
				Total nu	mber of blows	analyzed: 15			

Time Summary

Drive 19 seconds

7:58:45 AM - 7:59:04 AM (12/10/2014) BN 1 - 15

USH 10 - B-70-403; Pile: Pier 3 #1 - EOID APE D30-42, HP 14 x 73; Blow: 217 GRL Engineers, Inc.

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 - B-70-403; Pile: Pier 3 #1 - EOID APE D30-42, HP 14 x 73; Blow: 217 GRL Engineers, Inc.

			CAPW	AP SUMMARY	RESULTS			
Total CAPV	WAP Capaci	lty: 68	5.0; alor	ng Shaft	45.0; at	Toe 640	0.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				685.0				
1	10.0	4.5	0.0	685.0	0.0	0.00	0.00	0.0
2	16.7	11.1	0.0	685.0	0.0	0.00	0.00	0.0
3	23.4	17.8	0.0	685.0	0.0	0.00	0.00	0.0
4	30.1	24.5	2.0	683.0	2.0	0.30	0.06	0.2
5	36.8	31.2	2.0	681.0	4.0	0.30	0.06	0.2
6	43.5	37.9	3.0	678.0	7.0	0.45	0.10	0.2
7	50.2	44.6	6.0	672.0	13.0	0.90	0.19	0.2
8	56.9	51.3	6.0	666.0	19.0	0.90	0.19	0.2
9	63.6	58.0	6.0	660.0	25.0	0.90	0.19	0.2
10	70.3	64.7	10.0	650.0	35.0	1.49	0.32	0.2
11	77.0	71.4	10.0	640.0	45.0	1.49	0.32	0.2
Avg. Sha	aft		4.1			0.63	0.13	0.2
То	e		640.0				464.28	0.0
Soil Mode	l Paramete	ers/Extens	ions		Sha	aft To	oe	
Quake		(i:	n)		0	.04 0	41	
Case Dampi	ing Factor	:			0	.29 0.	50	
- Damping Ty	vpe				Visco	ous Smi	th	
Unloading	Ouake	(%	of load	ing quake)		63	30	
Reloading			of Ru)	-		LOO 1	00	
Soil Plug	Weight	(k	ips)			0.0	00	
CAPWAP mat	tch qualit	- v	3.56	(Wav	e Up Match)	; RSA = ()	
Observed:	-	-	0.29	•	Count		b/ft	
	Final Set		0.03	-	Count		b/ft	
Transducer				•	L: 95.0; RF:			
	A3(K252	4) CAL: 360); RF: 1.06	; A4(K2253) CA	L: 325; RF:	1.06		
max. Top (Comp. Stre	ess =	31.4 }	si (T=	36.1 ms,	max= 1.028	8 х Тор)	
max. Comp.	. Stress	=	32.3 1	•	77.0 ft,	т= 42.6 г	ns)	
max. Tens.	. Stress	=	-6.27]	si (Z=	50.2 ft,	т= 58.4 г	ns)	
max. Energ	TV (EMX)	=	36.8]	kip-ft; max	. Measured	Top Displ	(DMX) =	1.13 in

USH 10 - B-70-403; Pile: Pier 3 #1 - EOID APE D30-42, HP 14 x 73; Blow: 217 GRL Engineers, Inc. Test: 09-Dec-2014 09:58 CAPWAP(R) 2014 OP: AZ

