GRL Engineers, Inc.

1540 E. Dundee Road, Suite 102 Palatine, IL 60074 USA Phone: (847) 221-2750 Fax: (847) 221-2752

TRANSMITTAL

To: Mr. Kevin Weber	From: Al Ziai			
Company: Lunda Construction Co.	No. of Sheets: 50			
E-mail: kweber@lundaconstruction.com	Date: December 1, 2014			

RE: Dynamic Testing Results – USH 10 over Little Lake Butte des Morts Structure B-70-403 - Pier 2 Winnebago County, Wisconsin

On November 18, 2014, Pier 2 #1, Pier 2 #36, and Pier 2 #44 at the above structure were dynamically tested during initial driving and tested during restrike on November 19. Project plans indicated the exterior row piles have a required driving resistance or ultimate capacity of 480 kips (240 tons) and the interior row piles have a required driving resistance or ultimate capacity of 400 kips (200 tons). The reference grade at the bottom of the footing excavations was reported to be at elevation EL 731. The piles have a required minimum tip elevation of EL 671. The HP 14 x 73 H-piles were equipped with driving shoes and were driven with an APE D30-42 hammer (number PD 0256) operated on fuel setting 4.

Pier 2 #1 was driven to a depth of 61.3 feet, which corresponds to a pile tip elevation of EL 609.7. The blow count over the final increment of driving was 5 blows per inch of penetration at an average hammer stroke of 8.8 feet. The blow count at the beginning of restrike was 5 blows for $\frac{3}{8}$ inch of penetration at an average hammer stroke of 7.0 feet

Pier 2 #36 was driven to a depth of 61.0 feet, which corresponds to a pile tip elevation of EL 670. The blow count over the final increment of driving was 7 blows for $\frac{1}{2}$ inch of penetration at an average hammer stroke of 7.6 feet. The blow count at the beginning of restrike was 5 blows for $\frac{1}{2}$ inch of penetration at an average hammer stroke of 7.0 feet

Pier 2 #44 was driven to a depth of 59.7 feet, which corresponds to a pile tip elevation of EL 671.3. The blow count over the final increment of driving was 7 blows for $\frac{1}{2}$ inch of penetration at an average hammer stroke of 9.2 feet. The blow count at the beginning of restrike was 10 blows for $\frac{3}{6}$ inch of penetration at an average hammer stroke of 9.0 feet

Our driving recommendations have been prepared on a blows-per-inch basis. The criteria should be applied only after the minimum pile tip elevation is achieved. For the 480 and 400 kips piles driven with an APE D30-42 hammer (PD 0234) in Pier 2 of the USH 10 bridge over Little Lake Butte des Morts we recommend using the following criteria:

Field Observed	Exterior Piles (480 kips) Recommended Minimum	Interior Piles (400 kips) Recommended Minimum
Hammer Stroke	Blow Count	Blow Count
(feet)	(blows per inch)	(blows per inch)
6.5	8	5
7.0	6	4
7.5	5	4
8.0	4	3
8.5	4	3
9.0	4	3
9.5	4	3

We recommend the above blow counts at the required stroke be maintained for two consecutive inches of driving. We recommend immediately terminating driving if the blow counts exceed 10 blows over an increment of one inch or less at hammer strokes of 9.0 feet, after satisfying any minimum tip requirements. We anticipate the production piles will terminate at depths similar to those of the test piles. Please note that Pier 2 #44 had a pile tip elevation 0.3 feet above the minimum required pile tip elevation. Based upon the dynamic test results, the designer allowed the minimum pile tip elevation to be revised to EL 673.

These criteria should not be used for acceptance of piles under restrike and/or redrive conditions. After splicing or any other delays, we recommend not applying the criteria until a full foot of driving has occurred beyond the termination depth associated with the delay, unless the blow count exceeds 10 blows per inch.

Please call if you have any questions on these recommendations.

GRL Engineers, Inc.

tlzini Al Ziai 1fi (hu

Travis Coleman, P.E.

Cc: Jeff Horsfall - jeffrey.horsfall@dot.wi.gov

Attachments:

(pages 3 - 20)Dynamic Test Results -CAPWAP Analysis Results - (pages 21 – 50)

PDIPLOT Ver. 2014.1 - Printed: 25-Nov-2014

Test date: 18-Nov-2014

USH 10 over Little Lake Butte des Morts - Pier 2 #1 APE D30-42, HP 14 x 73

USH 10 over Little Lake Butte des Morts - Pier 2 #1	
OP: MR	

Page 1 of 3 PDIPLOT Ver. 2014.1 - Printed: 25-Nov-2014

APE D30-42, HP 14 x 73 Test date: 18-Nov-2014

OP: M	IR							Test date: 18-	Nov-2014
AR: LE:	21.40 in^2 77.50 ft							EM: 30	.492 k/ft3 ,000 ksi
	6,807.9 f/s					0.71/			1.20
	Max Measured Co Compression Street						O.E. Diesel Blows per M	Hammer Stroke	
	Max Transferred E							lethod Capacity	(JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
end	ft	bl/ft		ksi	ksi	k-ft	ft	**	kips
2	23.00	1	AV1 MAX	13.4 13.4	2.7 2.7	24 24	3.5 3.5	61.7 61.7	0 0
			MIN	13.4	2.7	24 24	3.5	61.7	0
2	24.00	1	AV1	14.1	2.6	24	3.7	60.5	0
-	21.00	·	MAX	14.1	2.6	24	3.7	60.5	0
			MIN	14.1	2.6	24	3.7	60.5	0
3	25.00	1	AV1	12.5	2.6	17	3.4	62.7	0
			MAX	12.5	2.6	17	3.4	62.7	0
		_	MIN	12.5	2.6	17	3.4	62.7	0
6	26.00	3	AV2 STD	11.4 0.1	2.6 0.0	15 0	3.2 0.0	64.2 0.1	0 0
			MAX	11.5	2.6	16	3.2	64.3	0
			MIN	11.3	2.6	15	3.2	64.0	0
8	27.00	2	AV2	10.5	2.3	14	3.1	64.8	0
			STD	0.1	0.0	0	0.0	0.2	0
			MAX MIN	10.6 10.3	2.3 2.2	15 14	3.2 3.1	65.0 64.7	0 0
10	00.00	0							
10	28.00	2	AV2 STD	11.7 0.4	2.5 0.0	16 1	3.3 0.0	63.7 0.3	0 0
			MAX	12.0	2.5	17	3.3	64.0	0 0
			MIN	11.3	2.5	16	3.2	63.3	0
13	29.00	3	AV3	13.4	2.9	17	3.5	61.9	0
			STD	0.6	0.2	0	0.1	0.7	0
			MAX MIN	14.2 13.0	3.2 2.7	18 17	3.6 3.4	62.5 60.9	0 0
14	30.00	1	AV1	14.6	2.6	25	3.7	60.3	0
14	50.00	I	MAX	14.6	2.6	25	3.7	60.3	0
			MIN	14.6	2.6	25	3.7	60.3	0
15	31.00	1	AV1	14.9	2.5	25	3.7	60.0	0
			MAX	14.9	2.5	25	3.7	60.0	0
			MIN	14.9	2.5	25	3.7	60.0	0
18	32.00	3	AV3 STD	15.7 0.2	3.3 0.2	19 1	3.8 0.0	59.4 0.2	0 0
			MAX	16.0	3.5	20	3.8	59.6	0
			MIN	15.5	3.0	19	3.8	59.1	0
20	33.00	2	AV2	15.8	2.7	22	3.8	59.3	0
			STD	0.8	0.1	1	0.1	0.8	0 0
			MAX MIN	16.6 15.0	2.8 2.6	22 21	3.9 3.7	60.0 58.5	0 0
22	34.00	2	AV2	15.1	3.0	21	3.7	60.3	
22	34.00	2	STD	0.2	0.1	0	0.0	0.3	0 0
			MAX	15.3	3.1	21	3.7	60.5	0
			MIN	15.0	2.9	21	3.7	60.2	0
24	35.00	2	AV2	15.4	2.8	21	3.7	60.1	0 0
			STD MAX	0.2 15.6	0.0 2.8	0 21	0.0 3.7	0.2 60.3	0 0
			MIN	15.2	2.7	20	3.7	59.9	0
26	36.00	2	AV2	16.0	2.9	23	3.9	58.9	
_0		-	STD	1.1	0.3	2	0.2	1.3	0 0
			MAX	17.1	3.2	25	4.1	60.2	0
		-	MIN	14.9	2.7	21	3.7	57.6	0
29	37.00	3	AV3 STD	17.8 0.2	3.9 0.1	21 0	4.1 0.0	57.3 0.2	0 0
			MAX	18.0	3.9	21	4.1	57.5	0
			MIN	17.5	3.8	20	4.1	57.1	0

USH 10 ov	ver Little La	ke Butte	des Morts	- Pier 2 #1
OP · MR				

Page 2 of 3 PDIPLOT Ver. 2014.1 - Printed: 25-Nov-2014

APE D30-42, HP 14 x 73

<u>OP: MR</u>	over Little Lake							Test date: 18-	
BL# end	depth ft	BLC bl/ft	TYPE	CSX ksi	CSB ksi	EMX k-ft	STK ft	BPM	RX9 kips
31	38.00	2	AV2	18.4	3.4	27	4.3	56.3	0
			STD	0.9	0.2	1	0.1	0.8	0
			MAX MIN	19.3 17.5	3.6 3.2	28 26	4.4 4.2	57.0 55.5	0 0
33	39.00	2	AV2	18.3	3.4	25	4.2	56.8	0
			STD	0.1	0.0	1	0.0	0.1	0
			MAX MIN	18.3 18.2	3.4 3.4	26 24	4.2	56.9 56.7	0 0
35	40.00	2	AV2	18.2	3.4 3.2	24 25	4.2 4.2	50.7 57.0	0
55	40.00	2	STD	0.6	0.0	1	0.1	0.7	0
			MAX	18.8	3.3	26	4.3	57.7	0
38	41.00	3	MIN AV3	17.5 18.5	3.2 4.1	24 22	4.0 4.3	56.2 56.3	0 0
50	41.00	5	STD	0.8	0.1	1	0.1	0.9	0
			MAX	19.6	4.2	24	4.5	57.3	0
			MIN	17.6	3.9	22	4.1	55.2	0
40	42.00	2	AV2 STD	18.9 0.2	3.4 0.0	27 0	4.3 0.0	56.2 0.1	0 0
			MAX	19.0	3.4	27	4.3	56.3	0
			MIN	18.7	3.4	27	4.3	56.0	0
42	43.00	2	AV2	18.0	3.3	26	4.2	56.8	0
			STD MAX	0.2 18.2	0.1 3.4	1 26	0.0 4.2	0.1 56.9	0 0
			MIN	17.9	3.3	25	4.2	56.8	0
44	44.00	2	AV2	18.6	3.3	27	4.3	56.3	0
			STD MAX	0.2 18.8	0.0	1 28	0.0 4.3	0.1 56.4	0 0
			MIN	18.5	3.3 3.3	20	4.3	56.1	0
47	45.00	3	AV3	18.7	4.0	22	4.3	56.1	0
			STD MAX	0.1 18.8	0.1 4.1	0 23	0.0	0.0 56.1	0
			MIN	18.5	4.1	23	4.3 4.3	56.0	0 0
49	46.00	2	AV2	17.9	3.2	25	4.2	56.7	0
			STD MAX	0.5 18.4	0.0 3.3	0 25	0.1 4.3	0.4 57.1	0 0
			MIN	17.5	3.2	25	4.1	56.3	0
51	47.00	2	AV2	17.8	3.2	25	4.2	56.9	0
			STD	0.1	0.1	0	0.0	0.2	0
			MAX MIN	17.9 17.7	3.3 3.1	26 25	4.2 4.1	57.1 56.8	0 0
53	48.00	2	AV2	17.9	3.1	26	4.2	56.8	0
			STD	0.4	0.0	0	0.1	0.4	0
			MAX MIN	18.4 17.5	3.1 3.1	26 25	4.3 4.1	57.1 56.4	0 0
55	49.00	2	AV2	18.4	3.2	26	4.3	56.0	0
			STD	0.6	0.0	0	0.1	0.7	0
			MAX MIN	19.0 17.9	3.2 3.1	27 26	4.4 4.2	56.7 55.3	0 0
58	50.00	3	AV3	18.8	3.8	25	4.4	55.5	7
			STD	0.7	0.3	1	0.2	0.9	5
			MAX MIN	19.7 17.9	4.1 3.3	26 24	4.6 4.2	56.6 54.4	11 0
61	51.00	3	AV3	19.3	4.2	24	4.5	55.0	2 2
			STD	0.6	0.2	1	0.1	0.5	2
			MAX MIN	19.9 18.4	4.5 4.0	26 23	4.6 4.4	55.7 54.4	4 0
64	52.00	3	AV3	20.0	4.0	27	4.6	54.3	10
			STD	0.1	0.1	0	0.1	0.4	9
			MAX MIN	20.1 19.9	4.1 4.0	28 27	4.7 4.5	54.8 53.9	21 0
			IVIIIN	13.3	4.0	21	7.5	55.3	U

