GRL Engineers, Inc.

1540 E. Dundee Road, Suite 102 Palatine, IL 60074 USA Phone: (847) 221-2750 Fax: (847) 221-2752

TRANSMITTAL

To: Mr. Kevin Weber	From: Al Ziai
Company: Lunda Construction Co.	No. of Sheets: 52
E-mail: kweber@lundaconstruction.com	Date: November 25, 2014

RE: Dynamic Testing Results – USH 10 over Little Lake Butte des Morts Structure B-70-403 - Pier 21 Winnebago County, Wisconsin

On November 18, 2014, Pier 21 #1, Pier 21 #36, and Pier 21 #44 at the above structure were dynamically tested during initial driving. Project plans indicated the exterior row piles have a required driving resistance or ultimate capacity of 480 kips (240 tons) and the interior row piles have a required driving resistance or ultimate capacity of 400 kips (200 tons). The reference grade at the bottom of the footing excavations was reported to be at elevation EL 735.8. The piles have a required minimum tip elevation of EL 692.5. The HP 14 x 73 H-piles were equipped with driving shoes and were driven with an APE D30-42 hammer (number PD 0234) operated on fuel setting 4.

Pier 21 #1 was driven to a depth of 47.7 feet which corresponds to a pile tip elevation of EL 688.1. The reported pile set over the final ten blows of driving was 2 inches. The average hammer stroke over this increment was 8.7 feet. Pier 21 #36 was driven to a depth of 45.2 feet which corresponds to a pile tip elevation of EL 690.6. The reported pile set over the final ten blows was 4 inches. The average hammer stroke over this increment was 8.7 feet. Pier 21 #44 was driven to a depth of 47.1 feet which corresponds to a pile tip elevation of EL 688.7. The reported pile set over the final ten blows was 1% inch. The average hammer stroke over this increment was 9.9 feet.

Restrike testing was performed on these three piles on November 19. Pier 21 #1 had a reported pile set of 1 inch for five blows at the beginning of the restrike at an average hammer stroke of 8.8 feet. Pier 21 #36 had a reported pile set of 1¹/₈ inch for five blows at the beginning of the restrike at an average hammer stroke of 8.8 feet. Pier 21 #44 had a reported pile set of no movement for five blows at the beginning of the restrike at an average hammer stroke of 9.5 feet.

Our driving recommendations have been prepared on a blows-per-inch basis. The criteria should be applied only after the minimum pile tip elevation is achieved. For the 480 and 400 kip piles driven with an APE D30-42 hammer (PD 0234) in Pier 21 of the USH 10 bridge over Little Lake Butte des Morts we recommend using the following criteria:

Field Observed	Exterior Piles (480 kips) Recommended Minimum	Interior Piles (400 kips) Recommended Minimum
Hammer Stroke	Blow Count	Blow Count
(feet)	(blows per inch)	(blows per inch)
7.0	8	4
7.5	7	4
8.0	6	4
8.5	5	4
9.0	5	3
9.5	5	3
10.0	5	3

We recommend the above blow counts at the required stroke be maintained for **three consecutive inches** of driving. We recommend terminating driving **if the blow counts exceed 10** blows over an increment of one inch or less at hammer strokes of 9.0 feet, after satisfying any minimum tip requirements. We anticipate the production piles will terminate at depths similar to those of the test piles.

These criteria should not be used for acceptance of piles under restrike and/or redrive conditions. After splicing or any other delays, we recommend not applying the criteria until a full foot of driving has occurred beyond the termination depth associated with the delay, unless the blow count exceeds 10 blows per inch.

Please call if you have any questions on these recommendations.

GRL Engineers, Inc.

Al Ziai

Travis Coleman, P.E.

Cc: Jeff Horsfall - jeffrey.horsfall@dot.wi.gov

Attachments:

Dynamic Test Results -		(pages 3 – 20)
CAPWAP Analysis Results	-	(pages 21 – 52)

PDIPLOT Ver. 2014.1 - Printed: 24-Nov-2014

Test date: 18-Nov-2014

USH 10 over Little Lake Butte des Morts - Pier 21 #1 APE D30-42, HP 14 x 73

Page 1 of 3 PDIPLOT Ver. 2014.1 - Printed: 24-Nov-2014

APE D30-42, HP 14 x 73 Test date: 18-Nov-2014

SP: 0.492 k/ft3 EM: 30,000 ksi JC: 1.20

USH 10 over Little Lake Butte des Morts - Pier 21 #1 OP: MR

AR: 21.40 in^2 LE: 77.50 ft WS: 16,807.9 f/s

	10,007.91/5							JC.	1.20
	Max Measured Cor							Hammer Stroke	
	CSB: Compression Stress at Bottom BPM: Blows per Minute								
EMX:	Max Transferred E	nergy					Max Case M	ethod Capacity	(JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
end	ft	bl/ft		ksi	ksi	k-ft	ft	**	kips
7	11.50	3	AV1	9.4	2.9	9	3.5	61.5	0
			MAX	9.4	2.9	9	3.5	61.5	0
			MIN	9.4	2.9	9	3.5	61.5	0
7	13.50	3	AV1	23.6	4.9	38	6.3	46.7	33
	10.00	Ũ	MAX	23.6	4.9	38	6.3	46.7	33
			MIN	23.6	4.9	38	6.3	46.7	33
•	44.50	0							
9	14.50	3	AV1	13.1	3.5	17	3.6	60.7	0
			MAX	13.1	3.5	17	3.6	60.7	0
			MIN	13.1	3.5	17	3.6	60.7	0
12	15.50	3	AV2	9.7	3.1	15	3.4	62.9	16
			STD	2.4	0.4	5	0.4	3.2	13
			MAX	12.1	3.6	20	3.8	66.1	29
			MIN	7.3	2.7	11	3.0	59.7	3
15	16.50	3	AV3	16.2	4.1	22	4.5	54.7	47
15	10.50	5	STD	1.0	0.1	2	0.2	1.1	7
			MAX	17.5	4.2	24	4.8	55.6	56
			MIN	15.1	4.0	20	4.4	53.2	39
		_							
17	17.50	2	AV2	14.9	3.8	20	4.3	56.2	35
			STD	0.9	0.2	1	0.1	0.8	1
			MAX	15.8	4.0	21	4.4	57.0	36
			MIN	14.0	3.6	19	4.2	55.4	34
19	18.50	2	AV2	17.1	4.1	27	4.6	54.2	37
			STD	1.6	0.3	4	0.3	1.9	1
			MAX	18.7	4.3	30	5.0	56.1	38
			MIN	15.4	3.8	23	4.3	52.3	36
26	19.50	7	AV7	19.0	4.3	22	4.9	52.7	63
20	19.50	'	STD	1.4	0.2	4	0.4	1.8	11
			MAX	20.9	4.7	27	5.4	55.2	75
			MIN	16.9	3.9	17	4.5	50.5	42
20	00 50								
30	20.50	4	AV4	17.4	4.8	22	4.6	54.6	68
			STD	3.0	0.5	7	0.6	3.4	6
			MAX MIN	21.7 14.1	5.3 4.2	32 15	5.5 3.9	58.5 49.9	78 64
			IVIIIN	14.1				49.9	
33	21.50	3	AV3	21.7	5.4	33	5.5	49.9	63
			STD	0.6	0.2	3	0.2	0.7	8
			MAX	22.4	5.7	37	5.7	50.7	70
			MIN	20.9	5.3	30	5.3	49.1	52
35	22.50	2	AV2	22.1	5.7	38	5.6	49.6	65
			STD	0.5	0.1	1	0.1	0.6	4
			MAX	22.7	5.8	39	5.7	50.2	69
			MIN	21.6	5.6	36	5.4	49.0	61
40	00 50	-							
40	23.50	5	AV5	22.2	6.3	30	5.7	49.3	103
			STD MAX	0.6 22.9	0.3 6.8	1 32	0.2 5.9	0.7 50.3	3 105
			MIN	21.4	6.1	28	5.4	48.4	97
47	24.50	7	AV7	23.3	7.2	29	5.9	48.2	122
			STD	1.1	0.4	3	0.3	1.2	7
			MAX	24.8	7.9	33	6.4	49.9	130
			MIN	21.8	6.6	25	5.5	46.6	111

USH 10 over Little Lake Butte des Morts - Pier 21 #*	1

Page 2 of 3 PDIPLOT Ver. 2014.1 - Printed: 24-Nov-2014

> APE D30-42, HP 14 x 73 Test date: 18-Nov-2014

USH 10 o OP: MR	over Little Lake I	Butte des Mort	s - Pier 21 #1					APE D30-42, H Test date: 18-	
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
end	ft	bl/ft		ksi	ksi	k-ft	ft	**	kips
55	25.50	8	AV8	23.7	7.1	30	6.0	48.1	126
			STD MAX	0.5 24.3	0.2 7.4	1 31	0.1 6.1	0.6 49.3	3 130
			MIN	22.5	6.9	27	5.7	47.4	122
61	26.50	6	AV6	23.4	7.0	31	5.9	48.5	123
			STD	0.5	0.2	1	0.1	0.6	3
			MAX	24.2	7.3	32	6.0	49.4	127
70	07.50	0	MIN	22.6	6.7	30	5.6	47.8	119
70	27.50	9	AV9 STD	24.7 0.7	8.3 1.3	30 1	6.2 0.2	47.1 0.7	152 27
			MAX	25.7	10.9	32	6.5	48.6	205
			MIN	23.3	7.0	27	5.8	46.1	129
78	28.50	8	AV8	27.1	12.0	36	7.1	44.3	213
			STD	0.6	0.4	2	0.2	0.6	7
			MAX MIN	28.4 26.3	12.5 11.3	39 33	7.6 6.9	45.0 42.9	221 202
86	29.50	8	AV8	26.2	10.1	34	6.7	45.6	184
	20100	C C	STD	0.7	0.5	1	0.2	0.7	13
			MAX	27.8	10.9	37	7.2	46.4	201
			MIN	25.6	9.3	34	6.4	43.9	163
93	30.50	7	AV7 STD	26.8	11.1 0.2	36 1	6.9	45.0 0.3	193 3
			MAX	0.4 27.6	0.2 11.4	38	0.1 7.0	45.4	199
			MIN	26.4	11.0	34	6.7	44.4	188
100	31.50	7	AV7	26.3	9.5	36	6.7	45.6	157
			STD	0.5	0.5	1	0.2	0.5	13
			MAX MIN	27.2 25.4	10.3 8.8	38 35	7.0 6.4	46.5 44.6	178 136
106	32.50	6	AV6	26.6	9.8	38	6.8	45.3	157
100	02.00	Ũ	STD	0.5	0.3	1	0.1	0.5	11
			MAX	27.2	10.4	39	6.9	45.9	176
			MIN	25.8	9.4	36	6.6	44.7	145
116	33.50	10	AV10 STD	27.2 0.4	11.1 1.0	36 1	7.0 0.1	44.5 0.4	210 24
			MAX	28.1	12.4	38	7.3	45.1	245
			MIN	26.6	9.8	34	6.8	43.6	173
127	34.50	11	AV11	28.2	13.6	37	7.4	43.5	258
			STD	0.5	1.1	1	0.2	0.5	21
			MAX MIN	29.3 27.6	15.8 12.3	38 36	7.8 7.1	44.1 42.4	297 218
145	35.50	18	AV18	30.0	18.8	39	8.0	41.8	382
140	00.00	10	STD	0.7	2.0	1	0.2	0.6	46
			MAX	31.4	23.0	42	8.5	42.8	473
			MIN	28.8	15.6	37	7.6	40.5	292
174	36.42	32	AV24 STD	31.4 0.4	25.5 0.9	41 1	8.6 0.1	40.4 0.3	522 12
			MAX	32.1	26.6	44	9.0	40.8	540
			MIN	30.8	23.5	40	8.4	39.4	491
184	36.75	30	AV10	31.3	25.6	41	8.5	40.6	532
			STD	0.2	0.6	1	0.1	0.2	8
			MAX MIN	31.4 30.6	26.6 24.5	43 39	8.6 8.3	41.1 40.4	542 519
219	37.50	47	AV35	31.7	26.8	38	8.5	40.5	582
210	01.00	וד	STD	0.6	1.5	1	0.2	0.6	24
			MAX	33.9	30.2	42	9.5	41.5	635
			MIN	30.6	24.2	35	8.1	38.5	543

