GRL Engineers, Inc.

1540 E. Dundee Road, Suite 102 Palatine, IL 60074 USA Phone: (847) 221-2750 Fax: (847) 221-2752

TRANSMITTAL

To: Mr. Kevin Weber	From: Alexander McCaskill				
Company: Lunda Construction Co.	No. of Sheets: 51				
E-mail: kweber@lundaconstruction.com	Date: June 11, 2015				

RE: Dynamic Testing Results – USH 10 over Little Lake Butte des Morts Structure B-70-403 - Pier 19 Winnebago County, Wisconsin

On June 10, 2015, Pier 19 #1, Pier 19 #36, and Pier 19 #44 at the above structure were dynamically tested during initial driving. The piles were tested during restrike on June 11. Project plans indicated that the exterior row piles have a required driving resistance, or ultimate capacity, of 480 kips (240 tons) and the interior row piles have a required driving resistance of 400 kips (200 tons). The piles have a required minimum tip elevation of EL 691. The HP 14x73 H-piles were equipped with driving shoes and were driven with an APE D30-42 hammer (number PD 0256) operated on fuel setting 4. The reference elevation for the piles was the top of the cofferdam at EL 739.7 to EL 740.6. The pier was excavated to an elevation of EL 718.2.

Pier 19 #1 was driven to a depth of 52.0 feet, which corresponds to a pile tip elevation of EL 687.7. The blow count over the final increment of driving was 10 blows for 2 inches of penetration at an average hammer stroke of 8.6 feet. The blow count at the beginning of restrike was 10 blows per for 2 ¼ inches of penetration at an average hammer stroke of 8.2 feet.

Pier 19 #36 was driven to a depth of 65.9 feet, which corresponds to a pile tip elevation of EL 674.7. The blow count over the final increment of driving was 10 blows for 1 ½ inches of penetration at an average hammer stroke of 9.4 feet. The blow count at the beginning of restrike was 10 blows for 1 ¼ inches of penetration at an average hammer stroke of 9.1 feet.

Pier 19 #44 was driven to a depth of 65.8 feet, which corresponds to a pile tip elevation of EL 673.9. The blow count over the final increment of driving was 10 blows for 1 inch of penetration at an average hammer stroke of 9.4 feet. The blow count at the beginning of restrike was 10 blows for 1 $\frac{1}{2}$ inches of penetration at an average hammer stroke of 9.2 feet

We recommend that the production piles at Pier 19 of Structure B-70-403, driven with an APE D30-42 hammer PD 0256, obtain the minimum recommended blow count, noted below, based on the field observed hammer stroke. We recommend maintaining the minimum blow count for **three consecutive inches** of driving at the recommended average hammer stroke.

Field Observed	Exterior Piles (480 kips) Recommended Minimum	Interior Piles (400 kips) Recommended Minimum
Hammer Stroke	Blow Count	Blow Count
(feet)	(blows per inch)	(blows per inch)
7.0	6	3
7.5	5	3
8.0	4	3
8.5	4	3
9.0	4	3

We recommend immediately terminating driving **if the blow counts exceed 10** blows over an increment of one inch or less at hammer strokes of 8.0 feet, after satisfying the plan minimum tip requirements.

These criteria should not be used for acceptance of piles under restrike and/or re-drive conditions. After splicing or any other delays, we recommend not applying the criteria until two feet of driving has occurred beyond the termination depth associated with the delay, unless the blow count exceeds 10 blows per inch.

Please call if you have any questions on these recommendations.

GRL Engineers, Inc.

HAADA MAAAH

Alexander McCaskill

Travis Coleman, P.E.

cc: Jeff Horsfall - jeffrey.horsfall@dot.wi.gov

Attachments:

Dynamic Test Results(pages 3 - 21)CAPWAP Analysis Results(pages 22 - 51)

1 - Reported reference at El. 739.7

Page 1 PDIPLOT2 2015.1.50.1 - Printed 12-June-2015

USH 10 over Little Lake Butte des Morts - PIER 19 #1 OP: TC

APE D30-42. HP 14 x 73
AFE D30-42, HF 14 X 73
Date: 10-June-2015

<u>OP: T</u>	С							Date: 10-Ju	une-2015
AR:	21.40 in ²).492 k/ft ³
LE:	77.50 ft),000 ksi
	6,807.9 f/s								1.00 []
	Max Measure					STK:	O.E. Diesel Ha		
	Compression		m				Blows per Minu		
	Max Transferr					RX9:	Max Case Meth		
BL#	Depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
	ft	blows/ft		ksi	ksi	k-ft	ft	bpm	kips
8	35.00	4	AV3	14.6	3.1	16	3.3	63.5	33
			STD MAX	0.7 15.1	0.2 3.3	1 17	0.1 3.4	0.8 64.4	10 44
			MIN	13.7	2.9	15	3.4	62.4	21
			IVIIIN	13.7	2.5	15	5.2	02.4	21
13	36.00	5	AV5	17.6	4.4	20	3.9	58.9	61
10	00.00	Ũ	STD	1.1	0.4	2	0.2	1.7	11
			MAX	19.1	5.1	23	4.2	61.5	82
			MIN	15.9	3.9	17	3.5	56.8	51
20	37.00	7	AV7	22.4	8.1	27	5.0	52.2	141
			STD	1.2	0.9	2	0.3	1.5	12
			MAX	23.7	8.8	30	5.3	55.5	154
			MIN	19.9	6.0	23	4.4	50.7	116
		-	A. 1 (7)	~~~~					100
27	38.00	7	AV7	23.0	8.2	29	5.2	51.5	138
			STD	0.6	0.5	1	0.1	0.6	12
			MAX	24.1	9.0	30	5.4	52.8	155
			MIN	21.9	7.7	26	4.9	50.6	124
35	39.00	8	AV8	22.9	8.5	27	5.2	51.5	152
55	55.00	0	STD	0.7	0.5	1	0.1	0.7	17
			MAX	24.2	9.3	29	5.4	52.5	176
			MIN	21.7	7.7	26	5.0	50.4	125
43	40.00	8	AV8	24.9	9.3	31	5.7	49.3	188
			STD	0.2	0.4	1	0.1	0.4	3
			MAX	25.3	9.9	32	5.8	50.0	194
			MIN	24.6	8.7	30	5.5	48.6	184
		_							
51	41.00	8	AV8	24.3	8.2	30	5.5	50.0	163
			STD	0.7	0.4	1	0.1	0.5	7
			MAX	25.2	8.8	31 28	5.7 5.4	50.6	174
			MIN	23.1	7.8	20	5.4	49.3	156
58	42.00	7	AV7	24.1	8.6	29	5.4	50.5	162
50	42.00	1	STD	0.9	0.3	23	0.2	1.0	18
			MAX	25.7	9.3	33	5.8	51.7	189
			MIN	22.8	8.2	27	5.1	48.7	137
65	43.00	7	AV7	23.9	8.1	30	5.4	50.4	139
			STD	1.0	0.9	2	0.2	1.0	19
			MAX	25.5	9.4	33	5.7	51.7	172
			MIN	22.7	7.0	27	5.1	49.0	116
		1.0							
81	44.00	16	AV16	24.4	9.6	27	5.5	50.0	201
			STD	1.2	2.7	2	0.4	1.6	73
			MAX	26.5	16.9	31 24	6.2 5.0	52.2	398
			MIN	22.8	7.1	24	5.0	47.2	144
101	45.00	20	AV20	28.4	17.4	34	6.7	45.4	387
101	-0.00	20	STD	0.7	0.8	1	0.7	0.6	17
			MAX	29.6	18.6	37	7.0	46.3	414
			MIN	27.3	14.9	32	6.5	44.5	354
149	46.00	48	AV48	30.8	26.9	37	7.5	43.2	578

	Page 2
PDIPLOT2 2015.1.50.1 - Printed 12-June	-2015

USH 10 over Little Lake Butte des Morts - PIER 19 #1

APE D30-42,	HP 14 x 73

								Date: 10-Ju	ine-2015
DP: TC BL#	Depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
BEII	ft	blows/ft		ksi	ksi	k-ft	ft	bpm	kips
		010110/11	STD	0.8	3.3	2	0.3	0.7	57
			MAX	32.3	30.4	40	7.9	45.1	631
						33			
			MIN	28.8	19.4	33	6.8	41.9	438
205	47.00	56	AV56	32.5	32.0	40	8.0	41.7	688
			STD	0.9	1.1	2	0.3	0.7	32
			MAX	33.9	34.0	43	8.6	43.2	736
			MIN	30.8	29.9	37	7.5	40.3	630
259	48.00	54	AV54	32.5	27.8	41	8.0	41.7	621
200	40.00	54	STD	0.6	27.0	1	0.0	0.5	39
			MAX	33.9	31.3	44	8.4	43.2	678
			MIN	30.7	23.6	37	7.5	40.7	553
293	49.00	34	AV34	32.0	22.9	40	7.9	42.0	546
			STD	0.7	0.8	1	0.2	0.5	12
			MAX	33.3	25.2	42	8.4	43.0	582
			MIN	30.7	21.9	37	7.5	40.9	526
			iviii v	30.7	21.5	57	7.5	40.5	520
328	50.00	35	AV35	32.4	22.1	40	8.0	41.8	551
			STD	0.4	1.4	1	0.1	0.3	14
			MAX	33.1	24.6	42	8.3	42.4	577
			MIN	31.4	19.7	38	7.8	41.0	522
366	51.00	38	AV38	33.5	24.5	41	8.3	41.0	584
000	01.00	00	STD	0.8	1.7	2	0.3	0.6	20
			MAX	35.6	27.5	45	8.9	42.4	619
			MIN	31.7	27.5	45 37	8.9 7.8	42.4 39.7	551
390	51.48	50	AV24	34.6	28.7	44	8.7	40.0	631
			STD	0.4	0.8	1	0.1	0.2	8
			MAX	35.4	29.7	45	8.9	40.5	647
			MIN	33.8	27.1	42	8.5	39.6	617
400	51.66	56	AV10	34.2	29.3	43	8.7	40.2	632
	01.00	00	STD	0.3	0.4	1	0.1	0.2	2
			MAX	34.8	30.1	44	8.8	40.4	636
			MIN	33.9	28.9	42	8.6	39.8	628
410	51.83	56	AV10	34.3	29.7	43	8.7	40.1	641
			STD	0.3	0.3	1	0.1	0.3	4
			MAX	34.6	30.4	44	8.8	40.6	648
			MIN	33.7	29.3	42	8.5	39.8	635
410	E1 00	60	AV/0	24.0	29.4	10	0 6	40.4	620
419	51.98	60	AV9	34.0		43	8.6		639
			STD	0.4	0.4	1	0.1	0.3	5
			MAX	34.7	30.1	44	8.8	41.0	650
			MIN	33.3	29.0	41	8.3	39.8	630
			Average	30.7	23.1	38	7.5	43.6	514
			Std. Dev.	4.0	8.1	6	1.2	4.2	186
			Maximum	35.6	34.0	45	8.9	64.4	736
			IVIAAIIIIUIII	33.0	J 1 .0	40	0.9	07.7	/00

Total number of blows analyzed: 414

BL# Sensors

1-419 F3: [K769] 91.9 (1.00); F4: [D815] 93.0 (1.00); A3: [K3658] 362.0 (1.00); A4: [K3550] 360.0 (1.00)

