GRL Engineers, Inc.

1540 E. Dundee Road, Suite 102 Palatine, IL 60074 USA Phone: (847) 221-2750 Fax: (847) 221-2752

TRANSMITTAL

To: Mr. Kevin Weber	From: Alexander McCaskill
Company: Lunda Construction Co.	No. of Sheets: 53
E-mail: kweber@lundaconstruction.com	Date: April 5, 2015

RE: Dynamic Testing Results – USH 10 over Little Lake Butte des Morts Structure B-70-403 - Pier 15 Winnebago County, Wisconsin

On April 2, 2015, Pier 15 #1, Pier 15 #36, and Pier 15 #44 at the above structure were dynamically tested during initial driving. The piles were tested during restrike on April 3. Project plans indicated the exterior row piles have a required driving resistance, or ultimate capacity, of 480 kips (240 tons) and the interior row piles have a required driving resistance of 400 kips (200 tons). The reference elevation for the piles was the top of the ring at EL 740.8. We understand the pier was excavated to an elevation of EL 717.3. The piles have a required minimum tip elevation of EL 678.0. The HP 14x73 H-piles were equipped with driving shoes and were driven with an APE D30-42 hammer (number PD 0256) reportedly operated on fuel setting 4.

Pier 15 #1 was driven to a depth of 68.4 feet, which corresponds to a pile tip elevation of EL 672.4. The blow count over the final increment of driving was 10 blows for 1 $\frac{1}{4}$ inches of penetration at an average hammer stroke of 7.2 feet. The blow count at the beginning of restrike was 10 blows for $\frac{7}{6}$ inches of penetration at an average hammer stroke of 6.8 feet.

Pier 15 #36 was driven to a depth of 68.1 feet, which corresponds to a pile tip elevation of EL 672.7. The blow count over the final increment of driving was 10 blows for 2 $\frac{3}{8}$ inches of penetration at an average hammer stroke of 7.0 feet. The blow count at the beginning of restrike was 10 blows for 1 $\frac{3}{4}$ inches of penetration at an average hammer stroke of 6.5 feet.

Pier 15 #44 was driven to a depth of 70.1 feet, which corresponds to a pile tip elevation of EL 670.7. The blow count over the final increment of driving was 10 blows for 2 inches of penetration at an average hammer stroke of 7.3 feet. The blow count at the beginning of restrike was 10 blows for 1 $\frac{1}{2}$ inches of penetration at an average hammer stroke of 6.7 feet

We recommend the production piles at Pier 15 of Structure B-70-403, driven with the APE D30-42 hammer PD0256, obtain the minimum recommended blow count, noted below, based on the field observed hammer stroke. We recommend maintaining the minimum blow count for **three consecutive inches** of driving at the recommended average hammer stroke. Additionally, all production piles should achieve the minimum pile tip elevation of EL 678.0 for uplift, as indicated on the plans.

Field Observed	Exterior Piles (480 kips) Recommended Minimum	Interior Piles (400 kips)
Field Observed		Recommended Minimum
Hammer Stroke	Blow Count	Blow Count
(feet)	(blows per inch)	(blows per inch)
6.5	7	5
7.0	6	4
7.5	5	4
8.0	4	3
8.5	4	3

We recommend Ammediately Aerminating Ariving if the blow counts exceed 10 blows Aover an increment of one inch or less at hammer strokes of 8.0 feet, after satisfying any minimum tip requirements. We anticipate the production piles will terminate at depths similar to those of the test piles.

These criteria should not be used for acceptance of piles under restrike and/or redrive conditions. After splicing or any other delays, we recommend not applying the criteria until a full foot of driving has occurred beyond the termination depth associated with the delay, unless the blow count exceeds 10 blows per inch.

Please call if you have any questions on these recommendations.

GRL Engineers, Inc.

hadha Maddill

Alexander McCaskill, E.I.

Travis Coleman, P.E.

cc: Jeff Horsfall - jeffrey.horsfall@dot.wi.gov

Attachments:

Dynamic Test Results(pages 3 - 23)CAPWAP Analysis Results(pages 24 - 53)

1 - Reported reference at El. 740.79

Page 1 PDIPLOT2 2014.2.48.1 - Printed 02-April-2015

USH 10 over Little Lake Butte des Morts - Pier 15 #1 OP: AM

APE D30-42, HP 14 x 73
Date: 02-April-2015

<u>OP: A</u>								Date: 02-A	
AR:	21.40 in ²								.492 k/ft ³
LE:	77.40 ft							EM: 30	,000 ksi
WS: 1	16,807.9 f/s							JC:	1.00 []
CSX:	Max Measured C	Compr. Stress				STK: O.	E. Diesel Ha	mmer Stroke	
CSB:	Compression Str	ress at Botton	n				ows per Minu		
EMX:	Max Transferred	Energy				RX9: Ma	ax Case Meth	nod Capacity	(JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
	ft	bl/ft		ksi	ksi	k-ft	ft	bpm	kips
9	31.67	3	AV1	22.4	3.6	28	4.8	53.5	61
			STD	0.0	0.0	0	0.0	0.0	0
			MAX	22.4	3.6	28	4.8	53.5	61
			MIN	22.4	3.6	28	4.8	53.5	61
10	32.00	3	AV1	15.7	2.9	16	3.5	61.9	31
			STD	0.0	0.0	0	0.0	0.0	0
			MAX	15.7	2.9	16	3.5	61.9	31
			MIN	15.7	2.9	16	3.5	61.9	31
15	33.00	5	AV5	13.9	3.3	14	3.4	63.0	50
			STD	1.5	0.5	2	0.3	2.3	9
			MAX	16.0	3.9	16	3.7	66.2	62
			MIN	11.8	2.7	10	3.0	60.4	38
21	34.00	6	AV6	16.3	4.3	16	3.8	59.5	66
			STD	0.7	0.3	1	0.1	1.0	8
			MAX	17.9	4.8	18	4.1	60.4	79
			MIN	15.7	3.9	15	3.7	57.5	56
28	35.00	7	AV7	18.1	5.2	18	4.1	57.1	84
			STD	0.6	0.2	1	0.1	0.9	6
			MAX	19.1	5.5	20	4.4	58.3	92
			MIN	17.2	4.8	17	4.0	55.7	78
35	36.00	7	AV7	18.6	5.5	19	4.2	56.5	92
			STD	0.5	0.1	0	0.1	0.6	3
			MAX	19.6	5.8	20	4.4	57.3	96
			MIN	18.0	5.3	19	4.1	55.3	88
41	37.00	6	AV6	19.2	5.6	21	4.4	55.7	94
			STD	0.3	0.3	0	0.1	0.5	3
			MAX	19.5	5.9	21	4.5	56.6	98
			MIN	18.5	5.2	20	4.2	54.9	90
49	38.00	8	AV8	19.5	5.9	20	4.4	55.4	102
			STD	0.9	0.2	1	0.2	1.0	4
			MAX	20.8	6.3	21	4.7	57.0	110
			MIN	18.2	5.6	18	4.2	53.9	95
57	39.00	8	AV8	20.3	5.8	21	4.6	54.4	111
			STD	1.0	0.4	2	0.2	1.2	3
			MAX	21.8	6.4	23	4.9	56.1	116
			MIN	18.7	5.5	19	4.3	52.6	105
65	40.00	8	AV8	20.7	6.1	21	4.7	53.9	117
			STD	0.5	0.4	1	0.1	0.7	4
			MAX	21.5	6.7	22	4.9	55.1	122
			MIN	19.9	5.3	20	4.5	52.7	111
74	41.00	9	AV9	21.5	6.6	22	4.9	53.0	132
			STD	0.6	0.3	1	0.1	0.7	5
			MAX	22.4	7.2	24	5.0	54.4	139
			MIN	20.4	6.1	20	4.6	52.2	124
83	42.00	9	AV9	21.8	6.9	22	4.9	52.6	139

Page 2 PDIPLOT2 2014.2.48.1 - Printed 02-April-2015

USH 10 over Little Lake Butte des Morts - Pier 15 #1

APE D30-42, HP	14 x 73

OP: AM	over Little Lak		Nons - Pier 15	#1			AF	Date: 02-A	
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
	ft	bl/ft		ksi	ksi	k-ft	ft	bpm	kips
			STD	0.5	0.5	1	0.1	0.5	6
			MAX	22.4	8.1	23	5.1	53.4	147
			MIN	20.9	6.3	21	4.8	51.8	130
93	43.00	10	AV10	22.3	7.4	23	5.0	52.0	144
			STD	0.8	0.2	1	0.2	0.7	5
			MAX	23.4	7.6	24	5.3	53.3	151
			MIN	21.1	7.1	20	4.8	51.0	136
104	44.00	11	AV11	22.8	8.0	23	5.1	51.6	152
			STD	0.6	0.3	1	0.1	0.7	4 150
			MAX MIN	23.6 21.8	8.6 7.5	24 20	5.4 4.9	52.7 50.5	158 146
116	45.00	12	AV12	23.6	9.0	24	5.3	50.8	175
110	45.00	12	STD	0.2	1.1	0	0.1	0.2	17
			MAX	24.1	11.3	25	5.4	51.2	218
			MIN	23.2	8.1	23	5.2	50.2	157
134	46.00	18	AV18	25.3	12.1	26	5.8	48.7	249
			STD	0.7	0.5	1	0.2	0.8	16
			MAX	26.4	13.2	28	6.1	50.0	268
			MIN	24.1	11.3	24	5.5	47.7	222
151	47.00	17	AV17	25.6	11.9	26	5.8	48.7	251
			STD	0.7	1.1	1	0.2	0.7	36
			MAX	26.8	13.6	29	6.1	50.2	307
			MIN	24.2	10.3	24	5.4	47.5	205
171	48.00	20	AV20	26.3	12.9	27	6.0	47.9	297
			STD	0.3	0.5	1	0.1	0.4	5
			MAX MIN	27.1 25.8	13.7 12.1	29 25	6.3 5.9	48.4 47.0	307 287
192	49.00	21	AV21 STD	26.3 0.5	12.5 0.4	27 1	6.0 0.1	48.1 0.4	283 5
			MAX	27.0	13.2	28	6.1	48.9	292
			MIN	25.3	11.8	25	5.8	47.5	274
210	50.00	18	AV18	26.2	12.0	27	5.9	48.3	263
			STD	0.5	0.4	1	0.2	0.6	12
			MAX	27.0	12.7	28	6.2	49.6	280
			MIN	25.2	11.4	25	5.6	47.3	244
229	51.00	19	AV19	26.5	12.5	27	6.0	47.8	283
			STD	0.4	0.3	1	0.1	0.4	5
			MAX	27.0	13.2	29	6.2	48.4	291
			MIN	25.7	11.8	25	5.9	47.1	273
248	52.00	19	AV19	26.7	12.5	28	6.1	47.6	261
			STD	0.4	0.5	1	0.1	0.5	12
			MAX	27.3	13.4	30	6.3	48.4	278
			MIN	26.0	11.6	26	5.9	46.8	235
268	53.00	20	AV20	27.2	13.3	28	6.2	47.1 0.4	288
			STD MAX	0.4 27.8	0.3 13.9	1 30	0.1 6.4	0.4 48.0	5 296
			MIN	26.2	13.0	26	6.0	46.5	280
288	54.00	20	AV20	27.2	13.4	28	6.2	47.2	286
200	01.00	20	STD	0.3	0.3	1	0.1	0.4	200
			MAX	27.8	14.0	29	6.4	47.9	298
			MIN	26.6	12.9	26	6.0	46.5	275

