GRL Engineers, Inc.

1540 E. Dundee Road, Suite 102 Palatine, IL 60074 USA Phone: (847) 221-2750 Fax: (847) 221-2752

TRANSMITTAL

To: Mr. Kevin Weber	From: Alexander McCaskill
Company: Lunda Construction Co.	No. of Sheets: 48
E-mail: kweber@lundaconstruction.com	Date: June 9, 2015

RE: Dynamic Testing Results – USH 10 over Little Lake Butte des Morts Structure B-70-403 - Pier 18 Winnebago County, Wisconsin

On June 8, 2015, Pier 18 #1, Pier 18 #36, and Pier 18 #44 at the above structure were dynamically tested during initial driving. The piles were tested during restrike on June 9. Project plans indicated the exterior row piles have a required driving resistance, or ultimate capacity, of 480 kips (240 tons) and the interior row piles have a required driving resistance of 400 kips (200 tons). The piles have a required minimum tip elevation of EL 685. The HP 14x73 H-piles were equipped with driving shoes and were driven with an APE D30-42 hammer (number PD 0256) reportedly operated on fuel setting 4. The reference elevation for the piles was the top of the cofferdam at EL 740.99. We understand the pier was excavated to an elevation of EL 717.49.

Pier 18 #1 was driven to a depth of 52.6 feet, which corresponds to a pile tip elevation of EL 688.4. The blow count over the final increment of driving was 10 blows for 1 ³/₄ inches of penetration at an average hammer stroke of 8.7 feet. The blow count at the beginning of restrike was 10 blows per for 1 ¹/₂ inches of penetration at an average hammer stroke of 8.3 feet. In an effort to reach the minimum tip, Pier 18 #1 was re-driven a depth of 53.7 feet, which corresponds to a pile tip elevation of EL 687.3. The blow count at the end of re-driving was 10 blows per for 1 ³/₈ inches of penetration at an average hammer stroke of 8.1 feet.

Pier 18 #36 was driven to a depth of 62.6 feet, which corresponds to a pile tip elevation of EL 678.4. The blow count over the final increment of driving was 10 blows for 2 $\frac{1}{2}$ inches of penetration at an average hammer stroke of 8.3 feet. The blow count at the beginning of restrike was 10 blows for 1 $\frac{5}{6}$ inches of penetration at an average hammer stroke of 8.4 feet.

Pier 18 #44 was driven to a depth of 63.1 feet, which corresponds to a pile tip elevation of EL 677.9. The blow count over the final increment of driving was 10 blows for 2 ½ inches of penetration at an average hammer stroke of 8.5 feet. The blow count at the beginning of restrike was 10 blows for 1 ¾ inch of penetration at an average hammer stroke of 7.8 feet

We recommend that the production piles at Pier 18 of Structure B-70-403, driven with an APE D30-42 hammer PD 0256, obtain the minimum recommended blow count, noted below, based

on the field observed hammer stroke. We recommend maintaining the minimum blow count for <u>three consecutive inches</u> of driving at the recommended average hammer stroke.

	Exterior Piles (480 kips)	Interior Piles (400 kips)
Field Observed	Recommended Minimum	Recommended Minimum
Hammer Stroke	Blow Count	Blow Count
(feet)	(blows per inch)	(blows per inch)
7.0	5	3
7.5	4	3
8.0	4	3
8.5	4	3
9.0	3	3

After reviewing the dynamic test results, the designer has approved a revised minimum pile tip elevation of EL 690 at Pier 18. We recommend immediately terminating driving **if the blow counts exceed 10** blows over an increment of one inch or less at hammer strokes of 8.0 feet. If the piles terminate above the minimum pile tip elevation please notify the engineer of record.

These criteria should not be used for acceptance of piles under restrike and/or re-drive conditions. After splicing or any other delays, we recommend not applying the criteria until two feet of driving has occurred beyond the termination depth associated with the delay, unless the blow count exceeds 10 blows per inch.

Please call if you have any questions on these recommendations.

GRL Engineers, Inc.

galla Madell

Alexander McCaskill

Travis Coleman, P.E.

cc: Jeff Horsfall - jeffrey.horsfall@dot.wi.gov

Attachments:

Dynamic Test Results(pages 3 - 21)CAPWAP Analysis Results- (pages 22 - 47)

1 - Reported reference at El. 740.99

Page 1 PDIPLOT2 2015.1.50.1 - Printed 08-June-2015

USH 10 over Little Lake Butte des Morts - PIER 18 #1 OP: AM

APE D30-42, HP 14 x 73
Date: 08_ lune_2015

<u>OP: A</u>	Μ							Date: 08-Ju	une-2015
AR:	21.40 in ²								.492 k/ft ³
LE:	77.50 ft								,000 ksi
-	6,807.9 f/s								1.00 []
	Max Measure					STK:			
	Compression		m				Blows per Minu		
	Max Transferr		TVDE	001	000	RX9:	Max Case Meth		· · · · · · · · · · · · · · · · · · ·
BL#	Depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
7	ft 36.00	blows/ft 7	AV7	ksi 24.5	ksi 8.0	k-ft 30	ft 5.4	bpm 50.3	kips 141
/	30.00	/	STD	0.8	0.3	2	0.2	0.8	2
			MAX	26.2	8.6	33	5.8	51.3	144
			MIN	23.6	7.5	27	5.2	48.7	139
14	37.00	7	AV7	24.6	7.9	31	5.4	50.2	144
			STD	0.6	0.2	2	0.1	0.6	2
			MAX	25.5	8.2 7.7	34 29	5.6 5.2	51.1 49.4	147
			MIN	23.7	1.1	29	5.2	49.4	140
21	38.00	7	AV7	25.1	8.0	32	5.6	49.6	152
			STD	0.5	0.1	1	0.1	0.6	4
			MAX	25.8	8.2	33	5.8	50.7	158
			MIN	24.2	7.8	30	5.3	48.8	144
29	39.00	8	AV8	25.7	8.6	32	5.7	49.0	164
25	00.00	0	STD	0.4	0.3	1	0.1	0.4	5
			MAX	26.2	9.0	34	5.9	49.7	172
			MIN	24.9	8.0	30	5.6	48.4	156
38	40.00	9	AV9	26.2	9.1	22	E O	10 1	179
30	40.00	9	STD	26.2	9.1 0.2	32 1	5.9 0.1	48.4 0.5	4
			MAX	27.1	9.5	34	6.1	49.0	190
			MIN	25.8	8.7	31	5.7	47.4	173
				20.0	0.7	01	0.7		170
48	41.00	10	AV10	26.4	9.9	32	6.0	48.1	198
			STD	0.6	0.4	1	0.1	0.6	6
			MAX MIN	27.3 25.2	10.6 9.3	34 30	6.2 5.7	49.2 47.1	209 189
			WIIIN	25.2	5.5	50	5.7	47.1	105
59	42.00	11	AV11	27.2	11.1	33	6.2	47.2	221
			STD	0.7	0.4	1	0.2	0.7	11
			MAX	28.4	11.7	35	6.5	48.1	235
			MIN	26.4	10.6	31	6.0	46.1	205
73	43.00	14	AV14	28.0	13.4	34	6.5	46.3	272
			STD	0.7	1.0	1	0.2	0.7	17
			MAX	29.2	14.5	36	6.8	48.1	295
			MIN	26.2	11.2	30	6.0	45.3	233
89	44.00	16	AV16	29.0	14.4	35	6.7	45.4	307
			STD	0.6	0.2	1	0.2	0.6	7
			MAX	30.4	14.7	39	7.1	46.4	321
			MIN	28.0	13.9	33	6.4	44.1	296
107	45.00	18	AV18	28.8	13.9	34	6.7	45.6	291
107	40.00	10	STD	0.6	0.4	1	0.2	0.6	11
			MAX	30.1	14.5	37	7.1	46.7	308
			MIN	27.8	12.9	31	6.3	44.3	274
124	46.00	17	AV17	29.0	15.0	34	6.7	45.4	329
124	40.00	17	STD	0.5	0.2	1	0.1	43.4 0.4	11
			MAX	30.0	15.3	36	7.0	46.3	345
			MIN	28.1	14.3	32	6.5	44.6	307
141	47.00	17	AV17	28.6	14.1	33	6.6	45.8	304

BL#

156

174

192

212

250

260

270

279

52.48

52.61

PDIPLOT2 2015.1.50.1 - Printed 08-June-2015

645

620

646

654

633

653

663

643

354

147

663

139

6

7

41.2

40.5

40.5

0.3

41.1

40.1

40.1

0.3

40.5

39.7

45.1

2.7

51.3

39.7

USH 10 over Little OP: AM

er Little La	ake Butte des N	Norts - PIER 1		A	PE D30-42, HF Date: 08-Ju			
Depth ft	BLC blows/ft	TYPE	CSX ksi	CSB ksi	EMX k-ft	STK ft	BPM bpm	RX9 kips
'n	blows/n	STD MAX MIN	0.4 29.3 27.7	0.6 15.1 12.9	1 35 31	0.1 6.8 6.4	0.4 46.5 45.2	18 345 279
48.00	15	AV15 STD MAX MIN	28.8 0.5 29.8 27.8	13.8 0.6 14.8 12.8	33 1 35 31	6.7 0.2 7.0 6.4	45.6 0.5 46.5 44.6	288 11 315 272
49.00	18	AV18 STD MAX MIN	29.1 0.6 29.9 27.7	15.0 1.3 17.4 13.1	33 1 35 30	6.8 0.2 7.0 6.3	45.3 0.6 46.7 44.5	346 36 395 274
50.00	18	AV18 STD MAX MIN	29.8 0.4 30.5 28.8	15.6 1.0 17.5 14.3	35 1 36 32	7.0 0.1 7.2 6.7	44.6 0.4 45.5 43.8	364 23 408 333
51.00	20	AV20 STD MAX MIN	30.5 0.5 31.7 29.5	17.1 0.7 18.8 15.7	35 1 38 33	7.2 0.2 7.6 6.9	43.9 0.5 44.8 42.7	409 16 443 383
52.17	33	AV38 STD MAX MIN	32.2 1.2 34.0 30.2	23.1 4.9 30.5 16.5	38 3 42 34	7.9 0.4 8.4 7.2	42.2 1.1 44.0 40.8	519 73 611 405
52.33	60	AV10 STD	33.8 0.2	31.1 0.3	41 1	8.4 0.1	40.8 0.2	633 7

31.6

30.6

31.7

0.5

32.7

31.0

32.7

33.5

32.0

16.5

6.9

0.4

42

40

42

43

40

42

44

41

35

3

44

27

1

1

8.5

8.2

8.5

0.1

8.7

8.3

8.7

0.1

8.9

8.5

6.9

0.9

8.9

5.2

Maximum 35.2 33.5 Minimum 23.6 7.5 Total number of blows analyzed: 279

MAX

MIN

AV10

STD

MAX

MIN

AV9

STD

MAX

MIN

Average

Std. Dev.