USH 10 over	Little Lake	Butte des	Morts	- Pier 2 #	1
OP · MR					

Page 3 of 3 PDIPLOT Ver. 2014.1 - Printed: 25-Nov-2014

> APE D30-42, HP 14 x 73 Test date: 18-Nov-2014

BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
end	ft	bl/ft		ksi	ksi	k-ft	ft	**	kips
66	53.00	2	AV2	19.6	3.6	28	4.5	54.8	(
00	00.00	2	STD	0.5	0.2	0	0.1	0.5	(
			MAX	20.1	3.8	29	4.6	55.3	(
			MIN	19.2	3.4	28	4.4	54.2	(
	= 4 00	0							
68	54.00	2	AV2	18.3	3.4	27	4.3	56.0	(
			STD	0.3	0.1	1	0.1	0.4	(
			MAX MIN	18.6 18.1	3.5	27	4.4 4.3	56.4 55.6	(
					3.3	26			
71	55.00	3	AV3	19.5	4.0	26	4.5	55.1	15
			STD	0.8	0.0	1	0.2	1.0	12
			MAX	20.6	4.1	27	4.7	55.8	28
			MIN	18.9	4.0	24	4.4	53.7	C
73	56.00	2	AV2	19.9	3.9	29	4.6	54.2	C
			STD	0.1	0.1	0	0.0	0.0	C
			MAX	20.0	4.0	30	4.6	54.2	C
			MIN	19.8	3.8	29	4.6	54.2	C
76	57.00	3	AV3	19.4	4.2	25	4.5	55.0	2
			STD	0.3	0.3	0	0.1	0.4	3
			MAX	19.7	4.6	25	4.6	55.5	6
			MIN	19.0	3.9	24	4.4	54.6	C
80	58.00	4	AV4	19.6	7.4	23	4.6	54.6	75
			STD	1.8	3.3	2	0.4	2.0	76
			MAX	22.7	11.8	26	5.2	55.9	194
			MIN	18.4	4.1	21	4.3	51.2	C
87	59.00	7	AV7	26.7	12.8	33	6.3	46.7	187
			STD	0.6	2.3	2	0.2	0.6	18
			MAX	27.4	18.1	36	6.6	47.7	214
			MIN	25.8	10.8	30	6.1	45.8	169
92	60.00	5	AV5	25.0	9.4	32	5.9	48.7	139
			STD	2.1	2.7	3	0.6	2.5	21
			MAX	27.8	13.2	35	6.7	52.5	176
			MIN	21.8	5.3	26	5.0	45.6	113
99	61.00	7	AV7	24.9	8.0	29	5.8	49.0	169
			STD	1.3	1.7	2	0.4	1.5	29
			MAX	27.5	10.4	33	6.5	50.5	208
			MIN	23.2	5.1	26	5.4	46.2	133
104	61.25	20	AV5	30.5	22.4	34	7.5	43.2	480
			STD	2.1	6.6	4	0.7	2.0	127
			MAX	33.3	31.9	38	8.5	46.6	663
			MIN	27.2	13.4	28	6.4	40.6	307
108	61.32	60	AV4	34.0	36.5	39	8.8	39.8	784
			STD	0.6	1.9	2	0.2	0.4	34
			MAX	35.1	39.2	42	9.1	40.1	825
			MIN	33.5	34.2	37	8.7	39.2	738
			Average	20.0	6.9	26	4.8	54.5	85
			Std. Dev.	5.4	7.7	6	1.3	5.9	181
			Maximum	35.1	39.2	42	9.1	65.0	825
			Minimum	10.3	2.2	14	3.1	39.2	C

BL# depth (ft) Comments

2 24.00 Reference Elevation EL 731.0

Time Summary

Drive 2 minutes 1 second

1:05:29 PM - 1:07:30 PM (11/18/2014) BN 1 - 109

PDIPLOT Ver. 2014.1 - Printed: 25-Nov-2014

Test date: 19-Nov-2014

CSX (ksi) EMX (k-ft) RX9 (kips) Max Measured Compr. Stress Max Case Method Capacity (JC=0.9) Max Transferred Energy 0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 150 300 450 600 750 900 0 2 4 B I 6 0 w 8 Ν u m b е 10 r 12 14 16 + 30 60 0 2 6 0 10 20 40 50 4 8 10 12 0 40 80 120 160 200 240 CSB (ksi) -BLC (blows/ft) STK (ft) -[=[] Compression Stress at Bottom O.E. Diesel Hammer Stroke **Blow Count**

USH 10 over Little Lake Butte des Morts - Pier 2 #1 Restrike APE D30-42, HP 14 x 73

Page 1 of 1 PDIPLOT Ver. 2014.1 - Printed: 25-Nov-2014

USH 10 over Little Lake Butte des Morts - Pier 2 #1 Restrike OP: MR

APE D30-42, HP 14 x 73 Test date: 19-Nov-2014

AR: LE:	21.40 in^2 77.50 ft							EM: 30	0.492 k/ft3 0,000 ksi
	16,807.9 f/s Max Measured Compression S	•				-	O.E. Diesel H Blows per Min		<u>1.20</u> e
EMX:			om			RX9:	Max Case Me		(JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
end	ft	bl/ft	=	ksi	ksi	k-ft	ft	**	kips
5	61.36	160	AV4	28.4	32.6	27	7.0	44.5	632
			STD	1.0	0.4	1	0.2	0.6	18
			MAX	29.7	33.2	28	7.2	45.1	650
			MIN	27.0	32.2	26	6.8	43.8	613
10	61.39	240	AV5	28.9	34.5	29	7.2	43.9	689
			STD	1.1	1.0	2	0.3	0.8	23
			MAX	30.3	36.3	32	7.8	44.6	732
			MIN	27.3	33.5	27	7.0	42.4	668
14	61.41	192	AV4	29.9	36.6	31	7.3	43.5	728
			STD	0.5	0.7	0	0.0	0.1	17
			MAX	30.4	37.8	31	7.4	43.6	756
			MIN	29.1	35.9	31	7.3	43.4	711
15	61.41	192	AV1	30.9	38.1	32	7.4	43.4	761
			MAX	30.9	38.1	32	7.4	43.4	761
			MIN	30.9	38.1	32	7.4	43.4	761
			Average	29.2	34.8	29	7.2	43.9	689
			Std. Dev.	1.2	1.9	2	0.2	0.7	46
			Maximum	30.9	38.1	32	7.8	45.1	761
			Minimum	27.0	32.2	26	6.8	42.4	613
				Total nur	nber of blows	analyzed: 14	ŀ		

Time Summary

Drive 19 seconds

8:37:59 AM - 8:38:18 AM (11/19/2014) BN 1 - 15

PDIPLOT Ver. 2014.1 - Printed: 25-Nov-2014

Test date: 18-Nov-2014

USH 10 over Little Lake Butte des Morts - Pier 2 #36 APE D30-42, HP 14 x 73

USH 10 over Little Lake Butte des Morts - Pier 2 #36	
OP: MR	

Page 1 of 3 PDIPLOT Ver. 2014.1 - Printed: 25-Nov-2014

APE D30-42, HP 14 x 73 Test date: 18-Nov-2014

OP: N	(IR							Test date: 18-	Nov-2014
AR: LE: WS: 1	21.40 in^2 77.50 ft 16,807.9 f/s).492 k/ft3),000 ksi 1.20
CSX: CSB:	Max Measured C Compression Stre	ess at Bottom				BPM:	Blows per Mi	Hammer Stroke)
	Max Transferred							ethod Capacity	
BL# end	depth ft	BLC bl/ft	TYPE	CSX ksi	CSB ksi	EMX k-ft	STK ft	BPM	RX9 kips
2	22.00	1	AV1 MAX MIN	12.8 12.8 12.8	2.3 2.3 2.3	21 21 21	3.6 3.6 3.6	61.3 61.3 61.3	0 0 0
2	23.00	1	AV1 MAX MIN	8.6 8.6 8.6	1.9 1.9 1.9	16 16 16	3.2 3.2 3.2	64.7 64.7 64.7	0 0 0
3	24.00	1	AV1 MAX MIN	8.1 8.1 8.1	1.8 1.8 1.8	15 15 15	3.1 3.1 3.1	65.0 65.0 65.0	0 0 0
4	25.00	1	AV1 MAX MIN	8.7 8.7 8.7	2.2 2.2 2.2	14 14 14	3.0 3.0 3.0	66.1 66.1 66.1	0 0 0
6	26.00	2	AV1 MAX MIN	10.3 10.3 10.3	2.3 2.3 2.3	16 16 16	3.1 3.1 3.1	65.2 65.2 65.2	0 0 0
9	27.00	3	AV3 STD MAX MIN	12.6 0.8 13.6 11.9	2.8 0.2 3.0 2.6	17 1 19 16	3.4 0.1 3.6 3.3	62.3 0.9 63.4 61.1	0 0 0 0
11	28.00	2	AV2 STD MAX MIN	13.5 0.9 14.4 12.6	2.6 0.1 2.7 2.5	19 1 20 19	3.6 0.1 3.7 3.4	61.3 1.0 62.3 60.3	0 0 0 0
14	29.00	3	AV3 STD MAX MIN	14.2 0.6 15.0 13.5	3.2 0.2 3.4 2.9	19 1 20 17	3.6 0.1 3.8 3.5	60.7 0.8 61.6 59.6	0 0 0
15	30.00	1	AV1 MAX MIN	14.2 14.2 14.2	2.5 2.5 2.5	23 23 23	3.6 3.6 3.6	61.0 61.0 61.0	0 0 0
17	31.00	2	AV2 STD MAX MIN	15.5 0.7 16.2 14.7	3.0 0.1 3.1 2.9	23 1 23 22	3.8 0.1 3.9 3.7	59.5 0.9 60.4 58.5	0 0 0 0
18	32.00	1	AV1 MAX MIN	16.5 16.5 16.5	2.6 2.6 2.6	27 27 27	3.9 3.9 3.9	58.7 58.7 58.7	0 0 0
20	33.00	2	AV2 STD MAX MIN	16.1 0.3 16.3 15.8	3.0 0.0 3.1 3.0	23 0 24 23	3.8 0.1 3.8 3.7	59.5 0.4 59.9 59.1	0 0 0 0
21	34.00	1	AV1 MAX MIN	15.8 15.8 15.8	2.6 2.6 2.6	27 27 27	3.8 3.8 3.8	59.2 59.2 59.2	0 0 0
22	35.00	1	AV1 MAX MIN	16.5 16.5 16.5	2.8 2.8 2.8	27 27 27	3.9 3.9 3.9	58.7 58.7 58.7	0 0 0
25	36.00	3	AV3 STD MAX MIN	16.2 0.3 16.6 15.9	3.2 0.2 3.5 3.0	21 1 22 19	3.8 0.1 3.9 3.7	59.4 0.4 60.0 59.0	0 0 0 0
27	37.00	2	AV2 STD MAX MIN	16.6 0.4 17.0 16.2	2.9 0.1 3.0 2.8	24 1 25 23	3.9 0.1 4.0 3.8	58.8 0.5 59.2 58.3	0 0 0 0

USH 10 over Little L	_ake Butte	des Morts	- Pier 2	#36
OP MR				

Page 2 of 3 PDIPLOT Ver. 2014.1 - Printed: 25-Nov-2014

APE D30-42, HP 14 x 73 Test date: 18-Nov-2014

<u>OP: MR</u>		Dulle des Mor	IS - PIEI 2 #30				F	Test date: 18-	
BL# end	depth ft	BLC bl/ft	TYPE	CSX ksi	CSB ksi	EMX k-ft	STK ft	BPM	RX9 kips
29	38.00	2	AV2 STD MAX MIN	17.1 0.3 17.4 16.8	3.2 0.1 3.2 3.1	26 0 26 26	4.0 0.0 4.0 3.9	58.1 0.3 58.4 57.8	0 0 0 0
32	39.00	3	AV3 STD MAX MIN	17.8 0.5 18.4 17.2	3.6 0.2 3.8 3.3	23 2 25 21	4.1 0.1 4.2 4.0	57.3 0.3 57.7 56.9	0 0 0 0
33	40.00	1	AV1 MAX MIN	18.1 18.1 18.1	3.5 3.6 3.6	32 32 32	4.2 4.2 4.2	56.8 56.8 56.8	0 0 0
35	41.00	2	AV2 STD MAX MIN	17.7 0.2 18.0 17.5	3.4 0.2 3.5 3.2	26 0 26 26	4.1 0.0 4.1 4.1	57.3 0.2 57.5 57.2	0 0 0 0
37	42.00	2	AV2 STD MAX MIN	18.4 0.1 18.4 18.3	3.5 0.1 3.6 3.5	27 0 27 27	4.2 0.0 4.2 4.2	56.7 0.0 56.7 56.6	0 0 0 0
39	43.00	2	AV2 STD MAX MIN	18.3 0.2 18.4 18.1	3.5 0.3 3.8 3.1	27 0 27 27	4.2 0.0 4.2 4.2	56.8 0.3 57.0 56.5	0 0 0 0
41	44.00	2	AV2 STD MAX MIN	18.0 0.6 18.5 17.4	3.2 0.2 3.4 3.0	26 0 26 25	4.1 0.1 4.2 4.1	57.0 0.5 57.6 56.5	0 0 0 0
44	45.00	3	AV3 STD MAX MIN	17.2 0.3 17.6 16.8	3.9 0.5 4.6 3.6	21 0 21 20	4.0 0.0 4.1 4.0	57.9 0.3 58.1 57.5	0 0 0 0
46	46.00	2	AV2 STD MAX MIN	17.3 0.5 17.8 16.8	3.2 0.1 3.3 3.2	26 0 26 25	4.1 0.1 4.2 4.0	57.6 0.6 58.2 57.0	0 0 0 0
48	47.00	2	AV2 STD MAX MIN	17.7 0.4 18.1 17.3	3.2 0.1 3.3 3.1	25 0 26 25	4.1 0.1 4.2 4.0	57.3 0.4 57.7 56.8	0 0 0 0
50	48.00	2	AV2 STD MAX MIN	17.1 0.1 17.2 17.1	3.0 0.1 3.2 2.9	25 0 25 25	4.0 0.0 4.0 4.0	57.8 0.1 57.9 57.7	0 0 0
52	49.00	2	AV2 STD MAX MIN	16.3 0.3 16.6 16.1	2.9 0.0 2.9 2.9	24 1 25 23	3.9 0.1 4.0 3.8	58.7 0.6 59.3 58.0	0 0 0
54	50.00	2	AV2 STD MAX MIN	17.5 0.0 17.5 17.5	3.3 0.2 3.5 3.2	26 0 26 25	4.1 0.0 4.1 4.1	57.3 0.2 57.6 57.1	0 0 0
58	51.00	4	AV4 STD MAX MIN	18.2 0.3 18.6 17.9	4.0 0.2 4.3 3.7	22 1 23 21	4.2 0.1 4.3 4.2	56.5 0.4 56.9 56.1	6 11 24 0
62	52.00	4	AV4 STD MAX MIN	18.9 0.4 19.5 18.4	4.3 0.2 4.5 4.1	22 1 23 20	4.3 0.1 4.4 4.2	55.9 0.6 56.6 55.3	24 18 50 0
64	53.00	2	AV2 STD MAX MIN	17.5 0.4 17.9 17.1	3.4 0.2 3.6 3.2	26 0 26 26	4.2 0.1 4.3 4.1	56.6 0.5 57.1 56.1	0 0 0 0