BL# Comments

6 7 Reported reference at El. 739.7

Mud line at El. 718.2

Page 3 PDIPLOT2 2015.1.50.1 - Printed 12-June-2015

USH 10 over Little Lake Butte des Morts - PIER 19 #1 OP: TC

Time Summary

Drive 9 minutes 51 seconds 6:15 AM - 6:25 AM BN 1 - 419

APE D30-42, HP 14 x 73 Date: 10-June-2015

Page 1 PDIPLOT2 2015.1.50.1 - Printed 11-June-2015

		les Dutte des							1472
USH 10 over Little Lake Butte des Morts - PIER 19 #1 Restrike OP: AM								PE D30-42, H	IP 14 x 73 June-2015
AR:	21.40 in ²				0.492 k/ft ³				
LE:	77.50 ft								0.492 k/it 0.000 ksi
	6,807.9 f/s							JC:	1.00 []
CSX:	Max Measured	d Compr. Stre	299			STK:	O.E. Diesel Ha		
CSB:						BPM:			•
EMX:	Max Transferr					RX9:	Max Case Meth		(JC=0.9)
BL#	Depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
2 2.1	ft	blows/ft		ksi	ksi	k-ft	ft	bpm	kips
10	52.19	53	AV10	32.7	29.8	40	8.2	41.2	611
			STD	0.5	0.5	1	0.2	0.4	9
			MAX	33.3	30.4	42	8.4	42.0	623
			MIN	31.8	28.5	38	7.9	40.7	593
20	52.38	53	AV10	33.0	30.4	41	8.4	40.9	627
			STD	0.3	0.3	1	0.1	0.2	3
			MAX	33.6	30.9	42	8.5	41.4	632
			MIN	32.5	30.1	40	8.1	40.5	622
	50 50	50			00 T	10		40 7	
30	52.56	53	AV10	33.3	30.7	42	8.4	40.7	633
			STD	0.4	0.3	1	0.1	0.3	5
			MAX	33.9	31.2	43	8.6	41.2	641
			MIN	32.6	30.2	41	8.2	40.3	625
			Average	33.0	30.3	41	8.3	41.0	624
			Std. Dev.	0.4	0.5	1	0.2	0.4	11
			Maximum	33.9	31.2	43	8.6	42.0	641
			Minimum	31.8	28.5	38	7.9	40.3	593
			Tota	l number of hl	ows analyzed	1.30			

Total number of blows analyzed: 30

BL# Sensors

1-30 F3: [D815] 93.0 (1.00); F4: [K769] 91.9 (1.00); A3: [K3550] 360.0 (1.00); A4: [K3658] 362.0 (1.00)

BL# Comments

3 CW

Time Summary

Drive 42 seconds 6:55 AM - 6:56 AM BN 1 - 30

1 - Reported reference at El. 740.57

Page 1 PDIPLOT2 2015.1.50.1 - Printed 12-June-2015

USH 10 over Little Lake Butte des Morts - PIER 19 #36

APE D30-42, HP 14 x 73
Date: 10_ lune_2015

OP: T		Re Dutte des N		0 #30				Date: 10-Ju	
AR:	21.40 in ²							SP: 0	.492 k/ft ³
LE:	77.58 ft								,000 ksi
<u>WS: 1</u>	6,807.9 f/s	1.0.0				0.71/			1.00 []
	Max Measured Compression						O.E. Diesel Ha		
	Max Transferr					RX9:	Blows per Minu Max Case Meth	ne od Canacity /	(C=0.9)
BL#	Depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
DL#	ft	blows/ft		ksi	ksi	k-ft	ft	bpm	kips
12	38.00	6	AV6	11.0	3.1	13	3.1	65.4	33
			STD	3.5	0.6	4	0.4	3.4	19
			MAX	17.5	4.2	21	3.8	68.3	59
			MIN	7.7	2.5	9	2.8	59.1	0
17	39.00	5	AV5	17.6	4.8	21	3.9	58.8	63
			STD	0.9	0.5	2	0.2	1.4	10
			MAX	18.8	5.4	23	4.1	60.6	81
			MIN	16.3	4.3	19	3.6	57.3	55
24	40.00	7	AV7	21.6	6.8	26	4.8	53.4	115
			STD	1.1	0.7	2	0.3	1.5	10
			MAX	22.8	7.5	29	5.1	56.2	126
			MIN	19.7	5.4	22	4.3	51.8	95
31	41.00	7	AV7	22.4	7.5	28	5.0	52.2	118
			STD	0.6	0.4	1	0.1	0.7	4
			MAX	23.4	8.2	29	5.2	53.4	125
			MIN	21.3	7.2	26	4.8	51.1	110
38	42.00	7	AV7	23.3	8.6	29	5.2	51.2	143
			STD	1.1	0.6	2	0.3	1.2	10
			MAX	25.4	9.7	33	5.7	52.9	160
			MIN	21.9	7.6	26	4.9	49.1	132
46	43.00	8	AV8	24.2	9.0	30	5.5	50.0	167
			STD	0.5	0.2	1	0.1	0.4	6
			MAX	24.7	9.3	31	5.7	50.8	177
			MIN	23.3	8.6	29	5.3	49.3	158
52	44.00	6	AV6	23.7	8.0	30	5.4	50.5	137
			STD	0.3	0.3	1	0.1	0.4	9
			MAX	24.5	8.5	32	5.6	50.8	151
			MIN	23.5	7.7	30	5.3	49.6	126
59	45.00	7	AV7	23.8	8.7	30	5.4	50.3	149
			STD	0.7	0.5	2	0.2	0.8	10
			MAX	24.6	9.3	32	5.6	51.7	164
			MIN	22.8	7.8	27	5.1	49.4	135
68	46.00	9	AV9	22.7	7.4	26	5.1	51.8	122
			STD	0.4	0.3	1	0.1	0.4	7
			MAX	23.3	7.9	27	5.2	52.4	135
			MIN	22.1	6.9	25	5.0	51.1	112
78	47.00	10	AV10	24.5	9.1	29	5.5	49.8	155
			STD	0.6	0.7	1	0.2	0.7	16
			MAX	25.4	10.1	30	5.8	51.3	176
			MIN	23.3	7.9	27	5.2	48.7	128
87	48.00	9	AV9	25.8	10.5	31	5.9	48.4	176
			STD	0.4	0.4	1	0.1	0.4	6 101
			MAX MIN	26.4 25.4	11.3 10.0	32 30	6.1 5.8	48.8 47.7	191 166
98	49.00	11	AV11	25.7	10.5	31	5.9	48.5	180

Page 2 PDIPLOT2 2015.1.50.1 - Printed 12-June-2015

USH 10 over Little Lake Butte des Morts - PIER 19 #36

APE D30-42, HP 14 x 73

OP: TC		ake Butte des N		5 #30			Ar	D30-42, HI Date: 10-Ju	
BL#	Depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
	ft	blows/ft		ksi	ksi	k-ft	ft	bpm	kips
			STD	0.3	0.7	1	0.1	0.3	13
			MAX	26.3	11.8	32	6.0	49.1	204
			MIN	25.2	9.6	29	5.7	47.8	152
111	50.00	13	AV13	26.4	11.6	31	6.1	47.7	203
			STD	1.2	1.9	2	0.3	1.3	31
			MAX	29.0	15.1	36	6.9	49.8	260
			MIN	24.6	9.1	28	5.5	44.8	157
129	51.00	18	AV18	28.9	15.2	34	6.8	45.2	285
			STD	0.6	1.0	1	0.2	0.6	27
			MAX MIN	30.1 27.5	17.4 14.2	37 32	7.2 6.4	46.5 44.0	337 251
153	52.00	24	AV24	31.1	21.0	38	7.5	43.0	418
100	02.00		STD	0.7	2.0	1	0.3	0.7	46
			MAX	32.1	23.2	40	7.9	44.5	483
			MIN	29.7	17.2	35	7.0	42.0	330
179	53.00	26	AV26	32.4	23.3	40	8.0	41.7	500
			STD	0.4	1.1	1	0.1	0.3	14
			MAX	33.3	26.7	41	8.3	42.3	531
			MIN	31.7	21.5	38	7.8	41.1	469
204	54.00	25	AV25	31.9	22.0	39	7.9	41.9	468
			STD	0.4	1.0	1	0.1	0.3	22
			MAX	32.7	24.7	41	8.2	42.5	510
			MIN	31.0	20.4	38	7.7	41.2	434
222	55.00	18	AV18	31.3	20.4	38	7.7	42.5	423
			STD	0.5	0.4	1	0.2	0.4	10
			MAX MIN	32.4 30.4	21.5 19.7	40 36	8.1 7.4	43.4 41.6	443 405
242	56.00	20	AV20	31.1	19.6	38	7.6	42.8	396
242	50.00	20	STD	0.4	0.7	1	0.1	0.4	14
			MAX	32.2	20.6	41	8.0	43.5	416
			MIN	30.2	17.8	36	7.4	41.8	359
261	57.00	19	AV19	30.8	17.6	37	7.5	43.0	364
			STD	0.3	0.7	1	0.1	0.3	12
			MAX	31.4	19.6	39	7.8	43.6	389
			MIN	30.0	16.7	36	7.3	42.4	352
279	58.00	18	AV18	30.6	16.7	37	7.5	43.1	353
			STD	0.6	0.7	1	0.2	0.5	17
			MAX MIN	31.9 29.5	18.0 15.8	38 35	7.9 7.1	44.1 42.1	381 324
294	59.00	15	AV15	30.4	16.7	37	7.4	43.4	330
234	55.00	15	STD	0.3	0.5	1	0.1	43.4 0.2	12
			MAX	31.1	17.6	38	7.6	43.6	356
			MIN	30.0	15.6	36	7.3	42.7	307
314	60.00	20	AV20	31.0	19.4	37	7.6	42.7	356
			STD	0.6	1.2	1	0.2	0.5	11
			MAX	32.3	20.9	40	8.0	44.1	372
			MIN	29.4	16.9	34	7.1	41.8	328
337	61.00	23	AV23	31.2	20.9	38	7.7	42.6	365
			STD	0.5	0.6	1	0.2	0.4	10
			MAX	32.1	22.0	40	8.0	43.4	380
			MIN	30.3	19.8	36	7.4	41.8	352