69

69

BL# Sensors

1-279 F3: [D815] 93.0 (1.00); F4: [K769] 91.9 (1.00); A3: [K3550] 360.0 (1.00); A4: [K3658] 362.0 (1.00)

34.2

33.5

34.2

0.5

34.8

33.3

34.6

0.4

35.2

33.9

29.4

2.7

BL# Comments

1 Reported reference at El. 740.99

2 Mud line at El. 717.49

Page 3 PDIPLOT2 2015.1.50.1 - Printed 08-June-2015

USH 10 over Little Lake Butte des Morts - PIER 18 #1 OP: AM APE D30-42, HP 14 x 73 Date: 08-June-2015

Time Summary

Drive 6 minutes 11 seconds 12:25 PM - 12:31 PM BN 1 - 279

Page 1 PDIPLOT2 2015.1.50.1 - Printed 09-June-2015

USH [·] OP: A		ake Butte des	Morts - PIER 1	8 #1 Restrike			AF	PE D30-42, HP Date: 09-Ju	
AR: LE:	21.40 in ² 58.00 ft							SP: 0 EM: 30).492 k/ft³),000 ksi
-	16,807.9 f/s Max Measure	d Compr. Stre	255			STK:	O.E. Diesel Ha	JC: mmer Stroke	1.00 []
	Compression						Blows per Minu		
EMX:	Max Transferr					RX9:	Max Case Met		(JC=0.9)
BL#	Depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
10	ft	blows/ft	A) / A	ksi	ksi	k-ft	ft	bpm	kips
10	52.75	80	AV4 STD	41.5 0.6	33.4 0.6	42 0	8.3 0.1	41.0 0.2	660 7
			MAX	42.3	34.1	43	8.4	41.3	669
			MIN	40.9	32.5	41	8.2	40.8	651
20	52.87	80	AV10	39.7	32.0	41	8.2	41.2	644
			STD	1.2	0.9	1	0.2	0.5	12
			MAX MIN	41.1 37.5	33.2 30.1	42 39	8.5 7.9	42.1 40.5	666 625
			IVIIIN	37.5	30.1	29	7.9	40.5	025
30	53.00	80	AV10	37.4	30.7	40	8.2	41.2	628
			STD	0.7	0.5	1	0.1	0.3	4
			MAX	38.7	31.7	41	8.4	41.8	633
			MIN	36.3	30.2	38	8.0	40.8	623
40	53.12	80	AV10	36.1	29.8	39	8.0	41.7	619
			STD	0.3	0.4	1	0.1	0.3	5
			MAX	36.5	30.3	40	8.2	42.1	625
			MIN	35.6	29.1	38	7.9	41.3	611
50	53.25	80	AV10	36.5	29.4	39	8.1	41.6	615
			STD	0.5	0.6	1	0.1	0.2	4
			MAX	37.6	30.6	41	8.3	41.9	624
			MIN	35.9	28.4	38	7.9	41.1	609
60	53.36	87	AV10	36.7	29.4	39	8.1	41.4	613
			STD	0.5	0.3	1	0.1	0.3	5
			MAX	37.8	29.9	41	8.4	42.0	622
			MIN	35.8	28.8	38	7.9	40.9	605
70	53.48	87	AV10	36.8	29.4	39	8.1	41.4	612
			STD	0.3	0.3	1	0.1	0.2	3
			MAX	37.2	30.1	40	8.3	41.7	618
			MIN	36.1	28.8	38	8.0	41.0	608
80	53.59	87	AV10	36.1	29.2	38	8.1	41.6	607
			STD	0.5	0.2	1	0.1	0.3	4
			MAX	37.1	29.6	40	8.3	42.1	613
			MIN	35.5	28.8	38	7.9	41.0	600
90	53.71	87	AV10	36.2	28.9	39	8.1	41.5	608
			STD	0.4	0.4	1	0.1	0.2	4
			MAX	36.8	29.6	40	8.3	41.8	616
			MIN Average	<u>35.6</u> 37.2	<u>28.4</u> 30.0	<u>38</u> 40	<u>8.0</u> 8.1	<u>41.1</u> 41.4	<u>604</u> 620
			Std. Dev.	1.6	1.3	40	0.1	0.4	15
			Maximum	42.3	34.1	43	8.5	42.1	669
			Minimum	35.5	28.4	38	7.9	40.5	600
			Tota	I number of bl	lows analyzed	l: 84			

BL# Sensors

1-90 F3: [K769] 91.9 (1.00); F4: [D815] 93.0 (1.00); A3: [K3658] 362.0 (1.00); A4: [K3550] 360.0 (1.00)

Page 2 PDIPLOT2 2015.1.50.1 - Printed 09-June-2015

APE D30-42, HP 14 x 73

Date: 09-June-2015

USH 10 over Little Lake Butte des Morts - PIER 18 #1 Restrike OP: AM

Time Summary

Drive 2 minutes 8 seconds 6:19 AM - 6:22 AM BN 1 - 90

Page 1 PDIPLOT2 2015.1.50.1 - Printed 08-June-2015

USH 10 over Little Lake Butte des Morts - PIER 18 #36 OP AM

APE D30-42, HP 14 x 73
Date: 08_ lune_2015

OP: A	M							Date: 08-Ju	une-2015
AR:	21.40 in ²							SP: 0	.492 k/ft ³
LE:	77.50 ft								,000 ksi
	6,807.9 f/s	1.0.0				0.71/	<u> </u>		1.00 []
	Max Measured					STK:			
	Compression S Max Transferr		m			RX9:	Blows per Minu Max Case Meth		(10-0.0)
BL#	Depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
DL#	ft	blows/ft		ksi	ksi	k-ft	ft	bpm	kips
10	35.00	5	AV4	12.6	3.0	14	3.2	64.3	37
		-	STD	1.1	0.2	1	0.1	1.2	4
			MAX	14.1	3.3	16	3.4	65.5	44
			MIN	11.5	2.7	13	3.1	62.3	33
15	36.00	5	AV5	17.8	4.3	21	4.0	57.7	67
			STD	1.0	0.5	1	0.2	1.2	7
			MAX	19.2	5.1	23	4.3	59.3	78
			MIN	16.3	3.7	20	3.8	56.0	56
20	37.00	5	AV5	19.5	5.4	24	4.4	55.6	79
			STD	0.6	0.3	1	0.1	0.8	5
			MAX	20.2	5.8	25	4.5	56.6	85
			MIN	18.8	4.9	23	4.2	54.7	73
25	38.00	5	AV5	20.4	5.4	25	4.6	54.3	83
			STD	0.8	0.1	1	0.2	0.9	7
			MAX	21.5	5.6	26	4.9	55.2	94
			MIN	19.6	5.3	24	4.5	52.9	76
30	39.00	5	AV5	20.4	5.7	25	4.6	54.4	95
			STD	0.5	0.2	1	0.1	0.7	4
			MAX	21.1	5.9	26	4.7	55.6	102
			MIN	19.4	5.4	23	4.4	53.6	91
36	40.00	6	AV6	21.5	6.2	26	4.8	53.1	108
			STD	0.5	0.2	1	0.1	0.6	2
			MAX	22.3	6.4	27	5.0	54.2	111
			MIN	20.8	5.8	25	4.6	52.2	104
43	41.00	7	AV7	22.6	6.4	27	5.1	51.9	121
			STD	0.6	0.1	1	0.1	0.6	3
			MAX	23.4	6.7	29	5.2	52.9	125
			MIN	21.6	6.3	25	4.9	51.1	115
50	42.00	7	AV7	23.2	7.0	27	5.2	51.1	125
			STD	0.3	0.1	1	0.1	0.4	3
			MAX	23.7	7.2	29	5.4	51.8	130
			MIN	22.6	6.8	26	5.1	50.6	122
58	43.00	8	AV8	23.7	8.1	28	5.4	50.4	134
			STD	0.4	0.4	1	0.1	0.5	9
			MAX	24.6	8.7	29	5.6	51.2	155
			MIN	23.0	7.2	26	5.2	49.4	127
68	44.00	10	AV10	25.9	10.2	31	6.0	48.1	186
			STD	0.9	0.5	2	0.2	1.0	7
			MAX	27.0	10.7	33	6.3	49.6	196
			MIN	24.4	9.1	28	5.6	47.0	171
78	45.00	10	AV10	26.6	10.6	32	6.2	47.4	189
			STD	0.5	0.2	1	0.1	0.5	6 100
			MAX MIN	27.4	10.9	34 31	6.3 5.0	48.3 46.7	199
				25.6	10.3	31	5.9	40.7	181
89	46.00	11	AV11	26.5	11.0	31	6.1	47.5	199