Page 3 PDIPLOT2 2014.2.48.1 - Printed 02-April-2015

USH 10 over Little Lake Butte des Morts - Pier 15 #1

APE D30-42, I	HP 14 x 73

OP: AM				<i>π</i> ι				Date: 02-A	
BL#	depth ft	BLC bl/ft	TYPE	CSX ksi	CSB ksi	EMX k-ft	STK ft	BPM bpm	RX9 kips
010									
310	55.00	22	AV22	27.5	14.4	28	6.3	46.9	307
			STD	0.5	0.4 15.1	1	0.1 6.5	0.5 48.0	6 221
			MAX MIN	28.2 26.3	13.8	30 25	6.0	46.3	321 296
331	56.00	21	AV21	27.4	14.2	28	6.3	46.9	293
551	50.00	21	STD	0.4	0.4	1	0.5	0.4	13
			MAX	28.2	15.0	30	6.5	47.5	322
			MIN	26.9	13.6	26	6.1	46.3	277
352	57.00	21	AV21	27.8	15.1	28	6.4	46.6	335
			STD	0.3	0.6	1	0.1	0.3	21
			MAX	28.2	16.5	29	6.5	47.3	389
			MIN	27.2	14.1	26	6.2	46.1	294
382	58.00	30	AV30	28.1	17.2	27	6.5	46.3	401
			STD	0.5	1.3	1	0.1	0.5	23
			MAX	29.5	19.3	30	6.8	47.4	431
			MIN	27.0	14.9	25	6.1	45.1	346
415	59.00	33	AV33	28.6	19.1	28	6.6	45.9	428
			STD	0.4	0.4	1	0.1	0.4	7
			MAX	29.7	20.3	30	6.8	46.8	441
			MIN	27.9	18.3	27	6.3	45.0	416
445	60.00	30	AV30	28.5	19.1	28	6.6	45.9	403
			STD	0.4	1.5	1	0.1	0.4	20
			MAX MIN	29.3 27.8	20.9 16.2	30 26	6.8 6.4	46.6 45.2	434 356
477	61.00	32	AV32	28.7	18.8	28	6.6	45.7	408
.,,	01.00	02	STD	0.4	0.3	1	0.1	0.4	6
			MAX	29.4	19.4	30	6.8	46.7	420
			MIN	27.8	17.8	27	6.3	45.1	394
505	62.00	28	AV28	28.4	18.1	28	6.6	45.9	378
			STD	0.4	0.4	1	0.1	0.3	11
			MAX	29.4	18.9	29	6.8	46.5	398
			MIN	27.5	17.4	26	6.4	45.0	359
536	63.00	31	AV31	28.4	19.4	28	6.7	45.6	390
			STD	0.3	0.4	1	0.1	0.2	11
			MAX	28.9	20.0	30	6.8	46.1	409
			MIN	27.8	18.6	27	6.5	45.1	367
565	64.00	29	AV29	27.9	17.6	27	6.5	46.3	347
			STD	0.4	0.4	1	0.1	0.4	10
			MAX	28.6	18.4	28	6.7	47.0	366
			MIN	27.2	17.0	25	6.3	45.5	330
592	65.00	27	AV27	28.0	17.7	27	6.5	46.3	349
			STD	0.5	0.4	1	0.2	0.5	14
			MAX MIN	29.3 26.9	19.1 17.1	29 25	6.8 6.2	47.3 45.1	380 330
620	66.00	28	AV28	28.2	19.2	28	6.6	46.0	375
020	00.00	20	STD	0.4	0.7	1	0.0	0.4	15
			MAX	29.0	20.2	29	6.8	46.6	400
			MIN	27.3	17.7	26	6.4	45.1	348
659	67.00	39	AV39	28.7	21.8	29	6.7	45.4	443
			STD	0.5	1.1	1	0.1	0.4	20

Page 4 PDIPLOT2 2014.2.48.1 - Printed 02-April-2015

USH 10 over Little Lake Butte des Morts - Pier 15	#1

DP: AM								Date: 02-A	
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX
	ft	bl/ft		ksi	ksi	k-ft	ft	bpm	kip
			MAX	29.7	24.3	30	6.9	46.4	48
			MIN	27.7	19.7	27	6.4	44.7	40
709	67.98	51	AV50	29.0	24.8	30	6.9	44.9	49
			STD	0.5	1.0	1	0.1	0.4	2
			MAX	30.3	27.0	32	7.2	45.7	54
			MIN	28.1	23.3	28	6.6	43.8	46
719	68.15	60	AV10	29.7	26.9	31	7.0	44.5	53
			STD	0.5	0.6	1	0.1	0.3	1
			MAX	30.5	28.1	32	7.2	45.0	55
			MIN	29.0	26.2	29	6.8	43.9	52
729	68.27	80	AV10	29.9	28.8	31	7.1	44.4	57
			STD	0.3	0.5	0	0.1	0.2	1
			MAX	30.7	29.7	32	7.2	44.6	60
			MIN	29.6	27.9	30	7.0	43.9	55
739	68.38	96	AV10	30.4	30.0	32	7.2	43.9	61
			STD	0.4	0.3	1	0.1	0.3	
			MAX	31.0	30.5	32	7.4	44.4	61
			MIN	29.8	29.3	30	7.0	43.5	60
			Average	26.8	16.0	27	6.2	47.6	33
			Std. Dev.	3.0	5.8	3	0.7	3.3	12
			Maximum	31.0	30.5	32	7.4	66.2	61
			Minimum	11.8	2.7	10	3.0	43.5	3

Total number of blows analyzed: 731

BL# Sensors

1-739 F3: [D815] 93.0 (1.00); F4: [F607] 93.6 (1.00); A3: [K3550] 360.0 (1.00); A4: [K2524] 360.0 (1.00)

BL# Comments

9 Reported reference at El. 740.79

10 Mud line at El. 717.29

Time Summary

Drive 16 minutes 6 seconds 8:21 AM - 8:37 AM BN 1 - 739

PDIPLOT2 2015.1.49.5 - Printed 05-April-2015

USH 10 over Little Lake Butte des Morts - Pier 15 #1 Restrike APE D30-42, HP 14 x OP: AM Date: 03-April-20											
	AR: 21.40 in² SP: 0.492 k/ft³										
LE: 73.00 ft EM: 30,000 ksi											
WS: 16,807.9 f/s JC: 1.00 []											
CSX: Max Measured Compr. Stress STK: O.E. Diesel Hammer Stroke											
CSB: Compression Stress at Bottom BPM: Blows per Minute											
EMX:	Max Transferr					RX9:	Max Case Meth		(JC=0.9)		
BL#	Depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9		
	ft	blows/ft		ksi	ksi	k-ft	ft	bpm	kips		
10	68.46	137	AV10	29.0	29.4	31	6.8	45.3	585		
			STD	0.6	0.5	1	0.1	0.5	12		
			MAX	29.7	30.1	32	6.9	46.0	597		
			MIN	28.0	28.4	29	6.5	44.7	553		
20	68.53	137	AV10	29.1	29.7	31	6.8	45.1	606		
20	00.55	157	STD	0.3	0.3	1	0.8	0.3	5		
			MAX	29.6	30.2	32	7.0	45.8	615		
			MIN	28.4	29.1	30	6.6	44.6	598		
			IVIIIN	20.4	23.1	50	0.0	-+0	000		
30	68.60	137	AV10	29.0	29.7	30	6.8	45.2	602		
			STD	0.5	0.5	2	0.1	0.4	21		
			MAX	30.1	30.7	33	7.1	45.6	626		
			MIN	28.3	28.8	24	6.7	44.1	545		
			Average	29.0	29.6	31	6.8	45.2	598		
			Std. Dev.	0.5	0.5	2	0.1	0.4	17		
			Maximum	30.1	30.7	33	7.1	46.0	626		
			Minimum	28.0	28.4	24	6.5	44.1	545		
			Tota	I number of bl	ows analyzed	: 30					

Total number of blows analyzed: 30

BL# Sensors

1-30 F3: [F607] 93.6 (1.00); F4: [D815] 93.0 (1.00); A3: [K2524] 360.0 (1.10); A4: [K3550] 360.0 (1.10)

Time Summary

Drive 38 seconds 9:02 AM - 9:03 AM BN 1 - 30

Page 1

GRL Engineers, Inc. - PDIPLOT2 Ver 2014.2.48.1 - Case Method & iCAP® Results

Page 1 PDIPLOT2 2014.2.48.1 - Printed 02-April-2015

OP: AM AR: LE:	0 over Little Lake M 21.40 in ² 77.40 ft		IUIS - FIEL 15	#30			AF		
	6,807.9 f/s							JC:	1.00 []
CSX: CSB:	Max Measured C Compression St	ress at Bottor				BPM: BI	ows per Minu		
	Max Transferred		TVDE					nod Capacity	
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
9	ft 34.38	bl/ft 8	AV1	ksi 24.7	ksi 3.8	k-ft 30	ft 5.3	bpm 50.7	kips 65
9	34.30	0	STD	0.0	0.0	0	0.0	0.0	00
			MAX	24.7	3.8	30	5.3	50.7	65
			MIN	24.7	3.8	30	5.3	50.7	65
14	35.00	8	AV5	16.6	5.1	15	3.8	59.8	84
			STD	1.6	2.0	2	0.3	2.0	31
			MAX	19.0	8.0	19	4.3	62.3	129
			MIN	14.3	3.4	12	3.4	56.3	56
20	36.00	6	AV6 STD	20.6 1.1	7.4 1.7	23 2	4.6 0.3	54.4 1.5	100
			MAX	22.2	9.2	26	0.3 5.0	1.5 56.6	10 110
			MIN	18.8	5.0	19	4.2	52.4	83
26	37.00	6	AV6	18.8	4.7	19	4.2	56.6	87
			STD	0.2	0.1	1	0.1	0.4	3
			MAX	19.1	4.8	20	4.3	57.4	91
			MIN	18.4	4.5	18	4.1	56.2	83
33	38.00	7	AV7	19.4	4.9	19	4.3	55.8	95
			STD	0.3	0.1	0	0.1	0.3	3
			MAX MIN	20.0 19.1	5.0 4.7	20 19	4.5 4.3	56.1 55.1	100 90
40	20.00	7							
40	39.00	/	AV7 STD	20.0 0.3	5.2 0.1	20 1	4.5 0.1	55.2 0.5	100 3
			MAX	20.6	5.4	21	4.6	55.8	105
			MIN	19.5	5.0	20	4.3	54.6	96
47	40.00	7	AV7	20.2	5.3	21	4.5	54.7	105
			STD	0.5	0.2	1	0.1	0.6	4
			MAX	21.0	5.6	22	4.7	55.4	111
			MIN	19.6	5.0	20	4.4	53.9	99
54	41.00	7	AV7	20.3	5.5	21	4.6	54.4	106
			STD	0.6	0.3	1	0.1	0.7	3
			MAX MIN	21.1 19.5	5.8 4.9	23 19	4.8 4.4	55.3 53.2	109 100
61	42.00	7	AV7	20.9	5.7	22	4.7	53.7	110
01	42.00	,	STD	0.6	0.1	1	0.1	0.5	4
			MAX	22.0	5.8	24	4.9	54.2	117
			MIN	20.3	5.5	21	4.6	52.7	105
70	43.00	9	AV9	21.3	5.5	21	4.8	53.4	119
			STD	0.4	0.3	1	0.1	0.4	3
			MAX MIN	22.1 20.8	6.1 5.0	22 20	5.0 4.7	53.9 52.5	124 115
80	44.00	10	AV10	21.7	6.0	22	4.9	52.9	132
50		10	STD	0.4	0.5	1	0.1	0.4	5
			MAX	22.5	6.7	22	5.0	53.6	138
			MIN	21.2	5.2	21	4.7	52.3	122
90	45.00	10	AV10	22.4	6.5	23	5.0	52.1	144