$\begin{array}{c c c c c c c c c c c c c c c c c c c $						REMA TABL					
No. Gages Stress Stress Stress Rearry 1 3.3 672.3 -49.3 31.4 -2.30 36.8 16.5 2 6.7 672.8 -63.0 31.4 -2.94 36.7 16.4 4 13.4 674.1 -114.3 31.5 -5.34 35.7 16.3 6 20.1 675.4 -129.2 31.6 -6.04 35.3 16.1 9 30.1 682.1 -107.0 31.9 -5.00 30.7 16.1 10 33.5 674.8 -103.7 31.5 -4.84 32.5 16.0 11 36.8 675.2 -115.0 31.6 -5.37 29.9 15.6 12 40.2 671.6 -103.1 31.4 -4.81 30.7 15.7 13 43.5 676.2 -115.0 31.6 -5.37 29.9 15.6 14 46.9 6582.7 -118.6 30.5	Pile				min.	max.				max.	max
ft kips kip kii kii kip-ft ft/s 1 3.3 672.3 -49.3 31.4 -2.30 36.8 16.5 2 6.7 672.8 -63.0 31.4 -2.30 36.7 16.4 4 13.4 674.1 -98.9 31.5 -4.62 36.2 16.4 5 16.7 674.7 -114.3 31.5 -5.34 35.7 16.3 6 20.1 675.4 -122.8 31.6 -5.74 34.8 16.1 9 30.1 682.1 -107.0 31.9 -5.00 33.7 16.1 10 33.5 674.8 -103.7 31.4 -4.81 30.7 15.7 12 40.2 671.6 -103.1 31.4 -4.81 30.7 15.7 13 43.5 676.2 -118.0 30.5 -5.42 2.4 15.1 15 50.2 674.5 -134.2 31	-			orce	Force	_				Veloc.	Displ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NO.	-		rips	kips					ft/s	i
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1			_					-		1.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											1.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											1.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											1.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											1.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											0.9
9 30.1 682.1 -107.0 31.9 -5.00 33.7 16.1 10 33.5 674.8 -103.7 31.5 -4.84 32.5 16.0 11 36.8 677.5 -101.4 31.6 -4.74 31.9 15.9 12 40.2 671.6 -103.1 31.4 -4.81 30.7 15.7 13 43.5 676.2 -115.0 31.6 -5.37 29.9 15.6 14 46.9 668.2 -129.1 31.2 -6.03 28.4 15.4 15 50.2 674.5 -134.2 31.5 -6.27 27.5 15.3 16 53.6 652.7 -118.6 30.5 -5.54 25.4 15.1 17 56.9 659.0 -115.7 30.8 -5.41 24.5 15.5 18 60.3 637.7 -123.9 29.8 -5.79 22.3 15.4 19 63.6 646.4 -123.4 30.2 -5.77 21.3 16.7 20 67.0 642.0 -95.0 30.0 -4.44 19.2 18.3 21 70.3 665.7 -76.1 31.1 -3.56 18.1 19.6 22 73.7 675.6 -43.4 31.6 -2.03 15.3 20.2 23 77.0 691.4 -21.9 32.3 -1.02 14.4 19.1 Absolute 77.0 32.3 (T = 42. 50.2 -6.27 (T = 58. CASE METHOD T = 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 RP 590.3 518.1 445.8 373.6 301.4 229.1 156.9 84.7 12.4 EXP 590.3 518.1 445.8 373.6 301.4 229.1 156.9 84.7 12.4 24 45.9 590.3 518.1 445.8 373.6 301.4 229.1 156.9 84.7 12.4 24 50.2 -6.27 (T = 58. CASE METHOD T = 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 RP 590.3 518.1 445.8 373.6 301.4 229.1 156.9 84.7 12.4 24 50.2 -6.27 (T = 58. CASE METHOD T = 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 RP 590.3 518.1 445.8 373.6 301.4 229.1 156.9 84.7 12.4 24 20 590.3 518.1 445.8 373.6 301.4 229.1 156.9 84.7 12.4 24 20 590.3 518.1 445.8 373.6 301.4 229.1 156.9 84.7 12.4 25 50.2 -6.27 (T = 58. CASE METHOD T = 521.5 (kips); RA2 = 708.9 (kips) Current CAPWAP Ru = 685.0 (kips); Corresponding J(RP)= 0.00; J(RX) = 0.68 VMX TVP VT1*Z FT1 FMX DMX DFN SET EMX QUS ft/s ms kips kips kips in in in in kip-ft kips ki 16.6 36.05 635.9 676.7 676.7 1.13 0.29 0.29 37.0 624.1 PILE PROFILE AND PILE MODEL PILE PROFILE AND PILE MODEL											0.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											0.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											0.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											0.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											0.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											0.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	46.	9 60	58.2	-129.1		-6.0)3	28.4	15.4	0.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	50.			-134.2				27.5		0.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	53.	6 65	52.7	-118.6	30.5	-5.5	54	25.4	15.1	0.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	56.	9 65	59.0	-115.7	30.8	-5.4	1	24.5	15.5	0.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	60.	3 63	37.7	-123.9	29.8	-5.7	9	22.3	15.4	0.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	63.	6 64	16.4	-123.4	30.2	-5.7	7	21.3	16.7	0.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	67.	0 64	12.0	-95.0	30.0	-4.4	4	19.2	18.3	0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	70.	3 66	55.7	-76.1	31.1	-3.5	56	18.1	19.6	0.5
Absolute77.0 50.232.3 -6.27(T = 42. (T = 58.)CASE METHOD $J = 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8$ RP 590.3 518.1 445.8 373.6 301.4 229.1 156.9 84.7 12.4 RX 773.6 757.8 742.0 727.6 715.2 703.7 692.2 683.4 680.1 RU 590.3 518.1 445.8 373.6 301.4 229.1 156.9 84.7 12.4RAU = 521.5 (kips); RA2 = 708.9 (kips)Current CAPWAP Ru = 685.0 (kips); Corresponding J(RP)= 0.00; J(RX) = 0.68VMXTVPVT1*ZFT1FMXDMXDFNSETEMXQUS tips kips16.6 36.05 635.9 676.7 676.7 1.13 0.29 0.29 37.0 624.1PILE PROFILE AND PILE MODELPILE PROFILE AND PILE MODELDepthAreaE-ModulusSpec. WeightP	22	73.	7 6	75.6	-43.4	31.6	-2.0)3	15.3	20.2	0.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	77.	0 69	91.4	-21.9	32.3	-1.0)2	14.4	19.1	0.4
CASE METHOD J = 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 RP 590.3 518.1 445.8 373.6 301.4 229.1 156.9 84.7 12.4 RX 773.6 757.8 742.0 727.6 715.2 703.7 692.2 683.4 680.1 RU 590.3 518.1 445.8 373.6 301.4 229.1 156.9 84.7 12.4 RAU 590.3 518.1 445.8 373.6 301.4 229.1 156.9 84.7 12.4 RAU 521.5 (kips); RA2 = 708.9 (kips) 20.01; J(RX) = 0.68 Current CAPWAP Ru = 685.0 (kips); Corresponding J(RP)= 0.00; J(RX) = 0.68 20.5 MX TVP VT1*Z FT1 FMX DMX DFN SET EMX QUS ft/s ms kips kips in in in kips kips kips kips 16.6 36.05 635.9	Absolute					32.3			(1	C =	42.6 ms
J = 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 RP 590.3 518.1 445.8 373.6 301.4 229.1 156.9 84.7 12.4 RX 773.6 757.8 742.0 727.6 715.2 703.7 692.2 683.4 680.1 RU 590.3 518.1 445.8 373.6 301.4 229.1 156.9 84.7 12.4 RAU 590.3 518.1 445.8 373.6 301.4 229.1 156.9 84.7 12.4 RAU 521.5 (kips); RA2 = 708.9 (kips) Current CAPWAP Ru = 685.0 (kips); Corresponding J(RP)= 0.00; J(RX) = 0.68 VMX TVP VT1*Z FT1 FMX DMX DFN SET EMX QUS ft/s ms kips kips in in in kips kips 16.6 36.05 635.9 676.7 676.7 1.13 0.29 0.29 37.0 624.1 PILE		50.	2				-6.2	27	()	[=	58.4 ms
J = 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 RP 590.3 518.1 445.8 373.6 301.4 229.1 156.9 84.7 12.4 RX 773.6 757.8 742.0 727.6 715.2 703.7 692.2 683.4 680.1 RU 590.3 518.1 445.8 373.6 301.4 229.1 156.9 84.7 12.4 RAU 590.3 518.1 445.8 373.6 301.4 229.1 156.9 84.7 12.4 RAU 521.5 (kips); RA2 = 708.9 (kips) 156.9 84.7 12.4 RAU = 521.5 (kips); RA2 = 708.9 (kips) 0.00; J(RX) = 0.68 VMX TVP VT1*Z FT1 FMX DMX DFN SET EMX QUS ft/s ms kips kips in in in kips kips 16.6 36.05 635.9 676.7 676.7 1.13 0.29 37.0 624.1					CAS	SE METHOD					
RX 773.6 757.8 742.0 727.6 715.2 703.7 692.2 683.4 680.1 RU 590.3 518.1 445.8 373.6 301.4 229.1 156.9 84.7 12.4 RAU = 521.5 (kips); RA2 = 708.9 (kips) Current CAPWAP Ru = 685.0 (kips); Corresponding J(RP)= 0.00; J(RX) = 0.68 VMX TVP VT1*Z FT1 FMX DMX DFN SET EMX QUS ft/s ms kips kips in in in kip-ft kips kips 16.6 36.05 635.9 676.7 676.7 1.13 0.29 0.29 37.0 624.1 PILE PROFILE AND PILE MODEL Depth Area E-Modulus Spec. Weight P	J =	0.0	0.1	0.2				0.6	0.7	0.8	0.
RU 590.3 518.1 445.8 373.6 301.4 229.1 156.9 84.7 12.4 RAU = 521.5 (kips); RA2 = 708.9 (kips) Current CAPWAP Ru = 685.0 (kips); Corresponding J(RP)= 0.00; J(RX) = 0.68 VMX TVP VT1*Z FT1 FMX DMX DFN SET EMX QUS ft/s ms kips kips in in in kip-ft kips ki 16.6 36.05 635.9 676.7 676.7 1.13 0.29 0.29 37.0 624.1 PILE PROFILE AND PILE MODEL Depth Area E-Modulus Spec. Weight P	RP	590.3	518.1	445.8	373.6	301.4	229.1	156.9	84.7	12.4	Ο.
RAU = 521.5 (kips); RA2 = 708.9 (kips) Current CAPWAP Ru = 685.0 (kips); Corresponding J(RP)= 0.00; J(RX) = 0.68 VMX TVP VT1*Z FT1 FMX DMX DFN SET EMX QUS ft/s ms kips kips in in kip-ft kips ki 16.6 36.05 635.9 676.7 676.7 1.13 0.29 0.29 37.0 624.1 PILE PROFILE AND PILE MODEL Depth Area E-Modulus Spec. Weight P	RX	773.6	757.8	742.0	727.6	715.2		692.2	683.4	680.1	676.
Current CAPWAP Ru = 685.0 (kips); Corresponding J(RP)= 0.00; J(RX) = 0.68 VMX TVP VT1*Z FT1 FMX DMX DFN SET EMX QUS ft/s ms kips kips in in in kip-ft kips kip 16.6 36.05 635.9 676.7 676.7 1.13 0.29 0.29 37.0 624.1 PILE PROFILE AND PILE MODEL Depth Area E-Modulus Spec. Weight P	RU	590.3	518.1	445.8	373.6	301.4	229.1	156.9	84.7	12.4	0.
VMX TVP VT1*Z FT1 FMX DMX DFN SET EMX QUS ft/s ms kips kips kips in in kip-ft kips ki 16.6 36.05 635.9 676.7 676.7 1.13 0.29 0.29 37.0 624.1 PILE PROFILE AND PILE MODEL Depth Area E-Modulus Spec. Weight P	RAU = 5	21.5 (ki	ps); R	A2 =	708.9 (]	kips)					
ft/s ms kips kips in in kip-ft kips <th< td=""><td>Current CA</td><td>PWAP Ru</td><td>= 685.0</td><td>(kips)</td><td>; Corres</td><td>ponding J</td><td>(RP)= 0</td><td>.00; J(F</td><td>ex) = 0.</td><td>68</td><td></td></th<>	Current CA	PWAP Ru	= 685.0	(kips)	; Corres	ponding J	(RP)= 0	.00; J(F	ex) = 0.	68	
16.6 36.05 635.9 676.7 676.7 1.13 0.29 0.29 37.0 624.1 PILE PROFILE AND PILE MODEL Depth Area E-Modulus Spec. Weight P	VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KE
PILE PROFILE AND PILE MODEL Depth Area E-Modulus Spec. Weight P	ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/i
Depth Area E-Modulus Spec. Weight P	16.6	36.05	635.9	676.7	676.7	1.13	0.29	0.29	37.0	624.1	156
				PI	LE PROFII	LE AND PI	LE MODEI				
		Depth		A	rea	E-Modu	lus	Spec. 1	Weight		Perim
		-					-	-	-		f
0.0 21.4 29992.2 492.000		0.0		2	1.4	2999	2.2	4	92.000		4.7
77.0 21.4 29992.2 492.000		77.0		2	1.4	2999	2.2	4	92.000		4.7
Toe Area 198.5 in ²	Ioe Area			19	8.5	in^2					