Page 2 PDIPLOT2 2015.1.50.1 - Printed 08-June-2015

USH 10 over Little Lake Butte des Morts - PIER 18 #36

APE	D30-	42, HF	P 14 x 73
	D	~~ .	0015

Depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
ft	blows/ft		ksi	ksi	k-ft	ft	bpm	kips
		STD	0.5	0.3	1	0.1	0.5	7
		MAX		11.6	33	6.3	48.7	212
		MIN	25.2	10.7	28	5.8	46.9	186
47.00	11	AV11	26.3	10.5	31	6.1	47.6	177
								4
								184
		MIN	26.6	10.1	30	6.2 5.9	40.2 47.3	184
19 00	10	۸\/10	26.7	11 2	21	6.2	17.2	202
40.00	12							202
								246
		MIN	26.0	10.0	29	6.0	46.1	181
49 00	13	AV13	27 9	12 7	33	6.5	46 1	239
45.00	10							233
								, 251
		MIN	20.0	12.0	34	6.3	47.0	231
50.00	17	A\/17	20 E	1/1	22	6 9	45.0	270
50.00	17							
								7
								278
		MIN	27.6	13.6	31	6.5	44.3	253
51.00	16	AV16	28.6	14.2	33	6.8	45.3	264
								11
								278
		MIN	27.0	13.3	30	6.3	44.4	244
52 00	16	۵\/16	28.8	14 3	22	6.8	45 1	275
02.00	10							26
		MIN	29.0	12.7	31	6.5	40.0	311 242
F2 00	17	A\/17	20.0	147	22	6.0	44.0	301
55.00	17							15
								321 272
54.00	47							
54.00	17							279
								8
								289
		MIN	27.8	13.2	31	6.5	44.1	263
55.00	17	AV17	29.2	14.3	33	6.9	44.9	281
			0.8					28
		MAX	30.7	15.4	36	7.3	46.0	320
		MIN	27.9	13.1	30	6.5	43.6	234
56.00	18	AV18	29.6	15.2	34	7.0	44.5	313
		STD	0.4		1		0.3	9
								336
		MIN	29.1	14.5	32	6.8	44.0	300
57.00	19	AV19	29.7	14.8	33	7.0	44.4	309
								20
				16.2				349
		MIN	28.5	13.8	31	6.8	43.1	282
58 00	16	۵\/16	29 4	14 1	22	70	44 6	263
50.00	10							17
								299
								239
		IVIIIN	20.0	12.3	51	0.0	-13.7	257
	ft 47.00 48.00 49.00 50.00 51.00 52.00 53.00 54.00 55.00	ftblows/ft47.001148.001249.001350.001751.001652.001653.001754.001755.001756.001857.0019	ft blows/ft STD MAX MIN 47.00 11 AV11 STD MAX MIN 47.00 11 AV11 STD MAX MIN 48.00 12 AV12 STD MAX MIN 49.00 13 AV13 STD MAX MIN 50.00 17 AV17 STD MAX MIN 51.00 16 AV16 STD MAX MIN 52.00 16 AV16 STD MAX MIN 53.00 17 AV17 STD MAX MIN 54.00 17 AV17 STD MAX MIN 55.00 17 AV17 STD MAX MIN 56.00 18 AV18 STD MAX MIN 57.00 19 AV19 STD MAX MIN	ft blows/ft ksi MAX MAX STD 0.5 MAX QZ5.2 47.00 11 AV11 STD 26.3 MAX 26.6 MIN 48.00 12 AV12 STD 26.7 STD 0.5 MAX 48.00 12 AV12 STD 26.7 0.5 MAX 0.6 MAX 49.00 13 AV13 STD 27.9 0.6 MAX 28.8 MIN 50.00 17 AV17 AV17 28.6 STD 0.6 MAX 51.00 16 AV16 STD 28.6 MIN 0.7 MAX 51.00 16 AV16 STD 28.6 MIN 0.7 MAX 52.00 16 AV16 STD 0.5 MAX 29.6 MIN 53.00 17 AV17 AV17 29.0 STD 0.6 MAX 54.00 17 AV17 AV17 29.0 STD 0.6 MAX 55.00 17 AV17 AV17 29.2 STD 0.8 MAX 55.00 17 AV17 AV17 29.2 STD 0.8 MAX 57.00 18 AV18 AV18 29.6 MIN 29.7 STD 57.00 19 <t< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>ft blows/ft ksi ksi ksi kai ka</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></t<>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ft blows/ft ksi ksi ksi kai ka	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Page 3 PDIPLOT2 2015.1.50.1 - Printed 08-June-2015

USH 10 OP: AM		ake Butte des M	Norts - PIER 1	8 #36			AF	PE D30-42, HI Date: 08-Ji	
BL#	Depth ft	BLC blows/ft	TYPE	CSX ksi	CSB ksi	EMX k-ft	STK ft	BPM bpm	RX9 kips
295	59.00	17	AV17	29.1	14.2	33	6.9	45.0	249
			STD	0.6	0.3	1	0.2	0.6	5
			MAX	29.9	14.8	35	7.1	46.3	257
			MIN	27.6	13.7	31	6.5	44.2	236
312	60.00	17	AV17	29.2	14.5	33	6.9	44.8	251
			STD	0.6	0.5	1	0.2	0.6	5
			MAX	30.2	15.5	35	7.3	45.8	260
			MIN	28.2	13.6	31	6.6	43.7	243
329	61.00	17	AV17	28.9	14.0	33	6.8	45.1	246
			STD	0.5	0.5	1	0.2	0.6	7
			MAX	29.8	14.9	34	7.1	46.0	258
			MIN	27.9	13.4	31	6.5	44.1	235
371	62.33	31	AV42	31.5	20.5	36	7.7	42.6	395
			STD	1.4	3.2	2	0.4	1.2	66
			MAX	33.6	24.6	40	8.4	45.4	476
			MIN	28.6	13.9	31	6.7	40.9	259
380	62.56	40	AV9	33.1	25.7	39	8.3	41.1	493
			STD	0.6	0.7	1	0.2	0.5	12
			MAX	34.1	27.0	41	8.7	41.8	507

Minimum 11.5 2.7 Total number of blows analyzed: 374

24.7

13.6

4.5

27.0

38

32

41

13

4

8.0

6.6

0.9

8.7

3.1

40.2

46.3

3.8

65.5

40.2

474

256

507

94

33

32.3

27.9

3.5

34.1

BL# Sensors

1-380 F3: [D815] 93.0 (1.00); F4: [K769] 91.9 (1.00); A3: [K3550] 360.0 (1.00); A4: [K3658] 362.0 (1.00)

MIN

Average

Std. Dev.

Maximum

BL# Comments

- 7 Reported reference at El. 740.99
- Mud line at El. 717.49 8

Time Summary

Drive 8 minutes 28 seconds 12:43 PM - 12:52 PM BN 1 - 380

Page 1 PDIPLOT2 2015.1.50.1 - Printed 09-June-2015

	USH 10 over Little Lake Butte des Morts - PIER 18 #36 Restrike APE D30-42, HP 14 x 73									
OP: AM Date: 09-June-20										
AR:	21.40 in²).492 k/ft ³	
LE:	67.00 ft),000 ksi	
<u>WS: 1</u>	6,807.9 f/s							JC:	1.00 []	
CSX:	Max Measure	d Compr. Stre	SS			STK: (D.E. Diesel Har	mmer Stroke		
CSB:	Compression	Stress at Bott	om			BPM: I	Blows per Minu	ite		
EMX:	Max Transferr	ed Energy				RX9: I	Max Case Meth	nod Capacity	(JC=0.9)	
BL#	Depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9	
	ft	blows/ft		ksi	ksi	k-ft	ft	bpm	kips	
10	62.72	74	AV10	34.4	30.1	40	8.4	40.9	600	
			STD	0.7	0.9	2	0.2	0.6	11	
			MAX	35.9	31.2	43	8.9	41.9	616	
			MIN	33.3	28.3	37	7.9	39.6	582	
20	62.85	74	AV10	34.7	31.0	41	8.5	40.6	614	
			STD	0.6	0.4	1	0.2	0.5	9	
			MAX	35.6	31.7	44	8.8	41.4	628	
			MIN	33.6	30.5	39	8.1	39.9	603	
30	62.99	74	AV10	33.9	30.4	40	8.2	41.2	602	
			STD	0.4	0.3	1	0.1	0.3	6	
			MAX	34.8	31.0	41	8.5	41.6	611	
			MIN	33.4	29.9	38	8.1	40.5	591	
			Average	34.3	30.5	40	8.4	40.9	605	
			Std. Dev.	0.7	0.7	2	0.2	0.5	11	
			Maximum	35.9	31.7	44	8.9	41.9	628	
			Minimum	33.3	28.3	37	7.9	39.6	582	
			Tota	al number of bl	ows analyzed	ŀ 30				

Total number of blows analyzed: 30

BL# Sensors

1-30 F3: [D815] 93.0 (1.00); F4: [K769] 91.9 (1.00); A3: [K3550] 360.0 (1.00); A4: [K3658] 362.0 (1.00)

Time Summary

Drive 42 seconds 6:28 AM - 6:29 AM BN 1 - 30

1 - Reported reference at El. 740.99

Page 1 PDIPLOT2 2015.1.50.1 - Printed 08-June-2015

USH 10 over Little Lake Butte des Morts - PIER 18 #44 OP AM

APE D	30-42.	HP 14	1 x 73
П	ato: 09		2015

OP: A	M							Date: 08-Ju	une-2015
AR:	21.40 in ²).492 k/ft ³
LE:	77.50 ft								,000 ksi
	16,807.9 f/s	1.0.0:				0.71/			1.00 []
	Max Measured						O.E. Diesel Har		
	Compression Max Transferr		m			RX9:	Blows per Minu Max Case Meth		(1 - 0 0)
BL#	Depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
DL#	ft	blows/ft		ksi	ksi	k-ft	ft	bpm	kips
8	35.00	4	AV3	18.1	4.5	23	4.1	57.4	61
Ũ	00.00	•	STD	0.3	0.1	0	0.0	0.1	0
			MAX	18.3	4.6	24	4.1	57.5	61
			MIN	17.7	4.4	23	4.1	57.3	60
13	36.00	5	AV5	19.4	5.1	25	4.4	55.3	77
			STD	0.8	0.3	1	0.1	0.8	6
			MAX	20.4	5.4	25	4.6	56.7	84
			MIN	18.0	4.6	23	4.2	54.5	66
17	37.00	4	AV4	20.7	5.7	28	4.7	53.6	81
			STD	0.2	0.1	1	0.0	0.2	4
			MAX	20.9	5.8	29	4.8	53.9	86
			MIN	20.5	5.6	28	4.7	53.3	76
21	38.00	4	AV4	20.5	5.7	28	4.7	53.9	84
			STD	0.5	0.1	1	0.1	0.6	2
			MAX	21.2	5.8	29	4.8	54.7	88
			MIN	20.0	5.6	27	4.5	53.1	82
27	39.00	6	AV6	21.2	6.0	26	4.9	53.0	101
			STD	0.4	0.1	1	0.1	0.4	4
			MAX	21.5	6.2	28	5.0	53.4	107
			MIN	20.7	5.8	25	4.8	52.4	95
33	40.00	6	AV6	22.2	6.5	28	5.1	51.9	113
			STD	0.5	0.2	1	0.1	0.6	6
			MAX MIN	23.0 21.4	6.8 6.3	30 26	5.3 4.9	52.7 51.0	120 101
			IVIIIN	21.4	0.5	20	4.9	51.0	101
39	41.00	6	AV6	22.9	6.9	30	5.2	51.2	120
			STD	0.6	0.1	1	0.1	0.7	2
			MAX	23.8	7.0	32	5.4	52.4	122
			MIN	21.7	6.7	28	5.0	50.2	116
46	42.00	7	AV7	23.9	7.4	30	5.5	50.1	131
			STD	0.3	0.2	0	0.1	0.3	4
			MAX	24.4	7.7	31	5.6	50.4	140
			MIN	23.6	7.2	30	5.4	49.5	127
54	43.00	8	AV8	24.0	8.0	30	5.5	49.8	138
			STD	0.5	0.5	1	0.1	0.6	11
			MAX	24.6	9.1	31	5.7	50.9	164
			MIN	23.0	7.4	28	5.3	49.2	129
64	44.00	10	AV10	25.3	10.0	31	5.9	48.3	186
			STD	0.7	0.3	1	0.2	0.7	8
			MAX MIN	26.5 24.4	10.5 9.4	33 29	6.2 5.7	49.3 47.1	202 176
73	45.00	9	AV9	26.1	10.8	33	6.1	47.4	199
			STD	0.5	0.2	1	0.2	0.6	3
			MAX MIN	26.9 25.2	11.1 10.4	34 30	6.4 5.9	48.4 46.6	206 196
83	46.00	10	AV10	26.6	11.2	33	6.2	47.0	207