Page 3 PDIPLOT2 2015.1.50.1 - Printed 12-June-2015

USH 10 over Little Lake Butte des Morts - PIER 19 #36	

APE D30-42,	HP 14 x 73

OP: TC	over Entite Et	ake Dulle des		0 //00			Date: 10-June-201				
BL#	Depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9		
	ft	blows/ft		ksi	ksi	k-ft	ft	bpm	kips		
360	62.00	23	AV23	31.4	22.5	38	7.8	42.3	395		
			STD	0.5	1.1	1	0.2	0.4	18		
			MAX	32.4	23.8	40	8.1	43.1	420		
			MIN	30.6	20.5	36	7.5	41.5	357		
385	63.00	25	AV25	31.6	22.0	38	7.9	42.1	385		
			STD	0.6	0.7	1	0.2	0.4	12		
			MAX	32.9	23.4	40	8.3	43.1	409		
			MIN	30.6	21.1	36	7.5	41.0	364		
409	64.00	24	AV24	31.5	21.6	38	7.8	42.3	390		
			STD	0.5	0.3	1	0.2	0.4	7		
			MAX	32.8	22.0	41	8.2	42.9	400		
			MIN	30.7	21.0	36	7.6	41.2	379		
461	65.31	40	AV52	32.3	22.9	38	8.2	41.4	441		
			STD	0.6	1.2	1	0.2	0.5	30		
			MAX	33.5	25.8	41	8.7	42.3	493		
			MIN	31.2	20.9	36	7.8	40.1	395		
471	65.60	34	AV10	33.3	27.0	40	8.6	40.3	546		
			STD	0.4	1.7	1	0.2	0.4	40		
			MAX	34.0	29.5	41	8.9	40.9	604		
			MIN	32.5	24.7	39	8.4	39.6	492		
481	65.79	53	AV10	34.4	33.1	42	9.0	39.4	672		
			STD	0.6	2.1	2	0.2	0.5	32		
			MAX	35.4	36.7	45	9.5	40.1	724		
			MIN	33.4	30.2	40	8.7	38.5	625		
491	65.92	80	AV10	35.7	37.0	45	9.4	38.6	740		
			STD	0.5	0.6	1	0.1	0.2	10		
			MAX	36.9	38.1	46	9.7	38.9	756		
			MIN	35.2	36.3	44	9.3	38.1	727		
			Average	29.8	18.8	36	7.3	44.2	361		
			Std. Dev.	4.0	6.6	5	1.2	4.4	140		
			Maximum	36.9	38.1	46	9.7	68.3	756		
			Minimum	7.7	2.5	9	2.8	38.1	0		
			Total	number of blo	ows analyzed	: 485					

BL# Sensors

1-491 F3: [K769] 91.9 (1.00); F4: [D815] 93.0 (1.00); A3: [K3658] 362.0 (1.00); A4: [K3550] 360.0 (1.00)

BL# Comments

7 Reported reference at El. 740.57

8 Mud line at El. 718.2

Time Summary

Drive 11 minutes 26 seconds 6:38 AM - 6:50 AM BN 1 - 491

Page 1 PDIPLOT2 2015.1.50.1 - Printed 11-June-2015

USH [·]	10 over Little La	ake Butte des		AP	PE D30-42, HI	P 14 x 73			
<u>OP: A</u>	M							Date: 11-Ju	une-2015
AR:	21.40 in ²							SP: 0).492 k/ft ³
LE:	77.60 ft							EM: 30	,000 ksi
WS: 1	l6,807.9 f/s							JC:	1.00 []
CSX:	Max Measure	d Compr. Stre	ess			STK: (D.E. Diesel Ha	mmer Stroke	
CSB:	Compression	Stress at Bot	tom			BPM: I	Blows per Minu	ite	
EMX:	Max Transferr	red Energy				RX9: I	Max Case Meth	nod Capacity	(JC=0.9)
BL#	Depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
	ft	blows/ft		ksi	ksi	k-ft	ft	bpm	kips
10	66.02	96	AV10	35.0	36.1	45	9.1	39.3	715
			STD	0.5	0.5	1	0.2	0.5	8
			MAX	35.9	36.7	47	9.5	40.2	729
			MIN	34.0	35.0	42	8.7	38.5	703
20	66.10	120	AV10	35.0	36.9	45	9.1	39.2	733
			STD	0.3	0.3	1	0.1	0.2	6
			MAX	35.4	37.3	47	9.3	39.5	744
			MIN	34.5	36.4	44	9.0	38.9	724
30	66.19	120	AV10	35.2	37.4	45	9.2	39.0	741
00	00.10	120	STD	0.2	0.3	1	0.1	0.2	5
			MAX	35.7	37.8	47	9.5	39.2	751
			MIN	34.9	36.9	45	9.1	38.5	733
			Average	35.1	36.8	45	9.1	39.1	730
			Std. Dev.	0.4	0.6	1	0.2	0.3	13
			Maximum	35.9	37.8	47	9.5	40.2	751
			Minimum	34.0	35.0	42	8.7	38.5	703
				l number of hl			•		

Total number of blows analyzed: 30

BL# Sensors

1-30 F3: [D815] 93.0 (1.00); F4: [K769] 91.9 (1.00); A3: [K3550] 360.0 (1.00); A4: [K3658] 362.0 (1.00)

Time Summary

Drive 44 seconds 6:44 AM - 6:45 AM BN 1 - 30

1 - Reported reference at El. 739.7

Page 1 PDIPLOT2 2015.1.50.1 - Printed 12-June-2015

USH 10 over Little Lake Butte des Morts - PIER 19 #44 OP: TC

APE D30-42, HP 14 x 73
Date: 10-June-2015

OP: T	C			• • • •			7.1	Date: 10-Ju	une-2015
AR:	21.40 in ²							SP: C).492 k/ft ³
LE:	77.50 ft								,000 ksi
	6,807.9 f/s							JC:	1.00 []
	Max Measured						O.E. Diesel Ha		
	Compression S		m				Blows per Minu		(10-0.0)
	Max Transferr				000	RX9:	Max Case Meth		
BL#	Depth	BLC	TYPE	CSX	CSB	EMX	STK ft	BPM	RX9
6	ft 35.00	blows/ft 6	AV2	ksi 21.4	ksi 4.4	k-ft 26	4.6	bpm 54.5	kips 68
0	55.00	0	STD	21.4	0.2	20	0.4	2.5	7
			MAX	24.0	4.6	32	5.1	57.0	, 75
			MIN	18.9	4.2	20	4.2	52.0	61
10	00.00	-	A) (7	10.0	F 4	00		FF 0	07
13	36.00	7	AV7	19.8	5.4	22	4.4	55.6	87
			STD	1.2 21.4	0.7 6.4	2 24	0.3	1.5	13
			MAX MIN	21.4 17.5	6.4 4.3	24 19	4.7 4.0	58.3 53.7	106 70
			IVIIIN	17.5	4.5	15	4.0	55.7	70
20	37.00	7	AV7	22.4	7.3	27	5.0	52.2	122
			STD	0.5	0.4	1	0.1	0.6	8
			MAX	23.1	7.7	28	5.2	53.1	135
			MIN	21.7	6.7	26	4.8	51.4	112
27	38.00	7	AV7	22.9	7.8	27	5.1	51.8	128
	00.00		STD	0.5	0.5	1	0.1	0.5	11
			MAX	24.0	8.6	29	5.3	52.1	141
			MIN	22.4	7.3	27	5.0	50.7	112
35	39.00	8	AV8	24.7	8.9	30	5.6	49.7	165
55	55.00	0	STD	0.4	0.3	1	0.1	0.4	9
			MAX	25.5	9.5	32	5.7	50.4	178
			MIN	24.0	8.3	28	5.4	49.1	149
40	40.00	0	A) (Q	24.0	0.0	20		40.0	157
43	40.00	8	AV8 STD	24.6 0.7	8.6 0.5	29 1	5.5 0.2	49.8 0.7	157 12
			MAX	25.6	0.5 9.6	31	5.8	0.7 50.6	172
			MIN	23.8	8.0	27	5.4	48.8	137
= 4	44.00			o 4 =			5.0	40 7	450
51	41.00	8	AV8	24.7	8.7	29	5.6	49.7	156
			STD	0.7 25.6	0.6	1	0.1	0.6 50.5	16
			MAX MIN	23.8	9.5 7.9	31 28	5.8 5.4	50.5 48.9	175 135
59	42.00	8	AV8	23.5	7.6	27	5.3	50.8	124
			STD	1.0	0.6	2	0.2	1.0	12
			MAX	24.8	8.6	30	5.6	52.2	151
			MIN	22.1	7.0	25	5.0	49.4	113
66	43.00	7	AV7	24.4	8.6	30	5.5	49.8	133
			STD	0.5	0.7	1	0.1	0.6	9
			MAX	25.1	9.6	31	5.7	50.8	153
			MIN	23.5	7.3	28	5.3	49.0	124
74	44.00	8	AV8	26.7	11.9	32	6.1	47.6	215
			STD	1.1	2.2	2	0.4	1.4	44
			MAX	28.3	15.1	34	6.7	49.3	266
			MIN	25.1	9.4	30	5.7	45.6	158
87	45.00	13	AV13	27.7	12.9	32	6.4	46.5	250
			STD	0.5	0.8	1	0.2	0.5	20
			MAX	28.8	14.4	34	6.8	47.4	291
			MIN	26.8	11.6	31	6.1	45.3	217
100	46.00	13	AV13	28.2	13.3	33	6.5	46.0	248

Page 2 PDIPLOT2 2015.1.50.1 - Printed 12-June-2015

USH 10 over Little Lake Butte des Morts - PIER 19 #44

APE D30-42, HP 14 x 7	3
	-

OP: TC		ake Butte des N	NOILS - FIER I	9 #44			Ar	2E D30-42, HF Date: 10-Ju	
BL#	Depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
	ft	blows/ft		ksi	ksi	k-ft	ft	bpm	kips
			STD	0.6	1.0	1	0.2	0.6	18
			MAX	29.1	15.2	35	6.8	47.1	292
			MIN	26.9	11.9	31	6.2	45.2	229
115	47.00	15	AV15	28.5	14.4	33	6.6	45.7	273
			STD	0.6	0.6	1	0.2	0.6	13
			MAX	30.0	15.6	36	7.1	46.5	299
			MIN	27.7	13.3	31	6.4	44.3	253
132	48.00	17	AV17	29.9	17.3	35	7.1	44.3	352
			STD	0.8	1.2	2	0.3	0.8	31
			MAX MIN	31.2 28.7	18.7 14.7	38 33	7.5 6.7	45.4 43.1	388 294
151	49.00	19	AV19	31.3	20.6	38	7.6	42.8	427
101	40.00	10	STD	0.6	1.4	1	0.2	0.5	22
			MAX	32.7	23.2	40	8.1	43.5	460
			MIN	30.6	18.3	35	7.4	41.6	394
177	50.00	26	AV26	32.8	24.0	40	8.1	41.6	499
			STD	0.6	1.1	1	0.2	0.5	24
			MAX	34.0	25.7	42	8.4	42.6	530
			MIN	31.5	21.6	37	7.7	40.9	461
207	51.00	30	AV30	33.8	26.4	42	8.5	40.5	549
			STD	0.5	1.1	1	0.2	0.4	9
			MAX	35.0	28.2	45	8.9	41.2	569
			MIN	32.7	24.5	40	8.2	39.7	533
237	52.00	30	AV30	33.0	23.3	40	8.3	41.1	520
			STD	0.5	1.1	1	0.1	0.3	13
			MAX MIN	33.7 32.3	25.9 21.2	43 39	8.5 8.0	41.8 40.5	551 496
267	53.00	30	AV30	32.4	20.7	39	8.1	41.5	490
207	55.00	50	STD	0.5	1.0	1	0.2	0.4	14
			MAX	33.3	22.9	41	8.4	42.3	514
			MIN	31.3	19.0	37	7.8	40.7	463
294	54.00	27	AV27	31.9	18.6	39	8.0	41.8	450
			STD	0.6	1.2	1	0.2	0.5	17
			MAX	33.1	20.9	42	8.4	42.7	480
			MIN	30.9	16.5	36	7.6	40.7	423
319	55.00	25	AV25	31.1	17.5	37	7.7	42.4	408
			STD	0.5	0.7	1	0.2	0.4	16
			MAX MIN	31.9 29.8	18.5 15.7	39 35	7.9 7.4	43.5 41.9	440 380
	50.00								
342	56.00	23	AV23	30.9	16.9	37	7.7	42.7	380
			STD	0.6	1.2	1	0.2	0.5	13
			MAX MIN	31.9 29.6	20.5 14.7	39 35	8.0 7.3	43.6 41.7	414 363
368	57.00	26	AV26	31.6	19.0	38	7.9	42.1	394
000	07.00	20	STD	0.7	0.8	2	0.2	0.5	5
			MAX	32.8	20.4	41	8.3	43.3	404
			MIN	30.0	17.4	34	7.4	41.1	387
394	58.00	26	AV26	31.8	20.3	38	8.0	41.8	396
			STD	0.5	0.7	1	0.2	0.4	8
			MAX	32.7	21.5	41	8.3	42.8	411
			MIN	30.3	19.1	35	7.6	41.1	384