Page 2 PDIPLOT2 2014.2.48.1 - Printed 02-April-2015

USH 10 over Little Lake Butte des Morts - Pier 15 #36

OP: AM								Date: 02-A	pril-2015
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RXS
	ft	bl/ft		ksi	ksi	k-ft	ft	bpm	kips
			STD	0.8	0.5	1	0.2	0.8	5
			MAX	23.5	7.3	25	5.2	54.0	151
			MIN	20.7	5.7	21	4.7	51.1	135
100	46.00	10	AV10	22.8	7.1	23	5.2	51.5	151
			STD	0.4	0.4	1	0.1	0.5	2
			MAX	23.7	7.6	25	5.4	52.3	156
			MIN	22.3	6.4	22	5.0	50.6	146
110	47.00	10	AV10	23.6	7.9	24	5.2	51.1	153
			STD	0.5	0.4	1	0.1	0.5	
			MAX	24.5	8.7	25	5.4	51.9	158
			MIN	22.8	7.1	23	5.1	50.5	147
121	48.00	11	AV11	23.8	8.3	24	5.4	50.6	158
			STD	0.5	0.4	1	0.1	0.5	10
			MAX	24.4	8.9	26	5.5	51.4	164
			MIN	23.1	7.6	23	5.2	49.8	152
134	49.00	13	AV13	24.1	8.9	24	5.4	50.4	165
			STD	0.6	0.4	1	0.2	0.7	;
			MAX	25.1	9.5	26	5.6	51.9	176
			MIN	22.8	7.9	22	5.1	49.4	157
152	50.00	18	AV18	25.0	11.2	24	5.7	49.2	23
			STD	0.9	1.2	2	0.3	1.0	37
			MAX	26.7	12.7	28	6.1	51.7	292
			MIN	23.0	9.1	21	5.1	47.4	16
174	51.00	22	AV22	25.4	12.1	25	5.8	48.8	260
			STD	0.8	0.6	1	0.2	0.8	24
			MAX	27.1	13.1	27	6.1	50.5	29
			MIN	23.8	11.1	22	5.4	47.4	232
195	52.00	21	AV21	25.8	13.1	24	5.9	48.2	316
			STD	0.4	0.2	1	0.1	0.5	9
			MAX	26.8	13.5	27	6.2	49.2	32
			MIN	25.1	12.7	23	5.7	47.3	289
215	53.00	20	AV20	26.3	12.9	26	6.0	47.8	298
			STD	0.7	0.4	2	0.2	0.7	(
			MAX	27.9	13.6	29	6.4	48.9	313
			MIN	25.3	12.3	23	5.8	46.4	290
236	54.00	21	AV21	26.3	12.5	25	6.0	48.0	280
			STD	0.6	0.5	1	0.1	0.6	1:
			MAX	27.9	13.4	29	6.3	48.8	298
			MIN	25.3	11.5	23	5.8	46.8	254
258	55.00	22	AV22	26.2	12.7	24	5.9	48.2	302
			STD	0.8	0.5	2	0.2	0.8	19
			MAX	28.0	13.3	28	6.4	49.8	32
			MIN	24.9	11.7	21	5.5	46.5	265
278	56.00	20	AV20	26.7	13.0	25	6.1	47.5	296
			STD	0.6	0.3	1	0.2	0.6	8
			MAX	27.7	13.6	27	6.4	48.6	310
			MIN	25.3	12.4	23	5.8	46.5	282
303	57.00	25	AV25	27.2	14.0	25	6.2	47.0	342
			STD	0.8	0.4	1	0.2	0.7	11
			MANY	20.7	4 - 4		~ ~	40.0	0.57
			MAX MIN	28.7 25.9	15.1 12.9	28 23	6.6 5.9	48.2 45.8	355 308

Page 3 PDIPLOT2 2014.2.48.1 - Printed 02-April-2015

USH 10 over Little Lake Butte des Morts - Pier 15 #36

APE	D30-	-42, I	ΗP	14 x 73	
	D	~ ~			

OP: AM		e Bulle des h						Date: 02-A	
BL#	depth ft	BLC bl/ft	TYPE	CSX ksi	CSB ksi	EMX k-ft	STK ft	BPM bpm	RX9 kips
325	58.00	22	AV22	27.3	14.0	26	6.3	46.9	345
525	38.00	22	STD	0.4	0.4	1	0.3	0.4	545
			MAX	28.2	14.6	27	6.5	47.8	352
			MIN	26.7	13.2	24	6.0	46.1	338
350	59.00	25	AV25	27.3	14.5	25	6.3	47.0	353
			STD	0.6	0.3	1	0.2	0.5	5
			MAX	29.2	15.2	29	6.8	47.7	362
			MIN	26.3	13.9	24	6.1	45.2	345
374	60.00	24	AV24	26.8	13.9	25	6.2	47.3	340
			STD	0.6	0.3	1	0.1	0.5	4
			MAX	28.2	14.7	26	6.5	48.2	352
			MIN	25.6	13.3	23	5.9	46.3	335
402	61.00	28	AV28 STD	27.0 0.7	14.1 0.5	25 1	6.2	47.2	352 12
			MAX	28.3	0.5 15.0	26	0.2 6.5	0.6 48.9	376
			MIN	25.2	13.4	20	5.8	46.2	339
430	62.00	28	AV28	27.2	15.2	25	6.3	46.8	374
100	02.00	20	STD	0.7	0.5	1	0.2	0.7	14
			MAX	28.2	16.0	28	6.7	48.7	395
			MIN	25.6	14.1	22	5.8	45.6	345
459	63.00	29	AV29	27.1	15.2	24	6.2	47.1	363
			STD	0.7	0.7	1	0.2	0.6	15
			MAX	28.7	16.4	27	6.6	48.4	385
			MIN	25.7	13.8	22	5.9	45.7	339
497	64.00	38	AV38	28.2	18.4	26	6.5	46.1	410
			STD	0.7	1.2	1	0.2	0.7	13
			MAX MIN	29.4 26.9	20.7 16.3	29 24	6.9 6.1	47.6 44.8	430 388
541	65.00	44	AV44	28.7	20.5	27	6.7	45.6	413
041	00.00		STD	0.5	0.4	1	0.1	0.4	8
			MAX	29.9	21.7	29	7.1	46.5	432
			MIN	27.7	19.8	26	6.4	44.3	396
579	66.00	38	AV38	28.0	20.2	26	6.5	46.2	398
			STD	0.6	0.3	1	0.2	0.6	6
			MAX	29.3	21.1	28	6.8	47.2	411
			MIN	27.0	19.4	24	6.2	45.1	381
614	67.00	35	AV35	28.5	19.7	27	6.6	45.8	394
			STD	0.6	0.3	1	0.1	0.5	7
			MAX MIN	29.7 27.0	20.3 19.2	29 25	6.9 6.2	47.1 44.9	404 374
	07.54	05							
632	67.51	35	AV18 STD	29.0 0.6	21.4 1.2	28 1	6.7 0.2	45.4 0.5	426 19
			MAX	30.3	23.4	30	7.1	46.1	452
			MIN	27.9	19.7	26	6.5	44.3	400
642	67.73	46	AV10	29.6	24.0	29	6.9	44.9	468
			STD	0.8	0.8	1	0.2	0.6	11
			MAX	30.7	25.1	31	7.2	46.0	483
			MIN	28.0	22.8	26	6.5	43.9	453
652	67.93	51	AV10	29.6	24.6	29	6.9	44.8	477
			STD	0.8	0.4	1	0.2	0.6	4

epth ft	BLC bl/ft	TYPE	CSX	CSB	EMX	STK	Date: 02-A BPM	
						SIN	DPIVI	RX9
			ksi	ksi	k-ft	ft	bpm	kips
		MAX	30.7	25.3	30	7.2	45.7	482
		MIN	28.4	24.0	28	6.6	43.9	468
8.13	51	AV10	29.8	24.9	29	7.0	44.7	481
		STD	0.7	0.4	1	0.2	0.5	6
		MAX	30.6	25.5	31	7.2	45.4	492
		MIN	28.8	24.4	28	6.7	43.9	472
		Average	26.3	14.4	25	6.0	48.1	314
		Std. Dev.	2.7	5.2	2	0.7	2.9	107
		Maximum	30.7	25.5	31	7.2	62.3	492
		Minimum	14.3	3.4	12	3.4	43.9	56
3	3.13	.13 51	STD MAX MIN Average Std. Dev. Maximum Minimum	STD 0.7 MAX 30.6 MIN 28.8 Average 26.3 Std. Dev. 2.7 Maximum 30.7 Minimum 14.3	STD 0.7 0.4 MAX 30.6 25.5 MIN 28.8 24.4 Average 26.3 14.4 Std. Dev. 2.7 5.2 Maximum 30.7 25.5 Minimum 14.3 3.4	STD 0.7 0.4 1 MAX 30.6 25.5 31 MIN 28.8 24.4 28 Average 26.3 14.4 25 Std. Dev. 2.7 5.2 2 Maximum 30.7 25.5 31	STD 0.7 0.4 1 0.2 MAX 30.6 25.5 31 7.2 MIN 28.8 24.4 28 6.7 Average 26.3 14.4 25 6.0 Std. Dev. 2.7 5.2 2 0.7 Maximum 30.7 25.5 31 7.2 Minimum 14.3 3.4 12 3.4	STD 0.7 0.4 1 0.2 0.5 MAX 30.6 25.5 31 7.2 45.4 MIN 28.8 24.4 28 6.7 43.9 Average 26.3 14.4 25 6.0 48.1 Std. Dev. 2.7 5.2 2 0.7 2.9 Maximum 30.7 25.5 31 7.2 62.3 Minimum 14.3 3.4 12 3.4 43.9

BL# Sensors

1-662 F3: [D815] 93.0 (1.00); F4: [F607] 93.6 (1.00); A3: [K3550] 360.0 (1.00); A4: [K2524] 360.0 (1.00)

BL# Comments

9 Reported Reference at El. 740.79

10 Mud line at El. 717.29

Time Summary

Drive 14 minutes 20 seconds 8:53 AM - 9:07 AM BN 1 - 662

Page 1 PDIPLOT2 2014.2.48.1 - Printed 03-April-2015

пеп -	USH 10 over Little Lake Butte des Morts - Pier 15 #36 Restrike APE D30-42, HP 14 x 73												
OP: AM Date: 03-April-20													
AR:	21.40 in ²).492 k/ft ³				
LE:	73.00 ft							-),000 ksi				
	6,807.9 f/s							JC:	1.00 []				
CSX:	Max Measured	d Compr. Stre	ss			STK:	O.E. Diesel Ha						
CSB: Compression Stress at Bottom BPM: Blows per Minute													
EMX:	Max Transferr					RX9:	Max Case Meth		(JC=0.9)				
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9				
	ft	blows/ft		ksi	ksi	k-ft	ft	bpm	kips				
10	68.27	69	AV10	28.6	24.6	28	6.5	46.1	480				
			STD	0.5	0.3	1	0.1	0.5	8				
			MAX	29.2	25.0	30	6.7	46.9	491				
			MIN	27.9	23.9	26	6.3	45.4	467				
20	68.42	69	AV10	28.8	24.9	29	6.6	45.9	489				
			STD	0.3	0.3	1	0.1	0.3	6				
			MAX	29.5	25.3	31	6.8	46.3	498				
			MIN	28.5	24.4	28	6.5	45.2	478				
30	68.56	69	AV10	28.8	24.9	30	6.6	45.9	491				
30	08.50	09	STD	20.0 0.4	0.2	30 1	0.0	45.9 0.4					
			MAX		0.2 25.2	31	6.8		5				
				29.4				46.4	499				
			MIN	28.4	24.5	29	6.4	45.3	483				
			Average	28.7	24.8	29	6.6	46.0	487				
						1			-				
							6.3	45.2	467				
			Std. Dev. Maximum Minimum	0.4 29.5 27.9	0.3 25.3 23.9	1 31 26	0.1 6.8 6.3	0.4 46.9 45.2	8 499 467				

Total number of blows analyzed: 30

BL# Sensors

1-30 F3: [D815] 93.0 (1.00); F4: [F607] 93.6 (1.00); A3: [K3550] 360.0 (1.10); A4: [K2524] 360.0 (1.10)