Page 2 PDIPLOT2 2015.1.50.1 - Printed 08-June-2015

USH 10 over Little Lake Butte des Morts - PIER 18 #44

OP: AM								Date: 08-Ju	
BL#	Depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
	ft	blows/ft		ksi	ksi	k-ft	ft	bpm	kips
			STD	0.4	0.3	1	0.1	0.4	6
			MAX	27.2	11.7	34	6.4	47.8	215
			MIN	25.7	10.8	31	6.0	46.4	199
92	47.00	9	AV9	26.0	10.3	32	6.1	47.6	175
			STD	0.4	0.2	1	0.1	0.4	7
			MAX	26.6	10.7	34	6.3	48.2	188
			MIN	25.5	9.9	31	5.9	46.9	164
102	48.00	10	AV10	26.2	10.3	32	6.2	47.3	178
			STD	0.7	0.3	1	0.2	0.7	5
			MAX	27.8	11.0	35	6.6	48.2	185
			MIN	25.3	9.8	30	5.9	45.7	171
116	49.00	14	AV14	27.7	12.7	34	6.6	45.8	231
			STD	1.2	1.8	2	0.4	1.2	29
			MAX	29.6	15.1	37	7.2	48.0	271
			MIN	25.5	10.0	30	6.0	43.9	189
130	50.00	14	AV14	29.2	14.6	36	7.1	44.3	267
			STD	0.5	0.2	1	0.2	0.5	5
			MAX	30.4	15.0	38	7.5	45.2	276
			MIN	28.3	14.3	34	6.8	43.2	259
144	51.00	14	AV14	28.8	14.0	35	7.0	44.7	251
			STD	0.6	0.3	1	0.2	0.6	6
			MAX	29.7	14.4	38	7.2	45.8	262
			MIN	27.6	13.5	33	6.6	43.9	238
160	52.00	16	AV16	28.9	14.4	35	7.0	44.6	257
			STD	0.7	1.0	1	0.2	0.6	23
			MAX	30.0	15.9	37	7.3	46.1	286
			MIN	27.4	12.8	31	6.5	43.6	226
176	53.00	16	AV16	29.4	14.6	36	7.2	44.1	272
			STD	0.3	0.4	1	0.1	0.3	6
			MAX	30.0	15.3	37	7.4	44.9	280
			MIN	28.5	13.8	34	6.9	43.4	264
188	54.00	12	AV12	28.6	13.3	35	6.9	44.8	241
			STD	0.5	0.5	1	0.1	0.4	9
			MAX	29.4	14.4	36	7.1	45.6	259
			MIN	27.8	12.5	33	6.7	44.3	226
205	55.00	17	AV17	29.1	14.5	34	7.1	44.3	272
			STD	0.5	0.5	1	0.2	0.5	9
			MAX	29.8	15.4	36	7.3	45.2	287
			MIN	28.2	13.4	32	6.8	43.7	255
216	56.00	11	AV11	28.3	13.1	34	6.8	45.2	225
			STD	0.4	0.5	1	0.1	0.4	14
			MAX	29.1	13.8	35	7.0	46.0	245
			MIN	27.6	12.3	33	6.5	44.5	202
230	57.00	14	AV14	27.6	13.3	32	6.6	45.8	227
			STD	0.6	0.9	1	0.2	0.6	17
			MAX	28.9	14.6	34	7.0	46.8	250
			MIN	26.5	12.1	29	6.3	44.4	203
242	58.00	12	AV12	27.7	12.9	32	6.6	45.7	210
			STD	0.5	0.4	1	0.2	0.5	15
									15
			MAX	28.6 26.4	13.9 12.4	34 30	6.9 6.3	47.0 44.9	236 192

Page 3 PDIPLOT2 2015.1.50.1 - Printed 08-June-2015

USH 10 over Little Lake Butte des Morts - PIER 18 #44

APE D30-42,	, HP	14 x 73

<u>P: AM</u>				0.01/		=10/	071/	Date: 08-Ju	
3L#	Depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RXS
	ft	blows/ft		ksi	ksi	k-ft	ft	bpm	kips
255	59.00	13	AV13	26.6	12.2	30	6.3	46.7	186
			STD	0.4	0.2	1	0.1	0.5	ć
			MAX	27.1	12.7	31	6.5	47.4	193
			MIN	26.1	11.8	28	6.1	46.0	18
268	60.00	13	AV13	27.0	12.9	30	6.5	46.2	19
			STD	0.8	0.6	1	0.2	0.8	
			MAX	28.6	13.9	34	7.0	47.8	20
			MIN	25.6	12.0	27	6.0	44.5	18
282	61.00	14	AV14	27.7	13.3	32	6.6	45.7	205
			STD	0.7	0.7	2	0.2	0.6	1
			MAX	28.8	14.4	34	6.9	47.0	223
			MIN	26.2	11.9	28	6.3	44.7	185
295	62.00	13	AV13	26.8	12.2	30	6.4	46.5	193
			STD	0.6	0.6	1	0.2	0.6	16
			MAX	28.2	13.4	33	6.9	47.2	23
			MIN	26.1	11.5	28	6.2	44.9	17
307	62.48	25	AV12	30.9	22.7	36	7.7	42.5	45 ⁻
			STD	2.1	5.2	4	0.7	1.9	108
			MAX	33.7	28.4	43	8.7	45.7	558
			MIN	27.3	13.4	29	6.6	40.1	246
317	62.69	48	AV10	32.7	27.8	40	8.4	40.9	553
			STD	0.8	0.5	2	0.3	0.7	1
			MAX	33.6	28.3	42	8.7	42.2	565
			MIN	31.4	26.8	36	7.8	40.0	539
327	62.87	53	AV10	31.8	27.4	37	8.1	41.6	54
			STD	0.6	0.4	1	0.2	0.5	- 8
			MAX	32.7	28.2	40	8.4	42.4	56
			MIN	30.8	26.7	35	7.8	40.8	536
336	63.06	48	AV9	33.0	28.1	40	8.5	40.5	55
-		-	STD	0.4	0.2	1	0.1	0.3	
			MAX	33.6	28.5	41	8.7	41.1	568
			MIN	32.3	27.8	39	8.3	40.1	548
			Average	27.4	13.6	33	6.6	46.2	244
			Std. Dev.	3.1	5.6	4	0.9	3.3	120
			Maximum	33.7	28.5	43	8.7	57.5	568
			Minimum	17.7	4.4	23	4.1	40.0	60
					ows analyzed			10.0	00

BL# Sensors

1-336 F3: [D815] 93.0 (1.00); F4: [K769] 91.9 (1.00); A3: [K3550] 360.0 (1.00); A4: [K3658] 362.0 (1.00)

BL# Comments

- 6 Reported reference at El. 740.99
- 7 Mud line at El. 717.49

Time Summary

Drive 7 minutes 30 seconds 1:02 PM - 1:09 PM BN 1 - 336

Page 1 PDIPLOT2 2015.1.50.1 - Printed 09-June-2015

USH 1	10 over Little La	ike Butte des	Morts - PIER 1	8 #44 Restrike)		AP	PE D30-42, H	P 14 x 73
OP: A	М							Date: 09-J	une-2015
AR:	21.40 in²								0.492 k/ft ³
LE:	68.00 ft								0,000 ksi
<u>WS: 1</u>	6,807.9 f/s							JC:	1.00 []
CSX:	Max Measured	d Compr. Stre	SS			STK:	O.E. Diesel Ha	mmer Stroke	
CSB:	Compression	Stress at Bott	om			BPM:	Blows per Minu	ite	
EMX:	Max Transferr	ed Energy				RX9:	Max Case Meth	nod Capacity	(JC=0.9)
BL#	Depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
	ft	blows/ft		ksi	ksi	k-ft	ft	bpm	kips
10	63.23	69	AV10	32.1	28.6	37	7.8	42.3	578
			STD	0.3	0.3	1	0.1	0.2	4
			MAX	32.8	29.2	38	7.9	42.5	582
			MIN	31.6	28.1	36	7.7	41.9	568
20	63.37	69	AV10	32.1	28.8	37	7.8	42.2	581
			STD	0.3	0.3	1	0.1	0.2	4
			MAX	32.6	29.2	39	8.0	42.7	586
			MIN	31.6	28.2	36	7.6	41.8	573
30	63.52	69	AV10	32.0	28.6	37	7.8	42.3	576
50	05.52	09	STD	0.5	0.5	1	0.2	42.3	570
			MAX	32.9	29.6	39	0.2 8.1	42.9	, 589
			MIN	32.9 31.4	29.6	39	7.6	42.9 41.6	
									568
			Average	32.1	28.7	37	7.8	42.3	578
			Std. Dev.	0.4	0.4	1	0.1	0.3	5
			Maximum	32.9	29.6	39	8.1	42.9	589
			Minimum	31.4	27.8	35	7.6	41.6	568
			Lota	al number of bl	ows analyzed	: 30			

Total number of blows analyzed: 30

BL# Sensors

1-30 F3: [K769] 91.9 (1.00); F4: [D815] 93.0 (1.00); A3: [K3658] 362.0 (1.00); A4: [K3550] 360.0 (1.00)

Time Summary

Drive 41 seconds 6:35 AM - 6:35 AM BN 1 - 30

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 over Little Lake Butte des Morts; Pile: PIER 18 #1 - EOIITest: 08-Jun-2015 12:31 APE D30-42, HP 14 x 73; Blow: 278 GRL Engineers, Inc. OP: AM

