GRL Engineers, Inc.

1540 E. Dundee Road, Suite 102 Palatine, IL 60074 USA Phone: (847) 221-2750 Fax: (847) 221-2752

TRANSMITTAL

To: Mr. Kevin Weber	From: Travis Coleman
Company: Lunda Construction Co.	No. of Sheets: 64
E-mail: kweber@lundaconstruction.com	Date: April 23, 2015

RE: Dynamic Testing Results – USH 10 over Little Lake Butte des Morts Structure B-70-403 - Pier 12 Winnebago County, Wisconsin

On April 21, 2015, Pier 12 #1, Pier 12 #16, Pier 12 #23, and Pier 12 #56 at the above structure were dynamically tested during initial driving. The piles were tested during restrike on April 22. Project plans indicated the exterior row piles have a required driving resistance, or ultimate capacity, of 400 kips (200 tons) and the interior row piles have a required driving resistance of 350 kips (175 tons). The reference elevation for the piles was the top of the ring at EL 740.3 to EL 739.4. We understand the pier was excavated to an elevation of EL 717.2. The piles have a required minimum tip elevation of EL 658.8. The HP 14x73 H-piles were equipped with driving shoes and were driven with an APE D30-42 hammer (number PD 0256) reportedly operated on fuel setting 4.

Pier 12 #1 was driven to a depth of 88.4 feet, which corresponds to a pile tip elevation of EL 651.8. The blow count over the final increment of driving was 10 blows for 2 $\frac{1}{2}$ inches of penetration at an average hammer stroke of 8.6 feet. The blow count at the beginning of restrike was 10 blows for 1 $\frac{1}{2}$ inches of penetration at an average hammer stroke of 8.8 feet.

Pier 12 #16 was driven to a depth of 88.0 feet, which corresponds to a pile tip elevation of EL 652.3. The blow count over the final increment of driving was 10 blows for 4 inches of penetration at an average hammer stroke of 7.7 feet. The blow count at the beginning of restrike was 10 blows for 3 inches of penetration at an average hammer stroke of 8.2 feet.

Pier 12 #23 was driven to a depth of 88.0 feet, which corresponds to a pile tip elevation of EL 652.3. The blow count over the final increment of driving was 10 blows for 2 $\frac{1}{2}$ inches of penetration at an average hammer stroke of 8.9 feet. The blow count at the beginning of restrike was 10 blows for 1 $\frac{1}{2}$ inches of penetration at an average hammer stroke of 8.5 feet.

Pier 12 #56 was driven to a depth of 81.6 feet, which corresponds to a pile tip elevation of EL 657.8. The blow count over the final increment of driving was 10 blows for 3 inches of penetration at an average hammer stroke of 9.0 feet. The blow count at the beginning of restrike was 10 blows for 2 $\frac{1}{2}$ inches of penetration at an average hammer stroke of 8.3 feet.

We recommend the production piles at Pier 12 of Structure B-70-403, driven with the APE D30-42 hammer PD0256, obtain the minimum recommended blow count, noted below, based on the field observed hammer stroke. We recommend maintaining the minimum blow count for <u>two consecutive inches</u> of driving at the recommended average hammer stroke. Additionally, all production piles should achieve the minimum pile tip elevation of EL 658.8 for uplift, as indicated on the plans.

	Exterior Piles (400 kips)	Interior Piles (350 kips)
Field Observed	Recommended Minimum	Recommended Minimum
Hammer Stroke	Blow Count	Blow Count
(feet)	(blows per inch)	(blows per inch)
6.5	4	3
7.0	4	3
7.5	4	3
8.0	3	3
8.5	3	3
9.0	3	3

We recommend immediately terminating driving **if the blow counts exceed 10** blows over an increment of one inch or less at hammer strokes of 8.0 feet, after satisfying any minimum tip requirements. We anticipate the production piles will terminate at depths similar to those of the test piles.

These criteria should not be used for acceptance of piles under restrike and/or redrive conditions. After splicing or any other delays, we recommend not applying the criteria until a full foot of driving has occurred beyond the termination depth associated with the delay, unless the blow count exceeds 10 blows per inch.

Please call if you have any questions on these recommendations.

GRL Engineers, Inc.

Travis Coleman, P.E.

Rory Flynn, E.I.

cc: Jeff Horsfall - jeffrey.horsfall@dot.wi.gov

Attachments:

Dynamic Test Results - (pages 3 – 36) CAPWAP Analysis Results - (pages 37 – 64)

Ouse N										
USH 10 OP: RF	0 over LLBD	M - PIER 12	2 #1					030-42, HP Date: 21-Ap		
AR:	21.40 in ²							SP: 0.4	492 k/ft ³	
LE:	92.66 ft							EM: 30,0		
	<u>6,807.9 f/s</u>								.00 []	
	Max Measure					MX: Max Tra		nergy		
	Compression D.E. Diesel ⊢					PM: Blows p X9: Max Ca		Canacity ()	C-0 0)	
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9	
BEn	ft	bl/ft		ksi	ksi	ft	k-ft	bpm	kips	
48	33.00	5	AV47	23.1	9.1	5.5	28	51.1	169	
			MAX	28.8	17.3	7.0	37	68.4	334	
			MIN	10.9	2.1	2.8	10	44.4	0	
53	34.00	5	AV5	28.1	15.8	6.9	36	44.8	330	
00	04.00	0	MAX	28.8	16.6	7.1	38	45.3	332	
			MIN	27.6	14.9	6.8	35	44.1	326	
	05.00			07.0			~~	15.0		
59	35.00	6	AV6	27.9	14.6	6.8	36	45.2 46.0	322	
			MAX MIN	28.9 26.7	15.3 13.7	7.1 6.5	38 33	46.0 44.3	333 311	
				20.7	15.7	0.5	55	44.5	511	
65	36.00	6	AV6	27.7	14.0	6.7	35	45.6	298	
			MAX	29.1	14.8	7.1	38	46.4	319	
			MIN	26.8	13.0	6.4	32	44.2	281	
77	37.00	12	AV12	26.7	11.3	6.4	32	46.4	259	
,,	57.00	12	MAX	27.6	12.7	6.7	35	47.0	293	
			MIN	26.0	10.0	6.3	31	45.4	237	
00	00.00	10	A) (4 O	00.4	11.0	0.0	00	40.0	050	
89	38.00	12	AV12 MAX	26.4 27.2	11.0 11.4	6.3 6.5	32 33	46.8 47.5	253 265	
			MIN	27.2	10.2	6.1	30	47.5	205	
				20.0	10.2	0.1	00	40.1	200	
101	39.00	12	AV12	25.3	9.1	6.0	29	47.9	201	
			MAX	26.6	10.9	6.4	31	48.5	231	
			MIN	24.8	8.3	5.9	28	46.6	178	
111	40.00	10	AV10	26.6	12.5	6.4	33	46.4	272	
	10100	10	MAX	28.1	14.9	6.9	35	48.3	326	
			MIN	25.0	9.3	5.9	31	44.8	211	
110	41.00	7	AV7	ד דנ	15 1	6.0	25	44.0	224	
118	41.00	7	MAX	27.7 28.2	15.1 15.6	6.9 7.1	35 37	44.9 45.8	324 336	
			MIN	26.8	14.3	6.6	34	44.3	306	
127	42.00	9	AV9	26.9	13.7	6.6	34	45.9	287	
			MAX	28.1	14.5	6.9	37	46.7	313	
			MIN	25.8	12.8	6.3	32	44.7	258	
135	43.00	8	AV8	26.5	11.8	6.4	34	46.5	238	
			MAX	27.0	13.0	6.5	36	47.7	254	
			MIN	25.6	10.7	6.1	32	46.0	224	
145	44.00	10	AV10	25.4	9.3	6.0	31	47.8	201	
140	44.00	10	MAX	25.4 26.7	9.3 10.5	6.0 6.4	33	47.8 50.0	201 227	
			MIN	23.3	8.4	5.5	27	46.4	180	
						-				

Page 1 PDIPLOT2 2014.2.48.1 - Printed 21-April-2015

GRL Engineers, Inc. Case Method & iCAP® Results

Page 2 PDIPLOT2 2014.2.48.1 - Printed 21-April-2015

USH 10 over LLBDM - PIER 12 #1 OP: RF

<u>OP: RF</u>							[Date: 21-Ap	ril-2015
BL#	depth ft	BLC bl/ft	TYPE	CSX ksi	CSB ksi	STK ft	EMX k-ft	BPM bpm	RX9 kips
156	45.00	11	AV11 MAX MIN	23.9 24.4 23.4	8.0 8.9 7.2	5.6 5.8 5.5	27 28 26	49.4 49.8 48.9	189 200 178
166	46.00	10	AV10 MAX MIN	23.8 24.3 23.4	8.2 8.6 7.7	5.6 5.7 5.6	27 28 26	49.5 49.7 49.0	190 203 179
175	47.00	9	AV9 MAX MIN	23.6 24.6 22.5	7.7 8.2 7.2	5.5 5.8 5.3	28 30 25	49.8 51.0 48.8	186 194 178
183	48.00	8	AV8 MAX MIN	22.9 23.7 21.8	7.8 8.4 7.3	5.4 5.6 5.1	27 29 25	50.4 51.8 49.4	177 190 168
189	49.00	6	AV6 MAX MIN	22.8 23.3 22.2	8.8 9.0 8.3	5.4 5.5 5.3	29 30 28	50.4 50.9 49.8	174 196 161
195	50.00	6	AV6 MAX MIN	23.1 24.2 22.2	8.5 8.8 8.2	5.5 5.7 5.3	30 32 27	50.2 51.0 49.1	175 185 169
202	51.00	7	AV7 MAX MIN	23.2 24.1 22.4	8.6 9.4 8.0	5.5 5.8 5.3	29 30 27	50.0 50.8 48.9	178 186 170
207	52.00	5	AV5 MAX MIN	23.0 23.7 22.0	8.7 9.2 8.3	5.4 5.6 5.2	30 32 28	50.2 51.2 49.7	172 196 157
213	53.00	6	AV6 MAX MIN	22.6 23.2 22.2	8.3 8.8 7.3	5.4 5.5 5.3	29 30 28	50.6 51.0 49.8	162 169 152
219	54.00	6	AV6 MAX MIN	21.7 22.4 20.7	6.7 7.4 6.2	5.1 5.4 4.9	28 29 26	51.6 52.9 50.6	153 162 147
223	55.00	4	AV4 MAX MIN	20.8 21.8 20.0	6.2 6.6 5.6	4.9 5.1 4.7	28 29 26	52.7 53.6 51.7	128 136 116
227	56.00	4	AV4 MAX MIN	20.6 21.3 20.3	5.9 6.0 5.8	4.9 5.0 4.8	28 29 27	53.0 53.3 52.2	126 129 121
231	57.00	4	AV4 MAX MIN	20.2 20.6 19.3	5.4 5.5 5.3	4.8 4.9 4.6	28 29 25	53.5 54.4 53.0	122 128 119