USH 10 over Little Lake Butte des Morts - Pier 2 #36	i
OP: MR	

Page 3 of 3 PDIPLOT Ver. 2014.1 - Printed: 25-Nov-2014

> APE D30-42, HP 14 x 73 Test date: 18-Nov-2014

P: MR								Test date: 18-	
3L#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX
nd	ft	bl/ft		ksi	ksi	k-ft	ft	**	kip
65	54.00	1	AV1	17.0	3.3	29	4.1	57.4	
			MAX	17.0	3.3	29	4.1	57.4	
			MIN	17.0	3.3	29	4.1	57.4	
67	55.00	2	AV2	17.6	3.2	26	4.1	57.3	
			STD	0.7	0.0	1	0.1	0.7	
			MAX	18.2	3.3	27	4.2	58.0	
			MIN	16.9	3.2	25	4.0	56.7	
71	56.00	4	AV4	18.9	4.3	23	4.4	55.5	4
			STD	1.0	0.3	1	0.3	1.5	1
			MAX	20.5	4.6	25	4.8	56.8	6
			MIN	18.2	3.9	21	4.2	53.2	2
73	57.00	2	AV2	19.2	4.0	29	4.4	55.3	
			STD	0.2	0.0	1	0.0	0.1	
			MAX	19.4	4.0	29	4.5	55.4	
			MIN	19.0	3.9	28	4.4	55.1	
76	58.00	3	AV3	17.9	4.2	24	4.3	56.2	
			STD	0.6	0.0	1	0.1	0.7	
			MAX	18.7	4.3	26	4.5	56.8	
			MIN	17.2	4.2	23	4.2	55.2	
84	59.00	8	AV8	22.9	8.0	26	5.4	50.5	15
			STD	2.7	2.4	5	0.8	3.5	5
			MAX	26.0	11.7	32	6.3	56.2	22
			MIN	18.4	4.6	19	4.3	46.8	4
95	60.00	11	AV11	26.9	12.7	32	6.6	45.8	27
			STD	0.3	0.8	1	0.1	0.4	1
			MAX	27.5	13.6	33	6.8	46.9	30
			MIN	26.1	10.9	30	6.3	45.1	23
113	61.00	18	AV18	28.9	19.3	34	7.3	43.7	38
			STD	0.6	2.3	1	0.2	0.7	3
			MAX	29.8	22.1	36	7.6	45.2	42
			MIN	27.7	14.0	31	6.8	42.9	30
120	61.04	168	AV7	29.9	22.8	33	7.6	42.7	48
			STD	0.3	0.9	1	0.1	0.3	1
			MAX	30.2	23.9	34		43.4	50
			MIN	29.3	21.3	32	7.4	42.3	44
			Average	20.6	8.1	26	5.0	53.5	12
			Std. Dev.	5.9	7.0	6	1.5	6.8	17
			Maximum	30.2	23.9	36	7.8	66.1	50
			Minimum	8.1	1.8	14	3.0	42.3	
			MIN Average Std. Dev. Maximum	29.3 20.6 5.9 30.2 8.1	23.9 21.3 8.1 7.0 23.9	32 26 6 36 14	5.0 1.5 7.8	43.4 42.3 53.5 6.8 66.1	

BL# depth (ft) Comments

onnents

2 23.00 Time Summary

Drive 2 minutes 16 seconds

Reference Elevation EL 731.0

12:45:08 PM - 12:47:24 PM (11/18/2014) BN 1 - 120

PDIPLOT Ver. 2014.1 - Printed: 25-Nov-2014

Test date: 19-Nov-2014

CSX (ksi) — EMX (k-ft) RX9 (kips) —— Max Measured Compr. Stress Max Case Method Capacity (JC=0.9) Max Transferred Energy 0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 150 300 450 600 750 900 0 2 4 B I 6 0 w Ν 8 u m b е 10 r 12 14 16 – 30 60 0 2 6 8 0 10 20 40 50 4 10 12 0 40 80 120 160 200 240 STK (ft) -CSB (ksi) -BLC (blows/ft) · [=[] Compression Stress at Bottom O.E. Diesel Hammer Stroke Blow Count

USH 10 over Little Lake Butte des Morts - Pier 2 #36 Restrike APE D30-42, HP 14 x 73

USH 10 over Little Lake Butte des Morts - Pier 2 #36 Restrike OP: MR

Page 1 of 1 PDIPLOT Ver. 2014.1 - Printed: 25-Nov-2014

APE D30-42, HP 14 x 73

OP: N	1R							Test date: 19-	Nov-2014
AR:	21.40 in^2							SP: ().492 k/ft3
LE:	77.50 ft							EM: 30),000 ksi
WS: 1	6,807.9 f/s							JC:	1.20
CSX:	Max Measured C	Compr. Stress	5			STK:	O.E. Diesel I	Hammer Stroke	9
CSB:	Compression Sti	ress at Botton	n			BPM	: Blows per M	inute	
EMX:	Max Transferred	Energy				RX9:		ethod Capacity	/ (JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
end	ft	bl/ft		ksi	ksi	k-ft	ft	**	kips
5	61.46	120	AV4	29.5	29.0	24	7.0	44.6	546
			STD	0.5	0.7	1	0.1	0.4	17
			MAX	30.1	30.0	25	7.1	45.1	564
			MIN	28.9	28.0	23	6.8	44.2	518
10	61.50	120	AV5	29.2	29.5	24	6.9	44.9	570
			STD	0.3	0.4	1	0.1	0.2	7
			MAX	29.7	29.9	25	7.0	45.2	577
			MIN	28.8	28.8	23	6.8	44.6	558
15	61.53	160	AV5	29.0	30.7	24	7.0	44.7	608
			STD	0.3	0.5	0	0.1	0.2	14
			MAX	29.5	31.5	25	7.1	45.0	631
			MIN	28.7	30.1	23	6.9	44.3	588
			Average	29.2	29.8	24	6.9	44.7	577
			Std. Dev.	0.4	0.9	1	0.1	0.3	29
			Maximum	30.1	31.5	25	7.1	45.2	631
			Minimum	28.7	28.0	23	6.8	44.2	518
				Total nu	mber of blows	analyzed: 14			

Time Summary

Drive 18 seconds

8:26:18 AM - 8:26:36 AM (11/19/2014) BN 1 - 15

Test date: 18-Nov-2014

USH 10 over LLBDM - Pier 2 #44

	gineers, Inc. hod & iCAP® F	Results				PDIPL	OT Ver. 2014.1		age 1 of 3 Nov-2014
USH 10 OP: MR	over LLBDM - P	Pier 2 #44					Δ	PE D30-42, H Test date: 18-	
	21.40 in^2 77.50 ft 307.9 f/s							SP: 0 EM: 30	.492 k/ft3 ,000 ksi 1.20
CSB: Co	ax Measured Co ompression Stre E. Diesel Hamn	ss at Bottom				BPM	: Max Transfer : Blows per Mi Max Case M	nute	(JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
end	, ft	bl/ft		ksi	ksi	ft	k-ft	**	kips
5	31.00	5	AV5	17.4	3.4	**	12	**	24
			STD	0.7	0.4	**	0	**	15
			MAX	18.4	3.9	**	13	**	40
			MIN	16.3	3.0	**	12	**	3
10	32.00	5	AV5	20.0	3.9	**	14	**	47
10	52.00	5	STD	0.7	0.2	**	1	**	4
			MAX	20.6	4.1	**	15	**	53
			MIN	18.6	3.7	**	13	**	40
14	33.00	4	AV4	20.4	3.4	**	16	**	50
			STD	0.5	0.3		0		5
			MAX	21.0	3.8	**	16	**	58
			MIN	19.8	3.1	**	15	**	45
18	34.00	4	AV4	18.2	3.6	3.7	15	60	53
			STD	5.0	0.9	0.0	6	0	12
			MAX	21.4	4.7	3.7	21	60	64
			MIN	9.5	2.3	3.7	5	60	33
24	35.00	6	AV6	21.3	4.2	**	15	**	55
24	33.00	0	STD	0.2	0.3	**	0	**	3
			MAX	21.6	0.3 4.5	**	15	**	60
			MIN	21.0	3.6	**	15	**	52
							-		
31	36.00	7	AV7	15.7	3.4	2.6	13	71	55
			STD	7.3	1.2	0.4	9	5	20
			MAX	22.7	4.7	3.1	24	76	75
			MIN	2.7	1.4	2.2	0	65	17
37	37.00	6	AV3	10.8	2.6	2.6	7	72	41
0,	01.00	0	STD	8.6	1.2	0.7	9	9	21
			MAX	22.7	4.3	3.4	19	81	69
			MIN	2.7	1.4	1.9	0	63	20
							-		
41	38.00	4	AV4	19.0	3.9	3.2	18	64	55
			STD	4.4	0.6	0.1	11	1	15
			MAX	23.6	4.6	3.3	30	65	74
			MIN	13.2	3.0	3.2	6	63	39

			MIN	2.7	1.4	2.2	0	65
37	37.00	6	AV3 STD MAX MIN	10.8 8.6 22.7 2.7	2.6 1.2 4.3 1.4	2.6 0.7 3.4 1.9	7 9 19 0	72 9 81 63
41	38.00	4	AV4 STD MAX MIN	19.0 4.4 23.6 13.2	3.9 0.6 4.6 3.0	3.2 0.1 3.3 3.2	18 11 30 6	64 1 65 63
45	39.00	4	AV4 STD MAX MIN	21.6 2.2 24.0 18.6	3.8 0.5 4.2 3.1	4.3 0.2 4.4 4.1	24 11 36 11	56 1 57 55
49	40.00	4	AV4 STD MAX MIN	17.8 2.2 21.3 15.9	3.7 0.5 4.5 3.2	4.3 0.4 4.9 3.9	20 2 23 18	56 2 59 53
53	41.00	4	AV4 STD MAX MIN	16.6 1.0 17.8 15.1	3.5 0.2 3.8 3.4	4.0 0.2 4.3 3.8	19 2 21 17	58 1 60 56
57	42.00	4	AV4 STD MAX MIN	18.5 0.9 19.4 17.6	3.9 0.2 4.1 3.6	4.4 0.1 4.5 4.3	22 1 23 21	56 1 56 55
61	43.00	4	AV4 STD MAX MIN	18.5 0.5 19.4 17.9	4.0 0.1 4.2 3.8	4.4 0.1 4.5 4.3	22 0 22 21	56 1 56 55
65	44.00	4	AV4 STD MAX MIN	19.5 0.7 20.0 18.3	4.1 0.1 4.3 4.0	4.6 0.1 4.7 4.4	23 1 25 22	54 1 56 54