Time Summary

Drive 37 seconds 9:10 AM - 9:11 AM BN 1 - 30

1 - Reported reference at El. 740.79

Page 1 PDIPLOT2 2014.2.48.1 - Printed 02-April-2015

	0 over Little Lake	e Butte des M	orts - Pier 15	#44			AP	PE D30-42, HF	
<u>OP: AI</u> AR: LE: WS: 1	vi 21.40 in ² 77.60 ft 6,807.9 f/s							EM: 30	pril-2015 .492 k/ft ³ ,000 ksi 1.00 []
CSX: CSB:	Max Measured C Compression Str Max Transferred	ess at Botton	n			BPM: BI	E. Diesel Har ows per Minu	mmer Stroke	
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
DLII	ft	bl/ft		ksi	ksi	k-ft	ft	bpm	kips
8	29.08	12	AV1	20.2	11.0	21	4.9	52.9	186
U U	20100	.=	STD	0.0	0.0	0	0.0	0.0	0
			MAX	20.2	11.0	21	4.9	52.9	186
			MIN	20.2	11.0	21	4.9	52.9	186
19	30.00	12	AV11	21.8	11.1	24	5.1	51.6	166
			STD	0.5	1.4	1	0.1	0.6	14
			MAX	22.6	12.8	25	5.3	52.8	187
			MIN	20.7	7.5	23	4.9	50.7	143
27	31.00	8	AV8	19.5	7.8	21	4.7	54.1	129
			STD	0.9	0.6	2	0.2	1.0	10
			MAX	21.4	8.9	24	5.0	55.6	143
			MIN	18.1	7.1	19	4.4	52.1	115
35	32.00	8	AV8	20.4	7.5	22	4.8	53.2	131
			STD	0.7	1.1	2	0.2	0.9	9
			MAX MIN	21.3	9.0 5.2	24 20	5.0	54.6	142
				18.9	5.2		4.6	52.2	117
41	33.00	6	AV6	18.2	4.8	19	4.4	55.7	106
			STD	0.5	0.2	1	0.1	0.6	6
			MAX	19.1	5.0	21	4.5	56.4	116
			MIN	17.5	4.6	18	4.3	54.7	97
47	34.00	6	AV6	18.7	4.9	20	4.5	55.0	109
			STD	0.4	0.3	1	0.1	0.5	5
			MAX	19.1	5.2	21	4.6	55.8	117
			MIN	18.0	4.3	19	4.3	54.3	102
55	35.00	8	AV8	19.9	5.8	20	4.8	53.5	123
			STD	0.7	0.3	1	0.1	0.7	5
			MAX	20.6	6.3	22	4.9	55.2	131
			MIN	18.4	5.4	18	4.5	52.8	115
64	36.00	9	AV9	20.8	6.4	21	5.0	52.5	141
			STD	0.8	0.3	1	0.2	0.8	8
			MAX	22.4	6.8	23	5.3	53.6	154
			MIN	19.9	5.8	19	4.7	51.0	130
74	37.00	10	AV10	21.5	6.6	21	5.1	51.9	150
			STD	0.7	0.3	1	0.2	0.9	4
			MAX	22.8	7.0	23	5.4	53.4	155
			MIN	20.3	6.1	19	4.8	50.4	141
84	38.00	10	AV10	21.9	7.0	22	5.2	51.4	157
			STD	0.6	0.3	1	0.2	0.7	4
			MAX	23.0	7.5	24	5.5	52.3	163
			MIN	21.1	6.5	21	5.0	50.1	147
94	39.00	10	AV10	22.5	7.1	23	5.3	50.9	164
			STD	0.5	0.4	1	0.1	0.5	2
			MAX	23.1	7.6	25	5.4	52.1	167
			MIN	21.3	6.5	21	5.0	50.2	160
104	40.00	10	AV10	23.0	7.2	24	5.3	50.7	169

Page 2 PDIPLOT2 2014.2.48.1 - Printed 02-April-2015

USH 10 over Little Lake Butte des Morts - Pier 15 #44

USH 10 OP: AM	over Little Lak	e Butte des N	/lorts - Pier 15	#44			AF	PE D30-42, HP Date: 02-A	
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
	ft	bl/ft		ksi	ksi	k-ft	ft	bpm	kips
			STD	0.5	0.4	1	0.1	0.4	4
			MAX	23.7	8.0	26	5.6	51.2	177
			MIN	22.2	6.6	23	5.2	49.7	163
114	41.00	10	AV10	23.2	7.0	24	5.3	50.7	174
			STD	0.7	0.3	1	0.1	0.7	4
			MAX	24.5	7.5	26	5.6	51.8	183
			MIN	22.3	6.4	22	5.1	49.7	170
124	42.00	10	AV10	23.4	7.3	24	5.4	50.5	176
			STD	0.6	0.4	1	0.1	0.4	4
			MAX	24.3	7.9	26	5.6	51.1	182
			MIN	22.6	6.6	23	5.2	49.5	168
135	43.00	11	AV11	23.7	7.4	24	5.5	50.1	180
			STD	0.5	0.3	1	0.1	0.5	3
			MAX	24.7	7.9	25	5.6	51.1	187
			MIN	22.7	6.9	22	5.2	49.4	175
147	44.00	12	AV12	24.1	7.7	24	5.5	50.0	187
			STD	0.6	0.4	1	0.1	0.5	6
			MAX	25.4	8.5	25	5.7	51.0	196
			MIN	22.9	7.2	22	5.3	49.1	177
159	45.00	12	AV12	24.5	8.1	25	5.6	49.5	198
			STD	0.6	0.4	1	0.1	0.5	5
			MAX	25.9	8.8	26	5.9	50.1	207
			MIN	23.6	7.4	23	5.5	48.4	190
171	46.00	12	AV12	25.0	8.6	26	5.8	48.9	204
			STD	0.6	0.5	1	0.1	0.5	5
			MAX	25.9	9.2	27	6.0	49.7	213
			MIN	23.8	7.9	24	5.6	48.1	197
183	47.00	12	AV12	25.1	8.9	26	5.8	48.7	207
			STD	0.7	0.4	1	0.2	0.7	3
			MAX	26.6	9.4	27	6.2	50.0	211
			MIN	23.9	8.2	23	5.5	47.2	200
196	48.00	13	AV13	25.6	9.5	26	5.9	48.3	216
			STD	0.4	0.5	1	0.1	0.3	3
			MAX	26.3	10.3	28	6.1	48.9	219
			MIN	24.9	8.8	25	5.8	47.6	210
211	49.00	15	AV15	25.9	10.0	26	6.0	48.0	226
			STD	0.6	0.5	1	0.2	0.6	2
			MAX	26.9	10.8	28	6.3	49.0	230
			MIN	24.8	8.9	24	5.7	46.9	222
227	50.00	16	AV16	26.8	11.7	28	6.3	47.0	255
			STD	0.7	1.1	1	0.2	0.8	22
			MAX	27.7	12.9	29	6.6	48.5	284
			MIN	25.3	9.8	25	5.9	45.9	224
252	51.00	25	AV25	27.7	13.8	28	6.5	46.1	323
			STD	0.5	0.5	1	0.2	0.5	12
			MAX	29.0	14.9	31	6.8	47.4	339
			MIN	26.4	13.1	25	6.1	45.0	294
273	52.00	21	AV21	27.9	15.1	28	6.5	46.0	358
			STD	0.5	0.5	1	0.1	0.5	19
			MAX	28.7	15.8	31	6.8	46.8	379
			MIN	27.0	13.8	26	6.3	45.1	316

Page 3 PDIPLOT2 2014.2.48.1 - Printed 02-April-2015

USH 10 over Little Lake Butte des Morts - Pier 15 #44

APE D30-42, HP 14 x 73	3
	-

OP: AM				<i>π</i>				Date: 02-A	
BL#	depth ft	BLC bl/ft	TYPE	CSX ksi	CSB ksi	EMX k-ft	STK ft	BPM	RX9
								bpm	kips
299	53.00	26	AV26	28.3	15.9	28	6.7	45.5	383
			STD	0.4	0.3	1	0.1	0.5	3
			MAX	29.4	16.4	30	7.0	46.6	390
			MIN	27.3	15.0	26	6.4	44.6	378
327	54.00	28	AV28	28.7	16.5	28	6.7	45.4	392
			STD	0.5	0.3	1	0.2	0.5	4
			MAX MIN	29.7 27.4	16.8 15.6	30 25	7.0 6.3	46.7 44.5	399 383
055	FF 00	00							
355	55.00	28	AV28 STD	28.3 0.6	15.7 0.5	27 1	6.6 0.2	45.9 0.6	371 12
			MAX	29.3	16.8	29	6.9	46.9	393
			MIN	27.1	14.9	23	6.3	44.9	352
380	56.00	25	AV25	28.9	16.0	28	6.8	45.3	384
000	00.00	20	STD	0.6	0.2	1	0.2	0.5	5
			MAX	29.9	16.3	31	7.1	46.3	392
			MIN	27.9	15.5	26	6.5	44.3	370
405	57.00	25	AV25	29.3	16.2	29	6.9	44.9	381
			STD	0.7	0.3	1	0.2	0.6	6
			MAX	30.4	16.8	31	7.2	46.2	388
			MIN	27.5	15.4	26	6.5	44.0	371
436	58.00	31	AV31	29.3	17.0	29	6.9	44.7	409
			STD	0.6	0.3	1	0.2	0.5	6
			MAX MIN	30.4 28.0	17.6 16.5	31 27	7.2 6.5	46.1 43.8	419 392
467	59.00	31	AV31	29.4	17.4	29	7.0	44.6	410
407	55.00	51	STD	0.6	0.3	1	0.2	0.5	6
			MAX	30.4	17.8	31	7.3	45.7	420
			MIN	28.3	16.7	27	6.6	43.7	398
502	60.00	35	AV35	29.9	18.9	30	7.1	44.3	434
			STD	0.6	1.3	1	0.2	0.6	14
			MAX	31.1	21.7	33	7.5	45.6	459
			MIN	28.3	17.1	27	6.7	43.2	407
546	61.00	44	AV44	30.0	21.8	30	7.1	44.4	442
			STD	0.4	0.5	1	0.1	0.4	7
			MAX MIN	31.0 29.2	22.9 20.4	32 28	7.4 6.8	45.2 43.5	455 426
591	62.00	45	AV45	29.5	21.7	29	6.9	44.8	431
391	02.00	45	STD	0.5	0.6	1	0.9	0.5	431
			MAX	31.3	23.0	32	7.5	45.6	446
			MIN	28.7	20.6	27	6.7	43.2	418
635	63.00	44	AV44	30.1	22.8	30	7.1	44.4	437
			STD	0.4	0.4	1	0.1	0.4	5
			MAX	31.1	23.8	32	7.4	45.1	450
			MIN	29.2	21.7	28	6.8	43.5	430
678	64.00	43	AV43	30.1	23.2	30	7.1	44.3	441
			STD	0.3	0.3	1	0.1	0.4	6
			MAX MIN	30.7 29.3	23.7 22.5	31 28	7.3 6.8	45.2 43.6	450 427
700	05.00								
720	65.00	42	AV42	30.0	23.1	30 1	7.1 0.2	44.2	436 5
			STD	0.5	0.4	I	0.2	0.5	5

Page 4 PDIPLOT2 2014.2.48.1 - Printed 02-April-2015

USH 10	over Little	Lake Butte	des Morts	- Pier 1	5 #44
~ ~ · · ·					

P: AM								Date: 02-A	<u>pm-20</u> 1
3L#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX
	ft	bl/ft		ksi	ksi	k-ft	ft	bpm	kij
			MAX	31.2	24.3	32	7.4	45.0	45
			MIN	29.0	22.4	28	6.8	43.3	42
760	66.00	40	AV40	30.1	23.1	30	7.1	44.2	43
			STD	0.5	0.4	1	0.1	0.4	
			MAX	31.0	23.9	32	7.5	45.1	43
			MIN	29.2	22.5	28	6.8	43.2	4
797	67.00	37	AV37	30.1	23.1	30	7.1	44.3	42
			STD	0.4	0.3	1	0.1	0.4	
			MAX	31.3	23.7	32	7.4	45.2	4
			MIN	29.0	22.6	28	6.8	43.3	4
336	68.00	39	AV39	30.1	23.0	30	7.1	44.3	4
			STD	0.4	0.4	1	0.1	0.4	
			MAX	30.9	24.1	31	7.3	45.4	4
			MIN	28.9	22.2	28	6.7	43.7	4
900	69.56	41	AV64	30.3	23.4	30	7.2	44.1	4
			STD	0.4	0.5	1	0.1	0.4	
			MAX	31.3	24.9	32	7.5	44.8	4
			MIN	29.2	22.4	28	6.9	43.1	4
910	69.77	48	AV10	30.7	24.5	31	7.3	43.8	4
			STD	0.4	0.3	1	0.1	0.3	
			MAX	31.3	24.9	33	7.5	44.2	4
			MIN	30.0	24.0	29	7.1	43.2	4
920	69.96	53	AV10	30.9	25.0	31	7.3	43.6	5
			STD	0.4	0.2	1	0.1	0.4	
			MAX	31.5	25.3	33	7.5	44.1	5
			MIN	30.4	24.7	30	7.1	43.0	4
930	70.13	60	AV10	30.7	25.8	31	7.3	43.7	5
			STD	0.3	0.2	1	0.1	0.3	
			MAX	31.0	26.3	32	7.4	44.3	5
			MIN	30.1	25.4	30	7.1	43.3	5
			Average	28.1	17.5	28	6.6	46.0	3
			Std. Dev.	3.1	6.1	3	0.7	2.8	1
			Maximum	31.5	26.3	33	7.5	56.4	5
			Minimum	17.5 number of blo	4.3	18	4.3	43.0	