USH 10 over Little Lake Butte des Morts - Pier 21 #	1
OP MR	

Page 3 of 3 PDIPLOT Ver. 2014.1 - Printed: 24-Nov-2014

APE D30-42, HP 14 x 73

P: MR								Test date: 18										
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	R									
nd	ft	bl/ft		ksi	ksi	k-ft	ft	**	k									
58	38.50	39	AV39	30.5	24.1	36	8.2	41.2	5									
			STD	0.4	0.8	1	0.1	0.3										
			MAX	31.5	25.5	38	8.5	41.7	5									
			MIN	29.9	22.5	34	8.0	40.5	5									
92	39.50	34	AV34	30.0	20.4	35	8.1	41.4	5									
			STD	0.5	1.1	1	0.2	0.4										
			MAX	31.0	22.7	37	8.5	42.3	Į									
			MIN	28.9	18.7	33	7.8	40.5	4									
27	40.50	35	AV35	30.1	19.1	35	8.1	41.4	:									
			STD	0.4	0.9	1	0.2	0.4										
			MAX	31.6	20.8	38	8.7	42.1										
			MIN	29.3	17.1	33	7.9	40.2										
51	41.50	34	AV34	29.8	17.3	35	8.0	41.7										
			STD	0.4	0.4	1	0.2	0.4										
			MAX	30.9	18.4	37	8.4	42.5										
			MIN	28.9	16.7	33	7.7	40.8										
3	42.50	42	AV40	30.3	18.4	35	8.2	41.3										
			STD	0.4	0.3	1	0.2	0.4										
			MAX	31.0	19.1	37	8.5	42.0										
			MIN	29.5	17.9	33	7.9	40.5										
.3	43.50	43.50	43.50	43.50	43.50	43.50	43.50	43.50	43.50	43.50	40	AV40	30.2	18.1	35	8.2	41.3	
			STD	0.3	0.4	1	0.1	0.3										
			MAX	30.9	19.3	37	8.4	42.0										
			MIN	29.5	17.4	33	7.9	40.7										
6	44.50	43	AV43	30.8	18.5	36	8.5	40.6										
			STD	0.4	0.7	1	0.1	0.3										
			MAX	31.6	20.3	39	8.8	41.3										
			MIN	30.1	17.1	34	8.2	39.9										
2	45.50	46	AV46	30.8	16.6	35	8.4	40.8										
			STD	0.5	0.3	1	0.2	0.4										
			MAX	31.9	17.7	38	8.8	41.7										
			MIN	29.9	15.9	33	8.0	39.8										
5	46.50	43	AV43	31.2	17.9	35	8.5	40.5										
			STD	0.5	0.7	1	0.2	0.4										
			MAX	32.2	19.3	37	8.8	41.5										
			MIN	29.9	16.6	32	8.1	39.9										
9	47.50	54	AV54	32.1	20.7	36	8.7	40.0										
			STD	0.5	0.8	1	0.2	0.4										
			MAX	33.2	22.6	38	9.1	40.7										
			MIN	31.2	19.3	34	8.4	39.2										
9	47.67	60	AV10	32.2	21.1	36	8.7	40.0										
			STD	0.4	0.4	1	0.2	0.3										
			MAX	32.8	21.8	38	9.0	40.4										
			MIN	31.6	20.4	35	8.6	39.4										
			Average Std. Dev.	29.4 3.4	17.9 5.6	35 4	7.9 1.0	42.3 3.4										
			Maximum	33.9	30.2	44	9.5	66.1										
			Minimum	7.3	2.7	9	3.0	38.5										
					nber of blows a		0.0	00.0										

depth (ft) Comments

7 13.83 Reported Reference EL 735.75

184 Resumed driving to achieve minimum tip elevation 36.75

Time Summary

BL#

Drive

- Drive 8 minutes 17 seconds
- Stop 1 hour 48 minutes 35 seconds

11 minutes 4 seconds

2:50:30 PM - 2:58:47 PM (11/18/2014) BN 1 - 186 2:58:47 PM - 4:47:22 PM

4:47:22 PM - 4:58:26 PM BN 187 - 640

Total time [2:07:56] = (Driving [0:19:21] + Stop [1:48:35])

PDIPLOT Ver. 2014.1 - Printed: 24-Nov-2014

GRL Engineers, Inc. - Case Method & iCAP® Results

Test date: 19-Nov-2014

USH 10 over Little Lake Butte des Morts - Pier 21 #1 Restrike APE D30-42, HP 14 x 73

	gineers, Inc. ethod & iCAP®	Results				PDIP	LOT Ver. 2014.		age 1 of 1 -Nov-2014
USH 10 over Little Lake Butte des Morts - Pier 21 #1 Restrike OP: MR								APE D30-42, H Test date: 19	
	21.40 in^2 51.00 ft								0.492 k/ft3 0,000 ksi
	,807.9 f/s							JC:	1.20
CSX: N	lax Measured C	ompr. Stress				STK	: O.E. Diesel I	Hammer Stroke	9
	Compression Str					BPM	1: Blows per M	inute	
	lax Transferred					RX9		ethod Capacity	(JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
end	ft	bl/ft		ksi	ksi	k-ft	ft	**	kips
5	47.73	60	AV4	34.4	26.2	38	8.8	39.9	573
			STD	0.5	0.6	1	0.3	0.6	4
			MAX	35.2	27.0	39	9.3	40.6	578
			MIN	33.8	25.2	36	8.5	38.9	568
10	47.82	60	AV5	33.8	26.5	37	8.6	40.4	571
			STD	0.4	0.3	1	0.1	0.2	7
			MAX	34.2	27.0	38	8.7	40.7	579
			MIN	33.2	26.2	36	8.4	40.1	563
15	47.91	53	AV5	33.8	26.5	38	8.6	40.4	566
			STD	0.3	0.4	1	0.1	0.2	5
			MAX	34.2	26.9	40	8.7	40.8	570
			MIN	33.5	26.0	37	8.4	40.1	557
			Average	34.0	26.4	38	8.6	40.3	570
			Std. Dev.	0.5	0.5	1	0.2	0.5	6
			Maximum	35.2	27.0	40	9.3	40.8	579
			Minimum	33.2	25.2	36	8.4	38.9	557
				Tatal	منتجاما كمعمامه				

Total number of blows analyzed: 14

Time Summary

Drive 21 seconds

9:19:58 AM - 9:20:19 AM (11/19/2014) BN 1 - 15

PDIPLOT Ver. 2014.1 - Printed: 25-Nov-2014

USH 10 over Little Lake Butte des Morts - Pier 21 #36 APE D30-42, HP 14 x 73

Test date: 18-Nov-2014

USH 10 over Little Lake Butte des Morts - Pier 21 #36	
OP: MR	

Page 1 of 3 PDIPLOT Ver. 2014.1 - Printed: 25-Nov-2014

APE D30-42, HP 14 x 73 Test date: 18-Nov-2014

<u>OP: N</u>	1R							Test date: 18-	Nov-2014
AR: LE: WS: 1	21.40 in^2 51.00 ft 6,807.9 f/s								0.492 k/ft3 0,000 ksi 1.20
CSX:	Max Measured Co							Hammer Stroke	
	Compression Stre Max Transferred E						Blows per M	Inute lethod Capacity	(IC = 0.9)
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
end	ft	bl/ft		ksi	ksi	k-ft	ft	**	kips
7	12.00	6	AV1	21.5	7.8	31	5.5	50.0	145
			MAX	21.5	7.8	31	5.5	50.0	145
			MIN	21.5	7.8	31	5.5	50.0	145
7	13.00	6	AV1	23.2	7.6	33	6.1	47.4	142
			MAX MIN	23.2 23.2	7.6 7.6	33 33	6.1 6.1	47.4 47.4	142 142
_									
7	14.00	6	AV1 MAX	22.9 22.9	6.7 6.7	32 32	6.1 6.1	47.7 47.7	128 128
			MIN	22.9	6.7	32	6.1	47.7	128
11	15.00	6	AV2	20.2	5.6	27	5.3	51.0	104
	13.00	0	STD	0.4	0.4	1	0.1	0.4	13
			MAX	20.6	6.0	28	5.4	51.4	116
			MIN	19.8	5.3	26	5.2	50.5	91
14	16.00	3	AV3	18.0	4.2	27	4.7	53.8	23
			STD	2.5	0.4	3	0.6	2.9	21
			MAX MIN	21.0 14.8	4.7 3.6	31 23	5.5 4.1	57.1 50.0	50 0
10	17.00	2							
16	17.00	2	AV2 STD	19.0 0.4	4.2 0.0	33 1	4.8 0.2	53.1 1.0	0 0
			MAX	19.5	4.2	34	5.0	54.1	Ő
			MIN	18.6	4.1	33	4.6	52.1	0
19	18.00	3	AV3	19.9	4.3	31	4.9	52.7	21
			STD	0.6	0.1	1	0.2	0.9	10
			MAX MIN	20.4 19.0	4.5 4.2	32 29	5.1 4.7	53.9 51.8	35 10
	40.00	0							
22	19.00	3	AV3 STD	21.5 0.7	4.8 0.1	32 2	5.2 0.1	51.2 0.6	46 26
			MAX	22.2	4.8	34	5.4	51.8	73
			MIN	20.6	4.6	29	5.1	50.3	11
26	20.00	4	AV4	22.1	5.4	33	5.4	50.5	79
			STD	0.9	0.1	1	0.2	0.9	14
			MAX	22.9	5.5	34	5.5	52.0	96
			MIN	20.7	5.2	31	5.1	49.8	61
30	21.00	4	AV4 STD	23.1 0.2	5.6 0.1	34 1	5.6 0.1	49.6 0.3	89 6
			MAX	23.4	5.8	34	5.7	50.1	93
			MIN	22.8	5.4	33	5.5	49.3	79
33	22.00	3	AV3	23.1	5.8	34	5.5	49.8	85
			STD	0.5	0.0	0	0.1	0.4	2
			MAX	23.6	5.9	35	5.7	50.2	88
			MIN	22.4	5.8	34	5.4	49.3	84
39	23.00	6	AV6	23.8	5.6	31	5.7	49.2	102
			STD MAX	0.8 24.9	0.2 5.8	1 32	0.2 6.0	0.6 49.7	4 107
			MIN	22.6	5.3	29	5.6	48.1	97
43	24.00	4	AV4	24.4	5.9	35	5.8	48.6	97
			STD	0.6	0.2	1	0.1	0.6	4
			MAX	25.0	6.2	36	6.0	49.5	104
			MIN	23.5	5.7	33	5.6	47.9	93
47	25.00	4	AV4	23.9	5.7	34	5.7	49.0	94
			STD MAX	0.3 24.5	0.1 5.8	1 35	0.1 5.9	0.4 49.4	6 103
			MIN	24.5	5.5	33	5.6	49.4	87
51	26.00	4	AV4	24.4	5.8	35	5.8	48.8	92
•••	_0.00	·	STD	0.1	0.2	0	0.0	0.2	3
			MAX	24.4	6.0	35	5.8	49.1	96
			MIN	24.2	5.5	34	5.7	48.6	89