Page 3 PDIPLOT2 2015.1.50.1 - Printed 12-June-2015

USH 10 over Little Lake Butte des Morts - PIER 19 #44

APE D30-42, HP 14 x 73

OP: TC				0 //			,	Date: 10-Ju	
BL#	Depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
	ft	blows/ft		ksi	ksi	k-ft	ft	bpm	kips
427	59.00	33	AV33	32.0	21.4	38	8.1	41.5	423
			STD	0.5	0.7	1	0.1	0.4	7
			MAX	33.1	22.5	39	8.4	42.2	443
			MIN	31.0	19.9	36	7.8	40.8	412
460	60.00	33	AV33	32.2	21.9	38	8.2	41.2	426
			STD	0.6	0.6	1	0.2	0.4	4
			MAX	33.7	23.3	41	8.6	42.1	434
			MIN	30.8	20.9	36	7.9	40.4	415
497	61.00	37	AV37	32.2	22.8	38	8.3	41.0	440
			STD	0.6	0.9	1	0.2	0.5	11
			MAX	33.6	24.6	41	8.7	42.3	462
			MIN	30.6	21.4	35	7.8	40.2	418
534	62.00	37	AV37	32.3	22.7	38	8.4	40.8	442
			STD	0.7	0.7	1	0.2	0.4	8
			MAX	34.0	24.2	41	8.8	41.7	464
			MIN	30.4	21.6	35	8.0	39.9	428
572	63.00	38	AV38	31.7	21.2	37	8.3	41.1	427
			STD	0.6	0.7	1	0.2	0.4	8
			MAX	33.0	23.3	40	8.6	42.1	446
			MIN	30.6	19.9	35	7.9	40.3	413
613	64.00	41	AV41	31.9	21.9	38	8.4	40.8	444
			STD	0.7	0.6	1	0.2	0.4	6
			MAX	33.0	23.3	40	8.7	41.9	455
			MIN	30.3	20.8	34	7.9	40.0	428
658	65.00	45	AV45	32.2	23.7	39	8.6	40.4	482
			STD	0.6	1.2	1	0.2	0.4	25
			MAX	33.9	26.7	43	9.0	41.4	526
			MIN	31.0	21.9	36	8.1	39.5	449
692	65.50	68	AV34	32.8	26.6	40	8.8	39.9	544
			STD	0.6	0.9	1	0.2	0.4	_15
			MAX	34.5	29.7	43	9.2	40.7	579
			MIN	31.9	25.2	38	8.4	39.1	525
702	65.65	69	AV10	33.7	29.5	42	9.0	39.4	605
			STD	0.5	0.9	1	0.2	0.4	17
			MAX MIN	34.4 32.7	30.9 27.9	43 40	9.4 8.7	40.1 38.7	635 579
712	65.75	96	AV10	33.9	31.7	42	9.2	39.1	657
			STD	0.6	1.0	1	0.1	0.3	14
			MAX MIN	34.8 33.0	33.4 30.2	44 41	9.4 9.0	39.5 38.6	675 638
701	05.00	100							
721	65.83	120	AV9	34.3	33.4	43	9.4	38.7	691
			STD	0.5	0.8	1	0.2	0.3	11
			MAX	35.0	34.8	45	9.6	39.2	711
			MIN	33.6	32.1	41	9.1	38.3	674
			Average	31.1	20.4	37	7.8	42.5	419
			Std. Dev. Maximum	2.8	5.5	4	1.0 9.6	3.2	120
				35.0 17.5	34.8 4.2	45 19		58.3	711
			Minimum	I /.5			4.0	38.3	61

Total number of blows analyzed: 717

APE D30-42, HP 14 x 73 Date: 10-June-2015

BL# Sensors

1-721 F3: [K769] 91.9 (1.00); F4: [D815] 93.0 (1.00); A3: [K3658] 362.0 (1.00); A4: [K3550] 360.0 (1.00)

BL# Comments

- Reported reference at El. 739.7 Mud line at El. 718.2 5
- 6

Time Summary Drive 17 minutes 16 seconds 7:02 AM - 7:20 AM BN 1 - 721

Page 1 PDIPLOT2 2015.1.50.1 - Printed 11-June-2015

пеп -	10 over Little La	ko Putto doo	Morto DIED 1	0 #11 Poetrika				E D20 42 L	D 14 v 72
OP: A		ike bulle des	MOILS - PIER I	9 #44 Resulke			AP	E D30-42, H Date: 11-J	
AR:	21.40 in ²								0.492 k/ft ³
LE:	77.50 ft								0,000 ksi
WS: 1	6,807.9 f/s							JC:	1.00 []
CSX:	Max Measure	d Compr. Stre	SS			STK:	O.E. Diesel Ha	mmer Stroke	
CSB:	Compression	Stress at Bott	om			BPM:	Blows per Minu	te	
EMX:	Max Transferr	ed Energy				RX9:	Max Case Meth		(JC=0.9)
BL#	Depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
	ft	blows/ft		ksi	ksi	k-ft	ft	bpm	kips
10	65.96	80	AV10	33.6	38.0	44	9.2	39.0	700
			STD	0.8	0.6	1	0.2	0.5	11
			MAX	34.8	38.7	47	9.7	39.5	714
			MIN	32.2	37.1	42	9.0	38.0	678
20	66.05	107	AV10	33.4	38.9	45	9.3	38.8	722
			STD	1.3	0.9	2	0.2	0.5	18
			MAX	35.2	40.4	47	9.7	39.4	756
			MIN	30.9	37.4	42	9.0	38.1	697
30	66.14	120	AV10	34.8	40.5	47	9.6	38.3	760
			STD	1.1	0.7	1	0.2	0.3	12
			MAX	35.9	41.5	48	9.9	38.7	780
			MIN	32.2	38.9	44	9.4	37.7	737
			Average	33.9	39.1	45	9.4	38.7	727
			Std. Dev.	1.2	1.3	2	0.3	0.5	28
			Maximum	35.9	41.5	48	9.9	39.5	780
			Minimum	30.9	37.1	42	9.0	37.7	678
			Tota	l number of hl	ows analyzed	1.30			

Total number of blows analyzed: 30

BL# Sensors

1-30 F3: [D815] 93.0 (1.00); F4: [K769] 91.9 (1.00); A3: [K3550] 360.0 (1.00); A4: [K3658] 362.0 (1.00)

Time Summary

Drive 44 seconds 6:35 AM - 6:36 AM BN 1 - 30

USH 10 over Little Lake Butte des Morts; Pile: PIER 19 #1	Test: 10-Jun-2015 06:25
APE D30-42, HP 14 x 73; Blow: 417	CAPWAP(R) 2014-1
GRL Engineers, Inc.	OP: TO
About the CAPWAP Results	

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAFWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 over Little Lake Butte des Morts; Pile: PIER 19 #1 Test: 10-Jun-2015 06:25 APE D30-42, HP 14 x 73; Blow: 417 GRL Engineers, Inc.

CAPWAP(R) 2014-1 OP: TC

			CAPW	AP SUMMARY	RESULTS			
Total CAPW	AP Capacit	ty: 659	.0; along	Shaft	92.0; at	Toe 56	57.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Uni	.t Ur	nit Smith
Sgmnt	Below	Below		in Pile	of	Resist	. Resis	st. Damping
No.	Gages	Grade			Ru	(Depth	1) (Are	ea) Factor
	ft	ft	kips	kips	kips	kips/f	it k	ksf s/ft
				659.0				
1	30.3	4.8	0.0	659.0	0.0	0.0	0.00	.00 0.00
2	37.1	11.5	0.0	659.0	0.0	0.0	0 0.	.00 0.00
3	43.8	18.3	0.0	659.0	0.0	0.0	0 0.	.00 0.00
4	50.5	25.0	12.0	647.0	12.0	1.7	78 0.	.38 0.25
5	57.3	31.7	12.0	635.0	24.0	1.7	78 0.	.38 0.25
6	64.0	38.5	20.0	615.0	44.0	2.9	97 0.	.63 0.25
7	70.8	45.2	20.0	595.0	64.0	2.9	97 0.	.63 0.25
8	77.5	52.0	28.0	567.0	92.0	4.1	.5 0.	.88 0.25
Avg. Sha	aft		11.5			1.7	7 0.	.38 0.25
Тое	9		567.0				411.	.32 0.05
Soil Model	Parameter	rs/Extensi	ons		£	Shaft	Тое	
Quake		(iı	ı)			0.19	0.45	
Case Dampi	ng Factor					0.60	0.74	
Damping Ty	pe				Vis	scous Sm	+Visc	
Unloading	- Quake	(%	of loadin	ng quake)		95	30	
Reloading	Level	(%	of Ru)			100	0	
Unloading	Level	(%	of Ru)			67		
Resistance	Gap (inc	luded in T	oe Quake)	(in)			0.02	
CAPWAP mat	ch quality	v =	1.98	(Wa	ve Up Match	1); RSA	= 0	
Observed:			0.20 in	-	w Count	=	60 b/ft	
Computed:	Final Set	=	0.04 in	-	w Count	=	319 b/ft	
Transducer) CAL: 91		•	CAL: 93.0	; RF: 1.00		
	A3(K365	8) CAL: 30	52; RF: 1.0	0; A4(K3550) CAL: 360	; RF: 1.00		
max. Top C	omp. Stres	ss =	34.2 k	si (T	= 36.1 ms,	max= 1.	067 x Top))
max. Comp.	Stress	=	36.5 k	si (Z	= 50.5 ft,	т= 38.	9 ms)	
max. Tens.	Stress	=	-6.46 ka	si (Z	= 50.5 ft,	T= 61.	4 ms)	
max. Energ	Y (EMX)	=	44.2 k	ip-ft; ma	x. Measured	l Top Dis	pl. (DMX)=	= 1.19 in

USH 10 over 3	Little Lake	Butte	des	Morts;	Pile:	PIER	19	#1
APE D30-42, 1	HP 14 x 73;	Blow:	417					
GRL Engineer	s, Inc.							