USH 10 over LLBDM - Pier 2 #44

Page 2 of 3 PDIPLOT Ver. 2014.1 - Printed: 25-Nov-2014

APE D30-42, HP 14 x 73

OP: MF		riei 2 #44					,	Test date: 18-	
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
end 69	ft 45.00	bl/ft 4	AV4	ksi 19.6	ksi 4.1	ft 4.6	k-ft 23	54	kips 26
			STD	0.9	0.1	0.1	1	1	11
			MAX MIN	20.6 18.2	4.2 4.0	4.7 4.4	24 22	56 54	45 17
73	46.00	4	AV4	19.2	4.0	4.6	23	55	15
			STD	0.4	0.2	0.1 4.7	1 24	1	6
			MAX MIN	19.6 18.6	4.3 3.8	4.7 4.4	24 23	55 54	22 7
77	47.00	4	AV4	18.8	4.0	4.5	22	55	14
			STD MAX	0.5 19.4	0.1 4.2	0.1 4.6	1 23	1 56	4 19
			MIN	18.0	4.0	4.4	21	54	9
81	48.00	4	AV4	14.2	3.8	4.4	16	56 1	9 9
			STD MAX	4.6 19.1	0.4 4.2	0.1 4.5	5 22	56	9 21
			MIN	9.4	3.3	4.3	11	55	0
85	49.00	4	AV4 STD	13.8 4.6	3.5 0.5	4.3 0.1	16 5	56 1	5 9
			MAX	18.7	4.1	4.5	21	57	21
00	50.00	-	MIN	9.0	2.8	4.1	11	55	0
90	50.00	5	AV5 STD	14.7 4.1	3.9 0.3	4.4 0.0	17 5	56 0	3 5
			MAX	18.5	4.1	4.4	21	56	12
06	51.00	6	MIN AV6	9.6 13.9	3.4	4.3 4.4	11	55	0
96	51.00	0	STD	4.3	3.8 0.3	4.4 0.1	16 5	56 0	3 5
			MAX	18.6	4.2	4.5	21	56	13
102	52.00	6	MIN AV4	9.5 14.3	3.3 4.2	4.3 4.5	11 14	55 55	0 29
102	52.00	0	STD	4.4	0.2	4.5 0.1	3	1	28
			MAX MIN	19.4 9.9	4.4 3.8	4.7 4.4	20 11	56 54	64 0
106	53.00	4	AV2	15.7	5.3	5.1	19	52	29
			STD	6.0	0.2	0.3	8	1	28
			MAX MIN	21.7 9.8	5.4 5.1	5.4 4.8	27 11	53 51	57 1
112	54.00	6	AV5	13.7	4.3	4.3	14	56	39
			STD MAX	3.6 18.4	0.3 4.7	0.2 4.5	3 18	1 59	29 72
			MIN	9.4	3.9	3.9	10	55	0
118	55.00	6	AV6 STD	13.5 4.0	4.3 0.3	4.4 0.1	14 4	56 1	34 30
			MAX	17.9	0.3 5.0	4.5	19	57	73
			MIN	9.1	4.0	4.2	9	55	0
126	56.00	8	AV5 STD	21.0 4.7	8.4 1.4	5.7 0.4	24 6	49 1	144 49
			MAX	25.6	11.1	6.3	31	51	205
			MIN	11.9	6.7	5.3	13	47	58
136	57.00	10	AV5 STD	26.0 0.4	11.9 0.5	6.5 0.1	31 0	46 0	253 11
			MAX	26.6	12.7	6.6	32	46	263
4.4.0	50.00	10	MIN	25.6	11.0	6.4	31	46	232
148	58.00	12	AV6 STD	27.1 0.4	14.4 2.0	6.9 0.1	33 1	45 0	309 38
			MAX	27.6	17.7	7.0	34	46	364
162	59.00	14	MIN AV7	26.4 29.2	12.3 21.5	6.7 7.6	32 36	44 43	269 453
102	00.00	14	STD	0.4	1.6	0.2	1	0	37
			MAX MIN	29.7 28.6	23.0 18.7	7.8 7.3	38 34	44 42	496 389
				20.0			07	74	000

Page 3 of 3 PDIPLOT Ver. 2014.1 - Printed: 25-Nov-2014

USH 10 over LLBDM - Pier 2 #44
OP MR

APE D30-42, HP 14 x 73 Test date: 18-Nov-2014

OP: MR								Test date: 18-	Nov-2014
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
end	ft	bl/ft		ksi	ksi	ft	k-ft	**	kips
185	59.67	35	AV11	29.6	22.7	7.7	35	43	488
			STD	0.8	3.1	0.3	2	1	66
			MAX	31.6	29.6	8.4	38	43	622
			MIN	28.8	19.3	7.4	32	41	417
192	59.71	168	AV4	37.7	41.3	9.2	41	39	891
			STD	4.0	4.6	0.6	3	1	92
			MAX	42.2	46.4	9.7	44	41	993
			MIN	31.6	34.0	8.3	37	38	747
			Average	20.0	8.0	5.2	21	53	132
			Std. Dev.	6.8	8.5	1.6	9	7	200
			Maximum	42.2	46.4	9.7	44	81	993
			Minimum	2.7	1.4	1.9	0	38	0

Total number of blows analyzed: 148

BL# depth (ft) Comments

30.20 Reference Elevation EL 731.0

Time Summary

1

Drive 17 minutes 50 seconds

12:07:18 PM - 12:25:08 PM (11/18/2014) BN 1 - 192

PDIPLOT Ver. 2014.1 - Printed: 25-Nov-2014

Test date: 19-Nov-2014

CSX (ksi) EMX (k-ft) RX9 (kips) Max Measured Compr. Stress Max Case Method Capacity (JC=0.9) Max Transferred Energy 0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 200 400 600 800 1,000 1,200 0 1 2 -3 В T 4 0 w Ν 5 u m b 6 е r 7 8 9 10 + 25 50 0 2 6 0 8 17 33 42 4 8 10 12 0 60 120 180 240 300 360 CSB (ksi) -STK (ft) -BLC (blows/ft) -[=[] Compression Stress at Bottom O.E. Diesel Hammer Stroke Blow Count

USH 10 over Little Lake Butte des Morts - Pier 2 #44 Restrike APE D30-42, HP 14 x 73

Page 1 of 1 PDIPLOT Ver. 2014.1 - Printed: 25-Nov-2014

USH 10 over Little Lake Butte des Morts - Pier 2 #44 Restrike OP: MR

APE D30-42, HP 14 x 73 Test date: 19-Nov-2014

01.11									
AR: LE:	21.40 in^2 77.50 ft							-	0.492 k/ft3 30,000 ksi
	6,807.9 f/s							JC:	1.20
CSX:	Max Measured	Compr. Stre	ess			STK:	O.E. Diesel Ha	ammer Stro	ke
CSB:	Compression S	tress at Bot	tom			BPM:	Blows per Min	ute	
EMX:	Max Transferred	d Energy				RX9:	Max Case Me	thod Capac	ity (JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
end	ft	bl/ft		ksi	ksi	k-ft	ft	**	kips
8	59.69	320	AV8	37.4	44.8	42	9.0	39.5	893
			STD	1.1	0.8	3	0.2	0.4	16
			MAX	39.0	46.0	45	9.3	40.3	923
			MIN	35.6	43.3	35	8.6	38.8	872
			Average	37.4	44.8	42	9.0	39.5	893
			Std. Dev.	1.1	0.8	3	0.2	0.4	16
			Maximum	39.0	46.0	45	9.3	40.3	923
			Minimum	35.6	43.3	35	8.6	38.8	872
				Total nu	mber of blows	analyzed: 8			

Time Summary

Drive 12 seconds

8:16:54 AM - 8:17:06 AM (11/19/2014) BN 1 - 10

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result.

			CAPWAP SUMM	ARY RESUL	rs		
Total CAPWAP	Capacity:	750.0;	along Shaft	52.0	; at Toe	698.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Uni
Sgmnt	Below	Below		in Pile	of	Resist.	Resist
No.	Gages	Grade			Ru	(Depth)	(Area
	ft	ft	kips	kips	kips	kips/ft	ks
				750.0			
1	23.6	7.4	3.0	747.0	3.0	0.41	0.0
2	30.3	14.1	3.0	744.0	6.0	0.45	0.0
3	37.1	20.8	3.0	741.0	9.0	0.45	0.0
4	43.8	27.6	3.0	738.0	12.0	0.45	0.0
5	50.5	34.3	5.0	733.0	17.0	0.74	0.1
6	57.3	41.1	5.0	728.0	22.0	0.74	0.1
7	64.0	47.8	7.0	721.0	29.0	1.04	0.2
8	70.8	54.5	8.0	713.0	37.0	1.19	0.2
9	77.5	61.3	15.0	698.0	52.0	2.23	0.4
Avg. Shaf	t		5.8			0.85	0.1
Тое			698.0				506.3
Soil Model P	arameters/E	xtensions	1		Shaft	Тое	
Smith Dampin	g Factor				0.20	0.07	
Juake	-	(in)			0.08	0.34	
Case Damping	Factor				0.27	1.28	
Damping Type	1				Viscous	Smith	
Unloading Qu	lake	(% of	loading quak	e)	100	30	
Unloading Le	vel	(% of			68		
Resistance G	ap (include	d in Toe	Quake) (in)			0.02	
CAPWAP match	quality	= 3	.84	(Wave Up 1	Match) ; RSA	A = 0	
Observed: Fi	nal Set	= 0		Blow Count		60 b/ft	
Computed: Fi	nal Set	= 0	.04 in;	Blow Count	t =	331 b/ft	
Fransducer	F3(F590) CAL	.: 95.0; RF	: 1.00; F4(F607)) CAL: 93.	6; RF: 1.00		
	A3(K2253) CAL	.: 325; RF	: 1.08; A4(K2524	1) CAL: 36	0; RF: 1.08		
max. Top Com	p. Stress	= 3	2.9 ksi	(T= 35.9	9 ms, max= 3	1.157 x Top)	
max. Comp. S	tress	= 3	8.0 ksi		5 ft, T= 41		
max. Tens. S	tress	= -6	.47 ksi			7.1 ms)	
max. Energy	(= 4	0.8 kip-ft;				

				EXTI	REMA TABL	E				
Pile	e Dis	t. :	max.	min.	max.	max.	. 1	nax.	max.	max.
Sgmnt	t Belo	ow F	orce	Force	Comp.	Tens.	. Trns	sfd. N	/eloc.	Displ.
No	. Gage	es			Stress	Stress	s Ene	ergy		
	:	Et	kips	kips	ksi	ksi	i kij	ọ−ft	ft/s	in
1	L 3	.4 7	03.6	-66.7	32.9	-3.12	2 4	40.8	17.4	1.15
2	26	.77	04.4	-87.7	32.9	-4.10) 4	40.6	17.4	1.13
	4 13	.5 7	06.2	-125.1	33.0	-5.84	i :	39.7	17.3	1.08
5	5 16	.87	08.3	-116.1	33.1	-5.42	2 :	39.1	17.2	1.05
e	5 20	.2 7	12.0	-102.6	33.3	-4.79)	38.5	17.1	1.02
	7 23	.67	15.0	-90.5	33.4	-4.23	3	37.9	17.0	0.99
8	3 27	.0 7	05.7	-84.8	33.0	-3.96	5	36.6	16.9	0.96
<u> </u>	9 30	.3 7	08.7	-89.7	33.1	-4.19) :	35.8	16.8	0.92
10	33	.7 6	99.6	-82.5	32.7	-3.86	5 .	34.4	16.7	0.89
11	L 37	.1 7	02.7	-113.1	32.8	-5.28	3 :	33.5	16.6	0.86
12	2 40	.4 6	93.7	-134.0	32.4	-6.26	5 .	32.0	16.5	0.82
13			97.7	-138.5	32.6	-6.47		31.1	16.4	0.78
14			90.7	-123.1	32.3	-5.75		29.6	16.2	0.74
15			95.3	-109.2	32.5	-5.10		28.4	16.1	0.70
10			83.1	-95.6	31.9	-4.47		26.3	15.9	0.66
17			96.7	-93.4	32.5	-4.36		25.1	15.8	0.62
18			04.3	-96.9	32.9	-4.53		23.0	15.6	0.57
19			17.9	-101.3	33.5	-4.73		21.7	15.8	0.53
20			52.3	-84.3	35.1	-3.94		19.4	17.4	0.48
20			52.5 77.7	-70.0	36.3	-3.27		18.0	18.5	0.48
22			82.8 13.8	-40.6 -27.2	36.6 38.0	-1.90 -1.27		15.7 15.0	19.2 16.6	0.39 0.36
				27.12			·			
Absolute	77 43				38.0	-6.47	7	-	'=	41.1 ms) 57.1 ms)
				CAS	SE METHOD					
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	5 1.8
RP	746.7	618.8	490.9	362.9	235.0					
RX	857.9	836.3	818.3	801.5	788.5	775.5	765.6	756.3	746.9	9 737.6
RU	746.7	618.8	490.9	362.9	235.0					
RAU =	592.2 (ki	.ps); R	A2 =	840.5 ()	kips)					
Current C	APWAP Ru	= 750.0	(kips)	; Corres	ponding J	(RP)= 0.0	00; J(R	x) = 1.5	53	
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	S KEE
ft/s	ms	kips	kips	kips	in	in	in	kip-ft		s kips/in
17.6	35.68	672.5	713.9	717.4	1.15	0.20	0.20	41.1	728.0	-
			PI	LE PROFII	LE AND PI					
	Depth			rea	E-Modu	lus	Spec. N	-		Perim.
	ft		iı	n²		ksi	11	o/ft ³		ft
	0.0		2	1.4	2999	2.2	49	92.000		4.70
	77.5			1.4	2999			92.000		4.70

Top Segment Length3.37 ft, Top Impedance38 kips/ft/sWave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/sPile Damping1.00 %, Time Incr0.200 ms, 2L/c9.2 ms

198.5 in²

Toe Area

Total volume: 11.517 ft^{3;} Volume ratio considering added impedance: 1.000

Force Msd

- Velocity Msd

90 ms

шщ

11 L/c

Length b. Sensors	77.5 ft
Embedment	61.4 ft
Top Area	21.4 in ²
End Bearing Area	198.5 in ²
Top Perimeter	4.70 ft
Top E-Modulus	29992 ksi
Top Spec. Weight	492.0 lb/ft3
Top Wave Spd.	16808 ft/s
Overall W.S.	16808 ft/s
Match Quality	3.05
Top Compr. Stress	27.6 ksi
Max Compr. Stress	33.0 ksi
Max Tension Stress	-4.10 ksi
Avg. Shaft Quake	0.12 in
Toe Quake	0.15 in
Avg. Shaft Smith Dpg.	0.30 s/ft
Toe Smith Damping	0.08 s/ft

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result.