USH 10 over l	Little Lake B	utte des	Morts -	Pier 21	#36
OP · MR					

Page 2 of 3 PDIPLOT Ver. 2014.1 - Printed: 25-Nov-2014

APE D30-42, HP 14 x 73

OP: MR	over Little Lake	Butte des Mor	ts - Pier 21 #30)			F	APE D30-42, F Test date: 18-	
BL# end	depth ft	BLC bl/ft	TYPE	CSX ksi	CSB ksi	EMX k-ft	STK ft	BPM	RX9 kips
56	27.00	5	AV5 STD MAX MIN	24.7 0.4 25.5 24.2	6.1 0.2 6.5 5.8	33 1 34 32	5.9 0.1 6.1 5.7	48.5 0.5 49.0 47.6	126 16 156 106
62	28.00	6	AV6 STD MAX MIN	27.1 0.7 27.9 25.9	9.0 0.6 9.6 7.8	36 1 37 35	6.6 0.2 6.8 6.2	45.9 0.7 47.3 45.1	185 4 189 178
70	29.00	8	AV8 STD MAX MIN	27.9 0.6 28.7 26.8	9.3 0.5 10.0 8.4	37 1 39 35	6.8 0.2 7.1 6.6	45.0 0.5 45.9 44.3	198 6 207 187
76	30.00	6	AV6 STD MAX MIN	26.8 0.8 28.0 25.8	8.4 0.4 8.8 7.8	38 1 39 36	6.6 0.2 6.9 6.3	46.0 0.8 46.9 44.7	180 18 207 155
83	31.00	7	AV7 STD MAX MIN	27.0 1.0 28.5 25.6	7.8 0.5 8.8 7.4	37 2 41 34	6.6 0.3 7.0 6.1	45.9 1.1 47.5 44.4	168 20 204 148
88	32.00	5	AV5 STD MAX MIN	26.2 0.6 27.0 25.3	8.2 1.7 11.7 7.1	37 2 39 34	6.3 0.1 6.5 6.1	46.7 0.5 47.4 46.0	170 32 233 147
97	33.00	9	AV9 STD MAX MIN	28.7 0.3 29.2 28.3	9.9 0.4 10.5 9.2	38 1 39 37	7.1 0.1 7.2 6.9	44.3 0.3 44.7 43.8	234 7 247 222
105	34.00	8	AV8 STD MAX MIN	29.1 0.3 29.5 28.8	10.0 0.5 10.8 9.0	39 1 40 37	7.1 0.1 7.2 7.0	44.2 0.3 44.6 43.8	219 11 242 204
113	35.00	8	AV8 STD MAX MIN	29.2 0.8 30.8 28.4	10.2 0.9 11.8 8.7	38 2 43 35	7.1 0.3 7.6 6.8	44.1 0.8 45.2 42.8	230 18 250 201
125	36.00	12	AV12 STD MAX MIN	30.7 1.0 33.1 29.3	15.1 3.8 21.9 11.5	38 2 41 34	7.7 0.5 8.8 7.1	42.6 1.1 44.1 39.9	355 93 492 276
142	37.00	17	AV17 STD MAX MIN	31.8 0.6 33.0 30.5	17.9 0.9 19.8 16.3	39 2 41 37	8.2 0.2 8.7 7.7	41.3 0.6 42.5 40.2	425 29 491 384
160	38.00	18	AV18 STD MAX MIN	31.4 0.3 31.8 30.5	17.0 0.9 18.5 15.2	38 1 40 37	8.1 0.1 8.3 7.8	41.5 0.3 42.4 41.1	404 15 432 378
174	39.00	14	AV14 STD MAX MIN	30.9 0.8 32.7 30.0	15.1 0.8 16.9 14.1	38 2 43 35	7.9 0.3 8.5 7.5	42.0 0.7 43.0 40.6	375 13 398 359
191	40.00	17	AV17 STD MAX MIN	30.3 0.5 31.3 29.5	12.3 1.0 13.8 10.6	38 1 40 36	7.7 0.2 8.1 7.5	42.4 0.4 43.1 41.5	341 14 366 316
205	41.00	14	AV14 STD MAX MIN	31.3 0.5 32.2 30.4	12.2 0.4 12.9 11.6	41 1 44 40	8.0 0.1 8.3 7.8	41.7 0.3 42.2 41.0	342 9 359 328

USH 10 over Little Lake Butte des Morts - Pier 21 #3	6
OP: MR	

Page 3 of 3 PDIPLOT Ver. 2014.1 - Printed: 25-Nov-2014

> APE D30-42, HP 14 x 73 Test date: 18-Nov-2014

OP: MR								Test date: 18-	Nov-2014
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
end	ft	bl/ft		ksi	ksi	k-ft	ft	**	kips
220	42.00	15	AV15	31.7	12.9	41	8.1	41.5	343
			STD	0.4	0.6	1	0.2	0.4	8
			MAX	32.3	14.0	43	8.4	42.2	357
			MIN	30.8	12.1	39	7.8	40.9	326
239	43.00	19	AV19	32.2	15.9	41	8.3	40.9	374
			STD	0.5	1.0	1	0.2	0.4	11
			MAX	33.1	17.7	43	8.7	41.7	392
			MIN	31.2	13.9	38	8.0	40.2	357
264	44.00	25	AV25	32.4	17.4	40	8.5	40.6	396
			STD	0.4	0.7	1	0.1	0.3	12
			MAX	33.4	19.1	42	8.8	41.1	419
			MIN	31.8	16.3	39	8.3	39.9	376
294	45.00	30	AV30	33.1	18.9	41	8.8	40.0	448
			STD	0.5	0.5	1	0.2	0.4	12
			MAX	34.4	19.9	44	9.1	40.8	469
			MIN	32.0	18.2	39	8.4	39.2	422
299	45.17	30	AV5	32.7	18.7	41	8.7	40.2	465
			STD	0.4	0.5	1	0.2	0.3	6
			MAX	33.1	19.3	42	8.9	40.6	471
			MIN	32.1	18.2	39	8.5	39.7	455
			Average	29.5	12.9	38	7.5	43.5	301
			Std. Dev.	3.7	4.8	3	1.1	3.5	130
			Maximum	34.4	21.9	44	9.1	57.1	492
			Minimum	14.8	3.6	23	4.1	39.2	0
				T-1-1					

Total number of blows analyzed: 293

BL# depth (ft) Comments

7 14.33

Reference Elevation EL 735.75

Time Summary

Drive 6 minutes 54 seconds

3:42:32 PM - 3:49:26 PM (11/18/2014) BN 1 - 299

PDIPLOT Ver. 2014.1 - Printed: 25-Nov-2014

Test date: 19-Nov-2014

USH 10 over LLBDM - Pier 21 #36 Restrike APE D30-42, HP 14 x 73

Page 1 of 1 PDIPLOT Ver. 2014.1 - Printed: 25-Nov-2014

USH 10 over LLBDM - Pier 21 #36 Restrike OP: MR APE D30-42. HP 14 x 73

AFE D30-4	·2, nr	14 X / J
Test date:	19-No	ov-2014

<u>OP: M</u>	IR							lest date: 19	-Nov-2014
AR:	21.40 in^2							SP:	0.492 k/ft3
LE:	51.00 ft								0,000 ksi
WS: 1	6,807.9 f/s							JC:	1.20
CSX:	Max Measured C	Compr. Stress	6			EM	X: Max Transfe	rred Enerav	
	Compression Str					I: Blows per M			
	O.E. Diesel Ham				RX9: Max Case Method Capacity (JC=0.9)				
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
end	, t	bl/ft		ksi	ksi	ft	k-ft	**	kips
6	45.25	53	AV5	33.8	24.8	8.8	39	40	570
			STD	0.1	1.1	0.1	1	0	15
			MAX	34.1	26.5	9.0	40	40	599
			MIN	33.7	22.9	8.7	38	40	554
11	45.32	80	AV5	34.9	32.0	9.2	40	39	671
			STD	0.2	2.3	0.1	1	0	22
			MAX	35.1	34.3	9.3	41	39	697
			MIN	34.4	28.5	9.1	39	39	638
16	45.38	80	AV5	35.3	31.1	9.3	42	39	669
			STD	0.2	0.5	0.1	1	0	6
			MAX	35.6	31.7	9.5	43	39	676
			MIN	35.0	30.3	9.2	41	39	662
			Average	34.7	29.3	9.1	40	39	637
			Std. Dev.	0.7	3.6	0.2	1	0	50
			Maximum	35.6	34.3	9.5	43	40	697
			Minimum	33.7	22.9	8.7	38	39	554
				Total nu	mber of blows a	analyzed: 15			