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.199 ms, 2L/c 9.2 ms Total volume: 11.443 ft^{3;} Volume ratio considering added impedance: 1.000

USH 10 - B-70-403; Pile: Pier 3 #1 - BOR APE D30-42, HP 14 x 73; Blow: 3 GRL Engineers, Inc.

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 - B-70-403; Pile: Pier 3 #1 - BOR APE D30-42, HP 14 x 73; Blow: 3 GRL Engineers, Inc.

Iotal CAP	WAP Capaci	ty: 63	5.0; alor	ng Shaft	55.0; at I	'oe 580	.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Dampin
No.	Gages	Grade			Ru	(Depth)	(Area)	Facto
	ft	ft	kips	kips	kips	kips/ft	ksf	s/f
				635.0				
1	10.0	4.5	0.0	635.0	0.0	0.00	0.00	0.0
2	16.7	11.2	0.0	635.0	0.0	0.00	0.00	0.0
3	23.4	17.9	0.0	635.0	0.0	0.00	0.00	0.0
4	30.1	24.6	3.0	632.0	3.0	0.45	0.10	0.3
5	36.8	31.3	6.0	626.0	9.0	0.90	0.19	0.3
6	43.5	38.0	6.0	620.0	15.0	0.90	0.19	0.3
7	50.2	44.7	8.0	612.0	23.0	1.19	0.25	0.3
8	56.9	51.4	8.0	604.0	31.0	1.19	0.25	0.3
9	63.6	58.1	8.0	596.0	39.0	1.19	0.25	0.3
10	70.3	64.8	8.0	588.0	47.0	1.19	0.25	0.3
11	77.0	71.4	8.0	580.0	55.0	1.19	0.25	0.3
Avg. Sh	aft		5.0			0.77	0.16	0.3
То	e		580.0				420.75	0.0
Soil Mode	l Paramete	ers/Extens	ions		Sha	ft To	be	
Quake		(i:	n)		0.	30 0.1	34	
Case Damp	ing Factor	.			0.	43 1.	06	
Damping T	уре				Visco	us Smit	th	
Unloading	Quake	(%	of load	ing quake)		30	30	
Resistanc	e Gap (ind	luded in '	Ioe Quake	e) (in)		0.0	01	
Soil Plug	Weight	(k.	ips)			0.0	05	
CAPWAP ma	tch qualit		2.86	(Wav	e Up Match)	; RSA = 0		
Observed:	- Final Set		0.17 i	in; Blow	Count	= 69	b/ft	
Computed:	Final Set	: =	0.21 1	-	Count	= 58	b/ft	
- Transducer	F3(F590) CAL: 95.0	; RF: 1.00	; F4(F607) CA	L: 93.6; RF: 1	.00	-	
	A3(K225	3) CAL: 325	; RF: 1.15	; A4(K2524) CA	L: 360; RF: 1	.15		
max. Top	Comp. Stre	ess =	31.7 4	si (T=	36.1 ms, n	nax= 1.020	5 x Top)	
max. Comp	. Stress	=	32.5 k	csi (Z=	77.0 ft, 1	r= 42.6 r	ns)	
max. Tens	. Stress	=	-6.45 }	csi (Z=	50.2 ft, 1	r= 58.2 r	ns)	
may Ener	gy (EMX)	=	38.3 1	rip-ft: max	. Measured 1	op Displ	(TMA) = (1.07 in

USH 10 - B-70-403; Pile: Pier 3 #1 - BOR APE D30-42, HP 14 x 73; Blow: 3 GRL Engineers, Inc.