			CAPW	AP SUMMARY	RESULTS			
<u>Total CAP</u>	WAP Capaci	ity: 65	7.0; alor	ng Shaft	127.0; at	Toe 530	0.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				657.0				
1	30.3	5.4	0.0	657.0	0.0	0.00	0.00	0.00
2	37.1	12.2	0.0	657.0	0.0	0.00	0.00	0.00
3	43.8	18.9	4.0	653.0	4.0	0.59	0.13	0.25
4	50.5	25.6	14.0	639.0	18.0	2.08	0.44	0.25
5	57.3	32.4	22.0	617.0	40.0	3.26	0.69	0.25
6	64.0	39.1	22.0	595.0	62.0	3.26	0.69	0.25
7	70.8	45.9	25.0	570.0	87.0	3.71	0.79	0.25
8	77.5	52.6	40.0	530.0	127.0	5.94	1.26	0.25
Avg. Sh	aft		15.9			2.41	0.51	0.25
То	e		530.0				384.48	0.07
Soil Mode	l Paramete	ers/Extens	ions		Sl	haft T	oe	
Ouake		(i:	n)		(0.09 0.	37	
Case Damp:	ing Facto	r .	-		(0.83 0.	97	
Damping Ty	ype				Viso	cous Sm+Vi	sc	
Unloading	Quake	(%	of loadi	ng quake)		77	60	
Reloading	Level		of Ru)			100	0	
Unloading	Level	(%	of Ru)			55		
Resistance	e Gap (ind	cluded in S	Toe Quake	e) (in)		0.	08	
Soil Plug	Weight	(k	ips)		0	.040 0.0	67	
CAPWAP mat	tch qualit	tv =	1.72	(War	ve Up Match	1); RSA = (2	
Observed:	-	-	0.18 i	•	w Count		9 b/ft	
Computed:			0.13 i	•	w Count) b/ft	
Transducer				•	AL: 91.9; RF:			
	A3(K355	0) CAL: 360); RF: 1.00	; A4(K3658) C	AL: 362; RF:	: 1.00		
max. Top (-	ess =	34.4 k	-	= 35.9 ms,			
max. Comp	. Stress	=	36.6 k			T= 38.7 1	•	
max. Tens		=	-7.05 k	•	· · · · · ·		•	
max. Energ	gy (EMX)	=	42.9 k	ip-ft; max	K. Measured	l Top Displ	. (DMX)=	1.13 in

USH 10 over Little Lake Butte des Morts; Pile: PIER 18 #1 - EOIITest: 08-Jun-2015 12:31 APE D30-42, HP 14 x 73; Blow: 278 GRL Engineers, Inc. OP: AM

			EXTI	REMA TABLI	Ξ			
Pile	Dist.	max.	min.	max.	max.	max.	max.	max
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	ir
1	3.4	736.4	-29.7	34.4	-1.39	42.9	18.4	1.13
2	6.7	737.2	-35.4	34.4	-1.65	42.7	18.4	1.1
4	13.5	739.0	-54.0	34.5	-2.52	41.7	18.4	1.0
5	16.8	739.9	-67.7	34.6	-3.16	41.1	18.3	1.0
6	20.2	741.0	-80.5	34.6	-3.76	40.4	18.3	0.9
7	23.6	742.1	-92.6	34.7	-4.33	39.7	18.3	0.9
8	27.0	743.3	-102.6	34.7	-4.79	39.0	18.2	0.9
9	30.3	744.6	-113.1	34.8	-5.29	38.2	18.2	0.8
10	33.7	746.2	-123.0	34.9	-5.74	37.5	18.1	0.8
11	37.1	750.6	-131.6	35.1	-6.15	36.8	18.0	0.8
12	40.4	757.5	-138.2	35.4	-6.46	35.9	17.8	0.7
13	43.8	769.6	-144.7	36.0	-6.76	35.1	17.5	0.7
14	47.2	766.2	-146.0	35.8	-6.82	33.2	17.0	0.7
15	50.5	784.5	-150.9	36.6	-7.05	32.3	16.6	0.6
16	53.9	738.6	-141.7	34.5	-6.62	28.7	15.9	0.6
17	57.3	757.1	-141.8	35.4	-6.62	27.7	15.4	0.6
18	60.7	681.3	-126.6	31.8	-5.91	23.1	14.7	0.5
19	64.0	710.6	-133.3	33.2	-6.23	22.1	13.9	0.5
20	67.4	627.9	-116.6	29.3	-5.45	18.0	15.0	0.4
21	70.8	642.4	-116.9	30.0	-5.46	17.0	16.7	0.4
22	74.1	632.6	-95.2	29.6	-4.45	13.1	17.6	0.4
23	77.5	650.3	-94.7	30.4	-4.43	9.5	16.5	0.3
Absolute	50.5			36.6			(T =	38.7 ms
	50.5				-7.05		(T =	60.3 ms
			CAS	SE METHOD				
J =	0.0 0	0.2 0.4	0.6	0.8	1.0	1.2	1.4 1.	6 1.
RP	784.3 648	3.3 512.3	376.3	240.2				
xx	858.8 791	8 748.1	704.5	668.6	651.8	635.1 61	8.3 607.	4 607.
RU	784.3 648	3.3 512.3	376.3	240.2				
RAU = 60	00.8 (kips)	; RA2 =	674.7 (]	kips)				
urrent CA	PWAP Ru = 65	57 0 (king)	· Correg	oonding T	(PP) = 0 1	9. T(DY) -	- 0 94	
urrent CA	TWAP RU - 0:	JI.O (KIPS	, corres	ponding 0	(KF) - 0.1	$\mathbf{J}_{\mathbf{r}} \cup (\mathbf{R}\mathbf{A}) =$	- 0.94	

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
18.8	35.68	717.6	746.9	746.9	1.13	0.16	0.18	43.3	798.1	1828

	P	ILE PROFILE A	ND PILE MODEL		
Dept	h i	Area E	-Modulus	Spec. Weight	Perim.
f	it :	in²	ksi	lb/ft ³	ft
0.	0	21.4	29992.2	492.000	4.70
77.	5	21.4	29992.2	492.000	4.70
Toe Area	1:	98.5 in ²	2		

USH 10 over Little Lake Butte des Morts; Pile: PIER 18 #1 - EOIITest: 08-Jun-2015 12:31 APE D30-42, HP 14 x 73; Blow: 278 GRL Engineers, Inc. OP: AM

Segmnt	Dist.Im	pedance	Imped.		Tension	Comp	ression	Perim.	Wave	Soil
Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
	ftki	.ps/ft/s	8	in		in		ft	ft/s	kips
1	3.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.000
21	70.8	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.040
22	74.1	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.000
23	77.5	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.000

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.200 ms, 2L/c 9.2 ms Total volume: 11.517 ft^{3;} Volume ratio considering added impedance: 1.000

USH 10 over Little Lake Butte des Morts; Pile: PIER 18 #1 - EOR Test: 09-Jun-2015 06:21 APE D30-42, HP 14 x 73; Blow: 88 CAPWAP(R) 2014-1 GRL Engineers, Inc. OP: AM

			CAPW	AP SUMMARY	RESULTS				
<u>Total CAP</u>	WAP Capaci	ty: 624	4.0; alon	g Shaft	104.0; at	Toe 520	0.0 kips		
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Sm	ith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damp	ing
No.	Gages	Grade			Ru	(Depth)	(Area)	Fac	tor
	ft	ft	kips	kips	kips	kips/ft	ksf	S	/ft
				624.0					
1	10.2	5.9	0.0	624.0	0.0	0.00	0.00	0	.00
2	17.1	12.7	0.0	624.0	0.0	0.00	0.00	0	.00
3	23.9	19.6	0.0	624.0	0.0	0.00	0.00	0	.00
4	30.7	26.4	9.0	615.0	9.0	1.32	0.28	0	.26
5	37.5	33.2	21.0	594.0	30.0	3.08	0.65	0	.26
6	44.4	40.0	21.0	573.0	51.0	3.08	0.65	0	.26
7	51.2	46.9	21.0	552.0	72.0	3.08	0.65	0	.26
8	58.0	53.7	32.0	520.0	104.0	4.69	1.00	0	.26
Avg. Sh	aft		13.0			1.94	0.41	0	.26
То	e		520.0				377.23	0	.05
<u>Soil Mode</u>	l Paramete	ers/Extensi	lons		Sł	aft T	oe		
Quake		(in	1)		C	0.14 0.	41		
Case Damp:	ing Factor	:	-		C	0.71 0.	68		
Damping Ty	ype				Visc	ous Sm+Vi	sc		
Unloading	Quake	(%	of loadi	ng quake)		55	62		
Unloading	Level	(%	of Ru)			79			
Resistance	e Gap (ind	luded in 1	loe Quake) (in)		0.	01		
Soil Plug	Weight	(k:	ips)			0.0	42		
CAPWAP mat	tch qualit	.v =	1.77	(Way	ve Up Match): RSA = ()		
Observed:	-	-		-	v Count		7 b/ft		
Computed:			0.18 i	•	v Count		b/ft		
Transducer					AL: 93.0; RF:				
	A3(K365	8) CAL: 362	; RF: 1.09;	; A4(K3550) C	AL: 360; RF:	1.09			
max. Top (Comp. Stre	ess =	35.3 k	:si (T=	= 35.9 ms,	max= 1.05	3 х Тор)		
max. Comp	. Stress	=	37.1 k	:si (Z=	= 30.7 ft,	T= 37.8 1	ms)		
max. Tens	. Stress	=	-7.29 k	si (Z=	= 37.5 ft,	T= 58.3 1	ms)		
max. Energ	JY (EMX)	=	42.1 k	ip-ft; max	. Measured	Top Displ	. (DMX)=	1.02 in	ı

USH 10 over Little Lake Butte des Morts; Pile: PIER 18 #1 - EOR Test: 09-Jun-2015 06:21 APE D30-42, HP 14 x 73; Blow: 88 CAPWAP(R) 2014-1 GRL Engineers, Inc. OP: AM

				REMA TABLE	EXTR			
max.	max.	max.	max.	max.	min.	max.	Dist.	Pile
Displ.	Veloc.	Trnsfd.	Tens.	Comp.	Force	Force	Below	Sgmnt
		Energy	Stress	Stress			Gages	No.
in	ft/s	kip-ft	ksi	ksi	kips	kips	ft	
1.01	18.7	42.1	-3.65	35.3	-78.1	754.6	3.4	1
0.98	18.7	41.4	-4.22	35.3	-90.4	755.3	6.8	2
0.95	18.6	40.7	-4.79	35.3	-102.4	756.0	10.2	3
0.91	18.6	39.9	-5.28	35.4	-113.0	756.9	13.6	4
0.88	18.5	39.1	-5.71	35.4	-122.2	757.9	17.1	5
0.84	18.5	38.2	-6.09	35.5	-130.5	759.0	20.5	6
0.80	18.3	37.2	-6.46	35.6	-138.3	763.0	23.9	7
0.76	18.0	36.2	-6.79	36.3	-145.4	776.4	27.3	8
0.73	17.6	35.3	-7.12	37.1	-152.3	794.3	30.7	9
0.69	16.8	32.4	-6.94	36.1	-148.6	772.4	34.1	10
0.65	16.2	31.4	-7.29	37.1	-156.0	793.9	37.5	11
0.61	15.5	26.6	-6.28	33.3	-134.5	713.0	40.9	12
0.57	15.0	25.6	-6.67	34.3	-142.9	733.7	44.4	13
0.54	15.2	21.3	-5.75	30.5	-123.1	653.0	47.8	14
0.50	16.7	20.4	-5.96	30.0	-127.5	642.2	51.2	15
0.47	17.9	16.7	-4.69	28.9	-100.5	618.6	54.6	16
0.43	17.2	13.1	-4.67	29.7	-100.0	636.6	58.0	17
37.8 ms)	(T =			37.1			30.7	Absolute
58.3 ms)	(T =		-7.29				37.5	