Time Summary

Drive 22 seconds

9:32:55 AM - 9:33:17 AM (11/19/2014) BN 2 - 16

Test date: 18-Nov-2014

USH 10 over Little Lake Butte des Morts - Pier 21 #44 APE D30-42, HP 14 x 73

USH 10 over Little Lake Butte des Morts - Pier 21 #44	
OP: MR	

Page 1 of 3 PDIPLOT Ver. 2014.1 - Printed: 25-Nov-2014

APE D30-42, HP 14 x 73 Test date: 18-Nov-2014

OP: M	R		5 110121 # 44				7	Test date: 18-	
AR:	21.40 in^2).492 k/ft3
LE:	77.50 ft),000 ksi
-	6,807.9 f/s Max Measured Co	mor Stress				STK		JC: Hammer Stroke	1.20
	Compression Stre						Blows per M		,
EMX:	Max Transferred E	nergy				RX9:	Max Case M	ethod Capacity	(JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
end	ft	bl/ft	A) / 4	ksi	ksi	k-ft	ft	**	kips
13	12.00	3	AV1 MAX	18.2 18.2	7.9 7.9	22 22	4.4 4.4	55.3 55.3	106 106
			MIN	18.2	7.9	22	4.4	55.3	106
13	13.00	3	AV1	21.9	8.2	34	5.6	49.7	99
10	10.00	0	MAX	21.9	8.2	34	5.6	49.7	99
			MIN	21.9	8.2	34	5.6	49.7	99
13	14.00	3	AV1	24.5	8.7	37	6.3	46.7	118
			MAX	24.5	8.7	37	6.3	46.7	118
			MIN	24.5	8.7	37	6.3	46.7	118
13	15.00	3	AV1	21.8	6.5	31	5.4	50.4	107
			MAX	21.8	6.5	31	5.4	50.4	107
			MIN	21.8	6.5	31	5.4	50.4	107
13	16.00	3	AV1	20.5	5.7	28	5.1	51.8	103
			MAX	20.5	5.7	28	5.1	51.8	103
			MIN	20.5	5.7	28	5.1	51.8	103
14	17.00	3	AV1	20.7	5.4	28	5.2	51.4	97
			MAX	20.7	5.4	28	5.2	51.4	97 07
			MIN	20.7	5.4	28	5.2	51.4	97
19	18.00	5	AV1	21.4	5.4	28	5.4	50.5	101
			MAX MIN	21.4 21.4	5.4 5.4	28 28	5.4 5.4	50.5 50.5	101 101
~~~	40.00								
23	19.00	4	AV4	21.2	5.7	30	5.3	51.0	99 7
			STD MAX	0.6 22.0	0.3 6.1	1 32	0.2 5.5	0.8 52.2	7 108
			MIN	20.4	5.2	29	5.0	49.9	89
27	20.00	4	AV4	22.4	6.2	34	5.5	49.8	106
21	20.00	-	STD	0.4	0.2	2	0.1	0.4	6
			MAX	23.0	6.3	36	5.7	50.4	110
			MIN	22.0	5.9	31	5.4	49.3	96
31	21.00	4	AV4	23.6	6.9	35	5.8	48.9	115
			STD	0.5	0.3	2	0.1	0.5	2
			MAX	24.1	7.3	37	5.9	49.7	117
			MIN	22.8	6.6	33	5.6	48.4	112
36	22.00	5	AV5	23.2	6.8	33	5.7	49.2	117
			STD	0.8	0.4	2	0.2	0.7	4
			MAX MIN	24.0	7.4	35	5.9	50.5	122
		_		21.6	6.3	31	5.4	48.3	112
41	23.00	5	AV5	23.5	7.0	34	5.8	48.8	123
			STD MAX	0.7 24.4	0.2 7.2	2 37	0.2 6.0	0.7 49.5	6 129
			MIN	24.4	6.7	30	5.6	49.5	1129
46	24.00	5	AV5	23.2	7.2	32		49.2	122
40	24.00	5	STD	0.8	0.3	2	5.7 0.2	49.2 0.8	4
			MAX	24.5	7.7	35	6.0	50.1	130
			MIN	22.2	6.7	29	5.5	47.8	119
52	25.00	6	AV6	24.0	7.8	33	5.9	48.5	132
		-	STD	0.3	0.5	1	0.1	0.4	2
			MAX	24.5	8.5	34	6.0	49.2	136
			MIN	23.5	7.3	32	5.7	48.0	129
57	26.00	5	AV5	24.1	7.3	34	5.9	48.4	132
			STD	0.6	0.2	2	0.2	0.6	6
			MAX MIN	24.9 23.1	7.6 7.0	36 30	6.1 5.6	49.4 47.6	136 120
			IVIIIN	20.1	7.0	50	5.0	-7.U	120

USH 10 over Little Lake Butte des Morts - Pier 21 #44

Page 2 of 3 PDIPLOT Ver. 2014.1 - Printed: 25-Nov-2014

APE D30-42, HP 14 x 73

BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	Test date: 18- BPM	RXS
BL# end	depth ft	bl/ft	TIPE	ksi	ksi	⊨iviX k-ft	ft	BPIVI **	kips
62	27.00	5	AV5	24.2	7.5	33	6.0	48.1	139
	21100	0	STD	0.3	0.1	1	0.1	0.5	
			MAX	24.5	7.7	34	6.1	48.9	141
			MIN	23.7	7.4	31	5.8	47.5	135
72	28.00	10	AV10	26.1	10.1	34	6.5	46.1	196
			STD	0.8	1.3	2	0.3	0.9	20
			MAX	27.2	11.4	38	6.9	47.5	221
			MIN	24.5	7.6	31	6.1	44.9	160
81	29.00	9	AV9	27.1	11.4	36	6.8	45.1	217
			STD	0.4	0.4	1	0.1	0.4	8
			MAX	27.9	12.3	38	7.0	45.7	232
			MIN	26.7	10.8	34	6.6	44.5	205
89	30.00	8	AV8	26.4	10.6	35	6.6	45.7	194
			STD	0.7	0.4	1	0.2	0.6	9
			MAX MIN	27.5 25.6	11.3 10.1	37 33	6.9 6.4	46.5 45.0	213 183
00	04.00	-							
96	31.00	7	AV7 STD	27.0 0.9	11.4 0.4	37 2	6.8 0.3	45.3 0.9	219 16
			MAX	28.6	11.8	39	7.2	46.4	237
			MIN	26.0	10.8	33	6.4	43.8	195
103	32.00	7	AV7	26.6	10.4	36	6.7	45.6	178
100	02.00	,	STD	0.5	0.2	1	0.1	0.5	3
			MAX	27.2	10.5	37	6.9	46.2	181
			MIN	25.9	10.1	35	6.5	44.9	173
110	33.00	7	AV7	26.4	10.6	35	6.6	45.8	186
			STD	0.8	0.5	2	0.3	0.9	21
			MAX	28.4	11.6	40	7.2	46.7	223
			MIN	25.7	10.1	33	6.3	43.9	166
117	34.00	7	AV7	26.9	10.8	36	6.8	45.3	186
			STD	0.7	0.3	2	0.2	0.6	10
			MAX MIN	27.7 25.6	11.2 10.3	39 33	7.0 6.4	46.4 44.6	202 171
125	35.00	8	AV8 STD	27.4 0.7	11.3 0.4	37	6.9	44.9	200 9
			MAX	29.1	0.4 11.9	2 41	0.2 7.4	0.6 45.5	215
			MIN	26.6	10.6	35	6.7	43.4	189
152	36.00	27	AV27	29.6	16.0	37	7.7	42.7	343
152	30.00	21	STD	1.2	2.9	2	0.4	1.2	74
			MAX	31.9	21.0	43	8.7	44.8	465
			MIN	27.4	11.7	33	6.9	40.0	247
174	37.00	22	AV22	31.6	22.1	42	8.4	40.7	470
			STD	1.0	2.2	2	0.4	0.8	43
			MAX	33.3	25.2	46	9.2	42.3	521
			MIN	30.1	18.5	38	7.8	39.0	401
193	38.00	19	AV19	31.4	18.4	41	8.3	41.0	410
			STD	1.0	2.7	2	0.3	0.8	44
			MAX MIN	33.3 29.5	23.1 14.4	45 37	8.9 7.6	42.7 39.7	483 346
210	39.00	17	AV17	30.7	14.2	40	8.1	41.5	352
			STD MAX	0.5 31.7	0.8 15.7	1 43	0.2 8.4	0.5 42.8	17 376
			MIN	29.4	12.9	37	7.6	40.8	315
224	40.00	14	AV14	31.0	13.6	41	8.2	41.3	339
224	40.00	14	STD	31.0 0.5	0.9	41	8.2 0.2	41.3 0.5	17
			MAX	31.8	14.9	43	8.5	42.1	370
			MIN	30.2	11.7	39	7.9	40.6	314
240	41.00	16	AV16	31.7	16.0	42	8.4	40.7	376
270	41.00	10	STD	0.7	2.0	1	0.4	0.6	28
			MAX	33.0	18.9	44	8.8	41.7	417
			MIN	30.4	12.9	40	8.0	39.9	

USH 10 over Little	Lake Butte	des Morts	- Pier 21	#44
OP: MR				

Page 3 of 3 PDIPLOT Ver. 2014.1 - Printed: 25-Nov-2014

APE D30-42, HP 14 x 73

BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX
end	ft	bl/ft		ksi	ksi	k-ft	ft	**	kip
263	42.00	23	AV23	32.3	19.3	42	8.6	40.2	44
			STD	0.4	0.7	1	0.1	0.3	
			MAX	33.0	21.0	44	8.9	40.8	45
			MIN	31.6	17.8	40	8.4	39.7	424
295	43.00	32	AV32	32.5	21.0	42	8.8	39.9	46
			STD	0.5	0.7	1	0.2	0.3	1
			MAX	33.4	22.7	44	9.1	40.6	49
			MIN	31.7	19.8	39	8.5	39.3	44
327	44.00	32	AV32	32.8	21.7	42	8.9	39.7	49
			STD	0.5	0.5	1	0.2	0.3	
			MAX	33.8	22.5	44	9.2	40.7	50
			MIN	31.7	20.6	39	8.4	39.1	47
361	45.00	34	AV34	33.4	21.2	43	9.1	39.2	49
			STD	0.5	0.7	1	0.2	0.4	
			MAX	34.6	22.8	46	9.6	40.3	51
			MIN	32.0	20.0	41	8.6	38.2	48
401	46.00	40	AV40	33.0	20.0	41	9.0	39.4	49
			STD	0.4	0.5	1	0.2	0.3	
			MAX	34.0	21.0	44	9.5	40.2	52
			MIN	32.0	19.2	39	8.7	38.5	48
444	47.00	43	AV43	33.3	19.5	42	9.1	39.2	50
			STD	0.4	1.0	1	0.2	0.3	2
			MAX	34.2	24.7	43	9.4	39.9	61
			MIN	32.4	18.6	40	8.8	38.6	49
453	47.10	87	AV9	34.8	33.9	46	9.9	37.7	68
			STD	0.6	2.2	1	0.2	0.5	2
			MAX	35.5	36.0	47	10.2	38.7	70
			MIN	33.7	29.4	44	9.4	37.1	65
			Average	30.4	16.9	40	8.1	42.0	38
			Std. Dev.	3.5	5.7	4	1.2	3.4	14
			Maximum	35.5	36.0	47	10.2	55.3	70
			Minimum	18.2	5.2 nber of blows a	22	4.4	37.1	8

BL# depth (ft) Comments

13 16.67 Reference Elevation EL 735.75

Time Summary

Drive 11 minutes 18 seconds

4:12:33 PM - 4:23:51 PM (11/18/2014) BN 1 - 454

#### PDIPLOT Ver. 2014.1 - Printed: 25-Nov-2014

#### Test date: 19-Nov-2014

# USH 10 over Little Lake Butte des Morts - Pier 21 #44 Restrike APE D30-42, HP 14 x 73



USH 10 over Little Lake Butte des Morts - Pier 21 #44 Restrike OP: MR

Page 1 of 1 PDIPLOT Ver. 2014.1 - Printed: 25-Nov-2014

APE D30-42, HP 14 x 73

OP: N	1R							Test date: 19	-Nov-2014
AR:	21.40 in^2							SP:	0.492 k/ft3
LE: 52.00 ft									0,000 ksi
WS: 1	6,807.9 f/s						JC:	1.20	
CSX:	Max Measured C	Compr. Stress	5			STK:	O.E. Diesel I	Hammer Stroke	е
	Compression Str					BPM	: Blows per M	inute	
EMX:	Max Transferred	l Energy				RX9:		lethod Capacit	y (JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
end	ft	bl/ft		ksi	ksi	k-ft	ft	**	kips