Page 3 PDIPLOT2 2014.2.48.1 - Printed 21-April-2015

USH 10 over LLBDM - PIER 12 #1

APE D30-42, HP 14 x 73

OP: RF	OP: RF Date							Date: 21-Ap	ril-2015
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
	ft	bl/ft		ksi	ksi	ft	k-ft	bpm	kips
237	58.00	6	AV6 MAX	20.6 21.6	5.2 6.2	4.8 5.1	25 26	53.1 53.8	143 152
			MIN	19.9	0.2 4.7	5.1 4.7	20	53.8 51.8	132
				13.5	4.7	4.7	25	51.0	150
243	59.00	6	AV6	21.4	6.4	5.1	26	52.0	153
			MAX	21.9	6.9	5.1	28	52.6	158
			MIN	20.9	5.9	4.9	25	51.7	148
248	60.00	5	AV5	21.2	6.6	5.0	27	52.4	142
240	00.00	5	MAX	21.2	6.9	5.1	28	53.4	142
			MIN	20.3	6.3	4.8	25	51.8	138
253	61.00	5	AV5	21.2	6.7	5.0	27	52.5	140
			MAX	21.6	7.0	5.1	28	53.1 51.9	147
			MIN	20.8	6.5	4.8	26	51.9	136
258	62.00	5	AV5	21.8	6.3	5.1	28	51.6	145
			MAX	22.4	6.6	5.3	30	52.2	150
			MIN	21.3	5.9	5.0	27	50.9	138
262	63.00	4	AV4	21.6	6.7	5.1	29	52.0	146
202	03.00	4	MAX	21.0	7.2	5.1	30	52.0	155
			MIN	21.4	6.2	5.0	28	51.7	141
		_							
266	64.00	4	AV4	21.7	7.1	5.1	29	51.9	139
			MAX MIN	22.2 21.4	7.4 6.8	5.2 5.0	29 28	52.2 51.5	144 134
				21.7	0.0	0.0	20	01.0	104
271	65.00	5	AV5	21.1	6.6	5.0	27	52.5	138
			MAX	21.5	7.4	5.1	28	53.7	145
			MIN	20.1	5.7	4.7	25	51.9	132
276	66.00	5	AV5	21.3	6.4	5.0	27	52.1	140
		-	MAX	21.7	7.0	5.1	28	53.0	147
			MIN	20.5	5.9	4.9	26	51.6	125
281	67.00	5	AV5	20.6	5.7	4.9	26	53.0	131
201	07.00	5	MAX	20.0	6.3	4.9 5.0	20	53.6	144
			MIN	20.1	5.4	4.7	24	52.2	121
285	68.00	4	AV4	21.1	6.0	5.0	29	52.5	127
			MAX MIN	21.4 20.6	6.4 5.7	5.1 4.8	30 27	53.1 52.0	136 120
			IVIIIN	20.0	5.7	4.0	21	52.0	120
289	69.00	4	AV4	20.6	5.5	4.8	28	53.2	116
			MAX	21.1	5.7	4.9	28	53.6	121
			MIN	20.2	5.1	4.7	27	52.7	109
294	70.00	5	AV5	20.1	4.6	4.7	24	53.9	124
204	70.00	0	MAX	21.3	4.9	4.9	24	55.7	139
			MIN	18.3	4.1	4.4	23	52.7	113
200	71.00	A	A \ / A	20.4	4.0	A 7	00	F 4 0	440
298	71.00	4	AV4	20.1	4.6	4.7	26	54.0	116

Page 4 PDIPLOT2 2014.2.48.1 - Printed 21-April-2015

US	SH	10	over	LLE	BDM	- F	PIER	12 #1	

APE D30-42, HP 14 x 73

OP: RF			- // -]	Date: 21-Ap	ril-2015
BL#	depth ft	BLC bl/ft	TYPE MAX MIN	CSX ksi 20.6 19.7	CSB ksi 5.3 4.3	STK ft 4.8 4.6	EMX k-ft 27 25	BPM bpm 54.5 53.4	RX9 kips 122 111
303	72.00	5	AV5 MAX MIN	19.7 21.6 18.6	5.8 8.8 3.9	4.6 5.1 4.3	24 28 21	54.4 55.9 51.8	127 147 112
308	73.00	5	AV5 MAX MIN	22.1 22.7 21.0	7.9 8.8 6.2	5.2 5.4 5.0	29 30 27	51.1 52.3 50.6	141 149 129
312	74.00	4	AV4 MAX MIN	21.4 22.0 20.8	6.2 6.5 5.7	5.0 5.1 4.8	28 29 28	52.2 53.1 51.6	120 135 107
316	75.00	4	AV4 MAX MIN	22.6 23.6 21.0	8.2 9.6 6.4	5.4 5.6 4.9	29 31 27	50.7 52.7 49.4	160 189 131
320	76.00	4	AV4 MAX MIN	24.4 25.4 23.8	11.3 13.5 9.5	5.9 6.2 5.7	31 33 29	48.5 49.3 47.3	223 259 187
323	77.00	3	AV3 MAX MIN	26.2 26.9 25.2	13.7 14.3 13.0	6.4 6.6 6.1	35 37 33	46.5 47.4 45.8	276 292 266
326	78.00	3	AV3 MAX MIN	26.3 26.8 25.9	13.8 14.1 13.5	6.4 6.5 6.3	35 37 34	46.5 46.9 46.0	264 272 257
329	79.00	3	AV3 MAX MIN	26.3 26.9 25.5	12.7 13.4 11.7	6.4 6.5 6.3	36 39 34	46.4 47.0 46.0	244 264 218
333	80.00	4	AV4 MAX MIN	25.1 26.5 23.9	10.0 10.7 9.4	6.0 6.4 5.7	33 35 31	48.0 49.2 46.6	192 212 179
336	81.00	3	AV3 MAX MIN	24.9 26.2 24.2	10.3 11.6 9.2	5.9 6.3 5.7	33 36 32	48.2 49.1 46.7	200 231 175
341	82.00	5	AV5 MAX MIN	27.3 28.5 25.8	16.1 17.9 13.2	6.7 7.1 6.3	35 37 33	45.4 47.0 44.2	304 339 262
350	83.00	9	AV9 MAX MIN	27.8 28.4 27.1	17.3 18.2 16.4	6.9 7.1 6.7	36 37 34	44.8 45.4 44.2	325 342 310
359	84.00	9	AV9 MAX	28.5 29.6	19.4 21.5	7.1 7.5	37 39	44.2 45.7	353 402

Page 5
PDIPLOT2 2014.2.48.1 - Printed 21-April-2015

USH 10 over LLBDM - PIER 12 #1	

APE D30-42, I	ΗP	14	х	73	3
Data: 21	۸n	ril	າກ	11	5

<u>OP: RF</u>								Date: 21-Ap	ril-2015
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
	ft	bl/ft		ksi	ksi	ft	k-ft	bpm	kips
			MIN	26.9	16.5	6.6	34	43.1	312
370	85.00	11	AV11	29.3	22.0	7.4	38	43.3	399
			MAX	29.7	23.3	7.6	39	43.6	424
			MIN	28.9	21.1	7.3	37	42.9	378
385	86.00	15	AV15	29.1	21.9	7.3	37	43.6	394
			MAX	29.7	22.8	7.6	39	44.8	417
			MIN	27.7	20.9	6.9	35	42.9	374
402	87.98	17	AV17	30.6	27.2	7.7	39	42.4	512
			MAX	34.0	31.5	8.1	41	43.5	599
			MIN	29.0	24.5	7.4	37	41.6	435
412	88.21	44	AV10	31.7	32.1	8.2	39	41.3	627
			MAX	32.7	33.4	8.6	41	41.9	666
			MIN	30.6	30.6	7.9	37	40.4	582
422	88.42	48	AV10	33.2	35.1	8.6	41	40.3	705
			MAX	34.7	37.2	9.1	45	40.9	729
			MIN	32.0	33.8	8.4	33	39.3	680
			Average	24.9	12.2	6.0	31	48.3	247
			laximum	34.7	37.2	9.1	45	68.4	729
		I	Minimum	10.9	2.1	2.8	10	39.3	0
			Total n	umber of blo	ows analyze	ed: 421			

Total number of blows analyzed: 421

BL# Sensors

1-422 F3: [D815] 93.0 (0.97); F4: [F607] 93.6 (0.97); A3: [K3550] 360.0 (1.04); A4: [K2524] 360.0 (1.04)

BL# Comments

2 Reported Reference EL 740.25

Time Summary

Drive 9 minutes 3 seconds 9:14 AM - 9:23 AM BN 1 - 422

Page 1 PDIPLOT2 2014.2.48.1 - Printed 22-April-2015

USH 1	10 over Little La	ike Butte des		AF	PE D30-42, H	HP 14 x 73			
	OP: TC Date: 22-April-20								
AR:	21.40 in ²							SP:	0.492 k/ft ³
LE:	92.66 ft							EM: 3	30,000 ksi
WS: 1	6,807.9 f/s							JC:	1.00 []
CSX:	Max Measured	d Compr. Stre	ess			STK:	O.E. Diesel Ha	mmer Strok	e
CSB:	Compression	Stress at Bot	tom			BPM:	Blows per Minu	ute	
EMX:	Max Transferr	ed Energy				RX9:	Max Case Met		/ (JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
	ft	blows/ft		ksi	ksi	k-ft	ft	bpm	kips
10	88.54	80	AV10	33.8	38.4	44	8.8	39.9	759
			STD	1.2	1.4	3	0.3	0.8	35
			MAX	35.2	40.0	47	9.2	42.1	797
			MIN	30.8	34.8	37	7.9	39.1	682
20	88.66	87	AV10	35.0	40.5	45	8.9	39.6	813
20	00.00	07	STD	0.5	0.8	1	0.2	0.4	11
			MAX	35.5	41.7	48	9.3	40.1	830
			MIN	33.8	39.1	43	8.7	38.9	795
				00.0	00.1	10	0.7	00.0	,00
30	88.76	96	AV10	34.9	40.7	45	8.9	39.7	823
			STD	0.3	0.5	1	0.1	0.2	12
			MAX	35.4	41.7	46	9.1	40.1	840
			MIN	34.4	40.0	44	8.7	39.3	803
			Average	34.6	39.8	45	8.9	39.8	798
			Std. Dev.	0.9	1.4	2	0.2	0.5	36
			Maximum	35.5	41.7	48	9.3	42.1	840
			Minimum	30.8	34.8	37	7.9	38.9	682
			Tota	al number of h	lowe analyzog	1.30			

Total number of blows analyzed: 30

BL# Sensors

1-30 F3: [F607] 93.6 (1.00); F4: [D815] 93.0 (1.00); A3: [K2524] 360.0 (1.05); A4: [K3550] 360.0 (1.05)

Time Summary

Drive 43 seconds 6:26 AM - 6:27 AM BN 1 - 30

OP: RF		VI - PIER 12	2 #16					030-42, HP Date: 21-Ap	ril-2015
AR: LE: WS: 16	21.40 in ² 92.50 ft 5,807.9 f/s							EM: 30,0	492 k/ft³)00 ksi .00 []
CSX: M CSB: C	lax Measure Compression	Stress at B	Bottom		BF	MX: Max Tra PM: Blows p	er Minute	nergy	
).E. Diesel H					K9: Max Ca			
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
-	ft	bl/ft		ksi	ksi	ft	k-ft	bpm	kips
3	32.25	4	AV1	24.9	3.5	4.9	35	53.0	33
			MAX	24.9	3.5	4.9	35	53.0	33
			MIN	24.9	3.5	4.9	35	53.0	33
4	32.50	4	AV1	17.5	3.0	3.6	13	61.3	42
			MAX	17.5	3.0	3.6	13	61.3	42
			MIN	17.5	3.0	3.6	13	61.3	42
6	33.00	4	AV1	22.3	6.8	4.9	32	52.8	105
0	55.00	4	MAX	22.3	6.8	4.9	32	52.8	105
			MIN	22.3	6.8	4.9	32	52.8	105
			IVIIIN	22.5	0.0	4.5	52	52.0	105
7	33.10	10	AV1	20.8	4.3	4.8	23	53.4	125
			MAX	20.8	4.3	4.8	23	53.4	125
			MIN	20.8	4.3	4.8	23	53.4	125
8	33.20	10	AV1	20.6	4.4	4.8	23	53.1	113
Ū	00.20		MAX	20.6	4.4	4.8	23	53.1	113
			MIN	20.6	4.4	4.8	23	53.1	113
9	33.30	10	AV1	21.3	4.3	5.0	24	52.5	102
			MAX	21.3	4.3	5.0	24	52.5	102
			MIN	21.3	4.3	5.0	24	52.5	102
10	33.40	10	AV1	22.4	4.4	5.0	25	52.4	100
-		-	MAX	22.4	4.4	5.0	25	52.4	100
			MIN	22.4	4.4	5.0	25	52.4	100
11	33.50	10	AV1	21.4	4.1	4.7	22	53.7	105
	55.50	10	MAX	21.4	4.1	4.7	22	53.7	105
			MIN	21.4	4.1	4.7	22	53.7	105
10	04.00	40							
16	34.00	10	AV5	22.7	6.8	5.2	26	51.4	160
			MAX	23.4	10.9	5.4	27	52.4	240
			MIN	22.1	4.5	5.0	25	50.4	109
26	35.00	10	AV10	26.4	13.0	6.3	34	46.9	291
			MAX	27.1	13.9	6.4	35	48.2	309
			MIN	25.5	11.3	5.9	31	46.4	257
36	36.00	10	AV10	26.7	13.8	6.4	34	46.7	308
50	50.00	10	MAX	28.0	14.4	6.7	37	48.5	323
			MIN	28.0	14.4	5.9	37	46.5	293
								70.7	
45	37.00	9	AV9	26.3	12.9	6.2	34	47.1	288
			MAX	27.0	13.9	6.4	35	48.1	299
			MIN	25.4	12.1	6.0	32	46.6	274