Test: 10-Dec-2014 07:42 CAPWAP(R) 2014 OP: AZ

					EMA TABL	6				
Pil			max.	min.	max.	max		max.	max.	max
Sgmn			orce	Force	Comp.	Tens			Veloc.	Displ
No	-			1-1-0	Stress	Stres		ergy	E t / -	
		ft 1	kips	kips	ksi	ks	1 KI	p-ft	ft/s	i
			78.6	-31.9	31.7	-1.4		38.3	16.9	1.0
			79.1	-35.3	31.7	-1.6		38.1	16.8	1.0
	4 13		80.2	-64.8	31.8	-3.0		37.4	16.8	1.0
	5 16		80.9	-78.5	31.8	-3.6		36.9	16.7	1.0
	6 20		81.6	-95.2	31.8	-4.4		36.4	16.7	0.9
	7 23		83.5	-100.6	31.9	-4.7		35.8	16.6	0.9
	8 26		88.3	-99.2	32.2	-4.6		35.1	16.5	0.9
	9 30		93.4	-93.2	32.4	-4.3		34.4	16.3	0.8
1			85.6	-92.3	32.0	-4.3		32.9	16.1	0.8
1			92.6	-113.9	32.4	-5.3		32.1	15.9	0.8
1	2 40	.2 6	69.2	-113.0	31.3	-5.2	8	29.8	15.6	0.7
1	3 43	.5 6	76.8	-125.7	31.6	-5.8	7	28.9	15.4	0.7
1	4 46	.9 6	56.6	-135.3	30.7	-6.3	2	26.7	15.1	0.7
1	5 50	.2 6	65.3	-138.1	31.1	-6.4	5	25.8	14.8	0.6
1	6 53	.6 6	36.1	-119.8	29.7	-5.6	0	23.3	14.6	0.6
1	7 56	.9 6	45.0	-113.4	30.1	-5.3	0	22.4	14.3	0.5
1	8 60	.3 6	28.1	-89.7	29.3	-4.1	9	20.0	14.0	0.5
1			40.5	-79.7	29.9	-3.7		19.0	13.8	0.5
2	0 67		49.2	-59.9	30.3	-2.8	0	16.9	15.4	0.4
2			81.8	-52.0	31.9	-2.4		15.9	16.6	0.4
2			82.8	-27.9	31.9	-1.3		14.0	17.4	0.4
2			96.5	-18.4	32.5	-0.8		13.4	15.8	0.3
Absolute	77	. 0			32.5			('	C =	42.6 ms
	50					-6.4	5	-	С =	58.2 ms
T _	0.0	0.0	0.4		E METHOD	1 0	1 0	1 4	1 (
J = RP	0.0 725.2	0.2 603.3	0.4 481.4	0.6 359.5	0.8 237.7	1.0	1.2	1.4	1.6	1.1
RX						646.2	627.8	612.6	598.0	50/ ·
RD	815.7 725.2	779.9 603.3	744.2 481.4	708.4 359.5	674.2 237.7	040.2	02/.0	012.0	590.0	584.
RAU = Current C	518.7 (ki APWAP Ru			677.0 (k : Correst		(RP)= 0.	15: J(F	(x) = 1.	12	
VMX ft/s	TVP	VT1*Z kips	FT1 kips	FMX kips	DMX in	DFN in	SET	EMX kip-ft		
17.0	ms 35.85	650.8		683.8		0.17		38.5		kips/in 1773
17.0	33.65	050.0	003.0	005.0	1.07	0.17	0.17	30.5	/40.2	. 177
			PII	LE PROFIL	E AND PI	LE MODEL	ı			
	Depth			rea	E-Modu		Spec. I	-		Perim
	ft		ir	1 ²		ksi	11	b/ft ³		f
	0.0		21	.4	2999			92.000		4.7
	77.0		21	.4	2999	2.2	4	92.000		4.7
Tee Amee			198	3.5	in^2					
loe Area										

Total volume: 11.443 ft^{3;} Volume ratio considering added impedance: 1.000

USH 10 - B-70-403; Pile: Pier 3 #36 - EOID APE D30-42, HP 14 x 73; Blow: 142 GRL Engineers, Inc.

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 - B-70-403; Pile: Pier 3 #36 - EOID APE D30-42, HP 14 x 73; Blow: 142 GRL Engineers, Inc.

			CAPW	AP SUMMARY	RESULTS				
Total CAPW	WAP Capaci	ity: 54	6.0; alor	ng Shaft	46.0; at	Toe 500).0 kips		
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	S	Smith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Dan	nping
No.	Gages	Grade			Ru	(Depth)	(Area)	Fa	actor
	ft	ft	kips	kips	kips	kips/ft	ksf		s/ft
				546.0					
1	16.9	9.9	0.0	546.0	0.0	0.00	0.00		0.00
2	23.6	16.6	0.0	546.0	0.0	0.00	0.00		0.00
3	30.4	23.4	0.0	546.0	0.0	0.00	0.00		0.00
4	37.1	30.1	0.0	546.0	0.0	0.00	0.00		0.00
5	43.8	36.8	1.0	545.0	1.0	0.15	0.03		0.27
6	50.6	43.6	3.0	542.0	4.0	0.44	0.09		0.27
7	57.3	50.3	8.0	534.0	12.0	1.19	0.25		0.27
8	64.1	57.1	9.0	525.0	21.0	1.33	0.28		0.27
9	70.8	63.8	10.0	515.0	31.0	1.48	0.32		0.27
10	77.6	70.6	15.0	500.0	46.0	2.22	0.47		0.27
Avg. Sha	aft		4.6			0.65	0.14		0.27
Тое	e		500.0				362.72		0.05
Soil Model	l Paramete	ers/Extens	ions		Sh	aft T	oe		
Ouake		(i:	n)		0	.04 0.	55		
Case Dampi	ing Factor	· ·			0	.33 0.	65		
Damping Ty	-				Visc	ous Smi	th		
Unloading	Quake	(%	of loadi	ng guake)		46	30		
Reloading	Level	(%	of Ru)			100 1	00		
Soil Plug	Weight	(k:	ips)		0.	050 0.0	13		
CAPWAP mat	ch qualit	.v =	4.59	(Way	e Up Match) : RSA = ()		
Observed:	-	-	0.39 i	•	Count		b/ft		
Computed:			0.04 i	-	Count		3 b/ft		
Transducer				; F4(F590) CA					
	A3(K252			; A4(K2253) CA					
max. Top (-	ess =	29.7 k	•	36.3 ms,				
max. Comp.		=	31.1 k	•	50.6 ft,				
max. Tens.		=	-5.80 1		•	T= 64.0 1			
	JY (EMX)	=	35.8 k	ip-ft; max	. Measured	Top Displ	(DMX) =	1.18	in

USH 10 - B-70-4	403; Pile: Pier	3 #36 - EOID
APE D30-42, HP	14 x 73; Blow:	142
GRL Engineers,	Inc.	