BL# Sensors

1-930 F3: [D815] 93.0 (1.00); F4: [F607] 93.6 (1.00); A3: [K3550] 360.0 (1.00); A4: [K2524] 360.0 (1.00)

BL# Comments

8 Reported reference at El. 740.79

Time Summary

Drive 20 minutes 26 seconds 9:19 AM - 9:39 AM BN 1 - 930

Page 1 PDIPLOT2 2014.2.48.1 - Printed 03-April-2015

	USH 10 over Little Lake Butte des Morts - Pier 15 #44 Restrike APE D30-42, HP 14 x 73												
	OP: AM Date: 03-April-2015												
AR:	21.40 in ²								0.492 k/ft^3				
LE:	75.00 ft							-	0.492 k/lt ^a				
	6,807.9 f/s							JC:	1.00 []				
CSX:		d Compr. Stre	200			STK:	O.E. Diesel Ha						
CSX:Max Measured Compr. StressSTK:O.E. Diesel Hammer StrokeCSB:Compression Stress at BottomBPM:Blows per Minute													
EMX:	Max Transferr		.om			RX9:	Max Case Met		(JC=0.9)				
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9				
DLII	ft	blows/ft		ksi	ksi	k-ft	ft	bpm	kips				
10	70.25	80	AV10	29.2	25.6	30	6.7	45.6	496				
			STD	0.9	0.5	2	0.2	0.6	12				
			MAX	30.7	27.0	33	7.0	46.4	513				
			MIN	27.4	24.9	27	6.4	44.4	476				
20	70.38	80	AV10	29.5	25.6	31	6.7	45.6	506				
			STD	0.3	0.2	1	0.1	0.3	4				
			MAX	30.1	25.9	32	6.9	46.1	512				
			MIN	28.9	25.2	30	6.5	44.9	497				
				~ ~ ~									
30	70.50	80	AV10	29.5	26.0	32	6.7	45.5	516				
			STD	0.4	0.3	0	0.1	0.3	7				
			MAX	30.1	26.3	32	6.8	45.9	530				
			MIN	28.9	25.4	31	6.6	45.0	503				
			Average	29.4	25.7	31	6.7	45.6	506				
			Std. Dev.	0.6	0.4	1	0.1	0.4	12				
			Maximum	30.7	27.0	33	7.0	46.4	530				
			Minimum	27.4	24.9	27	6.4	44.4	476				

Total number of blows analyzed: 30

BL# Sensors

1-30 F3: [D815] 93.0 (1.00); F4: [F607] 93.6 (1.00); A3: [K3550] 360.0 (1.10); A4: [K2524] 360.0 (1.10)

Time Summary

Drive 38 seconds 9:16 AM - 9:17 AM BN 1 - 30

USH 10 over Little Lake	Butte des Morts;	Pile: Pier 15 #1 EOID	Test: 02-Apr-2015 08:37
APE D30-42, HP 14 x 73;	Blow: 737		CAPWAP(R) 2014-1
GRL Engineers, Inc.			OP: AM

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 over Little Lake Butte des Morts; Pile: Pier 15 #1 EOID Test: 02-Apr-2015 08:37 APE D30-42, HP 14 x 73; Blow: 737 GRL Engineers, Inc. OP: AM

			CAPW	AP SUMMARY	RESULTS			
Total CAP	WAP Capaci	ity: 621	L.0; alor	lg Shaft	121.0; at	Toe 50	0.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				621.0				
1	16.8	7.8	0.0	621.0	0.0	0.00	0.00	0.00
2	23.6	14.5	0.0	621.0	0.0	0.00	0.00	0.00
3	30.3	21.2	6.0	615.0	6.0	0.89	0.19	0.26
4	37.0	28.0	6.0	609.0	12.0	0.89	0.19	0.26
5	43.7	34.7	10.0	599.0	22.0	1.49	0.32	0.26
6	50.5	41.4	10.0	589.0	32.0	1.49	0.32	0.26
7	57.2	48.2	10.0	579.0	42.0	1.49	0.32	0.26
8	63.9	54.9	10.0	569.0	52.0	1.49	0.32	0.26
9	70.7	61.6	11.0	558.0	63.0	1.63	0.35	0.26
10	77.4	68.4	58.0	500.0	121.0	8.62	1.83	0.26
Avg. Sh	aft		12.1			1.77	0.38	0.26
То	e		500.0				362.72	0.06
Soil Mode	l Paramete	ers/Extensi	lons		Sh	naft T	oe	
Quake		(i1	1)		C	0.25 0.	27	
Case Damp	ing Factor	<u>,</u>	-		(0.82 0.	79	
Damping T	vpe				Viso	cous Smi	th	
Unloading	Quake	(%	of loadi	.ng quake)		36	33	
Unloading	Level		of Ru)			38		
Resistance	e Gap (ind	luded in 1	roe Quake	e) (in)		0.	01	
Soil Plug	Weight	(k:	ips)		0.	.080		
CAPWAP mat	tch qualit	-v =	2.16	(Wa	ve Up Match) : RSA = ()	
Observed:	-	-	0.13 i	-	w Count		5 b/ft	
Computed:			0.01 i	•	w Count		7 b/ft	
Transducer				•	AL: 93.6; RF:			
	A3(K355			; A4(K2524) C				
max. Top (-	ess =	29.5 k	•	= 35.8 ms,			
max. Comp	. Stress	=		•	= 30.3 ft,		-	
max. Tens		=	-4.70 k	•			•	
max. Energ	JY (EMX)	=	31.0 k	ip-ft; max	k. Measured	Top Displ	. (DMX)=	0.90 in

USH 10 over Little Lake Butte des Morts; Pile: Pier 15 #1 EOID Test: 02-Apr-2015 08:37 APE D30-42, HP 14 x 73; Blow: 737 GRL Engineers, Inc. OP: AM

				EXTI	REMA TABL	E				
Pile	Dis	t.	max.	min.	max.	max	• :	max.	max.	max.
Sgmnt	Belo	ow F	orce	Force	Comp.	Tens	. Trn	sfd. '	Veloc.	Displ.
No.	Gage				Stress	Stres		ergy		
	:	ft	kips	kips	ksi	ks	i ki	p-ft	ft/s	ir
1	3	.4 6	30.5	-26.8	29.5	-1.2	5	31.0	15.6	0.93
2	6	.7 6	31.2	-29.5	29.5	-1.3	8	30.8	15.5	0.91
4	13	.5 6	32.8	-44.5	29.6	-2.0	В	30.3	15.5	0.87
5	16	.8 6	33.6	-57.3	29.6	-2.6	В	29.9	15.4	0.85
6	20	.2 6	34.6	-66.0	29.6	-3.0	В	29.5	15.4	0.83
7	23	.6 6	37.5	-68.3	29.8	-3.1	9	29.0	15.3	0.80
8	26	.9 6	45.2	-68.2	30.1	-3.1		28.5	15.1	0.75
9	30		51.2	-70.6	30.4	-3.3		27.9	14.9	0.74
10	33		31.8	-69.8	29.5	-3.2		26.2	14.7	0.71
11	37	.0 6	38.9	-83.0	29.8	-3.8		25.6	14.5	0.68
12	40		24.2	-89.8	29.2	-4.2		23.9	14.2	0.65
13	43		33.1	-97.8	29.6	-4.5		23.2	13.9	0.62
14	47		03.4	-95.2	28.2	-4.4		21.1	13.6	0.58
15	50			-100.7	29.2	-4.7		20.4	13.1	0.55
16	53		05.6	-91.6	28.3	-4.2		18.4	12.5	0.52
17	57		10.6	-91.0	28.5	-4.2		17.7	12.4	0.49
18	60		72.8	-82.5	26.8	-3.8		15.7	12.3	0.45
19	63		69.8	-80.8	26.6	-3.7		14.9	12.3	0.42
20	67		91.3	-71.9	27.6	-3.3		13.1	12.4	0.38
21	70		18.9	-73.3	28.9	-3.4		12.2	13.1	0.34
22 23	74		15.2	-60.7	28.7	-2.8		10.5 7.5	13.6 12.2	0.31
25	77	0	34.7	-57.4	29.6	-2.6	0	7.5	12.2	0.2
Absolute	30	.3			30.4			()	C = 7	37.4 ms)
	50	.5				-4.7	0	[]	[=	57.7 ms)
				CA	SE METHOD					
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.	8 0.9
r –	698.4	644.0	589.5	535.1	480.6	426.2	371.7	317.3	262.	
xx	766.0	734.3	718.4	702.6	686.8	670.9	655.3	641.3	629.	
RU	698.4	644.0	589.5	535.1	480.6	426.2	371.7	317.3	262.	
RAU = 4	49.3 (ki	ips); R		657.8 ()	kips)					
Current CA				; Corres	ponding J	(RP)= 0.	14; J(H	RX) = 0.3	87	
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QU	s kei
ft/s	ms	kips	kips	kips	in	in	in			s kips/in
15.5	35.64	591.0	652.0	652.0	0.90	0.13	0.13	31.2	726.	
			דדם	.ד סס∩דיי	LE AND PI					
	Denth		F 11				Coog 1	Woight		Domin

	Depth	Area	E-Modulus	Spec. Weight	Perim.
	ft	in ²	ksi	lb/ft ³	ft
	0.0	21.4	29992.2	492.000	4.70
	77.4	21.4	29992.2	492.000	4.70
Toe Area		198.5	in^2		

USH 10 over Little Lake Butte des Morts; Pile: Pier 15 #1 EOID Test: 02-Apr-2015 08:37 APE D30-42, HP 14 x 73; Blow: 737 GRL Engineers, Inc. OP: AM

Segmnt	Dist.Impedance		st.Impedance Imped.		Tension Compression			Perim.	Wave	Soil
Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
	ftki	.ps/ft/s	%	in		in		ft	ft/s	kips
1	3.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.000
17	57.2	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.030
19	63.9	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.020
20	67.3	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.000
23	77.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.000

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.200 ms, 2L/c 9.2 ms Total volume: 11.503 ft³; Volume ratio considering added impedance: 1.000

USH 10 over Little Lake	Butte des Morts;	Pile: Pier 15 #1 Res	triTest: 03-Apr-2015 09:02
APE D30-42, HP 14 x 73;	Blow: 4		CAPWAP(R) 2014-1
GRL Engineers, Inc.			OP: AM

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 over Little Lake Butte des Morts; Pile: Pier 15 #1 RestriTest: 03-Apr-2015 09:02 APE D30-42, HP 14 x 73; Blow: 4 GRL Engineers, Inc. OP: AM