Page 1 PDIPLOT2 2014.2.48.1 - Printed 21-April-2015

Page 2 PDIPLOT2 2014.2.48.1 - Printed 21-April-2015

USH 10 over LLBDM - PIER 12 #16 APE D30-42, HP 14 x 73 OP: RF Date: 21-April-2015									
BL#	depth ft	BLC bl/ft	TYPE	CSX ksi	CSB ksi	STK ft	EMX k-ft	BPM bpm	RX9 kips
54	38.00	9	AV9 MAX MIN	25.7 26.4 24.9	11.2 12.3 10.5	6.0 6.2 5.8	33 35 31	47.9 48.7 47.2	262 284 250
64	39.00	10	AV10 MAX MIN	25.8 26.6 24.6	11.9 12.5 11.2	6.1 6.3 5.8	32 33 30	47.7 48.8 46.9	275 289 260
76	40.00	12	AV12 MAX MIN	25.3 26.3 24.3	10.3 11.4 9.3	5.9 6.2 5.6	31 32 29	48.3 49.4 47.1	249 271 233
88	41.00	12	AV12 MAX MIN	27.2 28.1 26.3	14.4 15.5 12.2	6.5 6.7 6.2	34 36 33	46.3 47.3 45.5	333 354 285
99	42.00	11	AV11 MAX MIN	27.4 28.1 26.5	15.1 15.8 14.5	6.5 6.8 6.3	35 37 34	46.1 46.9 45.3	337 347 318
107	43.00	8	AV8 MAX MIN	26.4 27.4 25.7	14.0 14.8 13.0	6.3 6.5 6.1	34 36 33	47.0 47.7 46.1	293 307 277
116	44.00	9	AV9 MAX MIN	26.1 27.3 25.0	11.7 12.4 11.0	6.1 6.5 5.8	33 35 31	47.5 48.7 46.2	263 275 247
125	45.00	9	AV9 MAX MIN	25.3 26.9 24.3	10.3 11.0 9.7	5.9 6.3 5.7	31 34 30	48.2 49.3 46.9	237 254 220
134	46.00	9	AV9 MAX MIN	24.3 25.2 23.3	9.2 9.7 8.9	5.7 5.9 5.4	29 31 28	49.3 50.4 48.3	213 220 201
141	47.00	7	AV7 MAX MIN	24.3 25.1 23.6	9.8 10.4 9.4	5.7 5.9 5.5	31 33 29	49.1 49.9 48.2	207 215 196
148	48.00	7	AV7 MAX MIN	24.8 25.5 24.4	10.1 10.6 9.5	5.8 6.0 5.7	32 33 31	48.6 49.0 48.1	201 225 187
155	49.00	7	AV7 MAX MIN	23.2 24.0 22.4	9.3 9.7 8.5	5.5 5.7 5.3	29 31 28	50.2 50.9 49.2	180 186 170
162	50.00	7	AV7	23.3	9.5	5.5	30	49.8	189

MAX

MIN

24.1

22.5

5.7 5.3

9.7

9.1

30 28

50.8

49.0

198

175

USH 10 over LLBDM - PIER 12 #16

APE D30-42, HP 14 x 73

OP: RF							, B	Date: 21-Ap	ril-2015
BL#	depth ft	BLC bl/ft	TYPE	CSX ksi	CSB ksi	STK ft	EMX k-ft	BPM bpm	RX9 kips
169	51.00	7	AV7 MAX MIN	23.5 24.1 22.9	9.5 10.0 9.0	5.6 5.7 5.4	30 31 29	49.6 50.3 49.0	188 200 176
175	52.00	6	AV6 MAX MIN	23.7 24.4 23.2	9.5 10.4 8.9	5.6 5.8 5.4	31 32 29	49.4 50.2 48.9	183 202 170
180	53.00	5	AV5 MAX MIN	23.3 24.0 22.6	8.7 9.1 8.5	5.5 5.6 5.3	31 33 29	50.2 51.0 49.4	167 170 165
185	54.00	5	AV5 MAX MIN	22.8 23.4 22.3	8.9 9.4 8.6	5.4 5.5 5.2	30 32 29	50.6 51.3 50.0	160 163 153
190	55.00	5	AV5 MAX MIN	22.9 23.4 21.3	7.6 8.8 6.3	5.3 5.5 4.9	31 32 28	50.7 52.6 50.1	162 175 146
196	56.00	6	AV6 MAX MIN	22.6 23.8 21.0	6.8 7.8 5.9	5.2 5.5 4.8	28 30 25	51.3 53.1 50.1	158 174 145
202	57.00	6	AV6 MAX MIN	23.3 24.5 22.4	8.4 8.7 7.7	5.4 5.7 5.2	30 32 28	50.3 51.4 49.1	173 180 163
208	58.00	6	AV6 MAX MIN	22.9 24.1 21.3	7.7 8.2 6.9	5.4 5.7 5.0	29 31 27	50.6 52.3 49.2	169 181 155
213	59.00	5	AV5 MAX MIN	22.4 23.2 21.7	7.7 8.4 7.2	5.2 5.4 5.1	30 31 28	51.2 51.9 50.2	152 169 145
218	60.00	5	AV5 MAX MIN	22.1 22.7 21.7	7.3 7.6 7.0	5.2 5.3 5.1	29 30 28	51.5 52.0 50.7	145 148 143
223	61.00	5	AV5 MAX MIN	21.8 22.4 21.4	7.9 8.1 7.6	5.1 5.3 5.0	29 30 28	51.6 52.1 50.9	152 155 148
229	62.00	6	AV6 MAX MIN	22.1 22.6 21.6	6.5 7.7 5.7	5.1 5.2 5.0	27 28 27	51.6 52.2 51.1	150 161 140
235	63.00	6	AV6 MAX MIN	22.7 23.7 21.7	7.8 8.2 7.0	5.3 5.6 5.1	28 31 26	50.9 52.0 49.7	165 173 154
240	64.00	5	AV5	23.1	8.7	5.4	31	50.4	173

USH 10 over LLBDM - PIER 12 #16 OP: RF

OP: RF							[Date: 21-Ap	ril-2015
BL#	depth ft	BLC bl/ft	TYPE MAX MIN	CSX ksi 24.0 22.4	CSB ksi 9.0 8.3	STK ft 5.6 5.3	EMX k-ft 32 29	BPM bpm 50.9 49.5	RX9 kips 181 168
245	65.00	5	AV5 MAX MIN	23.2 23.8 23.0	8.6 8.8 8.4	5.4 5.6 5.4	31 33 30	50.4 50.6 49.7	170 175 166
250	66.00	5	AV5 MAX MIN	23.1 23.7 22.8	9.0 10.5 7.9	5.4 5.5 5.3	31 32 29	50.5 50.8 49.8	166 184 152
255	67.00	5	AV5 MAX MIN	22.9 23.4 22.6	9.0 9.5 8.4	5.3 5.4 5.2	30 31 29	50.7 51.1 50.4	163 171 156
260	68.00	5	AV5 MAX MIN	23.0 23.4 22.4	8.4 8.8 7.6	5.4 5.4 5.2	31 31 30	50.6 51.2 50.2	165 168 162
265	69.00	5	AV5 MAX MIN	23.3 24.3 22.9	8.8 9.7 8.2	5.4 5.7 5.3	32 33 30	50.3 50.9 49.3	161 165 157
270	70.00	5	AV5 MAX MIN	23.1 23.4 22.8	7.7 8.1 7.3	5.4 5.4 5.3	30 30 28	50.6 50.9 50.2	149 155 144
275	71.00	5	AV5 MAX MIN	22.6 23.3 21.7	7.7 8.3 7.4	5.2 5.4 5.0	29 31 27	51.2 52.2 50.5	152 162 140
280	72.00	5	AV5 MAX MIN	23.8 24.1 23.2	8.7 9.4 8.0	5.5 5.6 5.4	32 33 31	49.9 50.5 49.5	154 163 142
285	73.00	5	AV5 MAX MIN	23.1 23.7 22.4	7.9 8.8 7.1	5.4 5.5 5.2	30 31 29	50.6 51.5 50.1	152 158 147
290	74.00	5	AV5 MAX MIN	22.6 23.2 22.1	7.5 7.7 7.3	5.2 5.4 5.1	29 30 28	51.2 52.0 50.6	142 149 135
295	75.00	5	AV5 MAX MIN	22.7 23.2 22.4	7.6 7.9 7.3	5.3 5.3 5.2	29 29 29	51.1 51.3 50.8	142 148 135
301	76.00	6	AV6 MAX MIN	23.4 24.2 22.1	7.9 8.8 6.5	5.4 5.6 5.1	29 31 27	50.3 51.7 49.4	167 188 150
305	77.00	4	AV4 MAX	23.4 23.8	9.8 10.2	5.5 5.6	32 33	50.0 50.5	164 177

Page 5	
PDIPLOT2 2014.2.48.1 - Printed 21-April-2015	

USH 10 over LLBDM - PIER 12 #16 OP: RF

OP: RF							[Date: 21-Ap	ril-2015
BL#	depth ft	BLC bl/ft	TYPE MIN	CSX ksi 23.1	CSB ksi 9.2	STK ft 5.4	EMX k-ft 31	BPM bpm 49.5	RX9 kips 152
309	78.00	4	AV4 MAX MIN	23.2 23.8 22.6	8.4 9.4 7.1	5.4 5.6 5.3	32 33 31	50.2 50.9 49.5	151 157 144
313	79.00	4	AV4 MAX MIN	22.7 23.4 22.2	7.7 8.9 7.1	5.3 5.4 5.1	31 33 30	51.1 51.6 50.3	141 151 128
317	80.00	4	AV4 MAX MIN	22.3 23.3 21.7	6.9 7.1 6.5	5.2 5.4 5.0	31 33 29	51.4 52.2 50.5	128 143 109
324	81.00	7	AV7 MAX MIN	21.6 22.3 20.7	4.5 5.1 4.1	5.0 5.2 4.8	24 26 23	52.3 53.5 51.5	130 149 119
335	82.00	11	AV11 MAX MIN	25.1 27.2 21.5	10.7 14.9 5.0	5.9 6.5 5.0	30 34 22	48.3 52.5 46.0	255 314 151
349	83.00	14	AV14 MAX MIN	27.7 28.3 26.1	16.6 18.7 14.8	6.7 6.8 6.3	34 35 31	45.5 47.0 45.0	346 387 322
363	84.00	14	AV14 MAX MIN	28.1 29.3 26.6	17.7 19.9 14.3	6.8 7.1 6.3	34 36 31	45.2 46.9 44.1	366 432 329
377	85.00	14	AV14 MAX MIN	28.5 29.2 27.3	18.4 20.0 16.1	6.9 7.1 6.5	35 36 32	44.9 46.1 44.1	375 410 341
392	86.00	15	AV15 MAX MIN	28.0 28.9 27.2	16.1 17.9 15.1	6.7 6.9 6.5	33 34 32	45.3 46.2 44.7	326 348 314
410	87.00	18	AV18 MAX MIN	29.3 31.3 27.9	20.7 24.5 16.2	7.2 7.8 6.8	35 40 33	44.0 45.2 42.3	400 463 333
420	87.33	31	AV10 MAX MIN	31.2 33.0 30.3	26.3 28.1 24.3	7.7 8.0 7.5	38 40 36	42.4 43.0 41.7	526 606 466
430	87.67	29	AV10 MAX MIN	30.6 32.8 26.0	26.4 29.3 24.1	7.8 8.4 7.5	38 42 29	42.2 43.0 40.8	518 567 487
440	88.00	30	AV10 MAX MIN	31.1 31.9 30.0	29.1 31.6 27.6	7.7 7.9 7.4	39 40 37	42.4 43.4 41.9	567 616 531

Page 6 PDIPLOT2 2014.2.48.1 - Printed 21-April-2015

USH 10 over LLBDM - PIER 12 #16	
OP: RF	

APE D30-42, HP 14 x 73 Date: 21-April-2015

								Date. 21-7	April-2015	
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9	
	ft	bl/ft		ksi	ksi	ft	k-ft	bpm	kips	
			Average	25.3	12.3	6.0	32	48.2	256	
			Maximum	33.0	31.6	8.4	42	61.3	616	
			Minimum	17.5	3.0	3.6	13	40.8	33	
Total number of blows analyzed: 437										

BL# Sensors

1-440 F3: [D815] 93.0 (0.97); F4: [F607] 93.6 (0.97); A3: [K3550] 360.0 (1.05); A4: [K2524] 360.0 (1.05)