	CASE METHOD												
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8			
RP	777.7	634.4	491.2	347.9	204.6								
RX	811.5	759.2	709.1	667.3	645.5	624.3	604.5	594.8	590.5	586.5			
RU	777.7	634.4	491.2	347.9	204.6								
RAU =	RAU = 500.6 (kips); RA2 = 707.3 (kips)												
Curren	t CAPWAP Ru	= 624.0	(kips);	Corresp	onding J	(RP)= 0.	21; J(R	x) = 1.00	D				
v	MX TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB			
ft	/s ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in			
18	.8 35.73	718.3	775.7	775.7	1.02	0.14	0.14	43.0	888.2	1300			

PILE PROFILE AND PILE MOD

Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in ²	ksi	lb/ft ³	ft
0.0	21.4	29992.2	492.000	4.70
58.0	21.4	29992.2	492.000	4.70
Toe Area	198.5	in ²		
Top Segment Length	3.41 ft, Top In	npedance 38	8 kips/ft/s	
Wave Speed: Pile Top	•			

USH 10 over Little Lake	Butte des Morts;	Pile: PIER 18 #1 -	EOR Test: 09-Jun-2015 06:21
APE D30-42, HP 14 x 73;	Blow: 88		CAPWAP(R) 2014-1
GRL Engineers, Inc.			OP: AM

			DYNAM	IC RESISTAN	ICE TABLE			
Soil Sgmnt	Dist. Below	Depth Below	Ru	Damping Rd at	Max Rt		Unit Rt Resp. to	Smith Damping
No.	Gages	Grade		Max. Rt	(Ru+Rd)	Depth	Area	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
1	10.2	5.9	0.0	0.0	0.0	0.00	0.00	0.00
2	17.1	12.7	0.0	0.0	0.0	0.00	0.00	0.00
3	23.9	19.6	0.0	0.0	0.0	0.00	0.00	0.00
4	30.7	26.4	9.0	40.8	49.8	7.30	1.55	0.26
5	37.5	33.2	21.0	86.4	107.4	15.74	3.35	0.26
6	44.4	40.0	21.0	78.2	99.2	14.53	3.09	0.26
7	51.2	46.9	21.0	89.8	110.8	16.23	3.45	0.26
8	58.0	53.7	32.0	134.7	166.7	24.44	5.20	0.26
Avg. Sh	aft		13.0	53.7	66.7	9.95	2.12	0.26
То	e		520.0	49.7	569.7		413.29	0.05
То	tal				1103.6			

USH 10 over Little Lake	Butte des Morts;	Pile: PIER 18 #36 -	EOITest: 08-Jun-2015 12:52
APE D30-42, HP 14 x 73;	Blow: 378		CAPWAP(R) 2014-1
GRL Engineers, Inc.			OP: AM

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 over Little Lake Butte des Morts; Pile: PIER 18 #36 - EOITest: 08-Jun-2015 12:52 APE D30-42, HP 14 x 73; Blow: 378 GRL Engineers, Inc. OP: AM

			CAPW	AP SUMMARY	RESULTS			
<u>Total CAP</u>	WAP Capaci	ity: 52	2.0; alor	ng Shaft	112.0; at	Toe 410	0.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				522.0				
1	23.6	8.6	0.0	522.0	0.0	0.00	0.00	0.00
2	30.3	15.3	0.0	522.0	0.0	0.00	0.00	0.00
3	37.1	22.1	6.0	516.0	6.0	0.89	0.19	0.25
4	43.8	28.8	7.0	509.0	13.0	1.04	0.22	0.25
5	50.5	35.6	18.0	491.0	31.0	2.67	0.57	0.25
6	57.3	42.3	18.0	473.0	49.0	2.67	0.57	0.25
7	64.0	49.0	18.0	455.0	67.0	2.67	0.57	0.25
8	70.8	55.8	20.0	435.0	87.0	2.97	0.63	0.25
9	77.5	62.5	25.0	410.0	112.0	3.71	0.79	0.25
Avg. Sh	aft		12.4			1.79	0.38	0.25
То	e		410.0				297.43	0.06
Soil Mode	l Paramete	ers/Extens:	ions		Sl	naft T	oe	
Quake		(i)	n)		(0.06 0.	51	
Case Damp:	ing Facto	•	,			0.73 0.		
Damping T						cous Sm+Vi		
Unloading		(%	of loadi	ng quake)		100	53	
Reloading	-		of Ru)	5 1		100	0	
Resistance	e Gap (ind	luded in '	Toe Quake	a) (in)		0.	03	
Soil Plug	-		ips)		0.	.040 0.0	00	
CAPWAP mat	tch qualit	-v =	1.80	(War	ve Up Match) : RSA = ()	
Observed:	-	-	0.30 i	-	v Count		,) b/ft	
Computed:		-	0.33 i	•	w Count		5 b/ft	
Transducer	F3(D815				AL: 91.9; RF:			
	A3(K355	0) CAL: 360	; RF: 0.98	; A4(K3658) C	AL: 362; RF:	0.98		
max. Top (Comp. Stre	ess =	33.5 k	si (T=	= 35.9 ms,	max= 1.04	0 x Top)	
max. Comp	. Stress	=	34.8 k	si (Z=	= 37.1 ft,	т= 37.9 и	ns)	
max. Tens		=	-2.59 k	si (Z=	= 50.5 ft,	T= 62.3 1	ns)	
max. Energ	JY (EMX)	=	40.6 k	ip-ft; max	. Measured	Top Displ	. (DMX)=	1.07 in

USH 10 over Little Lake Butte des Morts; Pile: PIER 18 #36 - EOITest: 08-Jun-2015 12:52 APE D30-42, HP 14 x 73; Blow: 378 GRL Engineers, Inc. OP: AM

				6	EMA TABL	EXTR				
max	max.	nax.		max.	max.	min.	max.		Dist	Pile
Displ	eloc.		Trns	Tens.	Comp.	Force	Force		Belc	Sgmnt
		ergy		Stress	Stress				Gage	No.
i	ft/s	o-ft	kip	ksi	ksi	kips	kips	Ét	f	
1.0	17.8	0.6	4	0.00	33.5	0.0	717.3	.4 7	3.	1
1.0	17.7	40.5	4	-0.00	33.6	-0.1	718.2	.7 7	6.	2
1.0	17.6	10.1	4	-0.52	33.6	-11.2	720.3	.5 7	13.	4
1.0	17.6	39.8		-0.88	33.7	-18.8	721.4	.8 7	16.	5
0.9	17.6	39.4		-1.21	33.8	-25.9	722.7		20.	6
0.9	17.5	8.9		-1.50	33.8	-32.1	724.1		23.	7
0.9	17.5	88.4		-1.77	33.9	-38.0	725.7		27.	8
0.9	17.3	37.9		-1.99	34.1	-42.6	730.3		30.	9
0.8	17.1	37.4		-2.17	34.5	-46.4	738.5		33.	10
0.8	16.9	86.8		-2.39	34.8	-51.1	745.8		37.	11
0.8	16.6	34.8		-2.25	33.8	-48.1	724.1		40.	12
0.8	16.3	34.2		-2.52	34.4	-53.9	737.1		43.	13
0.7	15.7	32.1		-2.34	33.8	-50.0	722.6	.2 7	47.	14
0.7	15.2	31.5		-2.59	34.8	-55.4	744.1		50.	15
0.7	14.6	27.4		-1.75	31.7	-37.5	679.5		53.	16
0.6	14.3	26.8		-1.97	32.2	-42.1	689.8		57.	17
0.6	13.9	23.0		-1.13	29.3	-24.3	626.3		60.	18
0.6	13.9	22.4		-1.32	30.3	-28.2	648.0		64.	19
0.5	15.5	.8.9		-0.49	27.2	-10.6	581.2		67.	20
0.5	16.9	.8.3		-0.66	25.1	-14.2	536.6		70.	21
0.5	17.7	4.7		-0.00	21.5	-0.0	460.6		74.	22
0.5	17.1	1.6	1	-0.00	22.5	-0.0	481.4	.5 4	77.	23
7.9 ms	= 3	(Т			34.8			.1	37.	bsolute
2.3 ms	= 6	(Т		-2.59				.5	50.	
					E METHOD	CAS				
0.	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0.0	J =
25.	97.7	169.8	242.0	314.2	386.4	458.6	530.8	603.0	675.1	2P
501.	509.1	518.1	530.2	547.6	577.4	607.1	636.8	669.2	717.3	x
36.	108.4	180.8	253.1	325.4	397.7	470.0	542.4	614.7	687.0	U
					ips)	568.3 (k	RA2 =	lps); I	57.4 (ki	2AU = 4
	7	x) = 0.6	1; J(R	(RP)= 0.2	onding J	Corresp	0 (kips);	= 522.0	PWAP Ru	Current CA
KE	QUS	EMX	SET	DFN	DMX	FMX	FT1	VT1*Z	TVP	VMX
kips/i	kips	kip-ft	in	in	in	kips	kips	kips	ms	ft/s
85	711.9	40.8	0.30	0.30	1.07	724.4	718.8	678.2	35.68	18.0

	PILE PROFILE AND PILE MODEL											
	Depth	Area	E-Modulus	Spec. Weight	Perim.							
	ft	in²	ksi	lb/ft ³	ft							
	0.0	21.4	29992.2	492.000	4.70							
	77.5	21.4	29992.2	492.000	4.70							
Toe Area		198.5	in²									

USH 10 over Little Lake Butte des Morts; Pile: PIER 18 #36 - EOITest: 08-Jun-2015 12:52 APE D30-42, HP 14 x 73; Blow: 378 GRL Engineers, Inc. OP: AM

Segmnt	Dist.Im	.Impedance Imped.		Tension Compression			Perim.	Wave	Soil	
Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
	ftki	.ps/ft/s	%	in		in		ft	ft/s	kips
1	3.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	.6807.9	0.000
17	57.3	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	6807.9	0.010
19	64.0	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	6807.9	0.000
21	70.8	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	6807.9	0.020
22	74.1	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	6807.9	0.000
23	77.5	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	6807.9	0.000

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.200 ms, 2L/c 9.2 ms Total volume: 11.517 ft^{3;} Volume ratio considering added impedance: 1.000