Test: 10-Jun-2015 06:25 CAPWAP(R) 2014-1 OP: TC

				REMA TABLE	EXTR			
max	max.	max.	max.	max.	min.	max.	Dist.	Pile
Displ	Veloc.	Trnsfd.	Tens.	Comp.	Force	Force	Below	Sgmnt
		Energy	Stress	Stress			Gages	No.
i	ft/s	kip-ft	ksi	ksi	kips	kips	ft	
1.2	18.3	44.2	-2.34	34.2	-50.1	731.7	3.4	1
1.1	18.3	44.0	-2.87	34.2	-61.3	732.4	6.7	2
1.1	18.2	43.2	-3.95	34.3	-84.5	734.0	13.5	4
1.1	18.2	42.6	-4.50	34.3	-96.3	734.9	16.8	5
1.0	18.2	41.9	-5.20	34.4	-111.3	735.8	20.2	6
1.0	18.2	41.2	-5.73	34.4	-122.6	736.8	23.6	7
1.0	18.1	40.5	-6.07	34.5	-129.9	737.8	27.0	8
0.9	18.1	39.8	-6.20	34.5	-132.8	739.0	30.3	9
0.9	18.0	39.0	-6.26	34.6	-133.9	740.2	33.7	10
0.9	18.0	38.2	-6.32	34.6	-135.3	741.6	37.1	11
0.8	17.9	37.4	-6.36	34.7	-136.1	743.3	40.4	12
0.8	17.7	36.6	-6.38	35.1	-136.6	751.4	43.8	13
0.7	17.3	35.8	-6.41	35.8	-137.2	767.3	47.2	14
0.7	16.9	34.8	-6.46	36.5	-138.4	780.8	50.5	15
0.7	16.5	31.3	-5.87	34.3	-125.7	733.8	53.9	16
0.6	16.1	30.3	-5.94	35.2	-127.2	752.8	57.3	17
0.6	15.5	27.1	-5.37	33.4	-115.0	714.4	60.7	18
0.6	15.0	26.1	-5.44	34.3	-116.4	735.2	64.0	19
0.5	16.3	21.9	-4.41	30.8	-94.4	659.6	67.4	20
0.5	17.8	20.9	-4.45	30.9	-95.2	661.0	70.8	21
0.4	18.6	17.1	-3.63	30.0	-77.7	641.3	74.1	22
0.4	17.4	14.1	-3.67	30.8	-78.5	660.2	77.5	23
38.9 ms	(T =			36.5			50.5	olute
61.4 mg	(T =		-6.46				50.5	

	ver Little 42, HP 14			Morts; P	ile: PIE	R 19 #1		Test: 10 C		L5 06:25) 2014-1
GRL Engi	neers, Inc	•								OP: TC
				CAS	E METHOD					
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	764.2	694.6	625.1	555.5	485.9	416.4	346.8	277.3	207.7	138.1
RX	821.6	783.1	757.4	731.7	706.1	688.5	677.1	665.7	656.1	649.1
RU	764.2	694.6	625.1	555.5	485.9	416.4	346.8	277.3	207.7	138.1
RAU =	620.1 (ki	.ps); RA	2 = 7	05.1 (ki	ps)					
Current	CAPWAP Ru	= 659.0	(kips);	Correspo	nding J()	RP)= 0.1	5; J(RX)	= 0.77		
VMX	K TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	s ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in

PILE PROFILE AND PILE MODEL

18.8 35.92 716.5 743.3 743.3 1.19 0.20 0.20 44.6 769.4 1319

Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in²	ksi	lb/ft ³	ft
0.0	21.4	29992.2	492.000	4.70
77.5	21.4	29992.2	492.000	4.70
Toe Area	198.5	ln^2		

Top Segment Length 3.37 ft, Top Impedance 38 kips/ft/s

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16790.1 ft/s

Pile Damping 1.00 %, Time Incr 0.201 ms, 2L/c 9.2 ms Total volume: 11.517 ft^{3;} Volume ratio considering added impedance: 1.000

USH 10 over Little Lake Butte de	les Morts; Pile: F	PIER 19 #1 RestrikeTest: 3	11-Jun-2015 06:55
APE D30-42, HP 14 x 73; Blow: 3	1		CAPWAP(R) 2014-1
GRL Engineers, Inc.			OP: AM
About the CAPWAP Results			

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 over Little Lake Butte des Morts; Pile: PIER 19 #1 RestrikeTest: 11-Jun-2015 06:55 APE D30-42, HP 14 x 73; Blow: 3 CAPWAP(R) 2014-1 GRL Engineers, Inc. OP: AM

			CAPW	AP SUMMARY	RESULTS				
Total CAPW	IAP Capacit	y: 620	.0; along	Shaft	80.0; at	Тое	540.0	kips	
Soil	Dist.	Depth	Ru	Force	Sum		Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Rea	sist.	Resist.	Damping
No.	Gages	Grade			Ru	(De	epth)	(Area)	Factor
	ft	ft	kips	kips	kips	kip	ps/ft	ksf	s/ft
				620.0					
1	30.3	4.9	0.0	620.0	0.0		0.00	0.00	0.00
2	37.1	11.6	0.0	620.0	0.0		0.00	0.00	0.00
3	43.8	18.4	0.0	620.0	0.0		0.00	0.00	0.00
4	50.5	25.1	15.0	605.0	15.0		2.23	0.47	0.25
5	57.3	31.8	15.0	590.0	30.0		2.23	0.47	0.25
6	64.0	38.6	10.0	580.0	40.0		1.48	0.32	0.25
7	70.8	45.3	10.0	570.0	50.0		1.48	0.32	0.25
8	77.5	52.1	30.0	540.0	80.0		4.45	0.95	0.25
Avg. Sha	aft		10.0				1.54	0.33	0.25
Тое			540.0					391.74	0.06
Soil Model	. Parameter	rs/Extensi	ons		i	Shaft	То	e	
Quake		(iı	n)			0.14	0.4	4	
Case Dampi	ng Factor					0.52	0.8	5	
Damping Ty	pe				Vi	scous	Sm+Vis	с	
Unloading	Quake	(%	of loadin	ng quake)		100	3	0	
Unloading	Level	(%	of Ru)			53			
Resistance	Gap (incl	luded in T	oe Quake)	(in)			0.0	1	
Soil Plug	Weight	(k:	ips)			0.030			
CAPWAP mat	ch quality	<i>r</i> =	2.48	(Wa	ve Up Matc	h) ; F	RSA = 0		
Observed:	Final Set	=	0.23 in	n; Blo	w Count	=	53	b/ft	
Computed:	Final Set	=	0.20 in	n; Blo	w Count	=	60	b/ft	
Transducer	F3(D815) CAL: 93	.0; RF: 1.0	0; F4(K769)	CAL: 91.9); RF: 3	1.00		
	A3(K355	0) CAL: 30	50; RF: 1.0	0; A4(K3658) CAL: 362	2; RF: 3	1.00		
max. Top C	Comp. Stres	ss =	32.5 ks	si (T	= 36.2 ms	, max=	1.082	x Top)	
max. Comp.	Stress	=	35.2 ks	si (Z	= 50.5 ft	, T=	39.0 ms)	
max. Tens.	Stress	=	-6.50 ka	si (Z	= 50.5 ft	, T=	58.8 ms)	
max. Energ	IY (EMX)	=	40.7 k:	ip-ft; ma	x. Measure	d Top	Displ.	(DMX)=	1.15 in

USH 10 over Little Lake Butte des Morts; Pile: PIER 19 #1 RestrikeTest: 11-Jun-2015 06:55 APE D30-42, HP 14 x 73; Blow: 3 CAPWAP(R) 2014-1 GRL Engineers, Inc. OP: AM

			EXTI	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.4	696.1	-55.9	32.5	-2.61	40.7	17.4	1.15
2	6.7	696.8	-65.8	32.6	-3.07	40.6	17.3	1.13
4	13.5	698.4	-91.5	32.6	-4.28	40.0	17.3	1.09
5	16.8	699.3	-104.3	32.7	-4.87	39.5	17.3	1.06
6	20.2	700.2	-116.4	32.7	-5.44	39.0	17.2	1.04
7	23.6	701.2	-124.3	32.8	-5.81	38.3	17.2	1.01
8	27.0	702.3	-128.5	32.8	-6.00	37.7	17.2	0.97
9	30.3	703.5	-130.3	32.9	-6.09	37.0	17.1	0.94
10	33.7 70	704.7	-131.1	32.9	-6.12	36.2	17.1	0.91
11	37.1	706.1	-131.5	33.0	-6.14	35.5	17.1	0.87
12	40.4	708.2	-131.8	33.1	-6.16	34.7	17.0	0.84
13	43.8	720.3	-132.5	33.6	-6.19	33.9	16.7	0.80
14	47.2	737.9	-133.9	34.5	-6.25	33.1	16.2	0.77
15	50.5	753.2	-139.1	35.2	-6.50	32.3	15.8	0.73
16	53.9	698.7	-134.6	32.6	-6.29	28.4	15.3	0.70
17	57.3	719.9	-138.4	33.6	-6.47	27.5	14.7	0.66
18	60.7	660.6	-122.1	30.9	-5.71	23.9	14.5	0.63
19	64.0	662.4	-123.3	30.9	-5.76	23.1	14.6	0.59
20	67.4	620.5	-112.8	29.0	-5.27	20.5	16.1	0.55
21	70.8	622.0	-114.1	29.1	-5.33	19.6	17.6	0.52
22	74.1	628.1	-103.9	29.3	-4.85	17.3	18.1	0.48
23	77.5	650.5	-105.2	30.4	-4.92	14.4	16.6	0.45
Absolute	50.5			35.2			(T =	39.0 ms)
	50.5				-6.50		(T =	58.8 ms)

USH 10 over Little Lake Butte des Morts; Pile: PIER 19 #1 RestrikeTest: 11-Jun-2015 06:55 APE D30-42, HP 14 x 73; Blow: 3 GRL Engineers, Inc. OP: AM

				CAS	E METHOD					
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	660.6	591.6	522.7	453.7	384.8	315.8	246.8	177.9	108.9	40.0
RX	750.9	725.9	700.8	677.4	660.5	647.3	637.5	628.2	619.0	609.7
RU	690.5	622.0	553.5	485.0	416.5	348.0	279.5	211.0	142.5	74.0
RAU = Current	549.7 (ki CAPWAP Ru			52.7 (ki Correspo	- /	RP)= 0.0	6; J(RX)	= 0.79		
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
17.6	36.00	658.9	691.2	703.8	1.15	0.23	0.23	41.0	716.0	1256

PILE PROFILE AND PILE MODEL

	Depth	Area	E-Modulus	Spec. Weight	Perim.
	ft	in ²	ksi	lb/ft ³	ft
	0.0	21.4	29992.2	492.000	4.70
	77.5	21.4	29992.2	492.000	4.70
Toe Area		198.5	in ²		

Segmnt	Dist.In	pedance	Imped.		Tension	Comp	ression	Perim.	Wave	Soil
Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
	ftkips/ft/s		%	% in		in	in		ft/s	kips
1	3.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16847.8	0.000
19	64.0	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16847.8	0.020
20	67.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16847.8	0.010
21	70.8	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16847.8	0.000
23	77.5	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16847.8	0.000

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16847.8 ft/s Pile Damping 1.00 %, Time Incr 0.200 ms, 2L/c 9.2 ms Total volume: 11.517 ft^{3;} Volume ratio considering added impedance: 1.000

Analysis: 12-Jun-2015

CAPWAP(R) 2014-1 Licensed to GRL Engineers, Inc.