USH	10 over	\mathbf{LLI}	BDM;	I	Pile	:	Pier	2	#1	Restrike
APE	D30-42,	HP	14	x	73;	1	Blow:	9		
GRL	Engineer	rs,	Inc							

			CAPWAP SUMMA	ARY RESULT	'S		
Total CAPWA	P Capacity:	645.0;	along Shaft	105.0	; at Toe	540.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.
No.	Gages	Grade			Ru	(Depth)	(Area)
	ft	ft	kips	kips	kips	kips/ft	ksf
				645.0			
1	23.6	7.5	6.0	639.0	6.0	0.80	0.17
2	30.3	14.2	6.0	633.0	12.0	0.89	0.19
3	37.1	20.9	6.0	627.0	18.0	0.89	0.19
4	43.8	27.7	8.0	619.0	26.0	1.19	0.25
5	50.5	34.4	9.0	610.0	35.0	1.34	0.28
6	57.3	41.2	9.0	601.0	44.0	1.34	0.28
7	64.0	47.9	8.0	593.0	52.0	1.19	0.25
8	70.8	54.6	8.0	585.0	60.0	1.19	0.25
9	77.5	61.4	45.0	540.0	105.0	6.68	1.42
Avg. Sha	ıft		11.7			1.71	0.36
Тое			540.0				391.73
Soil Model	Parameters/E	Extensions	1		Shaft	Тое	
Smith Dampi	ng Factor				0.30	0.08	
Quake	5	(in)			0.12	0.15	
Case Dampin	g Factor	. ,			0.82	1.13	
Damping Typ	-				Viscous	Smith	
Unloading Q	uake	(% of	loading guak	e)	100	51	
Reloading L	evel	(% of	Ru)		100	0	
Unloading L	evel	(% of	Ru)		35		
Resistance	Gap (include					0.02	
CAPWAP matc	h quality	= 3	.05	(Wave Up M	atch); RSA	. = 0	
Observed: F	inal Set	= 0	.05 in; H	Slow Count	=	240 b/ft	
Computed: F	inal Set	= 0	.02 in; H	Blow Count	=	620 b/ft	
- Transducer	F3(F590) CAI	L: 95.0; RF	: 1.00; F4(F607)	CAL: 93.6	; RF: 1.00		
	A3(K2253) CAI	L: 325; RF	: 1.10; A4(K2524) CAL: 360	; RF: 1.10		
max. Top Co	mp. Stress	= 2	7.6 ksi	(T= 35.9	ms, max= 1	L.194 x Top)	
max. Comp.	Stress	= 3	3.0 ksi	(Z= 77.5	ft, T= 41	L.1 ms)	
max. Tens.	Stress	= -4	.10 ksi	(Z= 50.5	ft, T= 57	7.5 ms)	
max. Energy	(EMX)	= 2	9.2 kip-ft;	max. Meas	ured Top Di	ispl. (DMX)=	0.89 in

Test: 19-Nov-2014 08:38 CAPWAP(R) 2014 OP: MR

					EMA TABL					
Pile	Dist		max.	min.	max.	max.		nax.	max.	max
Sgmnt	Belo		orce	Force	Comp.	Tens.		sfd.	Veloc.	Displ
No.	Gage		kips	kips	Stress ksi	Stress ksi		ergy p-ft	ft/s	ir
								-		
1			91.2	-28.7	27.6	-1.34		29.2	14.3	0.89
2			92.2	-31.6	27.7	-1.48		28.9	14.3	0.87
4	13.		94.4	-36.3	27.8	-1.70		28.0	14.2	0.82
5	16.		98.7	-37.9	28.0	-1.77		27.6	14.1	0.80
6	20		06.7	-39.0	28.3	-1.82		27.1	13.9	0.77
7	23		13.2	-40.1	28.6	-1.88		26.5	13.7	0.74
8	27		90.5	-37.3	27.6	-1.74		24.7	13.5	0.71
9	30.		97.1	-48.6	27.9	-2.27		24.0	13.3	0.68
10	33.		75.5	-56.2	26.9	-2.63		22.2	13.1	0.64
11	37.		84.3	-73.4	27.3	-3.43		21.5	12.9	0.61
12	40.		87.9	-78.9	27.5	-3.69		19.7	12.6	0.58
13	43.		90.2	-84.7	27.6	-3.96		19.0	12.3	0.54
14	47.	.2 5	84.2	-83.7	27.3	-3.91	L :	17.0	12.1	0.51
15	50.	.5 5	99.5	-87.8	28.0	-4.10) :	16.2	11.8	0.47
16	53.	.96	01.9	-74.8	28.1	-3.49)	14.2	11.5	0.43
17	57.	.3 6	12.1	-73.0	28.6	-3.41	L :	13.3	11.3	0.40
18	60.	.76	13.7	-60.9	28.7	-2.84	L :	11.4	11.0	0.36
19	64.	.0 6	27.3	-60.1	29.3	-2.81	L :	10.4	10.8	0.32
20	67.	.4 6	28.5	-50.8	29.4	-2.37	7	8.7	10.9	0.28
21	70.	.8 6	19.3	-49.7	28.9	-2.32	2	7.8	11.3	0.24
22	74.	.1 6	63.6	-39.2	31.0	-1.83	3	6.4	10.8	0.20
23	77.	.5 7	05.7	-39.3	33.0	-1.84	Ł	4.9	8.5	0.17
Absolute	77.	. 5			33.0				(T =	41.1 ms)
	50					-4.10)		(T =	57.5 ms)
					E METHOD					
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1	.4 1.0	6 1.8
RP	789.8	718.3	646.8	575.3	503.8		<			
XX	835.5	793.7	755.0	719.1	686.1	656.6	633.3	611	.2 591.	7 573.7
RU	792.7	721.9	651.0	580.1	509.2					
RAU = 5 Current CA	04.2 (ki			692.3 (k	-		41		1 00	
				-	-			-		
VMX	TVP	VT1*Z	FT1 bing	FMX	DMX	DFN	SET		MX QU:	
ft/s 14.3	ms 35.68	kips 546.6	kips 600.6	kips 600.6	in 0.89	in 0.05	in 0.05	kip-: 29	-	s kips/in 1 4154
14.3	33.00	540.0	000.0	000.0	0.89	0.05	0.05	29	.5 /50.	1 4154
			PII	E PROFIL	E AND PI	LE MODEL				
	Depth			ea	E-Modu		Spec. I	-		Perim.
	ft		in	2		ksi	11	o/ft³		ft
	0.0		21	.4	2999	2.2	49	92.000		4.70
	77.5		21	.4	2999	2.2	49	92.000		4.70

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.200 ms, 2L/c 9.2 ms Total volume: 11.517 ft^{3;} Volume ratio considering added impedance: 1.000

600.0

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result.

			CAPWAP SUMM	ARY RESULT	S		
Total CAPWAP	Capacity:	516.0;	along Shaft	96.0	; at Toe	420.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist
No.	Gages	Grade			Ru	(Depth)	(Area)
	ft	ft	kips	kips	kips	kips/ft	ksf
				516.0			
1	23.6	7.1	8.0	508.0	8.0	1.12	0.24
2	30.3	13.9	8.0	500.0	16.0	1.19	0.2
3	37.1	20.6	8.0	492.0	24.0	1.19	0.2
4	43.8	27.3	8.0	484.0	32.0	1.19	0.2
5	50.5	34.1	8.0	476.0	40.0	1.19	0.25
6	57.3	40.8	8.0	468.0	48.0	1.19	0.25
7	64.0	47.6	12.0	456.0	60.0	1.78	0.38
8	70.8	54.3	12.0	444.0	72.0	1.78	0.38
9	77.5	61.0	24.0	420.0	96.0	3.56	0.76
Avg. Shaf	Et		10.7			1.57	0.33
Тое			420.0				304.68
Soil Model F	Parameters/E	xtensions			Shaft	Тое	
Smith Dampin	g Factor				0.24	0.03	
Quake		(in)			0.13	0.55	
Case Damping	Factor	(0.60	0.33	
Damping Type	•				Viscous Sn	n+Visc	
Unloading Qu		(% of	loading quak	e)	100	30	
Reloading Le	evel	(% of	Ru)	-	100	100	
Unloading Le	evel	(% of	Ru)		32		
Resistance G	ap (include	d in Toe	Quake) (in)			0.11	
CAPWAP match	guality	= 3	.87	Wave Up M	atch) ; RSA	= 0	
Observed: Fi				Blow Count		168 b/ft	
Computed: Fi				Blow Count		152 b/ft	
Transducer			: 1.00; F4(F607)				
	A3(K2253) CAL	: 325; RF	: 1.09; A4(K2524) CAL: 360	; RF: 1.09		
max. Top Com	np. Stress	= 2	9.6 ksi	(T= 35.9	ms, max= 1	037 x Top)	
max. Comp. S	Stress		0.7 ksi		ft, T= 37		
max. Tens. S		= -4	.73 ksi	(Z= 43.8	ft, T= 63	.4 ms)	
	(EMX)	= 3				.spl. (DMX)=	

				EXTR	REMA TABL	Е				
Pile		. ma	ax.	min.	max.	maz		max.	max.	max.
Sgmnt			ce	Force	Comp.	Tens			Veloc.	Displ.
No.	Gage			1	Stress	Strea		ergy	E + / ~	
			lps	kips	ksi	ks		p-ft	ft/s	ir
1				-55.3	29.6	-2.5		34.9	15.7	1.08
2				-62.5	29.7	-2.9		34.7	15.7	1.07
4				-70.4	29.8	-3.2		34.4	15.6	1.04
5				-70.8	30.0	-3.3		34.2	15.5	1.02
6).7	-73.2	30.4	-3.4		33.9	15.2	1.00
7			7.4	-82.8	30.7	-3.8		33.6	15.0	0.98
8				-85.7	29.4	-4.0		31.3	14.8	0.96
9				-95.2	29.7	-4.4		30.9	14.6	0.93
10				-92.7	28.4	-4.3		28.6	14.4	0.91
11			1.1	-93.2	28.7	-4.3		28.2	14.2	0.88
12 13				-94.5 -101.2	27.4 27.7	-4.4		26.0 25.5	14.0 13.9	0.85
13						-4.6				0.82
14				-99.0	26.4 26.7	-4.6		23.4 23.0	13.7 13.5	0.80 0.77
15				-100.1 -92.4	20.7	-4.0		23.0 21.0	13.3	0.75
10				-92.4	25.4	-4.2		20.5	14.3	0.72
18				-81.2	25.8	-3.7		18.5	14.4	0.69
19				-75.6	25.0	-3.5		18.0	14.6	0.66
20				-64.3	22.9	-3.0		15.4	16.3	0.63
20				-63.7	21.7	-2.9		14.8	17.7	0.61
22				-51.7	21.3	-2.4		12.4	18.1	0.58
23				-50.1	21.8	-2.3		9.4	17.7	0.55
Absolute	23.				30.7					37.1 ms)
ADSOLUCE	43.				50.7	-4.7	73	-		63.4 ms)
					E METHOD					
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	
RP	526.0		382.0	310.1	238.1	166.1	94.1	22.1	0.0	
RX	607.2		552.6	537.0	522.8	519.0	515.8	512.5		
RU	526.0	454.0	382.0	310.1	238.1	166.1	94.1	22.1	0.0	0.0
	174.4 (ki			562.1 ()						
Current CA	APWAP Ru	= 516.0	(kips);	Corres	ponding J	(RP) = 0	.01; J(1	RX) = 0.	59	
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEE
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
15.8	35.68	602.8	643.0	643.0	1.09	0.07	0.07	35.6	739.3	955
			PIL	E PROFII	E AND PI	LE MODEI	6			
	Depth		Ar	ea	E-Modu	lus	Spec.	Weight		Perim.
	ft		in	2		ksi	1	b/ft ³		ft
	0.0		21		2999			92.000		4.70
77.5 21.4			4	2999	4	92.000		4.70		

Top Segment Length3.37 ft, Top Impedance38 kips/ft/sWave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/sPile Damping1.00 %, Time Incr0.200 ms, 2L/c9.2 ms

Total volume: 11.517 ft^{3;} Volume ratio considering added impedance: 1.000

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result.