Pile	Dist.	. 1	max.	min.	max.	max.		max.	max.	max
Sgmnt	Below		orce	Force	Comp.	Tens.			Veloc.	Displ
No.	Gages				Stress	Stress		ergy		
	ft		kips	kips	ksi	ksi		p-ft	ft/s	iı
1	3.4	6	36.6	-31.0	29.7	-1.45	5	35.8	15.6	1.1
2	6.7	6	37.4	-27.4	29.8	-1.28	3	35.6	15.6	1.14
4	13.5	5 6	39.2	-51.9	29.9	-2.42	2	35.2	15.5	1.1
5	16.9	6	40.2	-61.3	29.9	-2.87	,	35.0	15.5	1.09
6	20.2	2 6	41.1	-73.3	30.0	-3.42	2	34.6	15.5	1.0
7	23.6	5 6	42.0	-84.0	30.0	-3.92	2	34.2	15.4	1.04
8	27.0) 6	43.0	-92.8	30.0	-4.34		33.8	15.4	1.0
9	30.4	6	44.1	-95.6	30.1	-4.47		33.3	15.4	0.9
10	33.7		45.1	-91.9	30.1	-4.29		32.8	15.4	0.9
11	37.1		46.7	-89.0	30.2	-4.16		32.2	15.3	0.9
12	40.5		50.2	-88.0	30.4	-4.11		31.6	15.2	0.9
13	43.8		58.6	-105.1	30.8	-4.91		31.0	15.0	0.8
14	47.2		60.7	-116.0	30.9	-5.42		30.1	14.8	0.84
15	50.6		66.3	-124.3	31.1	-5.80		29.5	14.7	0.8
16	54.0		59.8	-123.7	30.8	-5.78		28.1	14.4	0.7
17	57.3		65.7	-123.0	31.1	-5.75		27.5	14.6	0.7
18	60.7		30.9	-108.3	29.5	-5.06		25.0	14.7	0.7
19	64.1		34.2	-101.8	29.6	-4.76		24.3	15.0	0.6
20	67.5		95.9	-77.7	27.8	-3.63		21.7	17.3	0.6
21	70.8		58.6	-65.5	26.1	-3.06		21.0	18.9	0.6
22	74.2		44.1	-37.5	25.4	-1.75		18.4	19.4	0.5
23	77.6		56.7	-29.3	26.0	-1.37		16.1	18.9	0.5
Absolute	50.6	5			31.1			(]	: =	39.1 ms
	50.6					-5.80)	•	. =	64.0 ms
				CAS	E METHOD					
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.	6 1.8
RP	515.0	368.3	221.6	74.9	0.0					
RX		590.7	573.3	560.4	551.9	544.4	538.3	533.2	528.	6 524.4
RU	515.0	368.3	221.6	74.9	0.0					
RAU = 4	62.9 (kip	s); R	A2 =	601.7 (k	ips)					
Current CA	PWAP Ru =	546.0	(kips)	; Corresp	onding J	(RP)= 0.0)0; J(F	(x) = 0.9	96	
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QU	S KEI
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kip	s kips/i
15.7	36.12	600.6	647.8	647.8	1.18	0.39	0.39	36.9	565.	2 90

PILE PROFILE AND PILE MODEL								
Depth		Area	E-Modulus	Spec. Weight	Perim.			
	ft	in²	ksi	lb/ft ³	ft			
	0.0	21.4	29992.2	492.000	4.70			
	77.6	21.4	29992.2	492.000	4.70			
Toe Area		198.5	in²					

USH 10	- в-70-	403;	Pile	: Pier	3	#36	-	EOID
APE D30	-42, HP	14 x	73;	Blow:	14	1 2		
GRL Eng	ineers,	Inc.						

Segmnt	nt Dist.Impedance		Imped.		Tension C		ression	Perim.	Wave	Soil
Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
	ftki	ps/ft/s	%	in		in		ft	ft/s	kips
1	3.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.000
15	50.6	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.010
20	67.5	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.000
23	77.6	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.000

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.201 ms, 2L/c 9.2 ms Total volume: 11.529 ft³; Volume ratio considering added impedance: 1.000

USH 10 - B-70-403; Pile: Pier 3 #36 - BOR APE D30-42, HP 14 x 73; Blow: 4 GRL Engineers, Inc.

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 - B-70-403; Pile: Pier 3 #36 - BOR APE D30-42, HP 14 x 73; Blow: 4 GRL Engineers, Inc.

			CAPWAP SUMM	ARY RESULTS	3		
Total CAPWA	P Capacity:	553.0;	along Shaft	73.0;	at Toe	480.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.
No.	Gages	Grade			Ru	(Depth)	(Area)
	ft	ft	kips	kips	kips	kips/ft	ksf
				553.0			
1	16.9	9.9	2.0	551.0	2.0	0.20	0.04
2	23.6	16.7	2.0	549.0	4.0	0.30	0.06
3	30.4	23.4	4.0	545.0	8.0	0.59	0.13
4	37.1	30.2	4.0	541.0	12.0	0.59	0.13
5	43.8	36.9	8.0	533.0	20.0	1.19	0.25
6	50.6	43.7	9.0	524.0	29.0	1.33	0.28
7	57.3	50.4	11.0	513.0	40.0	1.63	0.35
8	64.1	57.2	11.0	502.0	51.0	1.63	0.35
9	70.8	63.9	11.0	491.0	62.0	1.63	0.35
10	77.6	70.7	11.0	480.0	73.0	1.63	0.35
Avg. Sha	ft		7.3			1.03	0.22
Тое			480.0				348.21
<u>Soil Model :</u>	Parameters/E	xtensions			Shaft	Тое	
Smith Dampin	ng Factor				0.30	0.08	
Quake	-	(in)			0.20	0.34	
Case Damping	g Factor				0.57	1.01	
Damping Type	e				Viscous Sr	n+Visc	
Unloading Q	uake	(% of	loading quak	e)	39	30	
Unloading L	evel	(% of	Ru)		48		
Soil Plug We	eight	(kips)				0.022	
CAPWAP matcl	h quality	= 2	.88	(Wave Up Ma	atch); RSA	. = 0	
Observed: F:		= 0		Slow Count	=	53 b/ft	
Computed: F:	inal Set	= 0	.03 in; 1	Blow Count	=	363 b/ft	
Transducer	F3(F590) CAI	. 95.0; RF	: 1.00; F4(F607)	CAL: 93.6;	; RF: 1.00		
	A3(K2253) CAI	: 325; RF	: 1.12; A4(K2524) CAL: 360;	; RF: 1.12		
			0 2 1	(- 35 9	me may- 1	.011 x Top)	
max. Top Con	mp. Stress	= 2	9.3 ksi	(1- 55.9	ma, max- 1	w rop)	
max. Top Com max. Comp. 3	-		9.5 ksi 9.6 ksi	-	-	5.7 ms)	
-	Stress	= 2		(Z= 16.9	ft, T= 36		