USH 10 over Little Lake Butte des Morts; Pile: PIER 19 #36	Test: 10-Jun-2015 06:50
APE D30-42, HP 14 x 73; Blow: 488	CAPWAP(R) 2014-1
GRL Engineers, Inc.	OP: AM
About the CAPWAP Results	

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAFWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 over Little Lake Butte des Morts; Pile: PIER 19 #36 APE D30-42, HP 14 x 73; Blow: 488 GRL Engineers, Inc. Test: 10-Jun-2015 06:50 CAPWAP(R) 2014-1 OP: AM

			CAPW	AP SUMMARY	RESULTS				
Total CAPW	AP Capacity	7: 75	0.0; along	Shaft	70.0; at	Тое	680.0	kips	
Soil	Dist.	Depth	Ru	Force	Sum		Unit	Uni	t Smith
Sgmnt	Below	Below		in Pile	of	Re	sist.	Resist	. Damping
No.	Gages	Grade			Ru	(D	epth)	(Area) Factor
	ft	ft	kips	kips	kips	ki	ps/ft	ks	f s/ft
				750.0					
1	16.9	5.2	0.0	750.0	0.0		0.00	0.0	0.00
2	23.6	11.9	0.0	750.0	0.0		0.00	0.0	0.00
3	30.4	18.7	0.0	750.0	0.0		0.00	0.0	0.00
4	37.1	25.4	7.0	743.0	7.0		1.04	0.2	2 0.27
5	43.8	32.1	7.0	736.0	14.0		1.04	0.2	2 0.27
6	50.6	38.9	7.0	729.0	21.0		1.04	0.2	2 0.27
7	57.3	45.6	7.0	722.0	28.0		1.04	0.2	2 0.27
8	64.1	52.4	7.0	715.0	35.0		1.04	0.2	2 0.27
9	70.8	59.1	7.0	708.0	42.0		1.04	0.2	2 0.27
10	77.6	65.9	28.0	680.0	70.0		4.15	0.8	8 0.27
Avg. Sha	aft		7.0				1.06	0.2	3 0.27
Тое	9		680.0					493.3	0.06
Soil Model	Parameters	s/Extens	ions			Shaft	Тс	be	
Quake		(in)			0.30	0.3	86	
Case Dampi	ng Factor					0.49	1.0)7	
Damping Ty	ре				Vi	scous	Sm+Vis	SC	
Unloading	Quake	(% of loadi	ng quake)		30	4	4	
Unloading	Level	(% of Ru)			37			
Soil Plug	Weight	(1	kips)			0.030			
CAPWAP mat	ch quality	=	2.87	(Wa	ve Up Matc	h);I	RSA = 0		
Observed:		=		-	w Count	=		b/ft	
Computed:	Final Set	=		-	w Count	=		b/ft	
Transducer	F3(K769) A3(K3658		1.9; RF: 1.0 362; RF: 1.0); RF:); RF:			
max. Top C	omp. Stress	s =	35.2 k	si (T	= 36.2 ms	, max=	= 1.066	x Top)	
max. Comp.	Stress	=	37.5 k	si (Z	= 77.6 ft	, T=	41.4 ms	5)	
max. Tens.	Stress	=	-6.53 k	si (Z	= 57.3 ft	, T=	58.8 ms	5)	
max. Energ	Y (EMX)	=	44.9 k	ip-ft; ma	x. Measure	d Top	Displ.	(DMX)=	1.18 in

USH	10	over	Lit	tle	La	ake	Butte	des	Morts;	Pile:	PIER	19	#36
APE	D3()-42,	HP	14	x 7	73;	Blow:	488					
GRL	Eng	ginee	rs,	Inc	•								

6 Test: 10-Jun-2015 06:50 CAPWAP(R) 2014-1 OP: AM

				REMA TABLE	EXTR			
max	max.	max.	max.	max.	min.	max.	Dist.	Pile
Displ	Veloc.	Trnsfd.	Tens.	Comp.	Force	Force	Below	Sgmnt
		Energy	Stress	Stress			Gages	No.
i	ft/s	kip-ft	ksi	ksi	kips	kips	ft	
1.1	18.8	44.9	-1.66	35.2	-35.5	753.2	3.4	1
1.1	18.8	44.6	-2.26	35.2	-48.4	754.1	6.7	2
1.1	18.7	43.8	-3.62	35.3	-77.4	756.0	13.5	4
1.0	18.7	43.3	-4.17	35.4	-89.2	757.2	16.9	5
1.0	18.7	42.8	-4.53	35.4	-96.9	758.5	20.2	6
1.0	18.6	42.2	-4.78	35.5	-102.4	759.9	23.6	7
0.9	18.6	41.5	-5.09	35.6	-108.9	761.7	27.0	8
0.9	18.4	40.7	-5.37	35.9	-114.8	767.4	30.4	9
0.9	18.1	39.8	-5.46	36.4	-117.0	778.3	33.7	10
0.8	17.9	38.9	-5.50	36.8	-117.6	787.0	37.1	11
0.8	17.6	36.1	-5.28	35.5	-113.0	759.1	40.5	12
0.7	17.3	35.1	-5.34	35.9	-114.2	769.3	43.8	13
0.7	16.8	32.4	-5.53	35.1	-118.3	751.8	47.2	14
0.7	16.5	31.3	-6.19	35.6	-132.5	762.7	50.6	15
0.6	16.5	28.7	-6.31	34.0	-135.1	726.8	54.0	16
0.6	16.4	27.5	-6.53	34.1	-139.7	730.9	57.3	17
0.5	16.1	24.9	-6.27	33.0	-134.3	706.7	60.7	18
0.5	15.9	23.6	-6.33	33.4	-135.5	715.4	64.1	19
0.5	16.1	21.2	-6.04	34.1	-129.4	729.2	67.5	20
0.4	17.6	19.8	-6.10	35.8	-130.6	765.3	70.8	21
0.4	18.4	17.6	-5.80	36.1	-124.1	771.7	74.2	22
0.3	16.5	14.9	-5.80	37.5	-124.3	802.8	77.6	23
41.4 ms	(T =			37.5			77.6	olute
58.8 ms	(T =		-6.53				57.3	

	ver Little 42, HP 14			Morts; P	ile: PIE	R 19 #36		Test: 10 C		L5 06:50) 2014-1
GRL Engi	neers, Inc									OP: AM
				CAS	E METHOD					
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	876.9	816.1	755.2	694.4	633.6	572.8	512.0	451.1	390.3	329.5
RX	910.0	866.6	841.2	822.8	804.5	786.2	768.3	760.1	753.2	747.2
RU	876.9	816.1	755.2	694.4	633.6	572.8	512.0	451.1	390.3	329.5
RAU = 647.0 (kips); RA2 = 794.0 (kips)										
Current	CAPWAP Ru	= 750.0	(kips);	Correspo	nding J()	RP)= 0.21	; J(RX)	= 0.85		
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in

	PILE	PROFILE	AND	PILE	MODEL
--	------	---------	-----	------	-------

19.1 35.99 728.3 756.8 779.4 1.18 0.15 0.15 45.3 814.9 1889

	Depth	Area	E-Modulus	Spec. Weight	Perim.
	ft	in ²	ksi	lb/ft ³	ft
	0.0	21.4	29992.2	492.000	4.70
	77.6	21.4	29992.2	492.000	4.70
Toe Area		198.5	in ²		

Segmnt	Dist.In	pedance	Imped.		Tension Compression		Perim.	Wave	Soil	
Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
	ftki	.ps/ft/s	%	in		in		ft	ft/s	kips
1	3.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16683.9	0.000
16	54.0	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16683.9	0.020
17	57.3	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16683.9	0.010
18	60.7	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16683.9	0.000
23	77.6	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16683.9	0.000

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16683.9 ft/s Pile Damping 1.00 %, Time Incr 0.202 ms, 2L/c 9.3 ms

Total volume: 11.529 ft^{3;} Volume ratio considering added impedance: 1.000

USH 10 over Little Lake Butte des Mort	s; Pile: PIER 19 #36 RestrikTest: 11-Jun-2015 06:44
APE D30-42, HP 14 x 73; Blow: 4	CAPWAP(R) 2014-1
GRL Engineers, Inc.	OP: AM
About the CAPWAP Results	

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result.

 USH 10 over Little Lake Butte des Morts; Pile: PIER 19 #36 RestrikTest: 11-Jun-2015 06:44

 APE D30-42, HP 14 x 73; Blow: 4
 CAPWAP(R) 2014-1

 GRL Engineers, Inc.
 OP: AM

Total CAPWAP Capacity: 723.0; along Soil Dist. Depth Ru Sgmnt Below Below Ru No. Gages Grade Image: Capacity in the second secon	T Shaft Force in Pile kips 723.0 6 688.0 667.0 667.0	78.0; at T Sum of Ru kips 0.0 0.0 0.0 11.0 23.0 35.0 40.0 49.0	oe 645.0 Unit Resist. (Depth) kips/ft 0.00 0.00 0.00 0.00 1.63 1.78 1.78 0.74	kips Unit Resist. (Area) ksf 0.00 0.00 0.00 0.35 0.38 0.38	Smith Damping Factor s/ft 0.00 0.00 0.00 0.32 0.32
Sgmnt Below Below No. Gages Grade ft ft kips 1 16.9 5.2 0.0 2 23.6 12.0 0.0 3 30.4 18.7 0.0 4 37.1 25.5 11.0	in Pile kips 723.0 723.0 723.0 723.0 723.0 712.0 700.0 688.0 683.0 683.0 674.0	of Ru kips 0.0 0.0 0.0 11.0 23.0 35.0 40.0	Resist. (Depth) kips/ft 0.00 0.00 0.00 1.63 1.78 1.78	Resist. (Area) ksf 0.00 0.00 0.00 0.35 0.38	Damping Factor s/ft 0.00 0.00 0.00 0.32
No. Gages Grade ft ft kips 1 16.9 5.2 0.0 2 23.6 12.0 0.0 3 30.4 18.7 0.0 4 37.1 25.5 11.0	kips 723.0 723.0 723.0 723.0 712.0 700.0 688.0 683.0 674.0	Ru kips 0.0 0.0 0.0 11.0 23.0 35.0 40.0	(Depth) kips/ft 0.00 0.00 0.00 1.63 1.78 1.78	(Area) ksf 0.00 0.00 0.00 0.35 0.38	Factor s/ft 0.00 0.00 0.00 0.32
ft ft kips 1 16.9 5.2 0.0 2 23.6 12.0 0.0 3 30.4 18.7 0.0 4 37.1 25.5 11.0	723.0 723.0 723.0 723.0 712.0 700.0 688.0 683.0 674.0	kips 0.0 0.0 11.0 23.0 35.0 40.0	kips/ft 0.00 0.00 0.00 1.63 1.78 1.78	ksf 0.00 0.00 0.35 0.38	s/ft 0.00 0.00 0.00 0.32
1 16.9 5.2 0.0 2 23.6 12.0 0.0 3 30.4 18.7 0.0 4 37.1 25.5 11.0	723.0 723.0 723.0 723.0 712.0 700.0 688.0 683.0 674.0	0.0 0.0 11.0 23.0 35.0 40.0	0.00 0.00 0.00 1.63 1.78 1.78	0.00 0.00 0.35 0.38	0.00 0.00 0.00 0.32
2 23.6 12.0 0.0 3 30.4 18.7 0.0 4 37.1 25.5 11.0	723.0 723.0 723.0 712.0 700.0 688.0 683.0 674.0	0.0 0.0 11.0 23.0 35.0 40.0	0.00 0.00 1.63 1.78 1.78	0.00 0.00 0.35 0.38	0.00 0.00 0.32
2 23.6 12.0 0.0 3 30.4 18.7 0.0 4 37.1 25.5 11.0	723.0 723.0 712.0 700.0 688.0 683.0 674.0	0.0 0.0 11.0 23.0 35.0 40.0	0.00 0.00 1.63 1.78 1.78	0.00 0.00 0.35 0.38	0.00 0.00 0.32
330.418.70.0437.125.511.0	723.0 712.0 700.0 688.0 683.0 674.0	0.0 11.0 23.0 35.0 40.0	0.00 1.63 1.78 1.78	0.00 0.35 0.38	0.00 0.32
4 37.1 25.5 11.0	712.0 700.0 688.0 683.0 674.0	11.0 23.0 35.0 40.0	1.63 1.78 1.78	0.35	0.32
	700.0 688.0 683.0 674.0	23.0 35.0 40.0	1.78 1.78	0.38	
5 43.9 32.2 12.0	688.0 683.0 674.0	35.0 40.0	1.78		0.32
	683.0 674.0	40.0		0.38	
6 50.6 39.0 12.0	674.0		0.74		0.32
7 57.4 45.7 5.0		49.0		0.16	0.32
8 64.1 52.5 9.0	665.0		1.33	0.28	0.32
9 70.9 59.2 9.0		58.0	1.33	0.28	0.32
10 77.6 66.0 20.0	645.0	78.0	2.96	0.63	0.32
Avg. Shaft 7.8			1.18	0.25	0.32
Toe 645.0				467.91	0.06
Soil Model Parameters/Extensions		Sh	naft To	e	
Quake (in)		C	0.14 0.3	9	
Case Damping Factor		C	0.65 1.0	1	
Damping Type		Visc	cous Sm+Vis	c	
Unloading Quake (% of loadi	ng quake)		100 8	3	
Reloading Level (% of Ru)			100	0	
Unloading Level (% of Ru)			50		
Resistance Gap (included in Toe Quake)	(in)		0.1	.1	
Soil Plug Weight (kips)		0.	.030		
CAPWAP match quality = 2.74	(Wa	ve Up Match)) ; RSA = 0		
Observed: Final Set = 0.12 i	n; Blo	w Count	= 96	b/ft	
Computed: Final Set = 0.09 i	n; Blo	w Count	= 137	b/ft	
Transducer F3(D815) CAL: 93.0; RF: 1.0 A3(K3550) CAL: 360; RF: 1.0			RF: 1.00 RF: 1.00		
max. Top Comp. Stress = 34.2 k	si (T	= 36.0 ms,	max= 1.066	x Top)	
max. Comp. Stress = 36.5 k	si (Z	= 37.1 ft,	T= 38.2 ms	;)	
max. Tens. Stress = -5.71 k	si (Z	= 37.1 ft,	T= 61.4 ms	;)	
max. Energy (EMX) = 43.8 k	ip-ft; ma	x. Measured	Top Displ.	(DMX) = 1	.16 in