No. Gages ft Grade ft Kips Ru kips (Depth) kips/ft 1 23.6 7.5 6.0 536.0 6.0 0.80 2 30.3 14.3 6.0 530.0 12.0 0.89 3 37.1 21.0 6.0 524.0 18.0 0.89 4 43.8 27.8 15.0 509.0 33.0 2.23 5 50.5 34.5 12.0 497.0 45.0 1.78 6 57.3 41.2 12.0 485.0 57.0 1.78 7 64.0 48.0 10.0 475.0 67.0 1.48 8 70.8 54.7 10.0 465.0 77.0 1.48 9 77.5 61.5 40.0 425.0 117.0 5.94 Avg. Shaft 13.0 13.0 1.90 1.90 1.90	
Sgmnt Below Below in Pile of Resist. Ru No. Gages Grade Ru (Depth) Ru (Depth) ft ft kips kips kips kips/ft 1 23.6 7.5 6.0 536.0 6.0 0.80 2 30.3 14.3 6.0 530.0 12.0 0.89 3 37.1 21.0 6.0 524.0 18.0 0.89 4 43.8 27.8 15.0 509.0 33.0 2.23 5 50.5 34.5 12.0 497.0 45.0 1.78 6 57.3 41.2 12.0 485.0 57.0 1.78 7 64.0 48.0 10.0 475.0 67.0 1.48 8 70.8 54.7 10.0 465.0 77.0 1.48 9 77.5 61.5 40.0 425.0 117.0 5.94 Avg. Shaft 13.0 1.90 1.90 1.90 1.90 <th></th>	
No.Gages ftGrade ftRu kips(Depth) kips/ft123.67.56.0536.06.00.80230.314.36.0530.012.00.89337.121.06.0524.018.00.89443.827.815.0509.033.02.23550.534.512.0497.045.01.78657.341.212.0485.057.01.78764.048.010.0475.067.01.48870.854.710.0465.077.01.48977.561.540.0425.0117.05.94Avg. Shaft13.01.90	Unit
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	esist.
1 23.6 7.5 6.0 536.0 6.0 0.80 2 30.3 14.3 6.0 530.0 12.0 0.89 3 37.1 21.0 6.0 524.0 18.0 0.89 4 43.8 27.8 15.0 509.0 33.0 2.23 5 50.5 34.5 12.0 497.0 45.0 1.78 6 57.3 41.2 12.0 485.0 57.0 1.78 7 64.0 48.0 10.0 475.0 67.0 1.48 8 70.8 54.7 10.0 465.0 77.0 1.48 9 77.5 61.5 40.0 425.0 117.0 5.94	(Area)
1 23.6 7.5 6.0 536.0 6.0 0.80 2 30.3 14.3 6.0 530.0 12.0 0.89 3 37.1 21.0 6.0 524.0 18.0 0.89 4 43.8 27.8 15.0 509.0 33.0 2.23 5 50.5 34.5 12.0 497.0 45.0 1.78 6 57.3 41.2 12.0 485.0 57.0 1.78 7 64.0 48.0 10.0 475.0 67.0 1.48 8 70.8 54.7 10.0 465.0 77.0 1.48 9 77.5 61.5 40.0 425.0 117.0 5.94	ksf
2 30.3 14.3 6.0 530.0 12.0 0.89 3 37.1 21.0 6.0 524.0 18.0 0.89 4 43.8 27.8 15.0 509.0 33.0 2.23 5 50.5 34.5 12.0 497.0 45.0 1.78 6 57.3 41.2 12.0 485.0 57.0 1.78 7 64.0 48.0 10.0 475.0 67.0 1.48 8 70.8 54.7 10.0 465.0 77.0 1.48 9 77.5 61.5 40.0 425.0 117.0 5.94	
3 37.1 21.0 6.0 524.0 18.0 0.89 4 43.8 27.8 15.0 509.0 33.0 2.23 5 50.5 34.5 12.0 497.0 45.0 1.78 6 57.3 41.2 12.0 485.0 57.0 1.78 7 64.0 48.0 10.0 475.0 67.0 1.48 8 70.8 54.7 10.0 465.0 77.0 1.48 9 77.5 61.5 40.0 425.0 117.0 5.94	0.17
4 43.8 27.8 15.0 509.0 33.0 2.23 5 50.5 34.5 12.0 497.0 45.0 1.78 6 57.3 41.2 12.0 485.0 57.0 1.78 7 64.0 48.0 10.0 475.0 67.0 1.48 8 70.8 54.7 10.0 465.0 77.0 1.48 9 77.5 61.5 40.0 425.0 117.0 5.94	0.19
5 50.5 34.5 12.0 497.0 45.0 1.78 6 57.3 41.2 12.0 485.0 57.0 1.78 7 64.0 48.0 10.0 475.0 67.0 1.48 8 70.8 54.7 10.0 465.0 77.0 1.48 9 77.5 61.5 40.0 425.0 117.0 5.94 Avg. Shaft 13.0 1.90 1.90	0.19
6 57.3 41.2 12.0 485.0 57.0 1.78 7 64.0 48.0 10.0 475.0 67.0 1.48 8 70.8 54.7 10.0 465.0 77.0 1.48 9 77.5 61.5 40.0 425.0 117.0 5.94 Avg. Shaft 13.0 1.90 1.90	0.47
7 64.0 48.0 10.0 475.0 67.0 1.48 8 70.8 54.7 10.0 465.0 77.0 1.48 9 77.5 61.5 40.0 425.0 117.0 5.94 Avg. Shaft 13.0 1.90	0.38
8 70.8 54.7 10.0 465.0 77.0 1.48 9 77.5 61.5 40.0 425.0 117.0 5.94 Avg. Shaft 13.0 1.90	0.38
977.561.540.0425.0117.05.94Avg. Shaft13.01.90	0.32
Avg. Shaft 13.0 1.90	0.32
	1.20
Tee 425.0	0.41
Toe 425.0	308.31
Soil Model Parameters/Extensions Shaft Toe	
Smith Damping Factor 0.31 0.13	
Quake (in) 0.15 0.18	
Case Damping Factor 0.95 1.45	
Damping Type Viscous Sm+Visc	
Unloading Quake (% of loading quake) 77 72	
Resistance Gap (included in Toe Quake) (in) 0.02	
Soil Plug Weight (kips) 0.078	
CAPWAP match quality = 1.52 (Wave Up Match); RSA = 0	
Observed: Final Set = 0.10 in; Blow Count = 120 b/ft	
Computed: Final Set = 0.01 in; Blow Count = 1736 b/ft	
Transducer F3(F590) CAL: 95.0; RF: 1.00; F4(F607) CAL: 93.6; RF: 1.00	
A3(K2253) CAL: 325; RF: 1.12; A4(K2524) CAL: 360; RF: 1.12	
max. Top Comp. Stress = 28.6 ksi (T= 35.9 ms, max= 1.038 x Top)	
max. Comp. Stress = 29.7 ksi (Z= 23.6 ft, T= 37.1 ms)	
max. Tens. Stress = -1.72 ksi (Z= 23.6 ft, T= 88.0 ms)	
<pre>max. Energy (EMX) = 25.1 kip-ft; max. Measured Top Displ. (DMX)= 0.80</pre>	0 i -