			CAPW	AP SUMMARY	RESULTS			
<u>Total CAP</u>	WAP Capaci	lty: 58	1.0; alon	ng Shaft	111.0; at	Toe 470	0.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				581.0				
1	13.3	8.7	0.0	581.0	0.0	0.00	0.00	0.00
2	19.9	15.3	0.0	581.0	0.0	0.00	0.00	0.00
3	26.5	22.0	7.0	574.0	7.0	1.05	0.22	0.31
4	33.2	28.6	8.0	566.0	15.0	1.21	0.26	0.31
5	39.8	35.2	12.0	554.0	27.0	1.81	0.38	0.31
6	46.5	41.9	12.0	542.0	39.0	1.81	0.38	0.31
7	53.1	48.5	11.0	531.0	50.0	1.66	0.35	0.31
8	59.7	55.1	8.0	523.0	58.0	1.21	0.26	0.31
9	66.4	61.8	8.0	515.0	66.0	1.21	0.26	0.31
10	73.0	68.4	45.0	470.0	111.0	6.78	1.44	0.31
Avg. Sh	aft		11.1			1.62	0.35	0.31
То	e		470.0				340.95	0.07
Soil Mode	l Paramete	ers/Extens:	ions		Sl	haft T	oe	
Quake		(i)	n)		(0.23 0.	26	
Case Damp:	ing Factor		•		(0.90 0.	86	
Damping Ty	-				Viso	cous Sm+Vi	sc	
Unloading		(%	of loadi	ng quake)		52	31	
Unloading	Level		of Ru)	• •		31		
Resistance	e Gap (ind	luded in !	Toe Quake	a) (in)		0.	01	
Soil Plug			ips)		0	.070		
CAPWAP mat	tch qualit	.v =	1.75	(Wa	ve Up Match	(1): RSA = ()	
Observed:	-	-	0.10 i	-	w Count) b/ft	
Computed:			0.02 i	•	w Count		5 b/ft	
Transducer				•	AL: 93.0; RF:			
	A3(K252			; A4(K3550) C				
max. Top (-	ess =	29.2 k	•	= 35.9 ms,			
max. Comp	. Stress	=	30.6 k	•	= 26.5 ft,			
max. Tens		=	-4.87 k	•				
max. Energ	gy (EMX)	=	31.6 k	ip-ft; max	K. Measured	l Top Displ	(DMX) =	0.90 in

USH 10 over Little Lake Butte des Morts; Pile: Pier 15 #1 RestriTest: 03-Apr-2015 09:02 APE D30-42, HP 14 x 73; Blow: 4 GRL Engineers, Inc. OP: AM

Pile										
FITE	Dist	t. 1	max.	min.	max.	max.	. :	max.	max.	max.
Sgmnt			orce	Force	Comp.	Tens.			Veloc.	Displ
No.	Gage				Stress	Stress		ergy		
	1	ft 1	kips	kips	ksi	ksi	l ki	p-ft	ft/s	ir
1	3	.3 63	25.7	-24.6	29.2	-1.15	5	31.6	15.2	0.91
2	6	.6 63	26.7	-26.8	29.3	-1.25	5	31.3	15.2	0.89
3	10	.0 63	27.8	-33.1	29.3	-1.54	Ł	31.0	15.2	0.87
4	13	.3 63	29.0	-42.3	29.4	-1.97	7	30.6	15.1	0.84
5	16	.6 6	30.5	-50.1	29.5	-2.34	Ł	30.2	15.1	0.82
6		.9 6	36.4	-57.0	29.7	-2.66	5	29.6	14.9	0.79
7			46.5	-70.2	30.2	-3.28		29.0	14.7	0.76
8		.5 6	55.4	-83.4	30.6	-3.90		28.3	14.4	0.73
9			30.0	-87.9	29.4	-4.11		26.3	14.1	0.70
10			41.1	-97.7	30.0	-4.57		25.6	13.8	0.67
11			16.4	-98.9	28.8	-4.62		23.5	13.4	0.63
12			28.3	-103.4	29.4	-4.83		22.7	13.1	0.60
13			90.2	-97.0	27.6	-4.53		20.1	12.7	0.57
14			16.5	-104.3	28.8	-4.87		19.4	12.2	0.53
15			82.0	-95.5	27.2	-4.46		17.0	11.5	0.50
16			78.1	-96.4	27.0	-4.50		16.3	11.6	0.47
17			36.1	-87.7	25.0	-4.10		14.3	11.7	0.43
18			45.7	-90.3	25.5	-4.22		13.5	11.5	0.40
19			66.0	-85.0	26.4	-3.97		11.9	11.8	0.37
20			85.8	-87.0	27.4	-4.06		11.2	12.5	0.33
21 22			83.9	-82.1	27.3	-3.83		9.9	12.8	0.30
22	73	.0 5	97.7	-83.8	27.9	-3.92	2	7.3	11.5	0.27
Absolute	26	.5			30.6			(I	: =	37.3 ms)
	46	• 5				-4.87	7	(I	: =	57.6 ms)
				Cas	SE METHOD					
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	5 1.8
RP	734.7	638.3	542.0	445.6	349.3	1.0	1.2	T.1	1.0	,
RX	770.7	701.5	668.2	635.3	604.2	577.7	554.9	537.1	521.1	L 505.2
RU	734.7	638.3	542.0	445.6	349.3	57747	55115	557.11	52213	
RAU = 4	51.1 (ki	lps); R	A2 =	648.6 ()	cips)					
Current CA	PWAP Ru	= 581.0	(kips)	; Corresp	ponding J	(RP)= 0.3	32; J(H	ex) = 0.9	97	
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	5 KEI
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	s kips/in
15.4	35.54	586.9	629.5	629.9	0.90	0.12	0.10	31.8	761.5	5 1880
					LE AND PI					

	Depth	Area	E-Modulus	Spec. Weight	Perim.
	ft	in²	ksi	lb/ft ³	ft
	0.0	21.4	29992.2	492.000	4.70
	73.0	21.4	29992.2	492.000	4.70
Toe Area		198.5	in^2		

USH 10 over Little Lake Butte des Morts; Pile: Pier 15 #1 RestriTest: 03-Apr-2015 09:02 APE D30-42, HP 14 x 73; Blow: 4 GRL Engineers, Inc. OP: AM

Segmnt	t Dist.Impedance		Imped.		Tension Compression			Perim.	Wave	Soil
Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
	ftki	.ps/ft/s	%	in		in		ft	ft/s	kips
1	3.3	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.000
16	53.1	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.030
17	56.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.040
18	59.7	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.000
22	73.0	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.000

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.197 ms, 2L/c 8.7 ms Total volume: 10.849 ft^{3;} Volume ratio considering added impedance: 1.000

USH 10 over Littl	e Lake Butte	des Morts;	Pile: Pier 3	15 #36	EOID Test:	02-Apr-2015 09:07
APE D30-42, HP 14	x 73; Blow:	660				CAPWAP(R) 2014-1
GRL Engineers, In	с.					OP: AM

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 over Little Lake Butte des Morts; Pile: Pier 15 #36 EOID Test: 02-Apr-2015 09:07 APE D30-42, HP 14 x 73; Blow: 660 GRL Engineers, Inc. OP: AM

			CAPW	AP SUMMARY	RESULTS			
<u>Total</u> CA	WAP Capaci	ity: 46	6.0; alor	ng Shaft	126.0; at	Toe 340	0.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				466.0				
1	16.8	7.4	0.0	466.0	0.0	0.00	0.00	0.00
2	23.6	14.2	0.0	466.0	0.0	0.00	0.00	0.00
3	30.3	20.9	5.0	461.0	5.0	0.74	0.16	0.27
4	37.1	27.7	7.0	454.0	12.0	1.04	0.22	0.27
5	43.8	34.4	10.0	444.0	22.0	1.48	0.32	0.27
6	50.5	41.1	17.0	427.0	39.0	2.52	0.54	0.27
7	57.3	47.9	18.0	409.0	57.0	2.67	0.57	0.27
8	64.0	54.6	18.0	391.0	75.0	2.67	0.57	0.27
9	70.8	61.3	18.0	373.0	93.0	2.67	0.57	0.27
10	77.5	68.1	33.0	340.0	126.0	4.90	1.04	0.27
Avg. S	haft		12.6			1.85	0.39	0.27
Т	oe		340.0				246.65	0.11
Soil Mode	el Paramete	ers/Extens:	ions		sh	naft T	oe	
Quake		(i)	n)		(0.09 0.	36	
-	oing Factor	•	,).89 0.		
Damping 2	-	-				cous Sm+Vi		
Unloading		(%	of loadi	ng quake)	VIBC		81	
	ce Gap (ind			·		0.		
Soil Plug	-		ips)	, (111)	0.	.060 0.0		
		-v =	2.23	(14)	a IIn Matah		`	
	atch qualit : Final Set	-	2.23 0.24 i		ve Up Match w Count		, L b/ft	
	: Final Set	-	0.24 i 0.09 i	•	w Count		b/ft	
Transducer	F3(D815			•	AL: 93.6; RF:		b D/IL	
11 unducer	A3(K355			; A4(K2524) C				
max. Top	Comp. Stre	ess =	29.0 k	si (T=	= 35.9 ms,	max= 1.04	3 х Тор)	
max. Com	p. Stress	=	30.2 k	si (Z=	= 30.3 ft,	т= 37.7 л	ns)	
max. Tens	s. Stress	=	-1.90 k	si (Z=	= 37.1 ft,	T= 60.7 1	ns)	
max. Ener	rgy (EMX)	=	30.8 k	ip-ft; may	. Measured	Top Displ	. (DMX)=	0.91 in
USH 10 over Little Lake Butte des Morts; Pile: Pier 15 #36 EOID Test: 02-Apr-2015 09:07 APE D30-42, HP 14 x 73; Blow: 660 GRL Engineers, Inc. OP: AM

			1	EXTREMA TA	BLE				
Pile		. max	. mir	n. max	. ma:		max.	max.	max
Sgmnt			e Ford	-				Veloc.	Displ
No.	-			Stres			lergy	-	
	f	t kip	s kir	os ka	si k	si ki	.p-ft	ft/s	i
1	3.	4 620.	2 -12.	.3 29.	0 -0.	57	30.8	15.2	0.9
2	6.	7 621.	3 -13.	.2 29.	0 -0.	62	30.6	15.1	0.9
4		5 623.	5 -16.			75	30.2	15.1	0.8
5							29.9	15.0	0.8
6							29.5	15.0	0.8
7							29.1	14.9	0.8
8							28.7	14.7	0.7
9							28.2	14.5	0.7
10							26.8	14.3	0.7
11							26.2	14.1	0.6
12							24.5	13.7	0.6
13							24.0	13.4	0.6
14							21.9	13.0	0.6
15							21.3	12.4	0.5
16							18.5	11.8	0.5
17							18.0	11.5	0.5
18							15.2	11.3	0.50
19							14.7	11.2	0.4
20 21							12.3 11.9	13.0 13.8	0.4
21							9.7	13.0	0.4
23							7.1	12.7	0.3
Absolute	30.			30.				. =	37.7 ms
	37.	1			-1.	90	r)	: =	60.7 ms
				CASE METH	00				
J =	0.0	0.2	0.4 0	.6 0.8		1.2	1.4	1.6	5 1.8
RP	648.7		24.1 311			1.2	1.4	1.0) т.
RX	682.1		72.1 535			464.2	447.1	431.9	421.
RU	648.7		24.1 311			101.2	11/ . 1	401.0	, 171.
	384.1 (kij			3 (kips)	,				
	-			responding	J(RP) = 0	.33; J()	RX) = 1.3	18	
VMX	TVP	VT1*Z		'MX DM		SET		QUS	s ke
ft/s	ms			.ps ii		in		~	s kips/i
15.1	35.48	-	34.1 648	-		0.24		649.6	_
				OFILE AND		Ŧ			

	Depth	Area	E-Modulus	Spec. Weight	Perim.							
	ft	in ²	ksi	lb/ft ³	ft							
	0.0	21.4	29992.2	492.000	4.70							
	77.5	21.4	29992.2	492.000	4.70							
Toe Area		198.5	in ²									

USH 10 over Little Lake Butte des Morts; Pile: Pier 15 #36 EOID Test: 02-Apr-2015 09:07 APE D30-42, HP 14 x 73; Blow: 660 GRL Engineers, Inc. OP: AM

Segmnt	Dist.Im	pedance	Imped.		Tension	Comp	ression	Perim.	Wave	Soil
Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
	ftki	.ps/ft/s	00	in		in		ft	ft/s	kips
1	3.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.000
17	57.3	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.020
20	67.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.000
23	77.5	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.000