5	47.09	960	AV4	36.3	36.1	40	9.5	38.5	745
			STD	0.8	0.7	2	0.4	0.8	11
			MAX	37.2	36.9	42	9.9	39.8	760
			MIN	35.0	35.1	37	8.8	37.6	730
10	47.10	480	AV5	36.1	37.4	40	9.3	38.8	742
			STD	0.6	0.7	1	0.1	0.3	5
			MAX	36.9	38.3	41	9.5	39.3	749
			MIN	35.2	36.3	38	9.1	38.5	733
15	47.11	480	AV5	36.4	38.7	41	9.4	38.6	762
			STD	0.2	0.5	1	0.1	0.2	7
			MAX	36.7	39.4	42	9.6	38.8	772
			MIN	36.2	38.3	39	9.3	38.3	751
			Average	36.3	37.5	40	9.4	38.7	750
			Std. Dev.	0.6	1.2	1	0.3	0.5	12
			Maximum	37.2	39.4	42	9.9	39.8	772
			Minimum	35.0	35.1	37	8.8	37.6	730
				Total nu	mber of blows	analyzed: 14			

Time Summary

Drive 22 seconds

9:41:32 AM - 9:41:54 AM (11/19/2014) BN 1 - 15









USH 10 over LLBDM; Pile: Pier 21 #1	Test: 18-Nov-2014 16:58						
APE D30-42, HP 14 x 73; Blow: 637	CAPWAP(R) 2014						
GRL Engineers, Inc.	OP: MR						
About the CAPWAP Results							

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts USH 10 over LLBDM; Pile: Pier 21 #1 Test: 18-Nov-2014 16:58 APE D30-42, HP 14 x 73; Blow: 637 CAPWAP(R) 2014 GRL Engineers, Inc. OP: MR no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 over LLBDM; Pile: Pier 21 #1 APE D30-42, HP 14 x 73; Blow: 637 GRL Engineers, Inc.

			CAPWAP SUMM	ARY RESULT	S		
Total CAPWAP	Capacity:	489.0;	along Shaft	134.0;	at Toe	355.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist
No.	Gages	Grade			Ru	(Depth)	(Area)
	ft	ft	kips	kips	kips	kips/ft	ksf
				489.0			
1	10.2	6.8	10.0	479.0	10.0	1.46	0.31
2	17.0	13.6	10.0	469.0	20.0	1.47	0.31
3	23.8	20.4	10.0	459.0	30.0	1.47	0.31
4	30.6	27.2	15.0	444.0	45.0	2.21	0.47
5	37.4	34.0	25.0	419.0	70.0	3.68	0.78
6	44.2	40.8	32.0	387.0	102.0	4.71	1.00
7	51.0	47.6	32.0	355.0	134.0	4.71	1.00
Avg. Shai	Et		19.1			2.81	0.60
Тое			355.0				257.53
Soil Model P	arameters/E2	tensions			Shaft	Тое	
Smith Dampin	g Factor				0.27	0.09	
Quake	-	(in)			0.08	0.45	
Case Damping	Factor				0.95	0.84	
Damping Type					Viscous	Smith	
Unloading Qu	ake	(% of	loading quak	e)	100	31	
Reloading Le	vel	(% of	Ru)		100	100	
Unloading Le	vel	(% of	Ru)		7		
Resistance G	ap (included	l in Toe 🤉	Quake) (in)			0.06	
Soil Plug We	ight	(kips)	I		0.200	0.050	
CAPWAP match	quality	= 2	2.76	(Wave Up M	atch) ; RSA	. = 0	
Observed: Fi	nal Set	= 0	.20 in; 1	Blow Count		60 b/ft	
Computed: Fi	nal Set	= 0	.20 in; 1	Blow Count	_	60 b/ft	
Transducer	F3(F590) CA	L: 95.0;	RF: 0.95; F4(F6	07) CAL:	93.6; RF: 0.9	5	
	A3(K2253) CA	L: 325;	RF: 1.05; A4(K2	524) CAL:	360; RF: 1.0	5	
max. Top Com	p. Stress	= 3	31.7 ksi	(T= 36.2	ms, max= 1	.033 x Top)	
max. Comp. S	tress	= 3	2.8 ksi	(Z= 10.2	ft, T= 36	.6 ms)	
max. Tens. S	tress	= -3	.00 ksi	(Z= 23.8	ft, T= 60	.1 ms)	
max. Energy	(	= 3	4.6 kip-ft;				

USH 10 over LLBDM; Pile: Pier 21 #1 APE D30-42, HP 14 x 73; Blow: 637 GRL Engineers, Inc. Test: 18-Nov-2014 16:58 CAPWAP(R) 2014 OP: MR

			EXT	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.4	678.9	-41.2	31.7	-1.92	34.6	15.8	0.85
2	6.8	689.2	-47.3	32.2	-2.21	34.0	15.4	0.82
3	10.2	701.0	-52.4	32.8	-2.45	33.4	15.2	0.79
4	13.6	661.2	-55.3	30.9	-2.59	30.7	14.8	0.76
5	17.0	672.6	-60.0	31.4	-2.80	30.1	14.6	0.73
6	20.4	634.7	-61.2	29.7	-2.86	27.6	14.3	0.70
7	23.8	649.6	-64.1	30.3	-3.00	27.1	14.0	0.67
8	27.2	619.5	-59.5	28.9	-2.78	24.8	13.5	0.64
9	30.6	644.9	-60.6	30.1	-2.83	24.2	13.1	0.61
10	34.0	620.5	-53.8	29.0	-2.51	21.4	12.4	0.59
11	37.4	646.2	-53.3	30.2	-2.49	20.8	11.6	0.56
12	40.8	567.2	-39.2	26.5	-1.83	17.0	12.1	0.53
13	44.2	556.9	-38.3	26.0	-1.79	16.5	13.6	0.50
14	47.6	424.5	-20.2	19.8	-0.95	12.2	14.3	0.48
15	51.0	439.5	-18.7	20.5	-0.87	8.7	14.3	0.45
Absolute	10.2			32.8			(T =	36.6 ms)
	23.8				-3.00		(T =	60.1 ms)

				CAS	E METHOD	)				
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
RP	683.9	563.7	443.5	323.4	203.2					
RX	734.5	645.5	564.8	511.4	502.7	494.9	487.3	480.7	476.4	472.9
RU	683.9	563.7	443.5	323.4	203.2					
RAU =	309.9 (ki	.ps); RA	.2 = 5	71.5 (ki	.ps)					

Current CAPWAP Ru = 489.0 (kips); Corresponding J(RP)= 0.32; J(RX) = 1.16

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
15.7	35.80	600.4	684.3	688.1	0.87	0.20	0.20	35.3	790.8	910

PILE PROFILE AND PILE MODEL

	Depth	Area	E-Modulus	Spec. Weight	Perim.
	ft	in²	ksi	lb/ft ³	ft
	0.0	21.4	29992.2	492.000	4.70
	51.0	21.4	29992.2	492.000	4.70
Toe Area		198.5	in ²		

APE D30		14 x 73;	Pier 21 Blow: 637					Test: 18	-Nov-201 CAPWAP (	4 16:58 R) 2014 OP: MR
Segmnt		npedance	Imped.		Tension	Comp	ression	Perim.	Wave	Soil
Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
	ftki	lps/ft/s	%	in		in		ft	ft/s	kips
1	3.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16807.9	0.000
13	44.2	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16807.9	0.040
14	47.6	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16807.9	0.060
15	51.0	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16807.9	0.100

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.202 ms, 2L/c 6.1 ms Total volume: 7.579 ft³; Volume ratio considering added impedance: 1.000









#### About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 over LLBDM; Pile: Pier 21 #1 Restrike APE D30-42, HP 14 x 73; Blow: 5 GRL Engineers, Inc.

			CAPWAP SUMM	ARY RESULT	S		
Total CAPWAP	Capacity:	580.0;	along Shaft	170.0;	; at Toe	410.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.
No.	Gages	Grade			Ru	(Depth)	(Area)
	ft	ft	kips	kips	kips	kips/ft	ksf
				580.0			
1	10.2	6.3	10.0	570.0	10.0	1.59	0.34
2	17.0	13.1	10.0	560.0	20.0	1.47	0.31
3	23.8	19.9	10.0	550.0	30.0	1.47	0.31
4	30.6	26.7	30.0	520.0	60.0	4.41	0.94
5	37.4	33.5	30.0	490.0	90.0	4.41	0.94
6	44.2	40.3	40.0	450.0	130.0	5.88	1.25
7	51.0	47.1	40.0	410.0	170.0	5.88	1.25
Avg. Shaf	Et		24.3			3.61	0.77
Toe			410.0				297.43
Soil Model F	arameters/E	xtensions	ł		Shaft	Тое	
Smith Dampin	ng Factor				0.29	0.12	
Quake		(in)			0.07	0.34	
Case Damping	J Factor				1.29	1.29	
Damping Type	•				Viscous S	m+Visc	
Unloading Qu	lake	(% of	loading quak	ce)	100	98	
Resistance G	ap (include	d in Toe	Quake) (in)			0.09	
Soil Plug We	aight	(kips)				0.066	
CAPWAP match	quality	= 1	.72	(Wave Up Ma	atch) ; RSA	A = 0	
Observed: Fi	nal Set	= 0	.20 in;	Blow Count	=	60 b/ft	
Computed: Fi	nal Set	= 0	.20 in;	Blow Count	=	61 b/ft	
Transducer		-	: 1.00; F4(F607) : 1.14; A4(K2524		; RF: 1.00 ; RF: 1.14		
max. Top Com	np. Stress	= 3	3.4 ksi	(T= 36.0	ms, max= 3	1.035 x Top)	
max. Comp. S	Stress	= 3	4.6 ksi	(Z= 10.2	ft, T= 3	6.4 ms)	
max. Tens. S	Stress	= -3	.83 ksi	(Z= 10.2	ft, T= 58	8.3 ms)	

USH 10 over LLBDM; Pile: Pier 21 #1 Restrike APE D30-42, HP 14 x 73; Blow: 5 GRL Engineers, Inc.

Test: 19-Nov-2014 09:20 CAPWAP(R) 2014 OP: MR

			EXTI	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.4	715.4	-70.5	33.4	-3.29	36.0	16.3	0.81
2	6.8	728.0	-76.3	34.0	-3.56	35.2	16.0	0.77
3	10.2	740.4	-82.1	34.6	-3.83	34.4	15.6	0.74
4	13.6	697.7	-72.7	32.6	-3.40	31.4	15.3	0.70
5	17.0	709.7	-78.0	33.2	-3.64	30.6	15.0	0.67
6	20.4	670.1	-69.1	31.3	-3.23	27.8	14.6	0.63
7	23.8	697.6	-73.4	32.6	-3.43	27.0	14.1	0.60
8	27.2	676.6	-63.0	31.6	-2.95	24.6	13.2	0.56
9	30.6	701.2	-67.8	32.8	-3.17	23.8	12.6	0.53
10	34.0	596.6	-32.4	27.9	-1.51	19.0	11.8	0.49
11	37.4	626.7	-35.6	29.3	-1.66	18.3	11.1	0.46
12	40.8	528.0	-2.9	24.7	-0.13	14.2	11.6	0.43