Analysis: 10-Jun-2015

USH 10 over Little Lake	Butte des Morts;	Pile: PIER 18 #36 R	estrTest: 09-Jun-2015 06:28
APE D30-42, HP 14 x 73;	Blow: 4		CAPWAP(R) 2014-1
GRL Engineers, Inc.			OP: AM

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 over Little Lake Butte des Morts; Pile: PIER 18 #36 RestrTest: 09-Jun-2015 06:28 APE D30-42, HP 14 x 73; Blow: 4 GRL Engineers, Inc. OP: AM

			CAPW	AP SUMMARY	RESULTS			
Total CAP	WAP Capaci	ity: 58	9.0; alor	ng Shaft	159.0; at	Toe 430	0.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				589.0				
1	13.4	9.0	0.0	589.0	0.0	0.00	0.00	0.00
2	20.1	15.7	0.0	589.0	0.0	0.00	0.00	0.00
3	26.8	22.4	7.0	582.0	7.0	1.04	0.22	0.29
4	33.5	29.1	15.0	567.0	22.0	2.24	0.48	0.29
5	40.2	35.8	23.0	544.0	45.0	3.43	0.73	0.29
6	46.9	42.5	23.0	521.0	68.0	3.43	0.73	0.29
7	53.6	49.2	25.0	496.0	93.0	3.73	0.79	0.29
8	60.3	55.9	26.0	470.0	119.0	3.88	0.83	0.29
9	67.0	62.6	40.0	430.0	159.0	5.97	1.27	0.29
Avg. Sh	aft		17.7			2.54	0.54	0.29
То	e		430.0				311.94	0.07
Soil Mode	l Paramete	ers/Extens:	ions		Sł	naft T	oe	
Ouake		(i)	n)		(0.06 0.	28	
Case Damp	ing Facto	•	•			1.21 0.	79	
Damping T	-					cous Sm+Vi	sc	
Unloading		(%	of loadi	ng quake)		99	80	
Reloading	Level		of Ru)			100	0	
Resistance	e Gap (ind	cluded in !	roe Quake	a) (in)		0.	03	
Soil Plug			ips)			0.0	33	
CAPWAP mat	tch qualit	ty =	1.98	(Wa	ve Up Match); RSA = ()	
Observed:	-	-	0.16 i	•	w Count		1 b/ft	
Computed:	Final Set	t =	0.20 i	in; Blo	w Count	= 60) b/ft	
Transducer	F3(D815) CAL: 93.0	; RF: 1.00	; F4(K769) C	AL: 91.9; RF:	1.00		
	A3(K355	0) CAL: 360	; RF: 1.00	; A4(K3658) C	AL: 362; RF:	1.00		
max. Top (-	ess =	34.1 ¥	si (T:	= 36.3 ms,	max= 1.05	8 х Тор)	
max. Comp	. Stress	=	36.1 k	si (Z:	= 33.5 ft,		ms)	
max. Tens	. Stress	=	-4.51 k	si (Z:	= 33.5 ft,	T= 58.2 1	ms)	
max. Energ	gy (EMX)	=	39.4 k	ip-ft; max	k. Measured	Top Displ	. (DMX)=	0.96 in

USH 10 over Little Lake Butte des Morts; Pile: PIER 18 #36 RestrTest: 09-Jun-2015 06:28 APE D30-42, HP 14 x 73; Blow: 4 GRL Engineers, Inc. OP: AM

			EXT	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.4	730.2	-42.8	34.1	-2.00	39.4	17.8	0.94
2	6.7	731.5	-46.8	34.2	-2.19	38.9	17.7	0.91
3	10.1	733.0	-54.7	34.2	-2.56	38.3	17.7	0.88
4	13.4	734.7	-63.2	34.3	-2.95	37.6	17.6	0.85
5	16.8	736.7	-71.3	34.4	-3.33	36.9	17.6	0.81
6	20.1	744.8	-79.0	34.8	-3.69	36.1	17.3	0.78
7	23.5	755.6	-85.8	35.3	-4.01	35.3	17.1	0.74
8	26.8	771.3	-93.7	36.0	-4.38	34.4	16.7	0.71
9	30.2	751.1	-89.2	35.1	-4.17	32.1	16.1	0.67
10	33.5	772.7	-96.4	36.1	-4.51	31.2	15.6	0.64
11	36.9	719.4	-79.3	33.6	-3.70	27.5	14.8	0.60
12	40.2	740.4	-86.2	34.6	-4.03	26.6	14.3	0.56
13	43.6	651.3	-58.4	30.4	-2.73	22.2	13.5	0.53
14	46.9	673.3	-64.2	31.5	-3.00	21.4	13.0	0.49
15	50.3	590.7	-38.1	27.6	-1.78	17.6	12.3	0.46
16	53.6	612.8	-42.2	28.6	-1.97	16.9	11.8	0.43
17	57.0	535.5	-18.0	25.0	-0.84	13.5	11.7	0.40
18	60.3	555.1	-21.7	25.9	-1.01	12.8	12.9	0.37
19	63.7	525.4	0.0	24.5	0.00	9.9	13.1	0.34
20	67.0	540.6	0.0	25.3	0.00	7.2	12.0	0.31
Absolute	33.5			36.1			(T =	38.1 ms)
	33.5				-4.51		(T =	58.2 ms)

				CAS	E METHOI)				
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
RP	859.5	747.6	635.7	523.8	411.9					
RX	876.6	778.6	703.9	658.3	616.6	588.3	565.0	542.9	528.2	513.5
RU	859.5	747.6	635.7	523.8	411.9					
RAU =	357.5 (k	ips); R	A2 =	687.9 (k	ips)					
Current	CAPWAP Ru	= 589.0	(kips)	Corresp	onding d	J(RP)= 0	.48; J(R	x) = 0.9	9	

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
17.9	36.08	684.8	734.1	734.1	0.96	0.16	0.16	40.0	855.2	1721

PILE PROFILE AND PILE MODEL

Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in²	ksi	lb/ft ³	ft
0.0	21.4	29992.2	492.000	4.70
67.0	21.4	29992.2	492.000	4.70
Toe Area	198.5	in^2		
Top Segment Length	3.35 ft, Top I	mpedance 38	8 kips/ft/s	
Wave Speed: Pile Top 3 Pile Damping 1.00 %	16807.9, Elastic , Time Incr 0.19			

Total volume: 9.957 ft³; Volume ratio considering added impedance: 1.000

USH 10 over Little Lake	Butte des Morts;	Pile: PIER 18 #44 -	EOITest: 08-Jun-2015 13:09
APE D30-42, HP 14 x 73;	Blow: 334		CAPWAP(R) 2014-1
GRL Engineers, Inc.			OP: AM

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 over Little Lake Butte des Morts; Pile: PIER 18 #44 - EOITest: 08-Jun-2015 13:09 APE D30-42, HP 14 x 73; Blow: 334 GRL Engineers, Inc. OP: AM

				CAPWAP SUMMA	RY RESU	JLTS			
<u>Total CA</u>	PWAP Capa	acity:	573.0;	along Shaft	112	.0; at Toe	461.0) kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith	Quake
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping	
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor	
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft	in
				573.0					
1	23.6	9.1	0.0	573.0	0.0	0.00	0.00	0.00	0.05
2	30.3	15.8	0.0	573.0	0.0	0.00	0.00	0.00	0.05
3	37.1	22.6	3.0	570.0	3.0	0.45	0.09	0.22	0.05
4	43.8	29.3	5.0	565.0	8.0	0.74	0.16	0.22	0.05
5	50.5	36.1	16.0	549.0	24.0	2.37	0.51	0.22	0.05
6	57.3	42.8	16.0	533.0	40.0	2.37	0.51	0.22	0.05
7	64.0	49.5	16.0	517.0	56.0	2.37	0.51	0.22	0.05
8	70.8	56.3	16.0	501.0	72.0	2.37	0.51	0.22	0.05
9	77.5	63.0	40.0	461.0	112.0	5.94	1.26	0.22	0.05
Avg. Sh	naft		12.4			1.78	0.38	0.22	0.05
Тс	be		461.0				334.43	0.05	0.45
Soil Mod	el Paramo	eters/Ex	tensions			Shaft	Тое		
Case Dam	ping Fact	tor				0.65	0.60		
Damping	Туре					Viscous	Sm+Visc		
Unloadin	g Quake		(% of]	Loading quake	e)	34	30		
Unloadin	g Level		(% of I	Ru)		30			
Resistan	ce Gap (:	included	in Toe 🤉	Quake) (in)			0.01		
Soil Plu	g Weight		(kips)			0.070	0.036		
CAPWAP m	atch qua	lity	= 2	.00 (Wave U	Match);	RSA = 0		
	: Final :	-	= 0.		low Cou		48 b	o/ft	
Computed	: Final a	Set	= 0.	.27 in; B	low Cou	unt =	45 k	o/ft	
Transducer	F3(D	815) CAL:	93.0; RF:	1.02; F4(K769)	CAL: 9	91.9; RF: 1.02	2		
	A3(K	3550) CAL:	360; RF:	0.98; A4(K3658) CAL:	362; RF: 0.98	3		
max. Top	Comp. St	tress	= 32	2.4 ksi	(T= 35	5.9 ms, max	= 1.064 2	ĸ Top)	
	p. Stres		= 34	4.5 ksi	(Z= 50).5 ft, T=	38.9 ms)	
max. Ten	s. Stres	5	= -5.	.02 ksi	(Z= 43	8.8 ft, T=	61.3 ms)	
max. Ene	rgy (EMX)	= 39	9.0 kip-ft;	max. Me	easured Top	Displ.	(DMX) = 1.	08 in

USH 10 over Little Lake Butte des Morts; Pile: PIER 18 #44 - EOITest: 08-Jun-2015 13:09 APE D30-42, HP 14 x 73; Blow: 334 GRL Engineers, Inc. OP: AM