BL# Comments

3 Reported Reference EL 740.25

Time Summary

Drive 13 minutes 30 seconds 9:38 AM - 9:52 AM BN 1 - 440

Page 1 PDIPLOT2 2014.2.48.1 - Printed 22-April-2015

USH 1	0 over Little La	ike Butte des I	Norts - Pier 12	#16 Restrike			AF	PE D30-42, H	HP 14 x 73
<u>OP: T</u>	С							Date: 22-	April-2015
AR:	21.40 in ²							SP:	0.492 k/ft ³
LE:	92.50 ft							EM: 3	30,000 ksi
WS: 1	6,807.9 f/s							JC:	1.00 []
CSX:	Max Measure	d Compr. Stres	SS			STK:	O.E. Diesel Ha	mmer Stroke	e
CSB: Compression Stress at Bottom BPM: Blows per Minute									
EMX:	Max Transferr	ed Energy				RX9:	Max Case Met	nod Capacity	(JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
	ft	blows/ft		ksi	ksi	k-ft	ft	bpm	kips
10	88.25	40	AV10	33.3	30.9	43	8.2	41.3	611
			STD	0.7	0.8	2	0.1	0.4	17
			MAX	34.3	32.5	45	8.5	41.7	642
			MIN	32.0	29.8	41	8.0	40.6	586
20	88.53	36	AV10	34.0	31.6	45	8.3	41.0	620
	00.00		STD	0.5	1.1	2	0.2	0.4	13
			MAX	34.7	33.5	48	8.5	41.7	647
			MIN	33.2	30.1	41	8.0	40.5	600
20	00.01	20	A) (10	247	20.7	40	0 5	40 F	051
30	88.81	36	AV10	34.7	32.7	46	8.5	40.5	651
			STD	0.6	0.7	1	0.2	0.4	12
			MAX	35.6	33.7	48	8.8	41.1	670
			MIN	33.8	31.7	45	8.3	39.9	632
			Average	34.0	31.7	45	8.4	40.9	627
			Std. Dev.	0.8	1.2	2	0.2	0.5	22
			Maximum	35.6	33.7	48	8.8	41.7	670
			Minimum	32.0 I number of bl	29.8	41	8.0	39.9	586

Total number of blows analyzed: 30

BL# Sensors

1-30 F3: [D815] 93.0 (1.00); F4: [F607] 93.6 (1.00); A3: [K3550] 360.0 (1.10); A4: [K2524] 360.0 (1.10)

Time Summary

Drive 42 seconds 6:32 AM - 6:33 AM BN 1 - 30

USH 1 OP: RI	0 over LLBDI	M - PIER 12	2 #23)30-42, HP Date: 21-Ap				
AR:	21.40 in ²						L	SP: 0.4	492 k/ft ³			
LE: WS·1	92.50 ft 6,807.9 f/s							EM: 30,0 JC: 1	000 ksi .00 []			
	Max Measure	d Compr. S	stress		EMX: Max Transferred Energy							
	Compression				BPM: Blows per Minute RX9: Max Case Method Capacity (JC=0.9)							
	O.E. Diesel H											
BL#	depth ft	BLC bl/ft	TYPE	CSX ksi	CSB ksi	STK ft	EMX k-ft	BPM	RX9			
3	27.00	1	AV1	19.8	2.0	4.2	29	bpm 56.9	kips 0			
Ū	27.00	•	MAX	19.8	2.0	4.2	29	56.9	Ő			
			MIN	19.8	2.0	4.2	29	56.9	0			
4	27.50	2	AV1	15.9	5.4	3.5	20	61.5	102			
			MAX	15.9	5.4	3.5	20	61.5	102			
			MIN	15.9	5.4	3.5	20	61.5	102			
5	28.00	2	AV1	19.2	7.4	4.5	27	54.8	161			
			MAX	19.2	7.4	4.5	27	54.8	161			
			MIN	19.2	7.4	4.5	27	54.8	161			
7	29.00	2	AV2	22.6	8.6	5.4	32	50.6	172			
			MAX	22.6	8.7	5.4	32	50.7	182			
			MIN	22.6	8.6	5.3	31	50.5	162			
9	30.00	2	AV2	24.0	9.0	5.7	34	49.1	181			
			MAX	24.3	9.1	5.8	35	49.4	185			
			MIN	23.6	8.9	5.6	33	48.8	177			
12	31.00	3	AV3	23.7	9.1	5.6	32	49.4	187			
			MAX	24.0	9.2	5.7	33	49.5	198			
			MIN	23.5	9.0	5.6	30	49.1	181			
17	32.00	5	AV5	22.8	7.8	5.4	30	50.3	165			
			MAX	24.3	8.7	5.9	33	51.7	182			
			MIN	21.4	7.2	5.1	27	48.4	150			
21	33.00	4	AV4	22.3	8.3	5.3	28	51.0	175			
			MAX	22.7	9.0	5.4	30	51.2	204			
			MIN	22.0	7.8	5.2	27	50.3	162			
26	34.00	5	AV5	23.5	9.7	5.6	30	49.5	196			
			MAX	23.9	10.3	5.7	30	49.8	200			
			MIN	23.3	9.4	5.5	29	49.1	191			
31	35.00	5	AV5	23.7	9.8	5.7	30	49.2	197			
			MAX	24.0	10.1	5.8	31	49.7	207			
			MIN	23.4	9.4	5.6	29	48.7	188			
36	36.00	5	AV5	23.9	10.2	5.8	30	48.9	208			
			MAX	24.8	10.5	5.9	31	49.3	213			
			MIN	23.1	10.0	5.7	28	48.2	202			
42	37.00	6	AV6	23.8	9.7	5.7	29	49.1	193			
			MAX	24.7	10.2	6.0	32	49.7	205			
			MIN	23.0	8.6	5.6	27	48.1	180			

GRL Engineers, Inc. Case Method & iCAP® Results

Page 1 PDIPLOT2 2014.2.48.1 - Printed 21-April-2015

Page 2 PDIPLOT2 2014.2.48.1 - Printed 21-April-2015

USH 10 over LLBDM - PIER 12 #23 OP: RF

OP: RI	F						[Date: 21-Ap	ril-2015
BL#	depth ft	BLC bl/ft	TYPE	CSX ksi	CSB ksi	STK ft	EMX k-ft	BPM bpm	RX9 kips
49	38.00	7	AV7 MAX MIN	22.6 23.4 20.8	7.8 8.4 7.1	5.3 5.5 4.9	26 28 23	50.7 52.6 49.8	177 184 166
56	39.00	7	AV7 MAX MIN	23.5 24.3 22.8	9.7 10.3 8.9	5.6 5.8 5.4	28 30 27	49.5 50.3 48.6	198 204 190
62	40.00	6	AV6 MAX MIN	23.6 24.2 23.0	9.0 10.1 8.4	5.6 5.9 5.4	29 31 27	49.5 50.2 48.5	181 192 174
68	41.00	6	AV6 MAX MIN	22.6 23.1 22.1	8.0 8.6 7.2	5.4 5.4 5.2	27 28 26	50.5 51.2 50.2	167 176 149
74	42.00	6	AV6 MAX MIN	21.7 22.2 21.1	7.1 7.2 6.9	5.1 5.2 5.0	26 27 25	51.6 52.4 51.1	155 160 148
81	43.00	7	AV7 MAX MIN	22.0 22.3 21.6	7.6 8.0 7.2	5.2 5.3 5.1	25 26 24	51.2 51.7 50.8	164 169 158
89	44.00	8	AV8 MAX MIN	22.5 23.1 21.8	7.8 8.2 7.4	5.4 5.5 5.2	25 26 24	50.6 51.3 49.9	168 178 161
99	45.00	10	AV10 MAX MIN	24.8 26.3 23.0	11.2 14.0 7.7	5.9 6.4 5.4	28 31 24	48.3 50.4 46.5	247 300 176
110	46.00	11	AV11 MAX MIN	26.3 27.1 25.8	14.4 15.6 13.2	6.4 6.6 6.2	31 32 30	46.5 47.1 45.7	323 348 297
120	47.00	10	AV10 MAX MIN	25.9 26.3 25.0	13.2 14.4 12.2	6.3 6.5 6.1	30 31 29	46.9 47.6 46.3	290 303 269
127	48.00	7	AV7 MAX MIN	25.0 25.7 24.1	11.3 12.1 10.2	6.1 6.3 5.9	30 32 29	47.6 48.5 46.8	226 247 199
133	49.00	6	AV6 MAX MIN	24.2 24.8 23.3	9.3 10.0 7.8	5.8 6.1 5.6	30 31 27	48.6 49.5 47.7	179 193 161
140	50.00	7	AV7 MAX MIN	22.8 23.5 21.6	8.1 9.1 7.2	5.5 5.6 5.2	26 27 25	50.2 51.3 49.4	178 191 169

USH 10 over LLBDM - PIER 12 #23 OP: RF

OP: RF							Γ	Date: 21-Ap	ril-2015
BL#	depth ft	BLC bl/ft	TYPE	CSX ksi	CSB ksi	STK ft	EMX k-ft	BPM bpm	RX9 kips
147	51.00	7	AV7	24.3	10.3	5.8	29	48.6	203
			MAX MIN	24.7 23.8	11.5 9.4	5.9 5.7	31 28	49.2 48.2	226 191
			IVIIIN	23.0	9.4	5.7	20	40.2	191
153	52.00	6	AV6	24.0	10.8	5.8	29	48.8	196
			MAX	24.6	11.4	5.9	31	49.4	216
			MIN	23.5	10.2	5.6	28	48.3	186
160	53.00	7	AV7	24.1	11.0	5.8	29	48.7	215
			MAX	24.4	11.8	5.9	30	49.2	223
			MIN	23.6	10.6	5.7	28	48.5	207
167	54.00	7	AV7	23.9	10.8	5.7	28	49.0	206
			MAX	24.3	11.4	5.9	29	49.4	214
			MIN	23.7	10.3	5.6	28	48.5	199
173	55.00	6	AV6	23.7	10.0	5.7	29	49.2	183
			MAX	24.7	10.8	5.9	31	49.8	197
			MIN	23.1	8.8	5.5	27	48.3	163
178	56.00	5	AV5	23.6	10.4	5.6	30	49.4	179
			MAX	24.1	10.9	5.7	31	49.7	183
			MIN	22.9	9.8	5.6	28	49.0	174
184	57.00	6	AV6	23.3	10.2	5.6	29	49.7	176
			MAX	23.7	11.7	5.7	30	50.1	211
			MIN	22.9	8.9	5.5	28	49.2	158
189	58.00	5	AV5	22.1	9.3	5.3	28	51.0	150
			MAX	22.4	9.6	5.4	28	51.3	159
			MIN	21.8	8.6	5.2	27	50.6	140
194	59.00	5	AV5	22.7	9.6	5.4	29	50.4	159
			MAX	23.7	10.6	5.7	31	51.0	168
			MIN	22.0	9.1	5.3	27	49.2	143
199	60.00	5	AV5	22.5	9.2	5.4	28	50.5	149
			MAX MIN	23.0 22.3	9.6 8.9	5.5 5.3	29 28	50.9 49.9	153 145
			IVIIIN	22.5	0.9	5.5	20	49.9	145
204	61.00	5	AV5	22.4	9.0	5.3	28	50.7	151
			MAX MIN	23.1 22.0	9.6 8.6	5.5 5.2	29 26	51.2 50.1	155 146
			IVIIIN	22.0	0.0	5.2	20	50.1	140
209	62.00	5	AV5	22.3	8.6	5.3	28	50.8	148
			MAX MIN	23.1 21.1	9.3 8.3	5.4 5.1	29 26	51.9 50.2	150 143
			IVITIN	۲.۱	0.0	J. I	20	JU.Z	140
215	63.00	6	AV6	22.0	8.1	5.2	26	51.1	151
			MAX MIN	22.5 20.2	8.6 7.3	5.4 4.9	27 23	53.0 50.4	164 142
220	64.00	5	AV5	22.3	9.4	5.4	27	50.6	159