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.200 ms, 2L/c 9.2 ms Total volume: 11.517 ft³; Volume ratio considering added impedance: 1.000

USH 10 over Little Lake	Butte des Morts;	Pile: Pier 15 #36 Re	estrTest: 03-Apr-2015 09:10
APE D30-42, HP 14 x 73;	Blow: 4		CAPWAP(R) 2014-1
GRL Engineers, Inc.			OP: AM

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 over Little Lake Butte des Morts; Pile: Pier 15 #36 RestrTest: 03-Apr-2015 09:10 APE D30-42, HP 14 x 73; Blow: 4 GRL Engineers, Inc. OP: AM

			CAPW	AP SUMMARY	RESULTS			
Total CAP	WAP Capaci	ity: 46	0.0; alor	lg Shaft	170.0; at	Toe 290	0.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				460.0				
1	13.3	8.5	0.0	460.0	0.0	0.00	0.00	0.00
2	19.9	15.1	0.0	460.0	0.0	0.00	0.00	0.00
3	26.5	21.7	5.0	455.0	5.0	0.75	0.16	0.29
4	33.2	28.4	17.0	438.0	22.0	2.56	0.55	0.29
5	39.8	35.0	18.0	420.0	40.0	2.71	0.58	0.29
6	46.5	41.6	20.0	400.0	60.0	3.01	0.64	0.29
7	53.1	48.3	20.0	380.0	80.0	3.01	0.64	0.29
8	59.7	54.9	20.0	360.0	100.0	3.01	0.64	0.29
9	66.4	61.5	20.0	340.0	120.0	3.01	0.64	0.29
10	73.0	68.2	50.0	290.0	170.0	7.53	1.60	0.29
Avg. Sh	aft		17.0			2.49	0.53	0.29
То	e		290.0				210.38	0.16
Soil Mode	l Paramete	ers/Extens:	ions		Sł	naft T	oe	
Quake		(i:	n)		C	0.11 0.	28	
Case Damp	ing Factor	c i i i i i i i i i i i i i i i i i i i			1	L.29 1.	21	
Damping T	ype				Visc	cous Sm+Vi	sc	
Unloading	Quake	(%	of loadi	.ng quake)		62 1	19	
Unloading	Level	(%	of Ru)			91		
Resistance	e Gap (ind	luded in !		e) (in)		0.	05	
Soil Plug	Weight	(k:	ips)		0.	.180 0.0	33	
CAPWAP mat	tch qualit	-y =	1.67	(Wa	ve Up Match); RSA = ()	
Observed:	Final Set		0.17 i	.n; Blo	w Count	= 69) b/ft	
Computed:	Final Set	= =	0.06 i	.n; Blow	w Count	= 190) b/ft	
Transducer	F3(D815) CAL: 93.0	; RF: 1.00	; F4(F607) C	AL: 93.6; RF:	1.00		
	A3(K355	0) CAL: 360	; RF: 1.10	; A4(K2524) C	AL: 360; RF:	1.10		
max. Top (Comp. Stre	ess =	27.6 k	si (T:	= 35.9 ms,	max= 1.06	1 x Top)	
max. Comp	-	=	29.3 k	-	= 33.2 ft,			
max. Tens		=	-2.35 k	-	-		-	
max. Energy	gy (EMX)	=	26.2 k	ip-ft; max	k. Measured	Top Displ	. (DMX)=	0.79 in

USH 10 over Little Lake Butte des Morts; Pile: Pier 15 #36 RestrTest: 03-Apr-2015 09:10 APE D30-42, HP 14 x 73; Blow: 4 GRL Engineers, Inc. OP: AM

				EXTR	REMA TABL	E				
Pile		t.	max.	min.	max.	max	•	max.	max.	max.
Sgmnt			orce	Force	Comp.	Tens			Veloc.	Displ
No.	-				Stress	Stres		ergy	5 . /	
		ft	kips	kips	ksi	ks	1 KI	p-ft	ft/s	iı
1		.3 5	91.8	-6.1	27.6	-0.2	В	26.2	14.2	0.79
2		.6 5	92.8	-13.1	27.7	-0.6	1	25.9	14.2	0.7
3		.0 5	94.0	-19.2	27.7	-0.8		25.7	14.2	0.75
4			95.2	-25.4	27.8	-1.1	9	25.3	14.1	0.73
5		.6 5	96.6	-31.2	27.9	-1.4		25.0	14.1	0.70
6	-	.9 6	00.2	-37.2	28.0	-1.7		24.6	14.0	0.68
7		.2 6	07.6	-42.7	28.4	-1.9	9	24.1	13.8	0.6
8		.5 6	17.9	-47.2	28.9	-2.2		23.6	13.5	0.63
9	29	.9 6	13.4	-45.1	28.7	-2.1	D	22.4	13.0	0.60
10	33	.2 6	27.9	-50.3	29.3	-2.3	5	21.9	12.6	0.5
11	. 36	.5 5	69.5	-29.6	26.6	-1.3	В	19.1	12.1	0.55
12	39	.8 5	86.0	-34.2	27.4	-1.6	0	18.7	11.7	0.52
13	43	.1 5	38.0	-13.0	25.1	-0.6	1	16.2	11.0	0.49
14	46	.5 5	61.5	-17.0	26.2	-0.8	0	15.7	10.4	0.4
15	49	.8 5	05.3	0.0	23.6	0.0	0	13.3	9.7	0.44
16	53	.1 5	19.0	-0.0	24.2	-0.0	0	12.9	9.3	0.43
17	56	.4 4	60.2	-0.0	21.5	-0.0	0	10.9	9.0	0.39
18	59	.7 4	60.4	-0.0	21.5	-0.0	0	10.4	8.9	0.37
19	63	.0 3	98.7	-0.0	18.6	-0.0	0	8.6	9.4	0.35
20	66	.4 4	21.2	-0.0	19.7	-0.0	0	8.3	9.9	0.32
21	. 69	.7 3	99.0	-0.0	18.6	-0.0	0	6.7	10.3	0.30
22	73	.0 4	07.5	-0.0	19.0	-0.0	D	4.3	9.5	0.28
Absolute	33	.2			29.3			(]	C =	37.7 ms)
	33					-2.3	5	-	- C =	57.8 ms)
										,
				CAS	SE METHOD					
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.	6 1.8
RP	673.9	630.0	586.0	542.1	498.2	454.2	410.3	366.4		
RX	673.9	632.9	594.3	570.2	552.3	534.3	516.3	498.6	483.	3 474.4
ิสม	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.	0 0.0
RAU =	318.9 (k	ing). B	A 2 -	538.3 (1	ring)					
					_	(77) - 0	07	ahaa DV	20	- F 9
Current CA				-			-			
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX		
ft/s	ms	kips	kips	kips	in	in	in	kip-ft		s kips/i
14.2	35.73	543.4	591.8	591.8	0.79	0.17	0.17	26.4	656.	6 126:
			ртт	E PROFT	LE AND PI					
	Denth		111					Madah t		Demim

	Depth	Area	E-Modulus	Spec. Weight	Perim.
	ft	in ²	ksi	lb/ft ³	ft
	0.0	21.4	29992.2	492.000	4.70
	73.0	21.4	29992.2	492.000	4.70
Toe Area		198.5	in^2		

USH 10 over Little Lake Butte des Morts; Pile: Pier 15 #36 RestrTest: 03-Apr-2015 09:10 APE D30-42, HP 14 x 73; Blow: 4 CAPWAP(R) 2014-1 GRL Engineers, Inc. OP: AM

Segmnt	t Dist.Impedance		Imped.		Tension	Comp	ression	Perim.	Wave	Soil
Number	B.G. ftki	ps/ft/s	Change %	Slack in	Eff.	Slack in	Eff.	ft	Speed ft/s	Plug kips
1	3.3	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	6807.9	0.000
15	49.8	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	6807.9	0.010
16	53.1	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	6807.9	0.030
17	56.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	6807.9	0.050
19	63.0	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	6807.9	0.040
20	66.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	6807.9	0.000
22	73.0	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	6807.9	0.000

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.197 ms, 2L/c 8.7 ms Total volume: 10.849 ft^{3;} Volume ratio considering added impedance: 1.000

USH 10 over Little Lake	Butte des Morts;	Pile: Pier 15 #44 EOID Tes	t: 02-Apr-2015 09:39
APE D30-42, HP 14 x 73;	Blow: 929		CAPWAP(R) 2014-1
GRL Engineers, Inc.			OP: AM

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 over Little Lake Butte des Morts; Pile: Pier 15 #44 EOID Test: 02-Apr-2015 09:39 APE D30-42, HP 14 x 73; Blow: 929 GRL Engineers, Inc. OP: AM

			CAPW	AP SUMMARY	RESULTS			
<u>Total CAP</u>	WAP Capac:	ity: 528	B.0; alor	lg Shaft	119.0; at	Toe 409	9.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				528.0				
1	16.9	9.4	0.0	528.0	0.0	0.00	0.00	0.00
2	23.6	16.1	0.0	528.0	0.0	0.00	0.00	0.00
3	30.4	22.9	7.0	521.0	7.0	1.04	0.22	0.27
4	37.1	29.6	7.0	514.0	14.0	1.04	0.22	0.27
5	43.9	36.4	11.0	503.0	25.0	1.63	0.35	0.27
6	50.6	43.1	14.0	489.0	39.0	2.07	0.44	0.27
7	57.4	49.9	14.0	475.0	53.0	2.07	0.44	0.27
8	64.1	56.6	14.0	461.0	67.0	2.07	0.44	0.27
9	70.9	63.4	14.0	447.0	81.0	2.07	0.44	0.27
10	77.6	70.1	38.0	409.0	119.0	5.63	1.20	0.27
Avg. Sh	aft		11.9			1.70	0.36	0.27
То	e		409.0				296.70	0.06
Soil Mode	l Paramete	ers/Extens:	ions		Sh	aft T	oe	
Ouake		(i1	-)		0	.13 0.	26	
Case Damp:	ing Easton	•	.1)			0.84 0.		
Damping Ty	-	-				ous Sm+Vi		
Unloading		(%	of loadi	.ng guake)	VISC		82	
-	~	°، cluded in 2				0.		
Soil Plug			ips)	:) (111)	0.	080 0.0		
				·		<u> </u>		
CAPWAP mai	-	-	2.51	-	ve Up Match			
Observed:		-	0.20 i	•	v Count		b/ft	
Computed: Transducer	Final Set F3(D815		0.06 i		v Count AL: 93.6; RF:		3 b/ft	
Transducer	A3(K355			; A4(K2524) C				
max. Top (Comp. Stre	ess =	30.0 k	si (T=	= 35.9 ms,	max= 1.04	б х Тор)	
max. Comp	. Stress	=	31.4 k	si (Z=	= 30.4 ft,	т= 37.5 г	ns)	
max. Tens	. Stress	=	-1.15 k	:si (Z=	= 30.4 ft,	T= 60.0 1	ms)	
max. Energ	JY (EMX)	=	32.4 k	ip-ft; max	. Measured	Top Displ	. (DMX)=	0.93 in

USH 10 over Little Lake Butte des Morts; Pile: Pier 15 #44 EOID Test: 02-Apr-2015 09:39 APE D30-42, HP 14 x 73; Blow: 929 GRL Engineers, Inc. OP: AM