USH 10 - B-70-403; Pile: Pier	3	#36	-	BOR
APE D30-42, HP 14 x 73; Blow:	4			
GRL Engineers, Inc.				

Test: 10-Dec-2014 07:51 CAPWAP(R) 2014 OP: AZ

					REMA TABL					
Pile			max.	min.	max.	max		nax.	max.	max
Sgmnt			orce	Force	Comp.	Tens		sfd.	Veloc.	Displ
No.	-		kips	kips	Stress ksi	Stres ks		ergy p-ft	ft/s	iı
1			26.2	-24.0	29.3	-1.1		33.5	15.4	1.00
2			26.6	-25.7	29.3	-1.2		33.3	15.4	0.99
4			30.4	-29.0	29.5	-1.3		32.7	15.2	0.9
5			33.2	-30.7	29.6	-1.4		32.3	15.1	0.9
6			25.2	-31.2	29.2	-1.4		31.3	15.0	0.89
7			28.6	-40.4	29.4	-1.8		30.7	14.9	0.80
8			23.9	-47.1	29.1	-2.2		29.7	14.7	0.83
9			29.3	-54.7	29.4	-2.5		29.1	14.6	0.80
10			14.6	-58.8	29.1	-2.7		27.6	14.4	0.77
10			22.2	-66.3	28.7	-3.1		26.9	14.2	0.74
12			22.2 12.4		29.1	-3.1		20.9 25.4	14.2	0.74
				-69.8						
13			21.7	-72.0	29.0	-3.3		24.8	13.7	0.68
14			94.0	-66.6	27.8	-3.1		22.6	13.4	0.64
15			04.5	-66.5	28.2	-3.1		21.9	13.1	0.61
16			75.5	-62.6	26.9	-2.9		19.8	12.8	0.58
17			86.1	-71.0	27.4	-3.3		19.0	12.5	0.54
18			50.0	-69.8	25.7	-3.2		16.8	12.2	0.51
19			60.2	-76.4	26.2	-3.5		16.0	11.9	0.48
20			32.4	-69.3	24.9	-3.2		14.0	12.9	0.45
21			60.5	-70.2	26.2	-3.2		13.4	13.7	0.41
22			56.8	-61.0	26.0	-2.8		11.6	14.7	0.38
23	3 77	.6 5	67.1	-61.4	26.5	-2.8	7 :	10.7	13.9	0.35
Absolute		.9			29.6			(т =	36.7 ms)
	64	.1				-3.5	7	(T =	59.8 ms)
				CAS	E METHOD	1				
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	4 1.6	1.8
RP	662.9	547.4	432.0	316.5	201.1					
RX	701.4	655.7	610.4	594.3	578.8	563.6	548.4	533.2	2 517.9	502.7
τU	662.9	547.4	432.0	316.5	201.1					
RAU = 4	423.0 (k	ips); R	A2 =	634.8 ()	(ips)					
Current CA	APWAP Ru	= 553.0	(kips)	; Corres	onding J	(RP)= 0.	19; J(F	x) = 1	.14	
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EM		
ft/s	ms	kips	kips	kips	in	in		kip-f		kips/ir
15.5	35.72	592.5	647.5	647.5	0.99	0.23	0.23	33.9	9 669.0	1427
			PII	LE PROFII	E AND PI	LE MODEL				
	Depth		Ar	ea	E-Modu	lus	Spec. N	Veight		Perim.
	ft		in	1 ²		ksi	-	o/ft ³		ft
	0.0		21	.4	2999	2.2	49	92.000		4.70
	77.6		21	.4	2999			92.000		4.70
Ioe Area			198	-	in²					

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.201 ms, 2L/c 9.2 ms Total volume: 11.529 ft^{3;} Volume ratio considering added impedance: 1.000

Force Msd

NIIIII

ШTh

-11 L/c

Velocity Msd

90 ms

Length b. Sensors	77.5 ft
Embedment	72.6 ft
Top Area	21.4 in ²
End Bearing Area	198.5 in ²
Top Perimeter	4.70 ft
Top E-Modulus	29992 ksi
Top Spec. Weight	492.0 lb/ft3
Top Wave Spd.	16808 ft/s
Overall W.S.	16808 ft/s
Match Quality	4.59
Top Compr. Stress	29.4 ksi
Max Compr. Stress	29.7 ksi
Max Tension Stress	-5.60 ksi
Avg. Shaft Quake	0.08 in
Toe Quake	0.43 in
Avg. Shaft Smith Dpg.	0.28 s/ft
Toe Smith Damping	0.03 s/ft

USH 10 - B-70-403; Pile: Pier 3 #44 - EOID APE D30-42, HP 14 x 73; Blow: 252 GRL Engineers, Inc.