Test: 19-Nov-2014 08:26 CAPWAP(R) 2014 OP: MR

Sgmnt No.Below GagesForce ForceComp. StressTens. StressTrnsfd. StressVeloc. Energy13.4 612.2 -25.4 28.6 -1.19 25.1 14.8 2 6.7 613.3 -27.7 28.7 -1.29 24.8 14.8 4 13.5 615.8 -31.9 28.8 -1.49 24.1 14.7 5 16.8 619.7 -33.8 29.0 -1.58 23.7 14.6 6 20.2 628.6 -35.5 29.4 -1.66 23.1 14.4 7 23.6 635.6 -36.9 29.7 -1.72 22.6 14.2 8 27.0 612.1 -31.9 28.6 -1.49 21.0 13.9 9 30.3 619.2 -33.3 28.9 -1.56 20.4 13.7 10 33.7 596.4 -27.9 27.9 -1.30 18.9 13.5 11 37.1 606.8 -28.9 28.3 -1.35 18.3 13.2 12 40.4 594.3 -23.4 27.8 -1.09 16.8 12.7 13 43.8 60.7 -24.6 28.4 -1.15 16.2 12.4 14 47.2 551.2 -10.7 25.8 -0.50 13.9 12.0 15 50.5 562.6 -11.8 26.3 -0.55 13.3 11.7 16 53.9 52.7 -3.9 24.4 <												
No. Gages ft kips kips Stress ksi Stress ksi Energy ksi 1 3.4 612.2 -25.4 28.6 -1.19 25.1 14.8 2 6.7 613.3 -27.7 28.7 -1.29 24.8 14.8 4 13.5 615.8 -31.9 28.8 -1.49 24.1 14.7 5 16.8 619.7 -33.8 29.0 -1.58 23.7 14.6 6 20.2 628.6 -35.5 29.4 -1.66 23.1 14.4 7 23.6 635.6 -36.9 29.7 -1.72 22.6 14.2 8 27.0 612.1 -31.9 28.6 -1.49 21.0 13.9 9 30.3 619.2 -33.3 28.9 -1.56 20.4 13.7 10 33.7 596.4 -27.9 27.8 -1.09 16.8 12.7 13 43.8 607.7 -24.6 28.	max							min.				Pile
ftkipskipsksikipft/s13.4612.2-25.428.6-1.1925.114.826.7613.3-27.728.7-1.2924.814.8413.5615.8-31.928.8-1.4924.114.7516.8619.7-33.829.0-1.5823.714.6620.2628.6-35.529.4-1.6623.114.4723.6635.6-36.929.7-1.7222.614.2827.0612.1-31.928.6-1.4921.013.9930.3619.2-33.328.9-1.5620.413.71033.7596.4-27.927.9-1.3018.913.51137.1606.8-28.928.3-1.1516.212.41447.2551.2-10.725.8-0.5013.912.01550.5552.6-11.826.3-0.5513.311.71653.9522.7-3.924.4-0.1811.611.41757.3533.0-5.924.9-0.2811.011.11860.7493.80.023.50.008.810.52067.4483.80.022.60.005.810.52170.8502.00.023.50.006.910.22274.1518.0 <th>Displ.</th> <th>eloc.</th> <th>Ve</th> <th></th> <th></th> <th></th> <th>_</th> <th>Force</th> <th>orce</th> <th></th> <th></th> <th>-</th>	Displ.	eloc.	Ve				_	Force	orce			-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5 . /									-	No.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ir	it/s		p-it	. Kij	KSI	ksı	kips	kips	tt .	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.81	14.8		25.1	2	-1.19	28.6	-25.4	12.2	.4 6	3.	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.79	14.8		24.8	2	-1.29	28.7	-27.7	13.3	.7 6	6.	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.75	14.7				-1.49		-31.9	15.8	.5 6	13.	4
7 23.6 635.6 -36.9 29.7 -1.72 22.6 14.2 8 27.0 612.1 -31.9 28.6 -1.49 21.0 13.9 9 30.3 619.2 -33.3 28.9 -1.56 20.4 13.7 10 33.7 596.4 -27.9 27.9 -1.30 18.9 13.5 11 37.1 606.8 -28.9 28.3 -1.35 18.3 13.2 12 40.4 594.3 -23.4 27.8 -1.09 16.8 12.7 13 43.8 607.7 -24.6 28.4 -1.15 16.2 12.4 14 47.2 551.2 -10.7 25.8 -0.50 13.9 12.0 15 50.5 562.6 -11.8 26.3 -0.55 13.3 11.7 16 53.9 522.7 -3.9 24.4 -0.18 11.6 11.4 17 57.3 533.0 -5.9 24.9 -0.28 11.0 11.1 18 60.7 493.8 0.0 23.1 0.00 9.4 10.8 19 64.0 502.9 0.0 23.5 0.00 8.8 10.5 20 67.4 483.8 0.0 22.6 0.00 7.5 10.3 21 70.8 502.0 0.0 23.5 0.00 6.9 10.2 22 74.1 518.0 0.0 24.2 0.00 5.8 10.5 23 77.5 565.9 -0.4 26.4 -0.02 4.4 9.5 23 37.5 565.9 -0.4 26.4 -0.02 4.4 9.5 23 6 -1.72 (T = 3) 23.6 -1.72 (T = 3) 23.6 -1.72 (T = 3) 23.6 -1.72 (T = 3) 24.4 9.5 25.8 528.6 511.4 496.4 10 745.6 652.6 559.6 466.5 373.5 24.9 -1.72 (T = 3) 25.6 559.6 466.5 373.5 26.4 511.4 496.4 27.4 482.8 631.5 596.7 573.4 550.8 528.6 511.4 496.4 27.4 51.6 652.6 559.6 466.5 373.5 26.4 1.0 1.2 1.4 1.6 27.4 482.8 631.5 596.7 573.4 550.8 528.6 511.4 496.4 27.4 51.6 652.6 559.6 466.5 373.5 26.4 1.0 1.2 1.4 1.6 27.4 1.518.0 0.0 24.2 0.00 5.8 10.5 27.4 496.4 496.4 496.4 27.5 10.3 21.7 1.4 (kips); RA2 = 615.3 (kips) 50.4 27.4 1.518.0 0.0 24.2 0.00 5.8 528.6 511.4 496.4 27.4 5.6 652.6 559.6 466.5 373.5 28.4 371.1 (kips); RA2 = 615.3 (kips) 50.4 29.7 MVV VT1*Z FT1 FMX DMX DFN SET EMX QUS ft/s ms kips kips kips in in in kip-ft kips 1	0.72						29.0					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.69											
9 30.3 619.2 -33.3 28.9 -1.56 20.4 13.7 10 33.7 596.4 -27.9 27.9 -1.30 18.9 13.5 11 37.1 606.8 -28.9 28.3 -1.35 18.3 13.2 12 40.4 594.3 -23.4 27.8 -1.09 16.8 12.7 13 43.8 607.7 -24.6 28.4 -1.15 16.2 12.4 14 47.2 551.2 -10.7 25.8 -0.50 13.9 12.0 15 50.5 562.6 -11.8 26.3 -0.55 13.3 11.7 16 53.9 522.7 -3.9 24.4 -0.18 11.6 11.4 17 57.3 533.0 -5.9 24.9 -0.28 11.0 11.1 18 60.7 493.8 0.0 23.1 0.00 9.4 10.8 19 64.0 502.9 0.0 23.5 0.00 8.8 10.5 20 67.4 483.8 0.0 22.6 0.00 7.5 10.3 21 70.8 502.0 0.0 23.5 0.00 6.9 10.2 22 74.1 518.0 0.0 24.2 0.00 5.8 10.5 23 77.5 565.9 -0.4 26.4 -0.02 4.4 9.5 23 77.5 565.9 -0.4 26.4 -0.02 4.4 9.5 23.6 -1.72 (T = 3) 23.6 -1.72 (T = 3) 23.6 -1.72 (T = 3) 24.9 -1.72 (T = 3) 24.9 -1.72 (T = 3) 25.0 -1.72 (T = 3) 26.0 -1.72 (T = 3) 27.4 682.8 631.5 596.7 573.4 550.8 528.6 511.4 496.4 24.0 745.6 652.6 559.6 466.5 373.5 26.0 T4.4 (kips); RA2 = 615.3 (kips) Current CAPWAP Ru = 542.0 (kips); Corresponding J(RP)= 0.44; J(RX) = 1.08 VMX TVP VT1*Z FT1 FMX DMX DFN SET EMX QUS ft/s ms kips kips kips in in in kip-ft kips 1	0.66							-36.9				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.63											
11 37.1 606.8 -28.9 28.3 -1.35 18.3 13.2 12 40.4 594.3 -23.4 27.8 -1.09 16.8 12.7 13 43.8 607.7 -24.6 28.4 -1.15 16.2 12.4 14 47.2 551.2 -10.7 25.8 -0.50 13.9 12.0 15 50.5 562.6 -11.8 26.3 -0.55 13.3 11.7 16 53.9 522.7 -3.9 24.4 -0.18 11.6 11.4 17 57.3 533.0 -5.9 24.9 -0.28 11.0 1.1 18 60.7 493.8 0.0 23.1 0.00 9.4 10.8 19 64.0 502.9 0.0 23.5 0.00 8.8 10.5 20 67.4 483.8 0.0 22.6 0.00 7.5 10.3 21 70.8 502.0 0.0 23.5 0.00 6.9 10.2 22 74.1 518.0 0.0 24.2 0.00 5.8 10.5 23 77.5 565.9 -0.4 26.4 -0.02 4.4 9.5 23 27.5 565.9 -0.4 26.4 -0.02 4.4 9.5 23 27.5 565.9 -0.4 26.4 -0.02 4.4 9.5 23.6 29.7 (T = 3) 23.6 -1.72 (T = 3) 23.6 -1.72 (T = 3) 23.6 -1.72 (T = 3) 23.6 29.7 (T = 3) 23.6 29.7 (T = 3) 24.4 9.5 50.8 528.6 511.4 496.4 EXEMPTIOD T = 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 P 745.6 652.6 559.6 466.5 373.5 24 754.4 682.8 631.5 596.7 573.4 550.8 528.6 511.4 496.4 EXEMPTIOD EXEMPTION CASE METHOD T = 371.1 (kips); RA2 = 615.3 (kips) Current CAPWAP Ru = 542.0 (kips); Corresponding J(RP)= 0.44; J(RX) = 1.08 VMX TVP VT1*Z FT1 FMX DMX DFN SET EMX QUS ft/s ms kips kips in in in kip-ft kips 1	0.60								19.2			
12 40.4 594.3 -23.4 27.8 -1.09 16.8 12.7 13 43.8 607.7 -24.6 28.4 -1.15 16.2 12.4 14 47.2 551.2 -10.7 25.8 -0.50 13.9 12.0 15 50.5 562.6 -11.8 26.3 -0.55 13.3 11.7 16 53.9 522.7 -3.9 24.4 -0.18 11.6 11.4 17 57.3 533.0 -5.9 24.9 -0.28 11.0 11.1 18 60.7 493.8 0.0 23.1 0.00 9.4 10.8 19 64.0 502.9 0.0 23.5 0.00 8.8 10.5 20 67.4 483.8 0.0 22.6 0.00 7.5 10.3 21 70.8 502.0 0.0 23.5 0.00 6.9 10.2 22 74.1 518.0 0.0 24.2 0.00 5.8 10.5 23 77.5 565.9 -0.4 26.4 -0.02 4.4 9.5 23 77.5 565.9 -0.4 26.4 -0.02 4.4 9.5 bsolute 23.6 29.7 (T = 3 23.6 -1.72 (T = 3) -1.72 (T = 3) 23.6 -1.72 (T = 3) 4.4 682.8 631.5 596.7 573.4 550.8 528.6 511.4 496.4 U 745.6 652.6 559.6 466.5 373.5 EX 754.4 682.8 631.5 596.7 573.4 550.8 528.6 511.4 496.4 U 745.6 652.6 559.6 466.5 373.5 EX 754.4 682.8 631.5 596.7 573.4 550.8 528.6 511.4 496.4 U 745.6 652.6 559.6 466.5 373.5 EX 754.4 682.8 631.5 596.7 573.4 550.8 528.6 511.4 496.4 U 745.6 652.6 559.6 466.5 373.5 EX 754.4 682.8 631.5 596.7 573.4 550.8 528.6 511.4 496.4 U 745.6 652.6 559.6 466.5 373.5 EX 754.4 682.8 631.5 596.7 573.4 550.8 528.6 511.4 496.4 EX 754.4 682.8 631.5 596.7 573.4 550.8 528.6 511.4 496.4 EX 754.4 682.8 631.5 596.7 573.4 550.8 528.6 511.4 496.4 EX 754.4 682.8 631.5 596.7 573.4 550.8 528.6 511.4 496.4 EX 754.4 682.8 631.5 596.7 573.4 550.8 528.6 511.4 496.4 EX 754.4 682.8 631.5 596.7 573.4 550.8 528.6 511.4 496.4 EX 745.6 652.6 559.6 466.5 373.5 EX 754.4 682.8 631.5 596.7 573.4 550.8 528.6 511.4 496.4 EX 745.6 652.6 559.6 466.5 373.5 EX 754.7 652.6 559.6 466.5 373.5 EX 754.7 652.6 559.6 466.5 373.5 EX 754.8 652.6 559.6 466.5 373.5 EX 754.7 652	0.57			L8.9	1	-1.30	27.9		96.4			
13 43.8 607.7 -24.6 28.4 -1.15 16.2 12.4 14 47.2 551.2 -10.7 25.8 -0.50 13.9 12.0 15 50.5 562.6 -11.8 26.3 -0.55 13.3 11.7 16 53.9 522.7 -3.9 24.4 -0.18 11.6 11.4 17 57.3 533.0 -5.9 24.9 -0.28 11.0 11.1 18 60.7 493.8 0.0 23.1 0.00 9.4 10.8 19 64.0 502.9 0.0 23.5 0.00 8.8 10.5 20 67.4 483.8 0.0 22.6 0.00 7.5 10.3 21 70.8 502.0 0.0 23.5 0.00 6.9 10.2 22 74.1 518.0 0.0 24.2 0.00 5.8 10.5 23 77.5 565.9 -0.4 26.4 -0.02 4.4 9.5 23 77.5 565.9 -0.4 26.4 -0.02 4.4 9.5 23 6 29.7 (T = 3) 23.6 -1.72 (T = 3) 23.6 -1.72 (T = 3) 23.6 -1.72 (T = 3) 24.4 496.4 496.4 24.2 371.1 (kips); RA2 = 615.3 (kips) Current CAPWAP Ru = 542.0 (kips); Corresponding J(RP)= 0.44; J(RX) = 1.08 VMX TVP VT1*Z FT1 FMX DMX DFN SET EMX QUS ft/s ms kips kips kips in in in kip-ft kips 1	0.54	13.2		L8.3	1	-1.35	28.3	-28.9	06.8	.1 6	37.	11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.51					-1.09			94.3	.4 5	40.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.48					-1.15		-24.6	07.7			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.45	12.0		L3.9	1	-0.50	25.8	-10.7	51.2	.2 5	47.	14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.42	11.7		L3.3	1	-0.55	26.3	-11.8	62.6	.5 5	50.	15
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.39	11.4		L1.6	1	-0.18		-3.9	22.7	.9 5	53.	16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.36	11.1		L1.0	1	-0.28	24.9	-5.9	33.0	.3 5	57.	17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.33	10.8		9.4		0.00	23.1	0.0	93.8	.7 4	60.	18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.30	10.5		8.8		0.00	23.5	0.0	02.9	.0 5	64.	19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.27	10.3		7.5		0.00	22.6	0.0	83.8	.4 4	67.	20
23 77.5 565.9 -0.4 26.4 -0.02 4.4 9.5 Absolute 23.6 29.7 $(T = 3)$ 23.6 -1.72 $(T = 3)$ 24.4 9.5 CASE METHOD T = 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 RP 745.6 652.6 559.6 466.5 373.5 24.4 682.8 631.5 596.7 573.4 550.8 528.6 511.4 496.4 24.4 9.5 25.5 25.6 559.6 466.5 373.5 26.4 745.6 652.6 559.6 466.5 373.5 27.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8	0.24	10.2		6.9		0.00	23.5	0.0	02.0	.8 5	70.	21
Absolute23.629.7 $(T = 3)$ 23.6-1.72 $(T = 8)$ 23.6-1.72 $(T = 8)$ CASE METHOD $J = 0.0$ 0.20.40.60.81.01.21.41.6RP745.6652.6559.6466.5373.5373.5373.5373.5RX754.4682.8631.5596.7573.4550.8528.6511.4496.4RU745.6652.6559.6466.5373.5373.5373.5373.5RAU =371.1(kips); RA2 =615.3(kips)Current CAPWAP Ru = 542.0(kips); Corresponding J(RP)=0.44; J(RX) = 1.08VMXTVPVT1*ZFT1FMXDMXDFNSETEMXQUSft/smskipskipsinininkips11	0.21	10.5		5.8		0.00	24.2	0.0	18.0	.1 5	74.	22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.18	9.5		4.4		-0.02	26.4	-0.4	65.9	.5 5	77.	23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.1 ms)	= 3	(Т				29.7			.6	23.	bsolute
J = 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 RP 745.6 652.6 559.6 466.5 373.5 RX 754.4 682.8 631.5 596.7 573.4 550.8 528.6 511.4 496.4 RU 745.6 652.6 559.6 466.5 373.5 8 50.8 528.6 511.4 496.4 RU 745.6 652.6 559.6 466.5 373.5 8 5 3 7 5 5 3 5 5 3<	3.0 ms)		(Т			-1.72				.6	23.	
J = 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 RP 745.6 652.6 559.6 466.5 373.5 RX 754.4 682.8 631.5 596.7 573.4 550.8 528.6 511.4 496.4 RU 745.6 652.6 559.6 466.5 373.5 RAU = 371.1 (kips); RA2 = 615.3 (kips) Current CAPWAP Ru = 542.0 (kips); Corresponding J(RP)= 0.44; J(RX) = 1.08 VMX TVP VT1*Z FT1 FMX DMX DFN SET EMX QUS ft/s ms kips kips in in in kip-ft kips 1												
RP 745.6 652.6 559.6 466.5 373.5 RX 754.4 682.8 631.5 596.7 573.4 550.8 528.6 511.4 496.4 RU 745.6 652.6 559.6 466.5 373.5 RAU = 371.1 (kips); RA2 = 615.3 (kips) Current CAPWAP Ru = 542.0 (kips); Corresponding J(RP)= 0.44; J(RX) = 1.08 VMX TVP VT1*Z FT1 FMX DMX DFN SET EMX QUS ft/s ms kips kips in in kips 1 kips 1												
RX 754.4 682.8 631.5 596.7 573.4 550.8 528.6 511.4 496.4 RU 745.6 652.6 559.6 466.5 373.5 RAU = 371.1 (kips); RA2 = 615.3 (kips) Current CAPWAP Ru = 542.0 (kips); Corresponding J(RP)= 0.44; J(RX) = 1.08 VMX TVP VT1*Z FT1 FMX DMX DFN SET EMX QUS ft/s ms kips kips in in kips 1	1.8	1.6	• 4	1	1.2	1.0						
RU 745.6 652.6 559.6 466.5 373.5 RAU = 371.1 (kips); RA2 = 615.3 (kips) Current CAPWAP Ru = 542.0 (kips); Corresponding J(RP)= 0.44; J(RX) = 1.08 VMX TVP VT1*Z FT1 FMX DMX DFN SET EMX QUS ft/s ms kips kips in in kip-ft kips X												
RAU = 371.1 (kips); RA2 = 615.3 (kips) Current CAPWAP Ru = 542.0 (kips); Corresponding J(RP)= 0.44; J(RX) = 1.08 VMX TVP VT1*Z FT1 FMX DMX DFN SET EMX QUS ft/s ms kips kips kips in in in kip-ft kips I	482.6	496.4	• 4	511	528.6	550.8						
Current CAPWAP Ru = 542.0 (kips); Corresponding J(RP)= 0.44; J(RX) = 1.08 VMX TVP VT1*Z FT1 FMX DMX DFN SET EMX QUS ft/s ms kips kips kips in in in kip-ft kips I							373.5	466.5	559.6	652.6	745.6	U
VMX TVP VT1*Z FT1 FMX DMX DFN SET EMX QUS ft/s ms kips kips kips in in in kip-ft kips]							ips)	615.3 (k	A2 =	lps); R	71.1 (ki	AU = 3
ft/s ms kips kips in in in kip-ft kips i		8	1.08	x) =	4; J(R	(RP)= 0.4	onding J	Corresp	(kips);	= 542.0	PWAP Ru	urrent CA
	KEE		MX	E	SET		DMX	FMX	FT1	VT1*Z	TVP	VMX
15.2 35.68 579.3 631.5 631.5 0.80 0.10 0.10 25.4 674.5	cips/ir	kips (ft	kip-	in	in	in	kips	kips	kips	ms	ft/s
	2656	674.5	.4	25	0.10	0.10	0.80	631.5	631.5	579.3	35.68	15.2
PILE PROFILE AND PILE MODEL						E MODEL	E AND PII	E PROFIL	PIL			
Depth Area E-Modulus Spec. Weight	Perim.		:	Veight	Spec. V						Depth	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ft			-	-						-	
0.0 21.4 29992.2 492.000	4.70		5	92.000	49	2.2	2999	.4	21		0.0	
77.5 21.4 29992.2 492.000	4.70)	92.00	49	2.2	2999	. 4	21		77.5	
Toe Area 198.5 in ²							in^2	.5	198			oe Area

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.200 ms, 2L/c 9.2 ms Total volume: 11.517 ft^{3;} Volume ratio considering added impedance: 1.000

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result.