Page 4 PDIPLOT2 2014.2.48.1 - Printed 21-April-2015

USH 10 over LLBDM - PIER 1	2 #23

APE D30-42, HP 14 x 73
AFE D30-42, HF 14 X / 3
Data: 21 April 2015

OP: RF			2 #23					Date: 21-Ap	
BL#	depth ft	BLC bl/ft	TYPE MAX MIN	CSX ksi 23.6 20.9	CSB ksi 10.8 8.3	STK ft 5.7 5.0	EMX k-ft 30 24	BPM bpm 52.1 49.0	RX9 kips 183 142
226	65.00	6	AV6 MAX MIN	22.3 23.1 21.4	8.7 9.6 7.8	5.4 5.6 5.1	27 28 25	50.6 51.6 49.6	155 166 147
233	66.00	7	AV7 MAX MIN	21.5 23.4 20.7	7.7 10.6 5.5	5.1 5.7 4.9	24 27 22	51.7 52.8 49.3	157 201 119
239	67.00	6	AV6 MAX MIN	23.6 23.9 23.1	10.9 11.7 10.2	5.7 5.8 5.6	29 30 28	49.2 49.7 48.8	211 247 186
245	68.00	6	AV6 MAX MIN	23.3 23.9 22.0	10.3 11.2 9.2	5.5 5.7 5.3	28 29 26	49.9 51.0 49.2	211 226 199
250	69.00	5	AV5 MAX MIN	22.3 23.2 21.5	10.0 10.8 9.2	5.3 5.6 5.2	27 29 26	50.7 51.3 49.7	187 227 162
256	70.00	6	AV6 MAX MIN	22.7 24.0 21.8	9.2 10.5 8.2	5.4 5.7 5.2	27 29 25	50.3 51.4 49.1	177 206 154
262	71.00	6	AV6 MAX MIN	22.3 23.5 21.0	8.6 10.3 7.5	5.3 5.6 5.0	27 28 24	50.9 52.3 49.7	170 228 147
268	72.00	6	AV6 MAX MIN	22.5 23.4 22.0	9.7 10.7 8.6	5.3 5.6 5.2	27 29 27	50.6 51.1 49.5	200 251 154
273	73.00	5	AV5 MAX MIN	22.1 22.6 21.4	8.2 8.6 7.2	5.3 5.3 5.2	27 28 26	50.9 51.4 50.7	145 153 138
278	74.00	5	AV5 MAX MIN	21.2 21.9 20.4	7.5 8.6 6.5	5.1 5.2 4.9	26 26 25	51.9 52.8 51.3	153 174 135
284	75.00	6	AV6 MAX MIN	22.3 23.1 21.3	7.0 7.5 6.2	5.3 5.5 5.1	26 28 25	50.8 51.9 49.8	148 158 137
289	76.00	5	AV5 MAX MIN	21.7 22.8 20.9	7.8 8.6 6.8	5.2 5.4 5.0	26 28 25	51.3 52.3 50.3	152 176 129
294	77.00	5	AV5 MAX	22.1 22.4	7.4 7.9	5.3 5.4	27 28	50.9 51.3	145 167

Page	5
PDIPLOT2 2014.2.48.1 - Printed 21-April-2015	5

USH 10 over LLBDM - PIER 12 #23

APE D30-42, HP 14 x 73
Data: 21 April 2015

OP: RF								Date: 21-Ap	ril-2015
BL#	depth ft	BLC bl/ft	TYPE MIN	CSX ksi 21.8	CSB ksi 6.8	STK ft 5.2	EMX k-ft 26	BPM bpm 50.6	RX9 kips 127
300	78.00	6	AV6 MAX MIN	21.9 22.2 21.5	7.0 9.1 5.8	5.3 5.3 5.1	26 26 25	51.0 51.6 50.7	163 208 145
306	79.00	6	AV6 MAX MIN	22.9 24.2 22.3	9.1 10.0 7.9	5.5 5.9 5.3	28 30 26	49.9 50.9 48.5	187 211 161
311	80.00	5	AV5 MAX MIN	22.7 25.2 21.7	10.0 11.1 8.5	5.3 5.5 5.1	28 29 26	50.7 51.6 50.0	196 242 136
323	81.00	12	AV12 MAX MIN	23.5 26.1 20.3	9.1 11.2 5.1	5.7 6.3 5.0	25 29 20	49.4 52.5 46.7	203 236 141
339	82.00	16	AV16 MAX MIN	28.4 31.0 24.6	19.2 24.1 13.7	7.1 7.8 6.0	33 38 26	44.4 48.0 42.3	383 463 308
358	83.00	19	AV19 MAX MIN	28.9 30.0 27.9	20.7 24.2 17.7	7.3 7.6 6.9	34 37 31	43.8 44.8 42.7	433 551 353
379	84.00	21	AV21 MAX MIN	29.6 30.7 28.6	23.2 24.5 21.4	7.5 7.9 7.2	35 37 33	43.1 43.9 42.1	478 533 425
399	85.00	20	AV20 MAX MIN	29.3 30.1 27.9	23.1 24.5 21.7	7.4 7.7 7.0	34 37 32	43.4 44.6 42.6	469 531 429
421	86.00	22	AV22 MAX MIN	30.0 31.3 29.0	24.0 25.3 22.3	7.6 8.0 7.3	35 38 33	42.8 43.7 41.8	478 568 430
451	87.00	30	AV30 MAX MIN	31.5 32.7 29.2	28.5 31.9 25.2	8.0 8.5 7.4	37 40 33	41.7 43.4 40.6	568 704 496
472	87.56	37	AV21 MAX MIN	32.6 33.6 31.6	32.0 34.3 29.1	8.4 8.8 8.0	39 42 37	40.8 41.8 39.9	635 678 574
482	87.79	44	AV10 MAX MIN	34.0 34.8 33.0	34.7 36.7 33.6	8.9 9.1 8.6	42 44 40	39.8 40.4 39.2	688 710 658
492	88.00	48	AV10 MAX MIN	35.1 37.7 33.1	37.7 40.2 35.9	8.9 9.1 8.6	42 44 40	39.6 40.3 39.2	742 775 711

Page 6 PDIPLOT2 2014.2.48.1 - Printed 21-April-2015

USH 10 over LLBDM - PIER 12 #23 OP: RF APE D30-42, HP 14 x 73 Date: 21-April-2015

<u>UP. RF</u>								Date. Z I-Ap	111-2013
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
	ft	bl/ft		ksi	ksi	ft	k-ft	bpm	kips
			Average	25.8	15.2	6.3	31	47.3	305
			Maximum	37.7	40.2	9.1	44	61.5	775
			Minimum	15.9	2.0	3.5	20	39.2	0
Total number of blows analyzed: 490									

BL# Sensors

1-492 F3: [F607] 93.6 (1.00); F4: [D815] 93.0 (1.00); A3: [K2524] 360.0 (1.00); A4: [K3550] 360.0 (1.00)

BL# Comments

3 Reported Reference EL 740.25

Time Summary

Drive 10 minutes 48 seconds 10:08 AM - 10:18 AM BN 1 - 492

Page 1 PDIPLOT2 2014.2.48.1 - Printed 22-April-2015

USH [·]	10 over Little La	ake Butte des l	Morts - Pier 12	#23 Restrike			AF	PE D30-42, H	P 14 x 73
OP: T	С				Date: 22-A				
AR:	21.40 in ²				SP: (0.492 k/ft ³			
LE: 92.50 ft EM: 30									
WS: 1	6,807.9 f/s							JC:	1.00 []
CSX: Max Measured Compr. Stress STK: O.E. Diesel Hammer Stroke									
CSB:	Compression	Stress at Botto	om			BPM:	Blows per Minu	ite	
EMX:	Max Transferr	ed Energy				RX9:	Max Case Meth	nod Capacity	(JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
	ft	blows/ft		ksi	ksi	k-ft	ft	bpm	kips
10	88.13	80	AV10	34.7	37.3	42	8.5	40.6	777
			STD	1.4	1.9	1	0.2	0.5	72
			MAX	37.2	40.9	45	9.0	41.4	925
			MIN	32.8	34.3	40	8.1	39.5	686
20	88.25	80	AV10	35.6	38.8	43	8.3	41.0	826
			STD	1.4	1.3	1	0.1	0.3	43
			MAX	39.0	40.2	45	8.6	41.4	910
			MIN	33.9	36.5	41	8.1	40.3	782
30	88.38	80	AV10	36.5	40.1	43	8.5	40.6	843
			STD	1.6	0.8	3	0.2	0.4	40
			MAX	39.4	42.1	45	8.8	41.1	896
			MIN	33.5	38.7	36	8.3	39.9	776
			Average	35.6	38.7	43	8.4	40.7	815
			Std. Dev.	1.7	1.8	2	0.2	0.5	60
			Maximum	39.4	42.1	45	9.0	41.4	925
			Minimum	32.8	34.3	36	8.1	39.5	686
			Tota	l number of h	owe analyzed	1.30			

Total number of blows analyzed: 30

BL# Sensors

1-30 F3: [F607] 93.6 (1.00); F4: [D815] 93.0 (1.00); A3: [K2524] 360.0 (1.05); A4: [K3550] 360.0 (1.05)

Time Summary

Drive 42 seconds 6:39 AM - 6:40 AM BN 1 - 30

USH 1 OP: RF	0 over LLBDN =	/I - PIER 12	2 #56					030-42, HP Date: 21-Ap		
AR: LE:	21.40 in ² 92.58 ft 6,807.9 f/s	SP: 0.492 k/ft³ EM: 30,000 ksi JC: 1.00 []								
CSX: I	Max Measure Compression					MX: Max Tra PM: Blows p			.00 []	
	O.E. Diesel Ha					X9: Max Ca		Capacity (J	C=0.9)	
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9	
	ft	bl/ft		ksi	ksi	ft	k-ft	bpm	kips	
3	23.30	7	AV1	21.1	4.2	4.9	28	52.6	55	
			MAX	21.1	4.2	4.9	28	52.6	55	
			MIN	21.1	4.2	4.9	28	52.6	55	
61	32.00	7	AV58	21.8	7.7	5.2	27	51.3	154	
			MAX	24.6	10.6	6.1	32	59.3	225	
			MIN	15.9	2.7	3.8	17	47.7	31	
68	33.00	7	AV7	21.9	8.7	5.3	26	51.0	167	
			MAX	22.6	9.5	5.4	27	51.7	191	
			MIN	21.5	7.8	5.1	25	50.4	154	
74	34.00	6	AV6	22.2	8.3	5.3	28	50.9	154	
			MAX	22.5	9.5	5.4	28	51.3	162	
			MIN	21.8	7.1	5.2	27	50.5	143	
80	35.00	6	AV6	22.3	8.4	5.3	28	50.9	160	
			MAX	22.9	9.9	5.4	29	52.2	177	
			MIN	21.1	7.2	5.0	25	50.4	149	
85	36.00	5	AV5	22.9	9.2	5.5	30	50.0	172	
			MAX	23.7	10.6	5.7	32	50.8	193	
			MIN	22.1	8.5	5.3	28	49.2	154	
90	37.00	5	AV5	22.5	7.7	5.3	29	50.6	148	
			MAX	22.9	8.4	5.4	31	51.1	156	
			MIN	22.1	7.3	5.2	28	50.2	143	
96	38.00	6	AV6	23.6	9.1	5.6	30	49.5	177	
			MAX	24.0	10.4	5.7	32	50.1	201	
			MIN	23.1	7.4	5.5	29	49.1	162	
101	39.00	5	AV5	25.3	12.2	6.1	32	47.6	246	
			MAX	26.1	12.7	6.3	33	48.0	274	
			MIN	24.8	11.3	6.0	30	46.7	217	
106	40.00	5	AV5	26.0	14.6	6.3	32	46.7	302	
			MAX	26.3	16.0	6.5	33	47.2	318	
			MIN	25.7	13.6	6.2	32	46.3	284	
112	41.00	6	AV6	26.3	14.3	6.4	33	46.5	302	
			MAX	26.7	15.9	6.5	34	47.1	317	
			MIN	25.6	13.5	6.2	32	46.0	291	
119	42.00	7	AV7	25.8	13.2	6.3	33	46.9	269	
			MAX	26.5	15.0	6.4	34	47.4	292	
			MIN	25.3	12.2	6.1	31	46.4	252	