 USH 10 over Little Lake Butte des Morts; Pile: PIER 19 #36 RestrikTest: 11-Jun-2015 06:44

 APE D30-42, HP 14 x 73; Blow: 4
 CAPWAP(R) 2014-1

 GRL Engineers, Inc.
 OP: AM

				REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.4	732.4	-26.1	34.2	-1.22	43.8	18.5	1.16
2	6.7	732.7	-30.7	34.2	-1.43	43.6	18.4	1.15
4	13.5	733.4	-53.7	34.3	-2.51	42.8	18.4	1.10
5	16.9	733.8	-64.1	34.3	-3.00	42.4	18.3	1.07
6	20.2	734.3	-74.0	34.3	-3.46	41.8	18.3	1.04
7	23.6	734.8	-84.8	34.3	-3.96	41.3	18.3	1.02
8	27.0	737.0	-95.8	34.4	-4.48	40.6	18.2	0.98
9	30.4	750.3	-106.8	35.1	-4.99	39.8	18.0	0.95
10	33.7	766.0	-116.8	35.8	-5.46	38.9	17.6	0.91
11	37.1	780.8	-122.2	36.5	-5.71	37.9	17.2	0.87
12	40.5	726.5	-115.9	33.9	-5.42	33.7	16.7	0.84
13	43.9	744.0	-118.5	34.8	-5.54	32.7	16.4	0.80
14	47.2	692.4	-109.4	32.3	-5.11	28.5	15.7	0.76
15	50.6	694.8	-109.4	32.5	-5.11	27.4	15.5	0.72
16	54.0	647.7	-97.8	30.3	-4.57	23.6	15.4	0.68
17	57.4	652.6	-96.6	30.5	-4.51	22.5	15.3	0.64
18	60.7	650.4	-102.5	30.4	-4.79	20.3	15.1	0.60
19	64.1	666.1	-115.9	31.1	-5.42	19.2	14.9	0.56
20	67.5	670.5	-116.7	31.3	-5.45	16.3	16.6	0.52
21	70.9	705.2	-121.2	32.9	-5.66	15.2	18.0	0.47
22	74.2	710.1	-111.1	33.2	-5.19	12.6	18.1	0.43
23	77.6	724.8	-111.4	33.9	-5.21	10.6	15.7	0.39
Absolute	37.1			36.5			(T =	38.2 ms)
	37.1				-5.71		(T =	61.4 ms)

USH 10 over Little Lake Butte des Morts; Pile: PIER 19 #36 RestrikTest: 11-Jun-2015 06:44 APE D30-42, HP 14 x 73; Blow: 4 CAPWAP(R) 2014-1 GRL Engineers, Inc. OP: AM

				CAS	E METHOD					
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	813.9	750.0	686.1	622.2	558.3	494.5	430.6	366.7	302.8	238.9
RX	872.6	840.8	822.1	804.0	785.9	767.8	750.1	735.1	722.4	711.5
RU	813.9	750.0	686.1	622.2	558.3	494.5	430.6	366.7	302.8	238.9
RAU = Current	595.4 (ki CAPWAP Ru			40.6 (ki Correspo		RP)= 0.14	4; J(RX)	= 0.80		
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
18.7	35.80	712.8	739.9	739.9	1.16	0.13	0.12	44.0	821.0	2304

PILE PROFILE AND PILE MODEL

	Depth	Area	E-Modulus	Spec. Weight	Perim.
	ft	ln^2	ksi	lb/ft ³	ft
	0.0	21.4	29992.2	492.000	4.70
	77.6	21.4	29992.2	492.000	4.70
Toe Area		198.5	in ²		

Segmnt	Dist.In	npedance	Imped.		Tension	Comp	ression	Perim.	Wave	Soil
Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
	ftki	lps/ft/s	80	in		in		ft	ft/s	kips
1	3.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16869.6	0.000
16	54.0	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16869.6	0.020
17	57.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16869.6	0.000
18	60.7	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16869.6	0.010
19	64.1	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16869.6	0.000
23	77.6	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16869.6	0.000

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16869.6 ft/s Pile Damping 1.00 %, Time Incr 0.200 ms, 2L/c 9.2 ms Total volume: 11.532 ft^{3,} Volume ratio considering added impedance: 1.000

115 ms

17 L/c

77.5 ft

65.8 ft

21.4 in²

198.5 in²

4.70 ft

29992 ksi

16808 ft/s

16684 ft/s

1.74

33.6 ksi

35.8 ksi

-6.00 ksi

0.26 in

0.32 in

0.28 s/ft

0.07 s/ft

492.0 lb/ft3

USH 10 over Little Lake Butte des Morts; Pile: PIER 19 #44	Test: 10-Jun-2015 07:20
APE D30-42, HP 14 x 73; Blow: 719	CAPWAP(R) 2014-1
GRL Engineers, Inc.	OP: TC
About the CAPWAP Results	

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 over Little Lake Butte des Morts; Pile: PIER 19 #44 APE D30-42, HP 14 x 73; Blow: 719 GRL Engineers, Inc. Test: 10-Jun-2015 07:20 CAPWAP(R) 2014-1 OP: TC

			CAPWA	P SUMMARY	RESULTS				
Total CAPW	AP Capacit	y: 706	.0; along	Shaft	96.0; at	Тое	610.0	kips	
Soil	Dist.	Depth	Ru	Force	Sum	τ	Jnit	Unit	: Smith
Sgmnt	Below	Below		in Pile	of	Resi	lst.	Resist.	Damping
No.	Gages	Grade			Ru	(Der	oth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips	s/ft	ksf	s/ft
				706.0					
1	16.8	5.2	0.0	706.0	0.0	C	0.00	0.00	0.00
2	23.6	11.9	0.0	706.0	0.0	C	0.00	0.00	0.00
3	30.3	18.6	0.0	706.0	0.0	C	0.00	0.00	0.00
4	37.1	25.4	10.0	696.0	10.0	1	.48	0.32	2 0.28
5	43.8	32.1	10.0	686.0	20.0	1	.48	0.32	2 0.28
6	50.5	38.9	10.0	676.0	30.0	1	.48	0.32	0.28
7	57.3	45.6	8.0	668.0	38.0	1	.19	0.25	5 0.28
8	64.0	52.3	10.0	658.0	48.0	1	.48	0.32	2 0.28
9	70.8	59.1	18.0	640.0	66.0	2	2.67	0.57	0.28
10	77.5	65.8	30.0	610.0	96.0	4	4.45	0.95	5 0.28
Avg. Sha	aft		9.6			1	L . 46	0.31	0.28
Тое	9		610.0					442.52	2 0.07
Soil Model	Parameter	s/Extensi	ons		1	Shaft	То	e	
Quake		(i	n)			0.26	0.3	2	
Case Dampi	ng Factor	(-	,			0.70	1.1		
Damping Ty	-				Vi		 Sm+Vis		
Unloading	-	(%	of loadir	orguake)		100		0	
Reloading			of Ru)	5 1		100		0	
Unloading			of Ru)			59		-	
Soil Plug		-	ips)		(0.040			
			1 84	(***					
	ch quality		1.74	-	ve Up Matcl				
Observed:		=	0.10 ir	-	w Count	=		b/ft	
Computed:		=	0.01 ir	-	v Count	=	1047	b/it	
Transducer	F3(K769) A3(K3658		.9; RF: 1.0 62; RF: 1.0		CAL: 93.0) CAL: 360	; RF: 1. ; RF: 1.			
max. Top C	omp. Stres	s =	33.6 ks	si (T:	= 36.2 ms	, max=	1.066	x Top)	
max. Comp.	Stress	=	35.8 ks	si (Z:	= 37.1 ft	, т= 3	8.2 ms)	
max. Tens.		=	-6.00 ks	si (Z:	= 43.8 ft	, т= 5	8.4 ms	;)	
	y (EMX)	=	42 1 1-4		. Measured				1.14 in

USH 10 over Li	ttle Lake	Butte	des	Morts;	Pile:	PIER	19	#44	
APE D30-42, HP	14 x 73;	Blow:	719						
GRL Engineers,	Inc.								