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 - B-70-403; Pile: Pier 3 #44 - EOID APE D30-42, HP 14 x 73; Blow: 252 GRL Engineers, Inc.

	kips			37.0; at				WAP Capaci	
Smi	Unit	Unit		Sum	Force	Ru	Depth	Dist.	Soil
Dampi	esist.			of	in Pile		Below	Below	Sgmnt
Fact	(Area)	epth)	•	Ru			Grade	Gages	No.
S	ksf	ps/ft	kip	kips	kips	kips	ft	ft	
					627.0				
0.	0.00	0.00		0.0	627.0	0.0	5.2	10.1	1
0.	0.00	0.00		0.0	627.0	0.0	12.0	16.8	2
0.	0.03	0.15		1.0	626.0	1.0	18.7	23.6	3
0.	0.03	0.15		2.0	625.0	1.0	25.5	30.3	4
0.	0.03	0.15		3.0	624.0	1.0	32.2	37.1	5
0.	0.09	0.45		6.0	621.0	3.0	38.9	43.8	6
0.	0.16	0.74		11.0	616.0	5.0	45.7	50.5	7
0.	0.19	0.89		17.0	610.0	6.0	52.4	57.3	8
0.	0.19	0.89		23.0	604.0	6.0	59.1	64.0	9
0.	0.19	0.89		29.0	598.0	6.0	65.9	70.8	10
0.	0.25	1.19		37.0	590.0	8.0	72.6	77.5	11
0.	0.11	0.51				3.4		aft	Avg. Sh
0.	428.01					590.0		e	То
		Тое	aft	Sh		ns	<u>rs/Extensi</u>	l Paramete	Soil Mode
		0.43	.08	C			(in		Ouake
		0.46	.27				•	ing Factor	Case Damp:
		Sm+Visc	ous	Visc				-	Damping T
		30	66		ng quake)	f load:	(%	-	Unloading
		0	100		5 1	f Ru)	•	-	Reloading
			81			f Ru)	(%	Level	Unloading
		0.00) (in)	e Quake	Luded in T	e Gap (inc	Resistance
		0.037				s)	(ki	Weight	Soil Plug
		RSA = 0); R	Up Match	(Wav	4.59	/ =	tch qualit	CAPWAP mat
	/ft	48 b	=	Count	n; Blow	0.25	=	Final Set	Observed:
	/ft	286 b	=	Count	n; Blow	0.04	=	Final Set	Computed:
			1.00	93.6; RF:	F4(F607) CA	RF: 1.00	CAL: 95.0	F3(F590)	Transducer
			1.07	360; RF:	A4(K2524) CA	RF: 1.07) CAL: 325	A3(K225	
	Top)	= 1.012 ×	max=	36.1 ms,	si (T=	29.4]	ss =	Comp. Stre	max. Top (
				43.8 ft,	•	29.7]	=		max. Comp
		58.9 ms)	т=	50.5 ft,	si (Z=	-5.60]	=	. Stress	max. Tens
.07 in	DMX) = 1	Displ. (Тор	Measured	ip-ft; max	32.8 1	=	JY (EMX)	max. Energ

USH 10 - B-70-403; Pile: Pie	er 3 #44 - EOID
APE D30-42, HP 14 x 73; Blow	v: 252
GRL Engineers, Inc.	

Test: 09-Dec-2014 10:47 CAPWAP(R) 2014 OP: AZ

				EVII	CEMA IADL	15				
Pile	Dis		max.	min.	max.	maz		nax.	max.	max
Sgmnt	Bel		orce	Force	Comp.	Tens			Veloc.	Displ
No.	Gag				Stress	Strea		ergy		
		ft	kips	kips	ksi	k	si kip	p-ft	ft/s	i
1	3	.4 6	28.6	-61.9	29.4	-2.8	39 3	32.8	15.5	1.0
2			29.2	-72.9	29.4	-3.4		32.7	15.5	1.0
4			30.5	-100.0	29.5	-4.6		32.3	15.4	1.0
5	16		31.6	-112.0	29.5	-5.2		32.0	15.4	1.0
6	20		33.4	-113.6	29.6	-5.3		31.6	15.3	0.9
7			35.1	-111.1	29.7	-5.1		31.1	15.3	0.9
8	27		31.8	-109.9	29.5	-5.1		30.4	15.2	0.9
9	30		33.5	-110.0	29.6	-5.1		29.9	15.1	0.9
10	33		30.3	-104.3	29.4	-4.8		29.1	15.1	0.8
11	37		32.9	-99.7	29.6	-4.6		28.5	15.0	0.8
12	40		32.0	-96.2	29.5	-4.5		27.6	14.8	0.8
13	43		36.4	-97.9	29.7	-4.5		27.0	14.7	0.7
14			27.3	-106.5	29.3	-4.9		25.6	14.5	0.7
15	50		32.8	-119.9	29.6	-5.6		24.9	14.4	0.7
16	53		15.1	-112.5	28.7	-5.2		23.1	14.2	0.7
17	57		20.9	-110.4	29.0	-5.1		22.4	14.9	0.6
18	60		98.9	-101.8	28.0	-4.7		20.4	14.9	0.6
19	64		04.6	-102.4	28.2	-4.7		L9.5	15.3	0.5
20	67		86.6	-88.7	27.4	-4.1		L7.5	16.7	0.5
21	70		00.4	-84.2	28.0	-3.9		L6.5	18.0	0.5
22	74		17.9	-72.6	28.9	-3.3		L4.6	19.1	0.4
23	77	.5 6	32.4	-70.8	29.5	-3.3	31 1	L4.4	18.4	0.4
Absolute	43	.8			29.7			(]	C = 7	38.5 ms
	50	.5				-5.6	50	()	C = 7	58.9 ms
				CAS	SE METHOD					
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7		
RP	511.4	438.9	366.5	294.0	221.6	149.1	76.7	4.2	0.0	
RX	706.8	689.2	674.2	660.9	647.9	639.5	635.3	631.8	628.3	
ิรบ	511.4	438.9	366.5	294.0	221.6	149.1	76.7	4.2	0.0	0.
RAU = 5	41.9 (k:	ips); R	A2 =	661 . 9 (]	kips)					
Current CA	PWAP Ru	= 627.0	(kips)	; Corres	ponding J	(RP) = 0	.00; J(R	(x) = 0.	84	
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	S KE
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	s kips/i
15.6	35.89	597.6	638.2	638.2	1.07	0.25	0.25	33.0	601.0) 1372
			דם	LE BROFT	LE AND PI	ניבי ארט ביו				
	Depth			rea	E-Modu	-	Spec. V	Veight.		Perim
	ft			n ²		ksi	-	o/ft ³		f
	0.0		23	1.4	2999	2.2	49	92.000		4.7
	77.5		23	1.4	2999	2.2	49	92.000		4.7
Toe Area			198	3.5	in^2					

EXTREMA TABLE

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.200 ms, 2L/c 9.2 ms Total volume: 11.517 ft^{3;} Volume ratio considering added impedance: 1.000

USH 10 - B-70-403; Pile: Pier 3 #44 - BOR APE D30-42, HP 14 x 73; Blow: 4 GRL Engineers, Inc.

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result.

USH 10 - B-70-403; Pile: Pier	3	#44	-	BOR
APE D30-42, HP 14 x 73; Blow:	4			
GRL Engineers, Inc.				