Page 1 PDIPLOT2 2014.2.48.1 - Printed 21-April-2015

Page 2 PDIPLOT2 2014.2.48.1 - Printed 21-April-2015

USH 10 over LLBDM - PIER 12 #56

APE D30-42, HP 14 x 73
Dete: 01 April 001E

OP: RF								Date: 21-Ap	ril-2015
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
	ft	bl/ft		ksi	ksi	ft	k-ft	bpm	kips
127	43.00	8	AV8	25.0	11.5	6.0	31	47.8	226
127	10.00	Ũ	MAX	25.8	12.9	6.3	32	48.8	244
			MIN	24.1	10.1	5.8	28	47.0	202
								47.0	
135	44.00	8	AV8	23.5	9.3	5.6	28	49.4	179
			MAX	24.8	11.8	6.0	30	50.6	214
			MIN	22.5	6.8	5.4	26	48.1	155
145	45.00	10	AV10	21.9	7.2	5.3	24	51.0	157
			MAX	22.6	8.0	5.4	25	52.0	171
			MIN	21.1	6.2	5.1	23	50.2	151
154	46.00	9	AV9	22.7	8.6	5.4	26	50.2	182
			MAX	23.2	10.0	5.6	27	51.1	210
			MIN	21.9	7.1	5.2	25	49.7	164
162	47.00	8	AV8	22.7	8.9	5.5	27	50.2	171
			MAX	24.4	9.3	5.9	29	50.9	186
			MIN	22.0	7.6	5.3	26	48.5	165
169	48.00	7	AV7	22.8	9.0	5.5	27	50.0	172
			MAX	23.8	9.5	5.7	28	50.5	197
			MIN	22.3	8.8	5.4	27	49.2	164
175	49.00	6	AV6	22.2	8.3	5.4	27	50.6	160
			MAX	23.5	9.9	5.6	29	51.5	181
			MIN	21.3	7.5	5.2	25	49.4	148
180	50.00	5	AV5	22.8	9.2	5.5	29	49.9	163
			MAX	23.3	9.8	5.6	30	50.9	169
			MIN	22.0	8.1	5.3	27	49.4	151
185	51.00	5	AV5	23.1	9.6	5.6	30	49.4	169
			MAX	23.8	9.9	5.8	31	49.8	173
			MIN	22.7	9.4	5.5	29	48.8	164
190	52.00	5	AV5	22.8	9.2	5.5	28	49.8	164
			MAX	23.3	9.4	5.7	29	50.1	166
			MIN	22.4	9.1	5.5	28	49.2	162
196	53.00	6	AV6	22.4	9.0	5.4	28	50.3	161
			MAX	22.9	9.9	5.6	29	51.3	173
			MIN	21.3	8.5	5.2	26	49.6	151
202	54.00	6	AV6	22.2	8.4	5.4	27	50.5	158
		-	MAX	23.9	9.0	5.8	31	52.1	164
			MIN	20.5	8.0	5.0	25	48.7	148
207	55.00	5	AV5	23.2	9.0	5.6	30	49.4	166
		-	MAX	24.0	9.8	5.8	32	49.9	176
			MIN	22.7	8.4	5.5	28	48.7	157

Dava	2
Page	3
PDIPLOT2 2014.2.48.1 - Printed 21-April-2015	

USH 10 over LLBDM - PIER 12 #56 OP: RF

OP: RF							[Date: 21-Ap	ril-2015
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
010	ft	bl/ft		ksi	ksi	ft	k-ft	bpm	kips
212	56.00	5	AV5 MAX	22.2 23.3	7.5 8.2	5.4 5.7	29 31	50.5 51.9	142 157
			MIN	23.3	8.2 7.0	5.7	27	49.3	137
				20.5	7.0	5.1	21	40.0	100
217	57.00	5	AV5	20.9	6.4	5.1	26	51.8	135
			MAX	21.9	6.8	5.3	28	52.7	138
			MIN	20.1	6.1	4.9	25	50.8	130
222	58.00	5	AV5	20.7	5.7	5.0	26	52.1	121
		· ·	MAX	21.0	6.7	5.1	27	52.4	134
			MIN	20.2	5.0	5.0	26	51.7	112
227	59.00	5	AV5	22.0	7.3	5.4	28	50.5	138
221	00.00	0	MAX	23.8	8.0	5.8	31	52.8	146
			MIN	20.0	5.7	4.9	25	48.7	120
233	60.00	6	AV6	22.0	7.4	5.4	27	50.5	140
200	00.00	0	MAX	22.0	8.1	5.5	28	50.5 51.0	140
			MIN	21.4	6.8	5.3	25	49.9	133
000	C1 00	F		00.0	0.5	Γ 4	00		105
238	61.00	5	AV5 MAX	22.0 22.9	6.5 6.8	5.4 5.6	28 29	50.5 51.1	135 144
			MIN	21.3	6.1	5.2	27	49.6	126
		_							
243	62.00	5	AV5	21.6	6.1	5.3	28	51.0	140
			MAX MIN	22.3 20.8	7.0 5.6	5.4 5.1	29 25	51.8 50.4	153 132
								00.1	
247	63.00	4	AV4	22.7	7.5	5.5	30	49.8	141
			MAX MIN	23.2 22.2	7.7 7.3	5.7 5.4	31 29	50.4 49.1	148 135
			IVIIIN	22.2	7.5	5.4	29	49.1	155
252	64.00	5	AV5	22.0	7.0	5.4	28	50.5	138
			MAX	22.6	7.5	5.5	29	50.9	144
			MIN	21.5	6.7	5.3	27	50.0	135
257	65.00	5	AV5	21.5	5.7	5.3	27	51.0	133
			MAX	22.3	6.2	5.4	28	51.7	146
			MIN	20.7	5.0	5.1	26	50.2	125
262	66.00	5	AV5	21.2	5.4	5.2	26	51.4	131
			MAX	21.7	5.8	5.2	27	51.8	134
			MIN	20.9	4.8	5.1	25	51.1	129
267	67.00	5	AV5	21.4	6.6	5.3	27	51.0	135
		-	MAX	21.7	6.9	5.4	28	51.3	143
			MIN	21.0	6.3	5.2	25	50.5	127
272	68.00	5	AV5	22.1	7.2	5.4	28	50.3	142
<i>L1L</i>	00.00	0	MAX	22.8	7.7	5.6	30	51.0	147
			MIN	21.3	6.8	5.3	27	49.4	139
278	69.00	6	AV6	21.6	6.3	5.3	25	50.9	149
210	09.00	U	AVU	21.0	0.3	0.0	20	50.9	149

Page 4 PDIPLOT2 2014.2.48.1 - Printed 21-April-2015

USH 10 over LLBDM - PIER 12 #	56

APE D30-42, HP 14 x 73
Data: 21 April 2015

								Date: 21-April-2015		
BL#	depth ft	BLC bl/ft	TYPE MAX MIN	CSX ksi 21.9 21.0	CSB ksi 7.0 6.0	STK ft 5.4 5.1	EMX k-ft 26 24	BPM bpm 51.6 50.5	RX9 kips 155 146	
283	70.00	5	AV5 MAX MIN	23.5 24.8 22.0	7.6 8.2 7.0	5.8 6.1 5.4	29 31 27	48.9 50.4 47.4	156 170 140	
288	71.00	5	AV5 MAX MIN	24.8 25.7 23.4	8.3 8.4 8.2	6.1 6.3 5.7	31 33 28	47.5 49.1 46.7	172 187 166	
293	72.00	5	AV5 MAX MIN	25.5 26.2 24.9	9.3 9.4 9.1	6.3 6.5 6.1	31 32 30	46.9 47.4 46.2	201 213 193	
299	73.00	6	AV6 MAX MIN	26.6 27.1 25.8	12.3 13.7 10.7	6.6 6.7 6.3	32 33 30	45.9 46.8 45.4	251 275 226	
304	74.00	5	AV5 MAX MIN	28.0 29.0 26.9	17.0 20.5 14.2	7.1 7.5 6.8	34 36 32	44.2 45.3 43.2	330 399 277	
310	75.00	6	AV6 MAX MIN	28.6 29.6 28.0	17.7 19.3 16.7	7.3 7.6 7.1	36 38 34	43.8 44.2 42.8	353 387 333	
318	76.00	8	AV8 MAX MIN	27.7 28.2 26.8	15.6 16.7 14.9	6.9 7.1 6.6	33 34 31	44.7 45.7 44.3	318 336 305	
319	76.00	9	AV1 MAX MIN	28.7 28.7 28.7	17.5 17.5 17.5	7.2 7.2 7.2	35 35 35	43.8 43.8 43.8	343 343 343	
341	77.00	14	AV22 MAX MIN	29.4 31.2 27.9	20.1 25.0 17.8	7.5 8.1 7.0	36 39 32	43.1 44.5 41.4	391 471 349	
356	78.00	15	AV15 MAX MIN	30.9 31.8 30.0	26.5 28.3 23.9	8.0 8.3 7.6	38 40 36	41.7 42.7 41.0	510 538 471	
376	79.00	20	AV20 MAX MIN	31.1 31.9 30.3	27.1 30.1 24.6	8.1 8.4 7.9	38 39 37	41.5 42.0 40.9	530 593 501	
410	81.08	31	AV34 MAX MIN	32.1 33.8 30.6	28.9 31.9 25.8	8.5 9.1 8.0	39 43 36	40.6 41.7 39.3	583 645 527	
420	81.33	40	AV10 MAX	33.0 33.6	30.8 31.8	8.8 9.0	41 42	40.0 40.7	634 642	

USH 10 over LLBDM - PIER 12 #56 APE D30-42, HP 14 x									
OP: RF Date: 21-April-2									ril-2015
BL#	depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
	ft	bl/ft		ksi	ksi	ft	k-ft	bpm	kips
			MIN	32.0	29.7	8.4	39	39.5	627
430	81.58	40	AV10	33.4	30.9	9.0	42	39.6	645
			MAX	34.2	31.8	9.2	44	39.9	655
			MIN	32.8	30.3	8.8	41	39.0	632
Average 25.2 13.6 6.3 31 47.5							47.5	272	
		Ν	/laximum	34.2	31.9	9.2	44	59.3	655
		1	Minimum	15.9	2.7	3.8	17	39.0	31
Total number of blows analyzed: 428									

BL# Sensors

1-430 F3: [F607] 93.6 (0.98); F4: [D815] 93.0 (0.98); A3: [K2524] 360.0 (1.02); A4: [K3550] 360.0 (1.02)

BL# Comments

3 Reported Reference EL 739.42

Time Summary

Drive 11 minutes 5 seconds 10:34 AM - 10:46 AM BN 1 - 430

Page 1 PDIPLOT2 2014.2.48.1 - Printed 22-April-2015

USH 10 over Little Lake Butte des Morts - Pier 12 #56 Restrike APE D30-42, HP 14 x 73									
OP: TC Date: 22-April-2015									
AR:	AR: 21.40 in ² SP: 0.492 k/f								
LE: 92.58 ft EM: 30,00								0,000 ksi	
WS: 16,807.9 f/s JC: 1.00 []									
CSX: Max Measured Compr. Stress STK: O.E. Diesel Hammer Stroke									
CSB: Compression Stress at Bottom BPM: Blows per Minute								ite	
EMX:	Max Transferr	ed Energy				RX9:	Max Case Meth	nod Capacity	(JC=0.9)
BL#	depth	BLC	TYPE	CSX	CSB	EMX	STK	BPM	RX9
	ft	blows/ft		ksi	ksi	k-ft	ft	bpm	kips
10	81.79	48	AV10	33.1	33.1	42	8.3	41.1	637
			STD	0.5	0.8	1	0.2	0.5	21
			MAX	34.1	34.5	44	8.6	41.7	676
			MIN	32.3	31.6	40	8.0	40.4	593
20	82.00	48	AV10	33.3	32.9	43	8.3	41.1	627
			STD	0.6	0.7	2	0.2	0.5	14
			MAX	34.2	34.0	46	8.7	41.9	652
			MIN	32.5	32.1	40	7.9	40.2	612
20	00.01	40	A) (10	22.0	22.0	44		41.0	COO
30	82.21	48	AV10	33.2	32.6	41	8.2	41.2	629
			STD	0.4	0.6	3	0.1	0.4	21
			MAX	34.1	33.6	44	8.5	41.7	660
			MIN	32.6	31.4	33	8.0	40.6	586
			Average	33.2	32.8	42	8.3	41.1	631
									20
			Maximum	34.2	34.5	46	8.7	41.9	676
			Minimum_	32.3	31.4	33	7.9	40.2	586
			Tota	l number of bl	owe analyzed	1· 30			

Total number of blows analyzed: 30

BL# Sensors

1-30 F3: [F607] 93.6 (1.00); F4: [D815] 93.0 (1.00); A3: [K2524] 360.0 (1.05); A4: [K3550] 360.0 (1.05)

Time Summary

Drive 42 seconds 6:49 AM - 6:50 AM BN 1 - 30

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

USH 10 over LLBDM; Pile: PIER 12 #1 EOID APE D30-42, HP 14 x 73; Blow: 418 GRL Engineers, Inc.