				5	EMA TABL	EXTR				
max	max.	nax.	n	max.	max.	min.	max.	t.	Dist	Pile
Displ	eloc.	sfd. Ve	Trns	Tens.	Comp.	Force	Force	ow	Belo	Sgmnt
		ergy	Ene	Stress	Stress			es	Gage	No.
i	ft/s	p-ft	kir	ksi	ksi	kips	kips	ft	1	
1.0	17.0	39.0	з	-1.26	32.4	-27.0	693.8	.4	3.	1
1.0	17.0	38.9	3	-1.69	32.5	-36.2	694.6	.7	6.	2
1.0	16.9	38.5	3	-2.52	32.5	-54.0	696.5	.5	13.	4
1.0	16.8	38.1	3	-2.87	32.6	-61.5	697.5	.8	16.	5
0.9	16.8	37.7	3	-3.26	32.6	-69.7	698.7	.2	20.	6
0.9	16.7	37.2	3	-3.61	32.7	-77.3	700.1	.6	23.	7
0.9	16.7	36.7	3	-3.93	32.8	-84.1	701.6	.0	27.	8
0.9	16.6	36.1	3	-4.25	32.9	-91.1	704.2	.3	30.	9
0.8	16.4	35.5	3	-4.60	33.1	-98.4	708.9	.7	33.	10
0.8	16.3	34.9	3	-4.86	33.3	-104.0	713.6	.1	37.	11
0.8	16.1	33.6	3	-4.91	33.0	-105.0	706.3	.4	40.	12
0.7	15.9	32.9	3	-5.02	33.6	-107.5	719.4	.8	43.	13
0.7	15.4	31.2	3	-4.86	33.4	-104.1	715.9	.2	47.	14
0.7	14.9	30.5	3	-4.84	34.5	-103.5	737.9	.5	50.	15
0.6	14.3	27.0	2	-4.34	32.1	-92.8	688.1	.9	53.	16
0.6	14.0	26.2	2	-4.36	32.5	-93.3	695.5	.3	57.	17
0.6	13.7	23.0	2	-3.92	30.1	-83.9	645.1	.7	60.	18
0.5	13.5	22.3	2	-4.09	30.4	-87.5	651.5	.0	64.	19
0.5	14.8	L9.3		-3.88	27.6	-83.0	591.3	.4	67.	20
0.5	16.1	L8.6	1	-3.93	26.4	-84.1	565.9	.8	70.	21
0.4	17.2	L5.8	1	-3.38	25.1	-72.4	536.9	.1	74.	22
0.4	16.7	L1.5	1	-3.34	26.0	-71.5	556.9	.5	77.	23
38.9 ms	=	(Т			34.5			.5	50.	bsolute
61.3 ms	=	(Т		-5.02				.8	43.	
					E METHOD	CAS				
0.	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0.0	J =
66.	134.2	202.2	270.2	338.1	406.1	474.1	542.0	610.0	678.0	RP
562.	573.7	585.4	597.1	608.8	620.5	636.6	662.5	689.1	715.7	xx
66.	134.2	202.2	270.2	338.1	406.1	474.1	542.0	610.0	678.0	עז
					ips)	617.8 (k	RA2 =	ips);	66.7 (ki	RAU = 4
	1	x) = 0.8	5; J(R	(RP)= 0.1	onding J	; Corresp	0 (kips)	= 573	PWAP Ru	Current CA
KE	QUS	EMX	SET	DFN	DMX	FMX	FT1	VT1*2	TVP	VMX
kips/i	kips	kip-ft	in	in	in	kips	kips	kips	ms	ft/s
-	709.8	39.3	0.25	0.25	1.08	699.7	-	657.9	35.68	17.2

		PILE PRO	FILE AND PILE MOI	DEL	
	Depth	Area	E-Modulus	Spec. Weight	Perim.
	ft	in²	ksi	lb/ft ³	ft
	0.0	21.4	29992.2	492.000	4.70
	77.5	21.4	29992.2	492.000	4.70
Toe Area		198.5	in²		

USH 10 over Little Lake Butte des Morts; Pile: PIER 18 #44 - EOITest: 08-Jun-2015 13:09 APE D30-42, HP 14 x 73; Blow: 334 GRL Engineers, Inc. OP: AM

Segmnt	Dist.Im	pedance	Imped.		Tension	Comp	ression	Perim.	Wave	Soil
Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
	ftki	ps/ft/s	%	in		in		ft	ft/s	kips
1	3.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.000
17	57.3	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.020
19	64.0	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.010
20	67.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.020
21	70.8	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.000
23	77.5	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.000

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.200 ms, 2L/c 9.2 ms Total volume: 11.517 ft^{3;} Volume ratio considering added impedance: 1.000

Analysis: 10-Jun-2015

USH 10 over Little Lake	Butte des Morts;	Pile: PIER 18 #44 Rest	rTest: 09-Jun-2015 06:35
APE D30-42, HP 14 x 73;	Blow: 5		CAPWAP(R) 2014-1
GRL Engineers, Inc.			OP: AM

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 over Little Lake Butte des Morts; Pile: PIER 18 #44 RestrTest: 09-Jun-2015 06:35 APE D30-42, HP 14 x 73; Blow: 5 GRL Engineers, Inc. OP: AM

			CAPW	AP SUMMARY	RESULTS					
Total CAP	WAP Capaci	ty: 55	7.0; alor	ng Shaft	147.0; at	Тое	410.0	kips		
Soil	Dist.	Depth	Ru	Force	Sum	Uı	nit	Unit	Si	mith
Sgmnt	Below	Below		in Pile	of	Resis	st. F	Resist.	Dam	ping
No.	Gages	Grade			Ru	(Dept	th)	(Area)	Fa	ctor
	ft	ft	kips	kips	kips	kips,	/ft	ksf	:	s/ft
				557.0						
1	13.6	8.8	0.0	557.0	0.0	0	.00	0.00		0.00
2	20.4	15.6	0.0	557.0	0.0	0	.00	0.00		0.00
3	27.2	22.4	3.0	554.0	3.0	0	.44	0.09		0.28
4	34.0	29.2	13.0	541.0	16.0	1.	.91	0.41		0.28
5	40.8	36.0	20.0	521.0	36.0	2	.94	0.63		0.28
6	47.6	42.8	22.0	499.0	58.0	3	.24	0.69		0.28
7	54.4	49.6	23.0	476.0	81.0	3	.38	0.72		0.28
8	61.2	56.4	25.0	451.0	106.0	3	.68	0.78		0.28
9	68.0	63.2	41.0	410.0	147.0	6	.03	1.28		0.28
Avg. Sh	aft		16.3			2	.33	0.50		0.28
То	e		410.0					297.43		0.06
Soil Mode	l Paramete	ers/Extens:	ions		sh	aft	Тое			
Quake		(i)	n)		c	0.05	0.29			
Case Damp:	ing Factor	-			1	L.08	0.64			
Damping T	-				Visc	cous S	m+Visc			
Unloading		(%	of loadi	ng quake)		46	33			
Reloading		-	of Ru)	5 1		100	0			
Unloading	Level	(%	of Ru)			39				
Resistance	e Gap (inc	luded in '	Ioe Quake	a) (in)			0.03			
Soil Plug			ips)				0.026			
CAPWAP mat	tch qualit	.v =	1.40	(Wa	ve Up Match); RS7	A = 0			
Observed:	-	-	0.17 i	-	w Count	=	69 b	/ft		
Computed:	Final Set	=	0.20 i	•	w Count	=	59 b			
Transducer				•	AL: 93.0; RF:	1.00				
	A3(K365	8) CAL: 362	; RF: 1.00	; A4(K3550) C	AL: 360; RF:	1.00				
max. Top (Comp. Stre	ess =	31.8 k	si (T:	= 36.2 ms,	max=	1.069 x	Top)		
max. Comp	. Stress	=	33.9 k	si (Z:	= 34.0 ft,	т= 3	8.0 ms)			
max. Tens	. Stress	=	-5.69 k	si (Z:	= 40.8 ft,	T= 5	8.9 ms)			
max. Energ	JY (EMX)	=	37.2 k	ip-ft; max	k. Measured	Top D	ispl. (DMX)=	0.96 i	In

USH 10 over Little Lake Butte des Morts; Pile: PIER 18 #44 RestrTest: 09-Jun-2015 06:35 APE D30-42, HP 14 x 73; Blow: 5 GRL Engineers, Inc. OP: AM

			EXT	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.4	679.9	-51.8	31.8	-2.42	37.2	16.5	0.95
2	6.8	681.3	-60.8	31.8	-2.84	36.7	16.4	0.92
3	10.2	682.7	-70.8	31.9	-3.31	36.1	16.4	0.89
4	13.6	684.3	-80.3	32.0	-3.75	35.5	16.4	0.86
5	17.0	686.1	-89.2	32.1	-4.17	34.9	16.3	0.83
6	20.4	690.2	-97.8	32.2	-4.57	34.2	16.2	0.80
7	23.8	696.0	-105.7	32.5	-4.94	33.4	16.0	0.76
8	27.2	708.5	-112.4	33.1	-5.25	32.7	15.7	0.73
9	30.6	708.2	-116.1	33.1	-5.42	31.2	15.3	0.69
10	34.0	726.6	-121.3	33.9	-5.67	30.4	14.9	0.66
11	37.4	682.5	-116.3	31.9	-5.43	27.2	14.2	0.62
12	40.8	701.6	-121.8	32.8	-5.69	26.4	13.7	0.59
13	44.2	629.6	-112.7	29.4	-5.26	22.5	13.1	0.55
14	47.6	648.6	-117.4	30.3	-5.49	21.8	12.6	0.52
15	51.0	573.0	-102.7	26.8	-4.80	18.1	12.0	0.49
16	54.4	592.7	-103.1	27.7	-4.82	17.4	11.5	0.45
17	57.8	521.5	-85.9	24.4	-4.01	14.2	11.9	0.42
18	61.2	535.9	-85.9	25.0	-4.01	13.6	13.1	0.39
19	64.6	510.9	-67.2	23.9	-3.14	10.6	13.4	0.37
20	68.0	523.0	-67.0	24.4	-3.13	7.6	12.4	0.34
Absolute	34.0			33.9			(T =	38.0 ms)
	40.8				-5.69		(T =	58.9 ms)

CASE METHOD											
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	
RP	770.5	660.3	550.1	440.0	329.8						
RX	796.7	717.9	672.8	628.5	594.5	568.6	544.6	520.7	497.5	481.4	
RU	770.5	660.3	550.1	440.0	329.8						
RAU = 378.0 (kips); RA2 = 655.4 (kips)											
Current	Current CAPWAP Ru = 557.0 (kips); Corresponding J(RP)= 0.39; J(RX) = 1.10										

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
16.7	36.01	636.9	684.3	684.3	0.96	0.18	0.17	37.8	797.9	1574

PILE PROFILE AND PILE MODEL

	Depth		Area	E-Modulus	s Spec.	Weight	Perim.
	ft		in²	ksi	-	lb/ft ³	ft
	0.0		21.4	29992.2	2	492.000	4.70
	68.0		21.4	29992.2	2	492.000	4.70
Toe Area			198.5	in ²			
Top Segment	Length	3.40 f	Et, Top	Impedance	38 kips/f	t/s	
Wave Speed:	Pile Top	16807.9.	Elastic	c 16807.9, Overa	11 16807.9	ft/s	

Wave speed: File Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.202 ms, 2L/c 8.1 ms

Total volume: 10.106 ft^{3;} Volume ratio considering added impedance: 1.000

Analysis: 10-Jun-2015