13	44.2	528.5	-5.1	24.7	-0.24	13.6	12.8	0.40
14	47.6	480.7	0.0	22.5	0.00	9.2	13.6	0.37
15	51.0	487.3	0.0	22.8	0.00	6.0	13.8	0.34
Absolute	10.2			34.6			(T =	36.4 ms)
	10.2				-3.83		(T =	58.3 ms)

	CASE METHOD									
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	801.3	746.3	691.2	636.2	581.2	526.1	471.1	416.1	361.0	306.0
RX	827.4	788.9	753.5	718.4	687.2	658.9	633.4	610.4	587.4	574.8
RU	801.3	746.3	691.2	636.2	581.2	526.1	471.1	416.1	361.0	306.0
RAU =	346.1 (k	ips); R	A2 =	722.0 (k	ips)					
Current	CAPWAP Ru	= 580.0	(kips);	Corresp	onding 3	J(RP)= 0	.40; J(R	x) = 0.8	6	

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
16.7	35.80	637.4	714.2	714.2	0.84	0.20	0.20	37.0	851.9	1640

PILE PROFILE AND PILE MODEL	
-----------------------------	--

Depth ft	Area in ²	E-Modulus ksi	Spec. Weight lb/ft ³	Perim. ft
0.0	21.4	29992.2	492.000	4.70
51.0	21.4	29992.2	492.000	4.70
Toe Area	198.5	in ²		

Top Segment Length	3.40 ft, Top Impedance	38 kips/ft/s
Top begineric hengen	Self IC/ IOP Impedance	30 KIPB/IC/B

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s

Pile Damping 1.00 %, Time Incr 0.202 ms, 2L/c 6.1 ms Total volume: 7.579 ft³; Volume ratio considering added impedance: 1.000





USH 10 over Little Lake Butte des Morts; Pile: Pier 21 #36	Test: 18-Nov-2014 15:49
APE D30-42 (#234), HP 14 x 73; Blow: 300	CAPWAP(R) 2014
GRL Engineers, Inc.	OP: MR
About the CAPWAP Results	

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts USH 10 over Little Lake Butte des Morts; Pile: Pier 21 #36 Test: 18-Nov-2014 15:49 APE D30-42 (#234), HP 14 x 73; Blow: 300 CAPWAP(R) 2014 GRL Engineers, Inc. OP: MR no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 over Little Lake Butte des Morts; Pile: Pier 21 #36 Test: 18-Nov-2014 15:49 APE D30-42 (#234), HP 14 x 73; Blow: 300 GRL Engineers, Inc.

CAPWAP(R) 2014 OP: MR

			CAPWAP SUMM	ARY RESULT	'S		
Total CAPWAP	Capacity:	391.0;	along Shaft	91.0;	at Toe	300.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.
No.	Gages	Grade			Ru	(Depth)	(Area)
	ft	ft	kips	kips	kips	kips/ft	ksf
				391.0			
1	10.2	4.3	5.0	386.0	5.0	1.16	0.25
2	17.0	11.1	5.0	381.0	10.0	0.74	0.16
3	23.8	17.9	4.0	377.0	14.0	0.59	0.13
4	30.6	24.7	11.0	366.0	25.0	1.62	0.34
5	37.4	31.5	18.0	348.0	43.0	2.65	0.56
6	44.2	38.3	24.0	324.0	67.0	3.53	0.75
7	51.0	45.1	24.0	300.0	91.0	3.53	0.75
Avg. Sha:	Et		13.0			2.02	0.43
Тое			300.0				217.63
Soil Model F	arameters/E	xtensions			Shaft	Тое	
Smith Dampin	g Factor				0.26	0.12	
Quake		(in)			0.17	0.77	
Case Damping	Factor				0.62	0.94	
Damping Type	2				Viscous	Smith	
Unloading Qu	lake	(% of	loading quak	e)	55	81	
Reloading Le	vel	(% of	Ru)		100	100	
Resistance G	ap (include	d in Toe 🤇	Quake) (in)			0.15	
Soil Plug We	eight	(kips)			0.160	0.029	
CAPWAP match	quality	= 2	2.38	(Wave Up M	atch) ; RSA	A = 0	
Observed: Fi	nal Set	= C	0.40 in;	Blow Count	: =	30 b/ft	
Computed: Fi	nal Set	= C	).41 in;	Blow Count	: =	29 b/ft	
Transducer	F3(F590) CA A3(K2253) CA		RF: 0.98; F4(F6 RF: 1.13; A4(K2		93.6; RF: 0.9 360; RF: 1.1		
max. Top Com	p. Stress	= 3	31.9 ksi	(T= 36.0	ms, max= 1	017 x Top)	
max. Comp. S	tress	= 3	32.4 ksi	(Z= 10.2	ft, T= 36	5.4 ms)	
max. Tens. S	tress	= -1	.68 ksi	(Z= 10.2	ft, T= 62	2.4 ms)	
max. Energy	(EMX)	= 3	9.4 kip-ft;	max. Meas	ured Top Di	.spl. (DMX)=	1.09 in

USH 10 over Little Lake Butte des Morts; Pile: Pier 21 #36 Test: 18-Nov-2014 15:49 APE D30-42 (#234), HP 14 x 73; Blow: 300 GRL Engineers, Inc.

CAPWAP(R) 2014 OP: MR

						<i>,</i> 1110.	- Bugrmeer,
			EMA TABLE	EXTR			
max.	max.	max.	max.	min.	max.	Dist.	Pile
Veloc.	Trnsfd.	Tens.	Comp.	Force	Force	Below	Sgmnt
	Energy	Stress	Stress			Gages	No.
ft/s	kip-ft	ksi	ksi	kips	kips	ft	
16.8	39.4	-1.40	31.9	-30.0	683.2	3.4	1
16.6	39.1	-1.57	32.2	-33.7	689.4	6.8	2
16.5	38.7	-1.68	32.4	-35.9	694.6	10.2	3
16.3	36.9	-1.33	31.5	-28.5	674.4	13.6	4
16.2	36.6	-1.31	31.7	-28.1	678.9	17.0	5
16.0	34.8	-0.99	30.7	-21.1	657.9	20.4	6
15.8	34.5	-1.15	31.1	-24.6	666.3	23.8	7
15.5	33.0	-1.00	30.7	-21.3	657.7	27.2	8
15.1	32.6	-1.10	31.5	-23.5	674.1	30.6	9
15.1	29.6	-0.37	29.8	-8.0	637.4	34.0	10
15.6	29.2	-0.48	31.6	-10.4	677.1	37.4	11
16.6	24.8	0.00	29.3	0.0	626.3	40.8	12
18.2	24.4	0.00	28.4	0.0	607.4	44.2	13
19.4	18.9	0.00	20.1	0.0	429.8	47.6	14
18.9	14.0	-0.00	19.8	-0.0	423.7	51.0	15
(T =			32.4			10.2	solute
(T =		-1.68				10.2	
-	<pre>Veloc.   ft/s   16.8   16.6   16.5   16.3   16.2   16.0   15.8   15.5   15.1   15.1   15.6   16.6   18.2   19.4   18.9 (T =</pre>	Trnsfd.     Veloc.       Energy     ft/s       kip-ft     ft/s       39.4     16.8       39.1     16.6       38.7     16.5       36.9     16.3       36.6     16.2       34.8     16.0       34.5     15.8       33.0     15.5       32.6     15.1       29.2     15.6       24.8     16.6       24.4     18.2       18.9     19.4       14.0     18.9	Tens.       Trnsfd.       Veloc.         Stress       Energy         ksi       kip-ft       ft/s         -1.40       39.4       16.8         -1.57       39.1       16.6         -1.68       38.7       16.5         -1.33       36.9       16.3         -1.31       36.6       16.2         -0.99       34.8       16.0         -1.15       34.5       15.8         -1.00       33.0       15.5         -1.10       32.6       15.1         -0.37       29.6       15.1         -0.48       29.2       15.6         0.00       24.8       16.6         0.00       24.4       18.2         0.00       18.9       19.4         -0.00       14.0       18.9	max.       max.       max.       max.         Comp.       Tens.       Trnsfd.       Veloc.         Stress       Stress       Energy         ksi       ksi       kip-ft       ft/s         31.9       -1.40       39.4       16.8         32.2       -1.57       39.1       16.6         32.4       -1.68       38.7       16.5         31.5       -1.33       36.9       16.3         31.7       -1.31       36.6       16.2         30.7       -0.99       34.8       16.0         31.1       -1.15       34.5       15.8         30.7       -1.00       33.0       15.5         31.5       -1.10       32.6       15.1         29.8       -0.37       29.6       15.1         31.6       -0.48       29.2       15.6         29.3       0.00       24.8       16.6         28.4       0.00       24.4       18.2         20.1       0.00       18.9       19.4         19.8       -0.00       14.0       18.9	Force       Comp. Stress       Tens. Stress       Trnsfd. Energy       Veloc.         kips       ksi       kip-ft       ft/s         -30.0       31.9       -1.40       39.4       16.8         -33.7       32.2       -1.57       39.1       16.6         -35.9       32.4       -1.68       38.7       16.5         -28.5       31.5       -1.33       36.9       16.3         -28.1       31.7       -1.31       36.6       16.2         -21.1       30.7       -0.99       34.8       16.0         -24.6       31.1       -1.15       34.5       15.8         -21.3       30.7       -1.00       33.0       15.5         -23.5       31.5       -1.10       32.6       15.1         -8.0       29.8       -0.37       29.6       15.1         -10.4       31.6       -0.48       29.2       15.6         0.0       29.3       0.00       24.4       18.2         0.0       20.1       0.00       18.9       19.4         -0.0       19.8       -0.00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	EXTREMA TABLE         Dist.       max.       min.       max.       ma