Test: 10-Jun-2015 07:20 CAPWAP(R) 2014-1 OP: TC

				EMA TABLE	EXTR			
max	max.	max.	max.	max.	min.	max.	Dist.	Pile
Displ	Veloc.	Trnsfd.	Tens.	Comp.	Force	Force	Below	Sgmnt
		Energy	Stress	Stress			Gages	No.
i	ft/s	kip-ft	ksi	ksi	kips	kips	ft	
1.1	17.8	43.1	-1.40	33.6	-29.9	718.4	3.4	1
1.1	17.8	42.7	-1.97	33.6	-42.2	719.6	6.7	2
1.0	17.7	41.6	-3.05	33.8	-65.3	722.7	13.5	4
1.0	17.6	41.0	-3.56	33.8	-76.1	724.5	16.8	5
0.9	17.6	40.4	-4.13	33.9	-88.4	726.6	20.2	6
0.9	17.5	39.7	-4.51	34.0	-96.6	728.8	23.6	7
0.9	17.4	39.0	-4.79	34.2	-102.4	731.5	27.0	8
0.8	17.2	38.2	-5.08	34.6	-108.8	739.8	30.3	9
0.8	16.8	37.2	-5.50	35.2	-117.8	754.2	33.7	10
0.8	16.5	36.3	-5.79	35.8	-124.0	766.0	37.1	11
0.7	16.2	33.0	-5.64	33.9	-120.7	725.5	40.4	12
0.7	15.8	32.0	-6.00	34.4	-128.5	737.4	43.8	13
0.6	15.5	28.9	-5.64	32.7	-120.7	699.3	47.2	14
0.6	15.2	27.8	-5.75	33.2	-123.1	710.2	50.5	15
0.6	14.9	25.0	-5.25	31.4	-112.3	672.1	53.9	16
0.5	14.6	23.9	-5.39	31.9	-115.3	683.1	57.3	17
0.5	14.1	21.6	-5.04	30.9	-107.8	661.8	60.7	18
0.4	13.5	20.4	-5.09	32.3	-109.0	691.2	64.0	19
0.4	12.9	18.0	-4.72	31.9	-101.0	682.2	67.4	20
0.4	14.1	16.9	-4.76	33.2	-101.9	710.5	70.8	21
0.3	14.6	14.0	-4.33	32.7	-92.7	700.7	74.1	22
0.3	13.1	11.7	-4.35	33.6	-93.2	718.8	77.5	23
38.2 ms	(T =			35.8			37.1	olute
58.4 ms	(Т =		-6.00				43.8	

APE D30-4	ver Little 42, HP 14 neers, Inc	x 73; Bl		Morts; P	ile: PIE	R 19 #44		Test: 10 C	-Jun-201 APWAP(R)	
		•		CAS	E METHOD					01.10
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	908.1	856.0	803.9	751.8	699.7	647.5	595.4	543.3	491.2	439.1
RX	922.7	879.4	840.2	802.1	769.8	750.6	731.6	713.5	702.9	694.9
RU	908.9	856.9	804.9	752.9	700.8	648.8	596.8	544.8	492.7	440.7
RAU =	599.2 (ki	.ps); RA	.2 = 7	54.5 (ki	ps)					
Current (CAPWAP Ru	= 706.0	(kips);	Correspo	nding J(RP)= 0.39	9; J(RX)	= 0.77		
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in

PILE	PROFILE	AND	PILE	MODEL

18.3 35.95 698.6 730.6 730.6 1.14 0.10 0.10 43.5 843.5 1906

	Depth	Area	E-Modulus	Spec. Weight	Perim.
	ft	in^2	ksi	lb/ft ³	ft
	0.0	21.4	29992.2	492.000	4.70
	77.5	21.4	29992.2	492.000	4.70
Toe Area		198.5	in ²		

Segmnt	t Dist.Impedance		ce Imped.		Tension Compression			Perim.	Wave	Soil
Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
	ftki	.ps/ft/s	%	in		in		ft	ft/s	kips
1	3.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16683.9	0.000
21	70.8	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16683.9	0.040
22	74.1	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16683.9	0.000
23	77.5	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16683.9	0.000

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16683.9 ft/s Pile Damping 1.00 %, Time Incr 0.202 ms, 2L/c 9.3 ms Total volume: 11.517 ft^{3;} Volume ratio considering added impedance: 1.000

USH 10 over Little Lake Butte	des Morts; Pile:	PIER 19 #44 RestrikTest:	11-Jun-2015 06:35						
APE D30-42, HP 14 x 73; Blow:	3		CAPWAP(R) 2014-1						
GRL Engineers, Inc.			OP: AM						
About the CAPWAP Results									

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result.

 USH 10 over Little Lake Butte des Morts; Pile: PIER 19 #44 RestrikTest: 11-Jun-2015 06:35

 APE D30-42, HP 14 x 73; Blow: 3
 CAPWAP(R) 2014-1

 GRL Engineers, Inc.
 OP: AM

			CAPWA	P SUMMARY	RESULTS				
Total CAPW	NAP Capacit	ty: 674	.0; along	Shaft	76.0; at	Тое	598.0	kips	
Soil	Dist.	Depth	Ru	Force	Sum	1	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Res	ist.	Resist.	Damping
No.	Gages	Grade			Ru	(Dej	pth)	(Area)	Factor
	ft	ft	kips	kips	kips	kip	s/ft	ksf	s/ft
				674.0					
1	16.8	5.2	0.0	674.0	0.0		0.00	0.00	0.00
2	23.6	12.0	0.0	674.0	0.0		0.00	0.00	0.00
3	30.3	18.7	0.0	674.0	0.0		0.00	0.00	0.00
4	37.1	25.4	11.0	663.0	11.0		1.63	0.35	0.28
5	43.8	32.2	12.0	651.0	23.0		1.78	0.38	0.28
6	50.5	38.9	11.0	640.0	34.0		1.63	0.35	0.28
7	57.3	45.7	4.0	636.0	38.0		0.59	0.13	0.28
8	64.0	52.4	4.0	632.0	42.0		0.59	0.13	0.28
9	70.8	59.1	4.0	628.0	46.0		0.59	0.13	0.28
10	77.5	65.9	30.0	598.0	76.0		4.45	0.95	0.28
Avg. Sha	aft		7.6			:	1.15	0.25	0.28
То	e		598.0					433.81	0.10
Soil Model	Parameter	rs/Extensi	ons		1	Shaft	То	e	
Quake		(iı	n)			0.25	0.3	2	
Case Dampi	ng Factor					0.56	1.5	7	
Damping Ty	7pe				Vi	scous	Sm+Vis	с	
Unloading	- Quake	(%	of loadir	ng quake)		62	3	6	
Reloading	Level	(%	of Ru)			100		0	
Resistance	Gap (inc)	luded in T	oe Quake)	(in)			0.0	1	
Soil Plug	-		ips)		(0.030			
CAPWAP mat	ch quality	<i>r</i> =	1.96	(Wa	ve Up Matc	h) • R9	<u> </u>		
Observed:		•	0.15 ir		w Count	=		b/ft	
Computed:		-	0.13 in 0.18 in	•	w Count	_		b/ft	
Transducer	F3 (D815			2; F4(K769)				D/10	
Tranbadoor	A3 (K355			8; A4(K3658		; RF: 0			
max. Top C	Comp. Strea	ss =	34.8 ks	si (T	= 36.2 ms	, max=	1.095	x Top)	
max. Comp.	Stress	=	38.1 ks	si (Z	= 77.5 ft	, T= 4	1.0 ms	:)	
max. Tens.	Stress	=	-6.31 ks	si (Z	= 37.1 ft	, T= 6	50.5 ms	;)	
max. Energ	JY (EMX)	=	45.3 ki	ip-ft; ma	x. Measure	d Top I	Displ.	(DMX) = 1	1.14 in

 USH 10 over Little Lake Butte des Morts; Pile: PIER 19 #44 RestrikTest: 11-Jun-2015 06:35

 APE D30-42, HP 14 x 73; Blow: 3
 CAPWAP(R) 2014-1

 GRL Engineers, Inc.
 OP: AM

	EXTREMA TABLE									
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.		
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.		
No.	Gages			Stress	Stress	Energy				
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in		
1	3.4	744.3	-35.3	34.8	-1.65	45.3	18.5	1.15		
2	6.7	745.2	-46.4	34.8	-2.17	45.0	18.5	1.13		
4	13.5	747.2	-70.0	34.9	-3.27	44.1	18.5	1.08		
5	16.8	748.3	-81.1	35.0	-3.79	43.6	18.4	1.05		
6	20.2	749.4	-91.8	35.0	-4.29	43.0	18.4	1.02		
7	23.6	750.7	-103.4	35.1	-4.83	42.3	18.4	0.99		
8	27.0	753.2	-114.9	35.2	-5.37	41.6	18.3	0.96		
9	30.3	764.9	-124.6	35.7	-5.82	40.7	18.0	0.92		
10	33.7	782.0	-130.7	36.5	-6.11	39.7	17.6	0.88		
11	37.1	803.0	-135.0	37.5	-6.31	38.7	17.1	0.84		
12	40.4	759.4	-123.6	35.5	-5.78	34.9	16.6	0.80		
13	43.8	771.0	-125.6	36.0	-5.87	33.7	16.2	0.76		
14	47.2	715.3	-113.1	33.4	-5.28	29.9	16.0	0.72		
15	50.5	720.7	-114.6	33.7	-5.35	28.7	15.9	0.68		
16	53.9	670.6	-104.8	31.3	-4.90	25.3	15.7	0.64		
17	57.3	676.6	-116.6	31.6	-5.45	24.2	15.6	0.59		
18	60.7	686.6	-118.4	32.1	-5.53	22.3	15.4	0.55		
19	64.0	698.9	-123.0	32.7	-5.75	21.0	15.2	0.51		
20	67.4	721.7	-119.5	33.7	-5.58	19.2	15.7	0.46		
21	70.8	748.2	-121.9	35.0	-5.70	18.0	16.9	0.42		
22	74.1	753.8	-120.5	35.2	-5.63	16.4	17.0	0.38		
23	77.5	815.2	-121.6	38.1	-5.68	14.2	14.4	0.34		
Absolute	77.5			38.1			(T =	41.0 ms)		
	37.1				-6.31		(T =	60.5 ms)		

USH 10 over Little Lake Butte des Morts; Pile: PIER 19 #44 RestrikTest: 11-Jun-2015 06:35 APE D30-42, HP 14 x 73; Blow: 3 CAPWAP(R) 2014-1 GRL Engineers, Inc. OP: AM

	CASE METHOD									
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
RP	855.8	733.5	611.2	488.9	366.6					
RX	912.7	840.7	796.6	763.8	733.8	709.7	689.4	671.9	655.5	639.1
RU	855.8	733.5	611.2	488.9	366.6					
RAU = Current (RAU = 610.5 (kips); RA2 = 754.3 (kips) Current CAPWAP Ru = 674.0 (kips); Corresponding J(RP)= 0.30; J(RX) = 1.37									
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
18.7	35.78	713.5	753.9	754.0	1.14	0.15	0.15	45.6	847.1	1929

PILE PROFILE AND PILE MODI

	Depth	Area	E-Modulus	Spec. Weight	Perim.
	ft	in ²	ksi	lb/ft ³	ft
	0.0	21.4	29992.2	492.000	4.70
	77.5	21.4	29992.2	492.000	4.70
Toe Area		198.5	ln^2		

Segmnt	t Dist.Impedance		e Imped.		Tension Compression				Wave	Soil
Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
	ftki	.ps/ft/s	00	in		in		ft	ft/s	kips
1	3.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16666.7	0.000
13	43.8	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16666.7	0.010
16	53.9	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16666.7	0.000
23	77.5	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16666.7	0.000

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16666.7 ft/s Pile Damping 1.00 %, Time Incr 0.202 ms, 2L/c 9.3 ms Total volume: 11.517 ft^{3;} Volume ratio considering added impedance: 1.000