			CAPWAP SUMMA	ARY RESULI	'S		
Total CAPWA	P Capacity:	564.0;	along Shaft	64.0	; at Toe	500.0 kip:	5
Soil	Dist.	Depth	Ru	Force	Sum	n Unit	Unit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.
No.	Gages	Grade			Ru	u (Depth)	(Area)
	ft	ft	kips	kips	kips	s kips/ft	ksf
				564.0			
1	10.1	5.3	1.0	563.0	1.0	0.19	0.04
2	16.8	12.0	1.0	562.0	2.0	0.15	0.03
3	23.6	18.8	1.0	561.0	3.0	0.15	0.03
4	30.3	25.5	4.0	557.0	7.0	0.59	0.13
5	37.1	32.3	7.0	550.0	14.0	1.04	0.22
6	43.8	39.0	5.0	545.0	19.0	0.74	0.16
7	50.5	45.7	9.0	536.0	28.0	1.34	0.28
8	57.3	52.5	9.0	527.0	37.0	1.34	0.28
9	64.0	59.2	9.0	518.0	46.0	1.34	0.28
10	70.8	65.9	9.0	509.0	55.0	1.34	0.28
11	77.5	72.7	9.0	500.0	64.0	1.34	0.28
Avg. Sha	ft		5.8			0.88	0.19
Тое			500.0				362.72
Soil Model	Parameters/E	xtensions	8		Shaft	Тое	
Smith Dampin	ng Factor				0.30	0.04	
Quake	j	(in)			0.17	0.32	
Case Damping	g Factor	(/			0.50	0.52	
Damping Type	-					Sm+Visc	
Unloading Q		(% of	loading quak	e)	30	32	
Unloading L		(% of		,	46		
Soil Plug W		(kips)	•			0.006	
CAPWAP matc	h guality	= 2		Wave Up M	Match); RS	A = 0	
Observed: F				Blow Count		69 b/ft	
Computed: F	inal Set		=	Blow Count	=	168 b/ft	
Transducer	F3(F590) CAI A3(K2253) CAI	. 95.0; RF	: 1.00; F4(F607) : 1.10; A4(K2524	CAL: 93.6			
max. Top Con			9.7 ksi			1.015 x Top)	
max. Comp.	-		0.1 ksi	(Z= 30.3	-	37.7 ms)	
max. Tens.		= -3	.84 ksi	(Z= 64.0	ft, T= 5	9.1 ms)	

USH 10 - B-70-403; Pile: Pier	3	#44	-	BOR
APE D30-42, HP 14 x 73; Blow:	4			
GRL Engineers, Inc.				

Test: 10-Dec-2014 07:58 CAPWAP(R) 2014 OP: AZ

					REMA TABL	6				
Pile			max.	min.	max.	max		nax.	max.	max
Sgmnt			orce	Force	Comp.	Tens			Veloc.	Displ
No.	Gag			1	Stress	Stres		ergy	EL / m	
			kips	kips	ksi	ks		ọ−ft	ft/s	iı
1			35.7	-23.3	29.7	-1.0		33.2	15.6	1.00
2			37.8	-24.6	29.8	-1.1		33.0	15.6	0.9
4			36.2	-30.0	29.7	-1.4		32.2	15.4	0.9
5			38.1	-40.4	29.8	-1.8		31.8	15.4	0.9
6			34.8	-49.3	29.7	-2.3		31.1	15.3	0.9
7			38.3	-57.2	29.8	-2.6		30.7	15.2	0.8
8			38.9	-64.3	29.8	-3.0		29.9	15.0	0.8
9			45.3	-72.6	30.1	-3.3		29.3	14.8	0.83
10			33.1	-73.1	29.6	-3.4		27.8	14.6	0.79
11			40.3	-72.2	29.9	-3.3		27.2	14.4	0.70
12			10.8	-63.6	28.5	-2.9		25.0	14.2	0.73
13	43	.8 6	18.4	-60.8	28.9	-2.8	34 2	24.4	14.0	0.69
14	47	.2 6	04.4	-58.9	28.2	-2.7	75 2	22.7	13.7	0.66
15	50	.5 6	13.8	-68.8	28.7	-3.2	21 2	22.0	13.4	0.63
16	53	.9 5	81.3	-68.2	27.2	-3.1	L9 :	19.7	13.1	0.60
17	57	.3 5	90.4	-80.5	27.6	-3.7	76 :	19.0	12.9	0.56
18	60	.7 5	59.5	-80.7	26.1	-3.7	77 3	16.8	12.6	0.53
19	64	.0 5	68.3	-82.2	26.5	-3.8	34 :	16.1	12.6	0.50
20	67	.4 5	45.2	-70.2	25.5	-3.2	28 :	14.2	14.8	0.47
21	70	.8 5	84.0	-67.6	27.3	-3.1	L6 :	13.5	15.8	0.43
22	74	.1 5	82.7	-55.2	27.2	-2.5	58 3	11.7	16.8	0.40
23	77	.5 5	84.5	-53.8	27.3	-2.5	51 :	11.2	16.0	0.37
Absolute	30	.3			30.1			(I	=	37.7 ms)
	64	.0				-3.8	34	(T	=	59.1 ms)
T _	0.0	0 1	0.0		E METHOD		0.0	0.7	0.0	0.0
J = RP	0.0	0.1 561.5	0.2	0.3	0.4	0.5	0.6	0.7	0.8	
RX	624.0		499.1	436.6	374.2	311.8	249.3	186.9	124.4	
CL RU	717.2 624.0	695.6 561.5	674.1 499.1	652.5 436.6	630.9 374.2	609.3 311.8	589.2 249.3	577.6 186.9	567.3 124.4	
	21.9 (ki			623.6 ()		511.0	213.3	100.9		02.0
Current CA						(RP)= 0	.10; J(R	(x) = 0.8	33	
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEI
ft/s	ms	kips	kips	kips	in	in		kip-ft		kips/in
15.7	35.89		-	649.1		0.18		33.4		1563
2007	55105	55510	01001	01001	0.55		0.1	5511		2500
			PIL	E PROFII	E AND PI	LE MODEI				
	Depth		Ar		E-Modu		Spec. N	-		Perim
	ft		in			ksi		o/ft ³		ft
	0.0			.4	2999			92.000		4.70
	77.5		21	.4	2999	2.2	49	92.000		4.70

Top Segment Length3.37 ft, Top Impedance38 kips/ft/sWave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/sPile Damping1.00 %, Time Incr0.200 ms, 2L/c9.2 ms

Total volume: 11.517 ft^{3;} Volume ratio considering added impedance: 1.000