CASE METHOD										
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
RP	576.1	424.4	272.7	121.0	0.0					
RX	636.7	556.7	476.8	466.6	461.1	456.5	452.0	447.5	443.3	439.5
RU	576.1	424.4	272.7	121.0	0.0					

RAU = 318.8 (kips); RA2 = 517.5 (kips)

Current CAPWAP Ru = 391.0 (kips); Corresponding J(RP)= 0.24;

RMX requires higher damping; see PDA-W

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
16.9	35.80	647.1	687.6	687.6	1.09	0.40	0.40	39.8	640.5	484

PILE PROFILE AND PILE MODEL										
Depth	Area	E-Modulus	Spec. Weight	Perim.						
ft	in ²	ksi	lb/ft ³	ft						
0.0	21.4	29992.2	492.000	4.70						
51.0	21.4	29992.2	492.000	4.70						
Toe Area	198.5	in²								

			Butte des x 73; Bl		Pile: Pie	er 21 #36		Test: 18		4 15:49 R) 2014
GRL Eng	ineers, 1	Inc.							-	OP: MR
Segmnt	Dist.In	pedance	Imped.		Tension	Comp	ression	Perim.	Wave	Soil
Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
	ftki	.ps/ft/s	%	in		in		ft	ft/s	kips
1	3.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	17000.0	0.000
14	47.6	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	17000.0	0.080
15	51.0	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	17000.0	0.080

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 17000.0 ft/s Pile Damping 1.00 %, Time Incr 0.200 ms, 2L/c 6.0 ms

Total volume: 7.579 ft^{3;} Volume ratio considering added impedance: 1.000






USH 10 over Little Lake Butte des Morts;	Pile: Pier 21 #36 RestrikTest: 19-Nov	-2014 09:32
APE D30-42 (#234), HP 14 x 73; Blow: 3	CAP	WAP(R) 2014
GRL Engineers, Inc.		OP: PJH
About the CAPWAP Results		

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts USH 10 over Little Lake Butte des Morts; Pile: Pier 21 #36 RestrikTest: 19-Nov-2014 09:32 APE D30-42 (#234), HP 14 x 73; Blow: 3 CAPWAP(R) 2014 GRL Engineers, Inc. No liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. 

 USH 10 over Little Lake Butte des Morts; Pile: Pier 21 #36 RestrikTest: 19-Nov-2014 09:32

 APE D30-42 (#234), HP 14 x 73; Blow: 3

 GRL Engineers, Inc.

 OP: PJH

			CAPWAP SUMM	ARY RESULT	S		
Total CAPWA	P Capacity:	533.0;	along Shaft	161.0;	at Toe	372.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.
No.	Gages	Grade			Ru	(Depth)	(Area)
	ft	ft	kips	kips	kips	kips/ft	ksf
				533.0			
1	10.2	4.3	9.0	524.0	9.0	2.09	0.45
2	17.0	11.1	9.0	515.0	18.0	1.32	0.28
3	23.8	17.9	9.0	506.0	27.0	1.32	0.28
4	30.6	24.7	35.0	471.0	62.0	5.15	1.10
5	37.4	31.5	35.0	436.0	97.0	5.15	1.10
6	44.2	38.3	32.0	404.0	129.0	4.71	1.00
7	51.0	45.1	32.0	372.0	161.0	4.71	1.00
Avg. Sha	ft		23.0			3.57	0.76
Тое	2		372.0				269.86
Soil Model :	Parameters/E	xtensions			Shaft	Тое	
Smith Dampi:	ng Factor				0.20	0.10	
Quake		(in)			0.14	0.40	
Case Damping	g Factor				0.86	0.98	
Damping Typ	e				Viscous	Smith	
Unloading Q	uake	(% of	loading quak	e)	54	74	
Reloading L	evel	(% of	Ru)		100	100	
Resistance	Gap (include	d in Toe	Quake) (in)			0.05	
CAPWAP matc	h quality	= :	2.88	(Wave Up M	atch) ; RS	A = 0	
Observed: F	inal Set	= (	0.23 in;	Blow Count	=	53 b/ft	
Computed: F	inal Set	= (	0.26 in;	Blow Count	=	47 b/ft	
Transducer	F3(F590) CA A3(K2253) CA		RF: 1.00; F4(F6 RF: 1.13; A4(K2		93.6; RF: 1. 360; RF: 1.		
max. Top Com	mp. Stress	= :	33.5 ksi	(T= 36.0	ms, max= 1	L.025 x Top)	
max. Comp.	Stress	= :	34.4 ksi	(Z= 10.2	ft, T= 36	5.4 ms)	
max. Tens.	Stress	= -:	3.71 ksi	(Z= 17.0	ft, T= 59	0.0 ms)	
max. Energy	(EMX)	= :	37.9 kip-ft;	max. Measu	ured Top Di	ispl. (DMX)=	0.91 in

 USH 10 over Little Lake Butte des Morts; Pile: Pier 21 #36 RestrikTest: 19-Nov-2014 09:32

 APE D30-42 (#234), HP 14 x 73; Blow: 3

 GRL Engineers, Inc.

 OP: PJH

			EXT	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.4	717.8	-67.7	33.5	-3.16	37.9	17.1	0.88
2	6.8	727.9	-73.3	34.0	-3.42	37.1	16.8	0.85
3	10.2	735.8	-79.0	34.4	-3.69	36.4	16.6	0.82
4	13.6	706.4	-73.3	33.0	-3.42	33.9	16.3	0.78
5	17.0	714.3	-79.4	33.4	-3.71	33.1	16.1	0.75
6	20.4	685.8	-70.6	32.0	-3.30	30.8	15.8	0.72
7	23.8	714.2	-73.0	33.4	-3.41	30.1	15.3	0.68
8	27.2	702.6	-63.1	32.8	-2.95	28.0	14.5	0.65
9	30.6	731.9	-67.9	34.2	-3.17	27.3	13.8	0.62
10	34.0	627.5	-30.6	29.3	-1.43	22.2	13.0	0.58
11	37.4	665.4	-35.7	31.1	-1.67	21.6	12.4	0.55
12	40.8	574.1	-0.5	26.8	-0.02	17.2	13.4	0.53
13	44.2	557.6	-5.3	26.0	-0.25	16.7	14.4	0.50
14	47.6	486.2	0.0	22.7	0.00	13.1	15.2	0.47
15	51.0	511.6	-0.0	23.9	-0.00	10.5	14.3	0.45
Absolute	10.2			34.4			(T =	36.4 ms)
	17.0				-3.71		(T =	59.0 ms)

				CAS	E METHOD	)				
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
RP	781.3	660.3	539.3	418.4	297.4					
RX	811.5	730.9	671.5	615.3	575.8	549.7	535.2	524.2	521.1	517.9
RU	781.3	660.3	539.3	418.4	297.4					
RAU =	365.5 (ki	.ps); RA	.2 = 6	95.8 (ki	ps)					
Current	CAPWAP Ru	= 533.0	(kips);	Correspo	nding J(	RP)= 0.4	1; J(RX)	= 1.23		

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
17.3	35.79	661.2	725.0	725.0	0.91	0.23	0.23	38.7	818.1	1063

PILE PROFILE AND PILE MODEL

	Depth	Area	E-Modulus	Spec. Weight	Perim.
	ft	in²	ksi	lb/ft ³	ft
	0.0	21.4	29992.2	492.000	4.70
	51.0	21.4	29992.2	492.000	4.70
Toe Area		198.5	$in^2$		

USH 10 over Little Lake Butte des Morts; Pile: Pier 21 #36 RestrikTest: 19-Nov-2014 09:32 APE D30-42 (#234), HP 14 x 73; Blow: 3 CAPWAP(R) 2014 GRL Engineers, Inc. OP: PJH Segmnt Dist.Impedance Imped. Tension Compression Perim. Wave Soil Number Eff. Eff. B.G. Change Slack Slack Speed Plug ftkips/ft/s % in in ft ft/s kips 1 3.4 38.20 0.00 0.00 0.000 -0.00 0.000 4.70 16721.3 0.000 14 47.6 38.20 0.00 0.00 0.000 -0.00 0.000 4.70 16721.3 0.060 15 51.0 38.20 0.00 0.00 0.000 -0.00 0.000 4.70 16721.3 0.060

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16721.3 ft/s Pile Damping 1.00 %, Time Incr 0.203 ms, 2L/c 6.1 ms

Total volume: 7.579 ft^{3;} Volume ratio considering added impedance: 1.000







USH 10 over Little Lake Butte des Morts; Pile: Pier 21 #44	Test: 18-Nov-2014 16:23
APE D30-42 (#234), HP 14 x 73; Blow: 451	CAPWAP(R) 2014
GRL Engineers, Inc.	OP: MR
About the CAPWAP Results	

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAFWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts USH 10 over Little Lake Butte des Morts; Pile: Pier 21 #44 Test: 18-Nov-2014 16:23 APE D30-42 (#234), HP 14 x 73; Blow: 451 CAPWAP(R) 2014 GRL Engineers, Inc. OP: MR no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 over Little Lake Butte des Morts; Pile: Pier 21 #44 Test: 18-Nov-2014 16:23 APE D30-42 (#234), HP 14 x 73; Blow: 451 GRL Engineers, Inc.

CAPWAP(R) 2014 OP: MR

			CAPWAP SUMM	ARY RESULTS			
Total CAPWA	P Capacity:	584.0;	along Shaft	111.0; a	it Toe 47	3.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.
No.	Gages	Grade			Ru	(Depth)	(Area)
	ft	ft	kips	kips	kips	kips/ft	ksf
				584.0			
1	37.1	6.5	5.0	579.0	5.0	0.77	0.16
2	43.8	13.2	6.0	573.0	11.0	0.89	0.19
3	50.5	19.9	8.0	565.0	19.0	1.19	0.25
4	57.3	26.7	22.0	543.0	41.0	3.26	0.69
5	64.0	33.4	14.0	529.0	55.0	2.08	0.44
6	70.8	40.2	20.0	509.0	75.0	2.97	0.63
7	77.5	46.9	36.0	473.0	111.0	5.34	1.14
Avg. Sha	ft		15.9			2.37	0.50
Тое	•		473.0				343.13