			CAPW	AP SUMMARY	RESULTS			
Total CAP	WAP Capac:	ity: 92	3.0; alor	ng Shaft	78.0; at	Toe 845	5.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Qua
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	
No.	Gages	Grade			Ru	(Depth)	(Area)	
	ft	ft	kips	kips	kips	kips/ft	ksf	
				923.0				
1	23.6	5.8	3.0	920.0	3.0	0.52	0.11	0.
2	30.3	12.5	3.0	917.0	6.0	0.45	0.09	0.
3	37.1	19.3	3.0	914.0	9.0	0.45	0.09	0.
4	43.8	26.0	3.0	911.0	12.0	0.45	0.09	0.
5	50.5	32.7	5.0	906.0	17.0	0.74	0.16	0.
6	57.3	39.5	7.0	899.0	24.0	1.04	0.22	0.
7	64.0	46.2	10.0	889.0	34.0	1.48	0.32	0.
8	70.8	53.0	10.0	879.0	44.0	1.48	0.32	0.
9	77.5	59.7	34.0	845.0	78.0	5.05	1.07	0.
Avg. Sha	aft		8.7			1.31	0.28	0.
То	e		845.0				612.99	0.
Soil Mode	l Paramete	ers/Extens	ions		Sh	aft T	oe	
Smith Dam	ping Facto	or			0	.21 0.3	11	
-	ing Factor				0	.43 2.	43	
Damping Ty	vpe				Visc	ous Smi	th	
Jnloading	Quake	(%	of loadi	ng quake)		40	30	
Jnloading	Level	(%	of Ru)	. .		40		
-		cluded in t		e) (in)		0.	03	
CAPWAP mat	tch qualit	ty =	4.10	(Wav	e Up Match); RSA = ()	
	Final Set	-	0.07 i		Count		B b/ft	
Computed:	Final Set	- - =	0.01 i	•	Count		b/ft	
Transducer				; F4(F607) CA				
Not Active	A3(K225	3) CAL: 325	; RF: 1.04	; A4*(K2524) C	AL: 360; RF	: 1.04		
max. Top (Comp. Stre	ess =	39.7 k	si (T=	45.9 ms,	max= 1.16	5 х Тор)	
max. Comp.	. Stress	=	46.2 k	si (Z=	77.5 ft,	T= 40.9 I	ns)	
max. Tens	. Stress	=	-6.41 k	si (Z=	33.7 ft,	T= 56.3 I	ns)	
max. Energ	TY (EMX)	=	43.1 k	ip-ft; max	. Measured	Top Displ	(DMX) =	1.11 in

				EXT	REMA TABL	Е				
Pil			max.	min.	max.	max		nax.	max.	max.
Sgmn			orce	Force	Comp.	Tens			Veloc.	Displ
No	-				Stress	Stres		ergy		
		ft	kips	kips	ksi	ks	i kir	o-ft	ft/s	ir
			49.4	-61.2	39.7	-2.8		43.1	17.6	1.15
			39.2	-79.9	39.2	-3.7	3 4	42.6	17.6	1.12
			19.6	-67.4	38.3	-3.1		41.3	17.5	1.00
			02.6	-57.0	37.5	-2.6		40.6	17.4	1.03
			85.7	-52.1	36.7	-2.4		39.9	17.3	0.99
			63.2	-46.9	35.7	-2.1		39.2	17.2	0.96
			44.0	-83.0	34.8	-3.8		37.6	17.1	0.92
			30.5	-124.9	34.1	-5.8		36.7	17.0	0.89
1	0 33	3.7 7	39.6	-137.3	34.5	-6.4	1 3	35.1	16.9	0.85
1	1 37	.1 7	50.2	-133.9	35.0	-6.2	6 3	34.1	16.7	0.81
1	2 40	.4 7	62.4	-132.5	35.6	-6.1	9 3	32.3	16.6	0.77
1	3 43	8.8 7	84.2	-130.5	36.6	-6.1	0 3	31.0	16.5	0.72
1	4 47	.2 7	99.6	-125.8	37.4	-5.8	8 2	29.1	16.3	0.68
1	5 50	.5 8	06.3	-129.0	37.7	-6.0	3 2	27.7	16.1	0.63
1	6 53	8.9 8	30.7	-126.1	38.8	-5.8	9 2	25.2	15.9	0.58
1	7 57	.3 8	59.2	-117.3	40.1	-5.4	8 2	23.4	15.6	0.53
1	8 60	.7 8	66.7	-105.1	40.5	-4.9	1 2	20.6	15.3	0.48
1	9 64		02.9	-90.4	42.2	-4.2		18.6	15.0	0.42
2			17.4	-70.3	42.9	-3.2		15.4	14.8	0.36
			19.8	-67.0	43.0	-3.1		13.2	15.6	0.30
			51.3	-52.1	44.4	-2.4		10.5	14.9	0.25
			89.4	-46.9	46.2	-2.1		9.0	10.4	0.20
Absolute		'.5 3.7			46.2	-6.4	1			40.9 ms) 56.3 ms)
				CA	SE METHOD		_	τ-		,
J =	0.0	0.2	0.4		0.8	1.0	1.2	1.4	1.6	1.8
RP	1008.3	928.5	848.7	768.9	689.1					
RX	1047.3	1011.7	988.2	968.2	949.6	935.3	922.6	911.6	900.5	889.4
RU	1015.1	936.7	858.3	779.9	701.4					
RAU =	725.5 (k	ips); R	A2 =	1006.7 (kips)					
Current C	CAPWAP Ru	= 923.0	(kips)	; Corres	ponding J	(RP)= 0.	21; J(R	(x) = 1.1	19	
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEE
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
17.7	35.89	675.8	731.4	857.4	1.11	0.07	0.07	43.5	882.0	5281
			PI	LE PROFI	LE AND PI	LE MODEL				
	Depth			rea	E-Modu		Spec. W	Veight		Perim.
	ft			n ²		ksi	-	o/ft ³		ft
	0.0)	2	1.4	2999	2.2	49	92.000		4.70

Toe Area 198.5 in^2 Top Segment Length 3.37 ft, Top Impedance 38 kips/ft/s Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.200 ms, 2L/c 9.2 ms

Total volume: 11.517 ft^{3;} Volume ratio considering added impedance: 1.000

600.0

750.0

900.0

Pile Force

at Ru

SF

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result.

USH 10 over	LLBDM; Pile: Pier 2	2 #44 Restrike
APE D30-42,	HP 14 x 73; Blow: 4	4
GRL Enginee:	rs, Inc.	

			CAPWAP SUMM	ARY RESULT	rs		
Total CAPWA	P Capacity:	868.0;	along Shaft	118.0	; at Toe	750.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.
No.	Gages	Grade			Ru	(Depth)	(Area)
	ft	ft	kips	kips	kips	kips/ft	ksf
				868.0			
1	23.6	5.8	5.0	863.0	5.0	0.87	0.18
2	30.3	12.5	7.0	856.0	12.0	1.04	0.22
3	37.1	19.2	7.0	849.0	19.0	1.04	0.22
4	43.8	26.0	7.0	842.0	26.0	1.04	0.22
5	50.5	32.7	11.0	831.0	37.0	1.63	0.35
6	57.3	39.5	11.0	820.0	48.0	1.63	0.35
7	64.0	46.2	11.0	809.0	59.0	1.63	0.35
8	70.8	52.9	11.0	798.0	70.0	1.63	0.35
9	77.5	59.7	48.0	750.0	118.0	7.12	1.52
Avg. Sha	aft		13.1			1.98	0.42
Тоє	2		750.0				544.08
Soil Model	Parameters/E	xtensions			Shaft	Тое	
Smith Dampi	ng Factor				0.30	0.15	
Quake	-	(in)			0.17	0.18	
Case Dampin	g Factor				0.93	2.95	
Damping Typ	e				Viscous	Smith	
Unloading Q	uake	(% of	loading quak	ce)	82	62	
Unloading L	evel	(% of	Ru)		28		
Resistance	Gap (include	d in Toe	Quake) (in)			0.09	
Soil Plug W	leight	(kips)				0.007	
CAPWAP matc	h quality	= 3	.29	(Wave Up 1	Match) ; RSA	A = 0	
Observed: F		= 0	.04 in; 1	Blow Count	. =	320 b/ft	
Computed: F	'inal Set	= 0	.00 in; 1	Blow Count		3048 b/ft	
Transducer			: 1.00; F4(F607)				
	A3(K2253) CAI	-	: 1.11; A4(K2524		0; RF: 1.11		
max. Top Co	-		5.7 ksi	-	-	1.167 x Top)	
max. Comp.			1.7 ksi	•	5 ft, T= 40	•	
max. Tens.			.47 ksi	•	-	5.7 ms	1 07 4-
max. Energy	(EMX)	= 4	2.3 Kip-It;	max. Meas	surea rop D:	ispl. (DMX)=	1.07 in

Test: 19-Nov-2014 08:16 CAPWAP(R) 2014 OP: MR

				EXTH	REMA TABL	E				
Pil		st.	max.	min.	max.	max.		nax.	max.	max
Sgmr	it Bel	.ow F	'orce	Force	Comp.	Tens.	. Trns	sfd.	Veloc.	Displ
Nc	. Gag				Stress	Stress		ergy		
		ft	kips	kips	ksi	ksi	. kij	p-ft	ft/s	iı
	1 3	3.4 7	64.5	-27.8	35.7	-1.30) 4	12.3	17.6	1.10
	2 (5.7 7	57.0	-46.3	35.4	-2.16	5 4	11. 8	17.6	1.0
			37.1	-78.0	34.4	-3.65		10.6	17.5	1.03
	5 16	5.8 7	24.1	-81.3	33.8	-3.80) :	39.9	17.4	0.98
	6 20).2 7	18.2	-78.5	33.6	-3.67		39.2	17.2	0.94
	7 23	3.6 7	26.4	-74.2	33.9	-3.47	, 3	38.3	17.0	0.9
	8 2	.0 7	06.1	-87.6	33.0	-4.09) :	35.9	16.7	0.8
	9 30).3 7	18.4	-113.2	33.6	-5.29) :	34.9	16.5	0.83
1			29.1	-123.5	34.1	-5.77		32.1	16.2	0.79
1			34.0	-138.5	34.3	-6.47		31.0	16.0	0.75
			34.7	-134.7	34.3	-6.29		28.2	15.7	0.71
			56.5	-133.1	35.3	-6.22		27.0	15.4	0.67
			62.8	-119.6	35.6	-5.59		24.4	15.0	0.63
			65.4	-120.4	35.8	-5.63		23.0	14.7	0.58
			82.7	-105.3	36.6	-4.92		L9.6	14.4	0.53
			94.8	-104.2	37.1	-4.87		L8.2	14.1	0.49
			02.8	-90.4	37.5	-4.22		L5.0	13.8	0.44
			33.9	-88.5	39.0	-4.14		L3.2	13.5	0.39
			27.6	-72.3	38.7	-3.38		L0.3	14.0	0.34
			19.2	-75.6	38.3	-3.53		8.6	14.7	0.28
			59.8	-63.2	40.2	-2.95		6.0	14.5	0.23
			92.4	-64.1	41.7	-3.00		3.9	10.3	0.18
Absolute		.5			41.7	<i>c</i>		-	Г = -	40.7 ms)
	3	1.1				-6.47		(:	r =	56.7 ms)
					E METHOD					
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	5 1.8
RP	1025.3	952.5	879.8	807.0	734.3	0.65 0				
RX	1072.0 1025.4	1019.3 952.6	971.6	928.7 807.2	894.1 734.4	865.3	842.3	822.1	805.0) 788.6
RU RAU =	624.3 (k		879.9	918.2 ()						
-					ponding J	(RP)= 0.4	43; J(R	X) = 0.	98	
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX		s kei
ft/s	ms	kips	kips	kips	in	in	in	kip-ft		s kips/in
17.5	35.68	667.6	721.4	796.4	1.07	0.04	0.04	42.6	-	-
					E AND PI					
	Deptl fi			rea n²	E-Modu	lus ksi	Spec. V	Neight D/ft ³		Perim. ft
	0.0			1.4	2999			92.000		4.70
	77.			L.4	2999			2.000		4.70
	//•:	,	4.		4399	4.4	-13			± ./(

Top Segment Length3.37 ft, Top Impedance38 kips/ft/sWave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/sPile Damping1.00 %, Time Incr0.200 ms, 2L/c9.2 ms

Total volume: 11.517 ft^{3;} Volume ratio considering added impedance: 1.000