Test: 21-Apr-2015 09:23 CAPWAP(R) 2014-1 OP: RF

			CAPW	AP SUMMARY	RESULTS			
Total CAP	WAP Capac:	ity: 58	0.0; alor	ng Shaft	95.0; at	Toe 485	5.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				580.0				
1	13.2	8.9	0.0	580.0	0.0	0.00	0.00	0.00
2	19.9	15.5	0.0	580.0	0.0	0.00	0.00	0.00
3	26.5	22.1	2.0	578.0	2.0	0.30	0.06	0.2
4	33.1	28.8	3.0	575.0	5.0	0.45	0.10	0.27
5	39.7	35.4	3.0	572.0	8.0	0.45	0.10	0.27
6	46.3	42.0	3.0	569.0	11.0	0.45	0.10	0.27
7	52.9	48.6	3.0	566.0	14.0	0.45	0.10	0.27
8	59.6	55.2	3.0	563.0	17.0	0.45	0.10	0.27
9	66.2	61.9	4.0	559.0	21.0	0.60	0.13	0.27
10	72.8	68.5	7.0	552.0	28.0	1.06	0.23	0.27
11	79.4	75.1	7.0	545.0	35.0	1.06	0.23	0.27
12	86.0	81.7	10.0	535.0	45.0	1.51	0.32	0.27
13	92.7	88.3	50.0	485.0	95.0	7.55	1.61	0.27
Avg. Sh	aft		7.3			1.08	0.23	0.27
То	e		485.0				351.84	0.14
Soil Mode	1 Paramete	ers/Extens	ions		Sh	aft T	oe	
Quake		(i:	n)		C	.25 0.	47	
Case Damp	ing Factor	-			C	.67 1.	78	
Damping T	уре				Visc	ous Smi	th	
Unloading		(%	of loadi	ing quake)		100	90	
Reloading		-	of Ru)	5 1			00	
-		cluded in	Toe Quake	e) (in)		0.	22	
CAPWAP ma	tch quali	tv =	3.89	(Way	e Up Match	$) \cdot RSA = ($	า	
	Final Set	-	0.25 i	-	Count		B b/ft	
	Final Set		0.22 i	-	Count		5 b/ft	
Transducer				; F4(F607) CA			5 5/10	
				; A4(K2524) CA				
-	Comp. Stre	ess =	33.1 k	-	48.7 ms,			
max. Comp	. Stress	=	33.8 k		92.7 ft,			
max. Tens	. Stress	=	-5.63 k	ksi (Z=	72.8 ft,	T= 67.0 1	ms)	
_	(42 0 1				(

= 43.8 kip-ft; max. Measured Top Displ. (DMX)= 1.31 in

max. Comp. Stress max. Tens. Stress max. Energy (EMX)

USH 10 over LLBDM; Pile: PIER 12 #1 EOID APE D30-42, HP 14 x 73; Blow: 418 GRL Engineers, Inc. Test: 21-Apr-2015 09:23 CAPWAP(R) 2014-1 OP: RF

	- •									
Pile			max.		max.	max		max.	max.	max
Sgmnt			'orce	Force	Comp.	Tens			Veloc.	Displ
No.	-				Stress	Stres		ergy	5 . /	
	1	Et	kips	kips	ksi	ks	31 KI]	p-ft	ft/s	i
1			08.3	-34.6	33.1	-1.6		43.8	18.0	1.3
2			05.6	-34.0	33.0	-1.5		43.6	18.0	1.3
4			03.2	-38.0	32.9	-1.7		43.0	18.0	1.2
6			05.7	-57.5	33.0	-2.6		42.3	17.9	1.2
8			12.1	-75.4	33.3	-3.5		41.5	17.7	1.1
10			08.5	-90.3	33.1	-4.2		39.8	17.5	1.1
12			99.2	-93.7	32.7	-4.3		37.8	17.3	1.0
14			89.9	-90.4	32.2	-4.2		35.6	17.1	0.9
15			577.2	-84.3	31.6	-3.9		34.1	17.0	0.9
16			80.7	-90.7	31.8	-4.2		33.4	16.9	0.9
17			68.1	-87.1	31.2	-4.0		31.8	16.8	0.9
18			572.1	-85.5	31.4	-3.9		30.9	16.7	0.8
19			60.8	-84.3	30.9	-3.9		29.3	16.6	0.8
20 21			66.9 53.6	-99.5	31.2 30.5	-4.6		28.4 26.4	16.4 16.2	0.7 0.7
22			60.5	-110.2 -120.5	30.9	-5.1 -5.6		25.5	16.0	0.7
23			38.9	-120.5	29.8	-5.3		22.9	16.7	0.6
24			55.7	-110.0	30.6	-5.1		21.9	16.8	0.6
25			572.7	-91.2	31.4	-4.2		19.6	18.3	0.6
26			06.2	-79.2	33.0	-3.7		18.7	19.6	0.5
27			03.6	-61.0	32.9	-2.8		16.2	20.8	0.5
28			23.4	-59.1	33.8	-2.7		9.8	21.0	0.4
Absolute	92	-			33.8				-	42.4 ms
ADSOLUCE	72				55.0	-5.6	53	-		67.0 ms
				CAS	SE METHOD					
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.
RP	634.8	479.7	324.5	169.3	14.2					
RX	838.5	795.8	776.6	757.3	738.0	723.2	708.5	695.2	684.2	675.
RU	634.8	479.7	324.5	169.3	14.2					
RAU = 5	540.2 (ki	lps); F	RA2 =	752.6 (1	kips)					
Current CA	APWAP Ru	= 580.0) (kips)	; Corre	sponding	J(RP)= (0.07;			
RMX requir	res highe	er dampi	ng; see	PDA-W						
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KE
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/i
18.3	35.75	697.6	713.1	742.3	1.31	0.25	0.25	43.9	673.0	194
			PI	LE PROFII	LE AND PI	LE MODEI	<u>.</u>			
	Depth		A	rea	E-Modu	lus	Spec. N	Weight		Perim
	ft		iı	n²		ksi	11	b/ft ³		f
	0.0		2	1.4	2999	2.2	4	92.000		4.7
	92.7			1.4	2999			92.000		4.7
Ioe Area			198	8.5	in²					

Total volume: 13.770 ft³; Volume ratio considering added impedance: 1.000

USH 10 over Little Lake	Butte des Morts;	Pile: Pier 12 #1 R	RestriTest: 22-Apr-2015 06:26
APE D30-42, HP 14 x 73;	Blow: 3		CAPWAP(R) 2014-1
GRL Engineers, Inc.			OP: TC

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

USH 10 over Little Lake Butte des Morts; Pile: Pier 12 #1 RestriTest: 22-Apr-2015 06:26 APE D30-42, HP 14 x 73; Blow: 3 GRL Engineers, Inc. OP: TC

			CAPW	AP SUMMARY	RESULTS			
<u>Total CAP</u>	WAP Capac:	ity: 63	8.0; alon	g Shaft	98.0; at 1	'oe 540	.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				638.0				
1	13.2	9.0	0.0	638.0	0.0	0.00	0.00	0.00
2	19.9	15.6	1.0	637.0	1.0	0.15	0.03	0.29
3	26.5	22.3	4.0	633.0	5.0	0.60	0.13	0.29
4	33.1	28.9	4.0	629.0	9.0	0.60	0.13	0.29
5	39.7	35.5	5.0	624.0	14.0	0.76	0.16	0.29
6	46.3	42.1	3.0	621.0	17.0	0.45	0.10	0.29
7	52.9	48.7	2.0	619.0	19.0	0.30	0.06	0.29
8	59.6	55.4	4.0	615.0	23.0	0.60	0.13	0.29
9	66.2	62.0	4.0	611.0	27.0	0.60	0.13	0.29
10	72.8	68.6	5.0	606.0	32.0	0.76	0.16	0.29
11	79.4	75.2	6.0	600.0	38.0	0.91	0.19	0.29
12	86.0	81.8	10.0	590.0	48.0	1.51	0.32	0.29
13	92.7	88.5	50.0	540.0	98.0	7.55	1.61	0.29
Avg. Sh	aft		7.5			1.11	0.24	0.29
Тс	e		540.0				391.73	0.18
Soil Mode	1 Paramete	ers/Extens:	ions		Sha	ft To	be	
Quake		(iı	n)		0.	11 0.3	81	
	ing Facto		-,			74 2.5		
Damping T	-	-			Visco			
Unloading		(%	of loadi	ng quake)			11	
Reloading		-	of Ru)			-	00	
Unloading		•	of Ru)			75		
-		cluded in ') (in)		0.1	L2	
CADMAR ma	tch quali	tv =	3.82	(1407	e Up Match)	• BGA = 0		
	Final Set	-	0.15 i		Count	-	b/ft	
	Final Set		0.13 i 0.11 i	-	Count		b/ft	
Transducer				•	L: 93.0; RF: 1		D/IC	
				A4(K3550) CA				
max. Top	Comp. Stre	ess =	32.1 k	si (T=	36.1 ms, m	nax= 1.171	x Top)	
max. Comp	. Stress	=	37.6 k	si (Z=	92.7 ft, 1	r= 42.0 n	ns)	
max. Tens	. Stress	=	-5.06 k	si (Z=	46.3 ft, 1	r= 61.5 n	ns)	
max. Ener	gy (EMX)	=	43.6 k	ip-ft; max	. Measured 1	op Displ.	(DMX)=	1.23 in

USH 10 over Little Lake Butte des Morts; Pile: Pier 12 #1 RestriTest: 22-Apr-2015 06:26 APE D30-42, HP 14 x 73; Blow: 3 GRL Engineers, Inc. OP: TC

						EMA TABL					
max	max.		ma		max	max.	min.	max.		Dist	Pile
Displ	eloc.		Trnsf		Ten	Comp.	Force	orce		Belo	Sgmnt
	5 . (Ener		Stre	Stress				Gage	No.
i	ft/s	IT	kip-	si	K	ksi	kips	kips	Et	1	
1.2	17.2		43		-1.	32.1	-29.4	87.0			1
1.2	17.2		43		-1.'	32.1	-38.2	87.4		6.	2
1.1	17.1		42	03	-3.0	32.2	-64.8	88.7		13.	4
1.1	16.9		42	70	-3.'	32.4	-79.2	93.7		19.	6
1.0	16.6		40		-3.9	32.6	-83.9	98.4		26.	8
1.0	16.3		38	52	-3.	32.1	-75.4	86.8		33.	10
0.9	16.0		35	60	-3.0	31.5	-77.1	74.2	.76	39.	12
0.8	15.8	.0	33	06	-5.0	30.5	-108.3	53.0	.3 6	46.	14
0.8	15.7	.4	31	05	-5.0	29.9	-108.1	39.2	.6 6	49.	15
0.83	15.6	.5	30	99	-4.9	30.1	-106.8	43.8	.96	52.	16
0.78	15.4	.0	29	74	-4.'	29.8	-101.4	37.7	.3 6	56.	17
0.7	15.3	.0	28	83	-4.8	30.5	-103.5	52.6	.6 6	59.	18
0.70	15.2	.9	25	57	-4.	31.0	-97.7	62.6	.96	62.	19
0.6	15.0	.7	24	74	-4.	31.3	-101.5	69.4	.2 6	66.	20
0.63	14.9	.7	22	71	-4.'	32.2	-100.8	88.9	.5 6	69.	21
0.5	14.7		21		-4.	33.3	-101.2			72.	22
0.54	14.5		19		-4.4	33.4	-94.3	14.7		76.	23
0.4	14.6		18		-4.4	34.0	-95.9	28.5		79.	24
0.4	16.3		15		-4.0	35.5	-87.2	60.9		82.	25
0.4	17.5		14		-4.3	36.0	-88.1	71.6		86.	26
0.3	17.7		12		-3.	35.7	-75.8	64.3		89.	27
0.3	16.3	.5			-3.4	37.6	-74.3	04.3		92	28
2.0 ms	= 4	(Т				37.6			.7	92.	solute
1.5 ms		(T		06	-5.0	0,10				46	501400
						E METHOD					
1.8	1.6	1.4	.2	1	1.0	0.8	0.6	0.4	0.2	0.0	=
						281.5	399.6	517.8	636.0	754.1	
688.3	698.3	708.6	3.9	718	729.2	753.2	787.0	820.9	854.7	896.8	
						281.5	399.6	517.8	636.0	754.1	
						ips)	785.8 (1	2A2 =	.ps); F	60.4 (ki	U = 3
			;	0.20;	J(RP)=	ponding	; Corre	(kips);	= 638.0	PWAP Ru	rrent CA
							PDA-W	.ng; see	er dampi	es highe	X requir
KE	QUS	EMX	SET	S	DFN	DMX	FMX	FT1	VT1*Z	TVP	VMX
kips/i		tip-ft		-	in	in	kips	kips	kips	ms	ft/s
284	762.0	43.8	15	0.	0.15	1.23	706.0	686.7	658.2	35.95	17.2
						E AND PI					
Perim fi			c. We lb/:	Spec	lus ksi	E-Modu	2 2	Ar in		Depth ft	
4.7		.000				2999	.4			0.0	
		.000	492		4.4	2999	.4	21		92.7	
4.70											

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16847.3 ft/s Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c 11.0 ms Total volume: 13.770 ft^{3;} Volume ratio considering added impedance: 1.000

22-Apr-2015

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

USH 10 over LLBDM; Pile: PIER 12 #16 EOID APE D30-42, HP 14 x 73; Blow: 437 GRL Engineers, Inc.