Soil Model :	Parameters/E	xtensions			Shaft	Тое	
Smith Dampin	ng Factor				0.29	0.21	
Quake		(in)			0.16	0.30	
Case Damping	g Factor				0.84	2.60	
Damping Type	e			Ţ	Viscous Sm-	+Visc	
Unloading Q	uake	(% of	loading quak	e)	100	96	
Reloading L	evel	(% of	Ru)		100	100	
Resistance (	Gap (include	d in Toe (	Quake) (in)			0.02	
CAPWAP matc	h quality	= 3	3.78	(Wave Up Ma	tch) ; RSA	= 0	
Observed: F	inal Set	= (	).14 in;	Blow Count	=	87 b/ft	
Computed: F	inal Set	= (	).10 in;	Blow Count	=	116 b/ft	
Transducer	F3(F590) C2 A3(K2253) C2		RF: 0.97; F4(F6 RF: 1.12; A4(K2		3.6; RF: 0.97 360; RF: 1.12		
max. Top Con	mp. Stress	= 3	35.2 ksi	(T= 36.1 r	ms, max= 1.	046 x Top)	
max. Comp.	Stress	= 3	36.8 ksi	(Z= 77.5 d	ft, T= 40.	9 ms)	
max. Tens.	Stress	= -5	5.40 ksi	(Z= 50.5 d	ft, T= 59.	8 ms)	
max. Energy	(EMX)	= 4	46.9 kip-ft;	max. Measur	red Top Dis	pl. (DMX)=	1.17 in

USH 10 over Little Lake Butte des Morts; Pile: Pier 21 #44 APE D30-42 (#234), HP 14 x 73; Blow: 451 GRL Engineers, Inc.

Test: 18-Nov-2014 16:23 CAPWAP(R) 2014 OP: MR

			EXTI	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.4	752.4	-31.1	35.2	-1.45	46.9	18.7	1.16
2	6.7	753.4	-31.9	35.2	-1.49	46.3	18.6	1.13
4	13.5	755.5	-38.0	35.3	-1.78	45.0	18.6	1.06
5	16.8	756.7	-49.6	35.4	-2.32	44.3	18.5	1.03
6	20.2	758.1	-59.9	35.4	-2.80	43.5	18.5	1.00
7	23.6	759.5	-70.7	35.5	-3.30	42.7	18.4	0.96
8	27.0	761.7	-79.7	35.6	-3.72	41.8	18.4	0.92
9	30.3	769.3	-89.6	35.9	-4.19	40.9	18.2	0.89
10	33.7	777.3	-98.8	36.3	-4.62	40.0	18.0	0.85
11	37.1	786.8	-106.7	36.8	-4.99	39.0	17.7	0.81
12	40.4	765.5	-105.2	35.8	-4.91	36.6	17.5	0.77
13	43.8	777.4	-112.3	36.3	-5.25	35.5	17.1	0.73
14	47.2	755.8	-109.5	35.3	-5.12	32.9	16.8	0.69
15	50.5	784.6	-115.5	36.7	-5.40	31.7	16.2	0.64
16	53.9	760.9	-108.6	35.5	-5.08	28.9	15.5	0.60
17	57.3	779.0	-115.2	36.4	-5.38	27.6	15.0	0.56
18	60.7	703.9	-88.7	32.9	-4.14	22.9	14.5	0.51
19	64.0	724.2	-93.8	33.8	-4.38	21.7	13.9	0.47
20	67.4	727.0	-78.3	34.0	-3.66	18.8	13.0	0.43
21	70.8	754.7	-81.6	35.3	-3.81	17.9	13.6	0.40
22	74.1	725.1	-62.9	33.9	-2.94	15.2	13.5	0.36
23	77.5	787.4	-67.6	36.8	-3.16	12.8	11.5	0.33
Absolute	77.5			36.8			(T =	40.9 ms)
	50.5				-5.40		(T =	59.8 ms)

USH 10 c	over Little	e Lake B	utte des	Morts;	Pile: Pie	r 21 #44		Test: 18	-Nov-20	14 16:23
	-42 (#234)		x 73; Blo	w: 451					CAPWAP	(R) 2014
GRL Engi	ineers, Ind	3.								OP: MF
				CA	SE METHOD	)				
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
RP	1051.2	967.0	882.7	798.5	714.2					
RX	1051.2	967.0	884.3	802.6	724.0	698.1	688.7	680.9	673.7	667.2
RU	1064.0	982.3	900.6	818.9	737.2					
RAU =	638.8 (ki	ips); R	A2 = 7	76.6 (k	ips)					
Current	CAPWAP Ru	= 584.0	(kips);							
Case Met	chod matchi	ing requ	ires high	ner damp	ing facto	r				
VMD	K TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEE
ft/s	s ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
18.8	35.87	717.0	755.4	757.1	1.17	0.14	0.14	47.6	875.3	1689
			PII	LE PROFI	LE AND PI	LE MODEL	ı			
	Depth	ı	Ar	ea	E-Modu	ılus	Spec. N	Weight		Perim.
	ft	:	in	2		ksi	11	o/ft ³		ft
	0.0	)	21	.4	299	92.2	4	92.000		4.70
	77.5	5	21	.4	299	92.2	4	92.000		4.70
Toe Area	2		198	.5	in ²					
Segmnt	Dist.Impe	dance	Imped.		Tension	Comp	ression	Perim.	Wave	Soil
Number	- в.G.		- Change	Slack	Eff.	- Slack	Eff.		Speed	Plug
	ftkips	s/ft/s	%	in		in		ft	ft/s	kips
1	3.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16721.3	0.000

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16721.3 ft/s Pile Damping 1.00 %, Time Incr 0.202 ms, 2L/c 9.3 ms Total volume: 11.517 ft^{3;} Volume ratio considering added impedance: 1.000

0.00

0.00

0.000

0.000

-0.00

-0.00

0.000

0.000

4.70 16721.3

4.70 16721.3

0.040

0.040

0.00

0.00

38.20

38.20

22 74.1

77.5

23









## About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 over LLBDM; Pile: Pier 21 #44, Restrike APE D30-42 (#234) , HP 14 x 73; Blow: 3 GRL Engineers, Inc.

			CAPWAP SUMM	ARY RESULTS	3		
Total CAPWA	P Capacity:	660.0;	along Shaft	160.0;	at Toe	500.0 kips	
Soil	Dist.	Depth	Ru	Force	Sun	Unit	Unit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.
No.	Gages	Grade			Ru	(Depth)	(Area)
	ft	ft	kips	kips	kips	kips/ft	ksf
				660.0			
1	10.4	5.3	7.0	653.0	7.0	1.32	0.28
2	17.3	12.2	7.0	646.0	14.0	1.01	0.21
3	24.3	19.2	17.0	629.0	31.0	2.45	0.52
4	31.2	26.1	35.0	594.0	66.0	5.05	1.07
5	38.1	33.0	24.0	570.0	90.0	3.46	0.74
6	45.1	40.0	30.0	540.0	120.0	4.33	0.92
7	52.0	46.9	40.0	500.0	160.0	5.77	1.23
Avg. Sha	ft		22.9			3.41	0.73
Тое	•		500.0				362.72
Soil Model	Parameters/E	xtensions	8		Shaft	Тое	
Smith Dampi	ng Factor				0.29	0.28	
Quake	-	(in)			0.19	0.22	
Case Dampin	g Factor	. ,			1.21	3.67	
Damping Typ	e			•	Viscous S	m+Visc	
Reloading L	evel	(% of	Ru)		100	100	
Soil Plug W	eight	(kips)				0.028	
CAPWAP matc	h quality	= 1	. 59	(Wave Up Ma	atch); RS	A = 0	
Observed: F	inal Set	= 0	.01 in; 1	Blow Count	=	960 b/ft	
Computed: F	inal Set	= 0	.05 in; 1	Blow Count	=	248 b/ft	
Transducer	F3(F590) CAI		: 1.00; F4(F607)				
	A3(K2253) CAI	: 325; RF	: 1.12; A4(K2524	1) CAL: 360;	RF: 1.12		
max. Top Co	mp. Stress	= 3	6.6 ksi	(T= 36.1	ms, max=	1.038 x Top)	
max. Comp.	Stress	= 3	8.1 ksi	(Z= 24.3	ft, T= 3	7.3 ms)	
max. Tens.	Stress	= -6	.43 ksi	(Z= 24.3	ft, T= 5	6.8 ms)	
max. Energy	(EMX)	= 4	0.4 kip-ft;	max. Measu	red Top D	ispl. (DMX)=	0.84 in

USH 10 over LLBDM; Pile: Pier 21 #44, Restrike APE D30-42 (#234) , HP 14 x 73; Blow: 3 GRL Engineers, Inc.

Test: 19-Nov-2014 09:41 CAPWAP(R) 2014 OP: PJH

			EXTI	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.5	784.5	-103.3	36.6	-4.83	40.4	18.4	0.82
2	6.9	794.7	-116.5	37.1	-5.44	39.3	18.2	0.78
3	10.4	807.0	-127.7	37.7	-5.97	38.1	17.8	0.74
4	13.9	774.5	-126.0	36.2	-5.88	35.1	17.6	0.69
5	17.3	796.6	-135.6	37.2	-6.34	33.8	17.0	0.65
6	20.8	776.5	-131.3	36.3	-6.13	31.1	16.4	0.60
7	24.3	814.5	-137.5	38.1	-6.43	29.7	15.7	0.56
8	27.7	759.1	-118.8	35.5	-5.55	25.6	14.5	0.51
9	31.2	789.4	-124.6	36.9	-5.82	24.3	13.8	0.46
10	34.7	700.7	-82.0	32.7	-3.83	18.6	13.1	0.42
11	38.1	732.1	-89.0	34.2	-4.16	17.4	12.5	0.38
12	41.6	720.7	-68.5	33.7	-3.20	14.1	11.7	0.33
13	45.1	736.9	-71.4	34.4	-3.34	13.0	11.5	0.29
14	48.5	685.2	-54.8	32.0	-2.56	10.3	10.8	0.26
15	52.0	715.7	-56.9	33.4	-2.66	8.6	8.5	0.22
Absolute	24.3			38.1			(T =	37.3 ms)
	24.3				-6.43		(T =	56.8 ms)

CASE METHOD										
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
RP	1055.5	963.8	872.1	780.5	688.8					
RX	1068.4	982.3	899.8	828.4	777.6	740.8	721.5	702.1	688.4	688.2
RU	1055.5	963.8	872.1	780.5	688.8					
RAU = 665.9 (kips); RA2 = 881.9 (kips)										

Current CAPWAP Ru = 660.0 (kips); Corresponding J(RP)= 0.86; matches RX20 within 5%

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
18.8	35.87	718.7	795.0	795.0	0.84	0.01	0.01	41.8	1177.1	2273

PILE	PROFILE	AND	PILE	MODEL
	- ICOT			1102 22

	Depth	Area	E-Modulus	Spec. Weight	Perim.
	ft	in²	ksi	lb/ft ³	ft
	0.0	21.4	29992.2	492.000	4.70
	52.0	21.4	29992.2	492.000	4.70
Toe Area		198.5	$in^2$		

Top Segment Length 3.47 ft, Top Impedance 38 kips/ft/s

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16774.2 ft/s

Pile Damping 1.00 %, Time Incr 0.207 ms, 2L/c 6.2 ms Total volume: 7.728 ft^{3;} Volume ratio considering added impedance: 1.000