				EXTR	REMA TABL	E				
Pile	Dist	. n	nax.	min.	max.	max	• 1	max.	max.	max.
Sgmnt	Below	w Fo	orce	Force	Comp.	Tens	. Trn	sfd. V	Veloc.	Displ
No.	Gage				Stress	Stress		ergy		
	f	t k	ips	kips	ksi	ks	i ki	p-ft	ft/s	iı
1	3.4	4 64	1.7	-3.1	30.0	-0.1	5	32.4	15.7	0.94
2		7 64	2.9	-5.9	30.0	-0.28	8	32.3	15.7	0.93
4		5 64	5.6	-10.7	30.2	-0.50	0	31.9	15.6	0.8
5	16.9	9 64	7.1	-12.9	30.2	-0.60	0	31.6	15.6	0.8
6		2 64	8.9	-15.0	30.3	-0.70	0	31.3	15.5	0.8
7	23.0	6 65	54.1	-16.9	30.6	-0.79	9	30.9	15.4	0.83
8		0 66	4.1	-20.2	31.0	-0.9	5	30.4	15.1	0.80
9	30.4	4 67	1.2	-24.6	31.4	-1.1	5	30.0	14.9	0.7
10	33.'	7 64	6.1	-19.8	30.2	-0.9	3	28.1	14.7	0.75
11	37.3	1 65	5.0	-23.8	30.6	-1.1	1	27.5	14.4	0.72
12	40.	5 63	34.7	-17.6	29.6	-0.82	2	25.7	14.1	0.69
13	43.9	9 64	5.9	-21.1	30.2	-0.99	9	25.1	13.8	0.66
14	47.2	2 61	.5.3	-10.2	28.7	-0.4	7	22.8	13.3	0.63
15	50.0	6 63	34.4	-16.5	29.6	-0.7	7	22.2	12.8	0.60
16	54.0	0 58	9.9	-2.3	27.6	-0.1	1	19.6	12.2	0.57
17	57.4	4 60	0.6	-6.5	28.1	-0.30	0	19.0	12.0	0.54
18	60.	7 55	64.9	-0.0	25.9	-0.00	0	16.6	11.6	0.51
19	64.3	1 55	9.6	-0.0	26.1	-0.00	0	16.0	11.5	0.48
20	67.	5 50	8.9	-0.0	23.8	-0.00	0	13.8	12.3	0.45
21	70.	9 50	7.6	-0.0	23.7	-0.00	0	13.2	13.4	0.42
22	74.2	2 50	3.8	-0.0	23.5	-0.00	0	11.3	13.7	0.40
23	77.0	5 51	.5.9	-0.0	24.1	-0.00	0	8.2	13.3	0.37
bsolute	30.4	4			31.4			(т	: =	37.5 ms)
2001000	30.4				5111	-1.1	5		. =	60.0 ms)
		-					-	(-		
				CAS	SE METHOD					
· =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	3 0.9
P		624.7	566.3	507.9	449.5	391.1	332.7	274.3	215.9	9 157.4
x	707.8	669.8	645.9	622.0	598.3	577.0	561.4	547.6	535.2	2 524.8
U	683.1	624.7	566.3	507.9	449.5	391.1	332.7	274.3	215.9	9 157.4
AU = 4	02.1 (kig	os); RA	A2 =	603.2 ()	cips)					
urrent CA	PWAP Ru =	= 528.0	(kips);	Corresp	ponding J	(RP)= 0.	27; J(F	ex) = 0.8	37	
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QU	5 KEH
ft/s	ms	kips	kips	kips	in	in	in	kip-ft		s kips/i
15.9		605.6	661.5	661.5	0.93	0.20	0.20	32.6	695.0	-
			PTT	E PROFT	LE AND PI	LE MODEL				
	Depth		Ar		E-Modu		Spec. 1	Woight		Perim
	Deptii		AI	ca	E-MOdu	148	abec. I	nerall		rer m.

	Depth ft	Area in ²	E-Modulus ksi	Spec. Weight lb/ft ³	Perim. ft
	0.0	21.4	29992.2	492.000	4.70
	77.6	21.4	29992.2	492.000	4.70
Toe Area		198.5	in ²		

USH 10 over Little Lake Butte des Morts; Pile: Pier 15 #44 EOID Test: 02-Apr-2015 09:39 APE D30-42, HP 14 x 73; Blow: 929 GRL Engineers, Inc. OP: AM

Segmnt	Dist.Impedance		Imped.		Tension Comp		ression	Perim.	Wave	Soil
Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
	ftki	.ps/ft/s	%	in		in		ft	ft/s	kips
1	3.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.000
17	57.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.020
21	70.9	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.000
23	77.6	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	L6807.9	0.000

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.201 ms, 2L/c 9.2 ms Total volume: 11.532 ft³; Volume ratio considering added impedance: 1.000

USH 10 over Little Lake	Butte des Morts;	Pile: Pier 15 #44 R	estrTest: 03-Apr-2015 09:16
APE D30-42, HP 14 x 73;	Blow: 6		CAPWAP(R) 2014-1
GRL Engineers, Inc.			OP: AM

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 over Little Lake Butte des Morts; Pile: Pier 15 #44 RestrTest: 03-Apr-2015 09:16 APE D30-42, HP 14 x 73; Blow: 6 GRL Engineers, Inc. OP: AM

			CAPW	AP SUMMARY	RESULTS			
Total CAP	WAP Capaci	ity: 53	6.0; alor	ng Shaft	136.0; at	Toe 400	0.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				536.0				
1	13.6	8.8	0.0	536.0	0.0	0.00	0.00	0.00
2	20.5	15.7	0.0	536.0	0.0	0.00	0.00	0.00
3	27.3	22.5	10.0	526.0	10.0	1.47	0.31	0.31
4	34.1	29.3	10.0	516.0	20.0	1.47	0.31	0.31
5	40.9	36.1	15.0	501.0	35.0	2.20	0.47	0.31
6	47.7	42.9	15.0	486.0	50.0	2.20	0.47	0.31
7	54.5	49.7	15.0	471.0	65.0	2.20	0.47	0.31
8	61.4	56.6	13.0	458.0	78.0	1.91	0.41	0.31
9	68.2	63.4	13.0	445.0	91.0	1.91	0.41	0.31
10	75.0	70.2	45.0	400.0	136.0	6.60	1.40	0.31
Avg. Sh	aft		13.6			1.94	0.41	0.31
То	e		400.0				290.17	0.06
Soil Mode	l Paramete	ers/Extens:	ions		Sh	naft T	oe	
Quake		(i:	n)		C	0.11 0.	27	
Case Damp	ing Facto	r			1	L.10 0.	63	
Damping T	ype				Visc	cous Sm+Vi	sc	
Unloading	Quake	(%	of loadi	ng quake)		38	30	
Unloading	Level		of Ru)			15		
Resistance	e Gap (ind	cluded in '	Toe Quake	e) (in)		0.	01	
Soil Plug	Weight	(k:	ips)		0.	.130 0.0	27	
CAPWAP mat	tch qualit	ty =	1.81	(Wa	ve Up Match); RSA = ()	
Observed:	-	-	0.15 i		w Count) b/ft	
Computed:	Final Set	t =	0.05 i	n; Blo	w Count	= 263	B b/ft	
Transducer	F3(D815) CAL: 93.0	; RF: 1.00	; F4(F607) C	AL: 93.6; RF:	1.00		
	A3(K355	0) CAL: 360	; RF: 1.08	; A4(K2524) C	AL: 360; RF:	1.08		
max. Top (-	ess =	29.2 ¥		= 35.9 ms,			
max. Comp	. Stress	=	30.8 k	•	= 27.3 ft,		-	
max. Tens		=	-4.09 k	•			-	
max. Energ	gy (EMX)	=	30.0 k	ip-ft; max	k. Measured	Top Displ	. (DMX)=	0.84 in

USH 10 over Little Lake Butte des Morts; Pile: Pier 15 #44 RestrTest: 03-Apr-2015 09:16 APE D30-42, HP 14 x 73; Blow: 6 GRL Engineers, Inc. OP: AM

				EXTI	REMA TABL	E				
Pile	e Dis	t. :	max.	min.	max.	max.	. :	max.	max.	max.
Sgmnt		ow F	orce	Force	Comp.	Tens.		sfd.	Veloc.	Displ.
No.	-				Stress	Stress		ergy		
		ft	kips	kips	ksi	ksi	l ki	p-ft	ft/s	in
1	L 3	.4 6	25.1	-17.5	29.2	-0.82	2	30.0	15.1	0.85
2	2 6	.8 6	26.1	-19.3	29.2	-0.90)	29.8	15.0	0.83
3		.2 6	27.2	-24.3	29.3	-1.13	3	29.5	15.0	0.81
4	13 I	.6 6	28.4	-33.3	29.4	-1.56	5	29.2	14.9	0.79
5		.0 6	29.8	-43.7	29.4	-2.04	Ł	28.8	14.9	0.77
e		.5 6	34.6	-53.6	29.6	-2.50		28.4	14.8	0.74
7	7 23	.9 6	49.2	-62.9	30.3	-2.94	Ł	27.9	14.4	0.71
8	3 27	.3 6	59.1	-71.5	30.8	-3.34	Ł	27.4	14.1	0.69
9	30	.7 6	19.8	-72.0	29.0	-3.36	5	25.0	13.7	0.66
10) 34	.1 6	31.1	-79.4	29.5	-3.71	L	24.4	13.4	0.63
11	L 37	.5 5	99.0	-79.5	28.0	-3.71	L	22.1	12.9	0.60
12	2 40	.9 6	13.1	-85.8	28.6	-4.01	L	21.5	12.5	0.57
13	3 44	.3 5	65.6	-82.1	26.4	-3.83	3	18.8	12.0	0.54
14	1 47	.7 5	92.8	-87.6	27.7	-4.09)	18.2	11.3	0.51
15	5 51	.1 5	47.6	-83.8	25.6	-3.92	2	15.8	10.6	0.48
16	5 54	.5 5	54.5	-86.9	25.9	-4.06	5	15.2	10.3	0.45
17	7 58	.0 4	99.3	-79.4	23.3	-3.71	L	13.0	10.2	0.42
18	3 61	.4 5	01.4	-79.6	23.4	-3.72	2	12.3	10.1	0.39
19	64	.8 4	70.0	-71.9	22.0	-3.36	5	10.6	10.3	0.36
20) 68	.2 4	88.4	-71.8	22.8	-3.35	5	10.0	11.1	0.33
21		.6 4	81.4	-63.8	22.5	-2.98	3	8.4	11.7	0.30
22	2 75	.0 4	91.8	-63.8	23.0	-2.98	3	5.8	11.0	0.27
bsolute	27	.3			30.8			()	г =	37.3 ms)
	47					-4.09)	-	г =	59.2 ms)
				CAS	SE METHOD					
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	3 0.9
RÞ	702.5	651.0	599.5	548.1	496.6	445.2	393.7	342.2	290.8	239.3
x	706.1	662.7	634.0	613.6	593.2	572.9	552.5	534.7	517.8	3 502.4
U	702.5	651.0	599.5	548.1	496.6	445.2	393.7	342.2	290.8	239.3
RAU =	404.5 (k:	ips); R	A2 =	592.9 (1	kips)					
Current C	APWAP Ru	= 536.0	(kips);	; Corres	ponding J	(RP)= 0.3	32; J(I	ex) = 0.	69	
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	s kei
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	s kips/in
15.2	35.70	581.3	635.8	635.8	0.84	0.15	0.15	30.3	731.9	1538
				-						
	_ ~		114	E PROFII	LE AND PI	LE MODEL				

	Depth	Area	E-Modulus	Spec. Weight	Perim.
	ft	in ²	ksi	lb/ft ³	ft
	0.0	21.4	29992.2	492.000	4.70
	75.0	21.4	29992.2	492.000	4.70
Toe Area		198.5	in ²		

USH 10 over Little Lake Butte des Morts; Pile: Pier 15 #44 RestrTest: 03-Apr-2015 09:16 APE D30-42, HP 14 x 73; Blow: 6 CAPWAP(R) 2014-1 GRL Engineers, Inc. OP: AM

Segmnt	Dist.Impedance		Imped.		Tension	Compression		Perim.	Wave	Soil
Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
	ftki	.ps/ft/s	%	in		in		ft	ft/s	kips
1	3.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	6807.9	0.000
16	54.5	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	6807.9	0.040
18	61.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	6807.9	0.030
19	64.8	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	6807.9	0.020
20	68.2	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	6807.9	0.000
22	75.0	38.20	0.00	0.00	0.000	-0.00	0.000	4.701	6807.9	0.000

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.203 ms, 2L/c 8.9 ms Total volume: 11.146 ft³; Volume ratio considering added impedance: 1.000