		Match Qua	-		May Be Unr	eliable!!!		
Total CAP	WAP Capaci	ity: 44	CAPW. 4.0; alor	AP SUMMARY	59.0; at	Toe 385	.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sqmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				444.0				
1	13.2	8.6	0.0	444.0	0.0	0.00	0.00	0.00
2	19.8	15.2	0.0	444.0	0.0	0.00	0.00	0.00
3	26.4	21.8	4.0	440.0	4.0	0.61	0.13	0.22
4	33.0	28.4	4.0	436.0	8.0	0.61	0.13	0.22
5	39.6	35.0	3.0	433.0	11.0	0.45	0.10	0.22
6	46.3	41.7	3.0	430.0	14.0	0.45	0.10	0.22
7	52.9	48.3	4.0	426.0	18.0	0.61	0.13	0.22
8	59.5	54.9	4.0	422.0	22.0	0.61	0.13	0.22
9	66.1	61.5	6.0	416.0	28.0	0.91	0.19	0.22
10	72.7	68.1	6.0	410.0	34.0	0.91	0.19	0.22
11	79.3	74.7	6.0	404.0	40.0	0.91	0.19	0.22
12	85.9	81.3	8.0	396.0	48.0	1.21	0.26	0.22
13	92.5	87.9	11.0	385.0	59.0	1.66	0.35	0.22
Avg. Sh	aft		4.5			0.67	0.14	0.22
То	e		385.0				279.29	0.11
Soil Mode	l Paramete	ers/Extens	ions		Sha	aft To	be	
Quake		(i:	n)		0	.14 0.3	73	
Case Damp	ing Factor	c i i i i i i i i i i i i i i i i i i i			0	.34 1.3	11	
Damping T	ype				Visc	ous Sm+Vis	SC	
Unloading	Quake	(%	of loadi	lng quake)		100 0	58	
Reloading	Level		of Ru)		:	100 10	00	
Resistance	e Gap (ind	cluded in	Toe Quake	e) (in)		0.2	L9	
CAPWAP mat	tch qualit	- v	6.12	(Way	ve Up Match)) : RSA = 0		
Observed:	-	-	0.40 1		Count	-	b/ft	
Computed:	Final Set	: =	0.36 i	•	Count	= 33	b/ft	
Transducer				•	L: 93.6; RF:		• -	
	A3(K355	0) CAL: 360); RF: 1.05	; A4(K2524) CA	L: 360; RF:	1.05		
max. Top	Comp. Stre	ess =	31.2 ¥	si (T=	36.1 ms,	max= 1.016	бх Top)	
max. Comp	. Stress	=	31.7 k	si (Z=	26.4 ft,	T= 37.5 m	ns)	
max. Tens	. Stress	=	-6.29 k	si (Z=	79.3 ft,	T= 66.2 m	ns)	
max. Energ	gy (EMX)	=	41.2 k	ip-ft; max	. Measured	Top Displ.	(DMX)=	1.37 in

USH 10 over LLBDM; Pile: PIER 12 #16 EOID APE D30-42, HP 14 x 73; Blow: 437 GRL Engineers, Inc. Test: 21-Apr-2015 09:52 CAPWAP(R) 2014-1 OP: RF

				EXI	REMA TABL	E				
Pile	e Dis	t.	max.	min.	max.	max	• 1	max.	max.	max.
Sgmnt	t Belo	ow F	'orce	Force	Comp.	Tens	. Trn	sfd. '	Veloc.	Displ.
No	-				Stress	Stress		ergy		
		ft	kips	kips	ksi	ks	i kij	p-ft	ft/s	in
:	1 3	.3 6	67.1	-113.5	31.2	-5.30	о - С	41.2	17.0	1.37
:	26	.6 6	67.4	-90.1	31.2	-4.23	1 ·	40.7	17.0	1.35
	4 13		68.0	-65.1	31.2	-3.04		39.7	16.9	1.32
	5 19		70.6	-67.7	31.3	-3.10		38.8	16.8	1.27
	B 26		577.7	-86.3	31.7	-4.03		37.8	16.6	1.23
10			65.4	-95.5	31.1	-4.40		35.9	16.5	1.18
1:			51.8	-103.2	30.5	-4.82		34.0	16.3	1.14
14			43.8	-113.5	30.1	-5.30		32.3	16.1	1.09
1			34.1	-114.7	29.6	-5.36		31.1	16.0	1.07
10			36.8	-122.8	29.7	-5.74		30.7	15.9	1.04
1'			22.3	-121.9	29.1	-5.69		29.2	15.8	1.02
18			25.4	-129.6	29.2	-6.05		28.8	16.6	0.99
19			12.6	-128.2	28.6	-5.99		27.3	17.1	0.97
20			15.7	-134.1	28.8	-6.20		26.9	17.2	0.94
22			93.8	-128.0	27.7	-5.98		24.9	18.3	0.92
22			96.7	-134.5	27.9	-6.28		24.5	19.7	0.89
2:			574.7	-128.8	26.8	-6.02		22.6	19.8	0.87
24			577.8	-134.6	27.0	-6.29		22.3	20.5	0.84
2:			54.6	-126.2	25.9	-5.90		20.5	22.0	0.81
20			09.6 00.3	-131.5 -124.5	23.8 23.4	-6.14 -5.82		20.2 18.0	23.6 24.3	0.79 0.76
28			525.0	-124.5	23.4	-6.23		16.5	24.3	0.78
			23.0	-133.4		-0.2.				
Absolute	26				31.7		_	•	[=]	37.5 ms)
	79	.3				-6.29	9	()	[=	66.2 ms)
				CA	SE METHOD					
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.	6 1.8
RP	439.2	260.7	82.3	0.0			1 ,2		-•	
RX	658.7	611.3	585.2	562.0	544.5	529.9	518.4	507.0	495.	5 489.2
RU	439.2	260.7	82.3	0.0	0.0					
RAU =	440.7 (ki		RA2 =	587.1 (
Current C	APWAP Ru	= 444.0) (kips)	; Corre	esponding	J(RP)= 0	.00;			
RMX requi	res highe	er dampi	.ng; see	PDA-W						
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QU	s kee
ft/s	ms	kips	kips	kips		in	in	kip-ft	-	s kips/in
17.0	35.95	648.6	682.8	682.8	1.37	0.40	0.40	40.7	551.	3 713
			ът	T.F DDODT	LE AND PI	LE MODET				
			1 1	1.011						

	PILE PROF	THE AND FILE MOL		
Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in ²	ksi	lb/ft ³	ft
0.0	21.4	29992.2	492.000	4.70
92.5	21.4	29992.2	492.000	4.70
Toe Area	198.5	in²		
Top Segment Length	3.30 ft, Top Im	pedance 38	3 kips/ft/s	
Wave Speed: Pile Top 3 Pile Damping 1.00 %				

Total volume: 13.747 ft^{3;} Volume ratio considering added impedance: 1.000

USH 10 over Little Lake	Butte des Morts;	Pile: Pier 12 #16	RestrTest: 22-Apr-2015 06:32
APE D30-42, HP 14 x 73;	Blow: 5		CAPWAP(R) 2014-1
GRL Engineers, Inc.			OP: TC

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

USH 10 over Little Lake Butte des Morts; Pile: Pier 12 #16 RestrTest: 22-Apr-2015 06:32 APE D30-42, HP 14 x 73; Blow: 5 GRL Engineers, Inc. OP: TC

			CAPW	AP SUMMARY	RESULTS			
<u>Total CAP</u>	WAP Capac:	ity: 55	4.0; alon	g Shaft	89.0; at 1	Toe 465	5.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				554.0				
1	13.2	8.8	0.0	554.0	0.0	0.00	0.00	0.00
2	19.8	15.4	0.0	554.0	0.0	0.00	0.00	0.00
3	26.4	22.1	3.0	551.0	3.0	0.45	0.10	0.22
4	33.0	28.7	3.0	548.0	6.0	0.45	0.10	0.22
5	39.6	35.3	5.0	543.0	11.0	0.76	0.16	0.22
6	46.3	41.9	5.0	538.0	16.0	0.76	0.16	0.22
7	52.9	48.5	5.0	533.0	21.0	0.76	0.16	0.22
8	59.5	55.1	5.0	528.0	26.0	0.76	0.16	0.22
9	66.1	61.7	5.0	523.0	31.0	0.76	0.16	0.22
10	72.7	68.3	4.0	519.0	35.0	0.61	0.13	0.22
11	79.3	74.9	4.0	515.0	39.0	0.61	0.13	0.22
12	85.9	81.5	8.0	507.0	47.0	1.21	0.26	0.22
13	92.5	88.1	42.0	465.0	89.0	6.36	1.35	0.22
Avg. Sh	naft		6.8			1.01	0.21	0.22
Тс	be		465.0				337.33	0.11
<u>Soil Mode</u>	l Paramete	ers/Extens:	ions		Sha	aft To	be	
Quake		(i)	n)		0.	04 0.	54	
	ing Facto	-				51 1.		
Damping I	ype				Visco	ous Sm+Vi	sc	
Unloading	Quake	(%	of loadi	ng quake)	1	00	53	
Reloading	Level	(%	of Ru)		1	100 10	00	
Unloading	Level	(%	of Ru)			65		
Resistanc	e Gap (ind	cluded in '	Toe Quake	e) (in)		0.3	15	
	tch quali	tv =	4.85	(Wax	ve Up Match)	• PGA - 0	1	
	Final Set	-	4.85 0.30 i	-	Ve op Maccil) V Count	-) b/ft	
	Final Set		0.26 i	-	7 Count		5 b/ft	
Transducer				•	L: 93.6; RF: 1		<i>D</i> /10	
				; A4(K2524) CA				
max. Top	Comp. Stre	ess =	33.8 k	:si (T=	36.1 ms,	max= 1.010	бх Тор)	
max. Comp	. Stress	=	34.3 k	:si (Z=	26.4 ft,	т= 37.5 г	ns)	
max. Tens	. Stress	=	-6.89 k	:si (Z=	79.3 ft,	T= 65.2 r	ns)	
max. Ener	gy (EMX)	=	45.3 k	ip-ft; max	. Measured	Top Displ	(DMX)=	1.33 in

USH 10 over Little Lake Butte des Morts; Pile: Pier 12 #16 RestrTest: 22-Apr-2015 06:32 APE D30-42, HP 14 x 73; Blow: 5 GRL Engineers, Inc. OP: TC

	Di a	. .			EMA TABL					
Pile			max.	min. Domao	max.	max		nax.	max.	max Diral
Sgmnt			orce	Force	Comp.	Tens			Veloc.	Displ
No.	Gag		kips	kips	Stress ksi	Stres ks		ergy p-ft	ft/s	i
1			23.5	-57.6	33.8	-2.6		45.3	17.9	1.3
2			24.0	-49.4	33.8	-2.3		45.0	17.8	1.2
4			25.2	-65.9	33.9	-3.0		44.5	17.8	1.2
6			28.1	-79.9	34.0	-3.7		43.9	17.7	1.2
8			34.7	-91.5	34.3	-4.2		43.1	17.5	1.1
10			27.8	-104.2	34.0	-4.8		41.4	17.3	1.1
10			27.8	-118.3	33.8	-5.5		39.5	17.0	1.0
14										
			09.4	-122.9	33.1	-5.7		37.1	16.7	1.0
15			91.3	-123.7	32.3	-5.7		35.1	16.6	0.9
16			95.5	-130.4	32.5	-6.0		34.5	16.5	0.9
17			77.6	-126.6	31.7	-5.9		32.6	16.3	0.9
18			81.7	-124.8	31.8	-5.8		31.9	16.2	0.8
19			64.0	-124.3	31.0	-5.8		30.0	16.3	0.8
20			67.6	-134.3	31.2	-6.2		29.3	17.0	0.8
21			49.2	-133.9	30.3	-6.2		27.4	16.9	0.7
22			52.4	-138.8	30.5	-6.4		26.6	18.1	0.7
23			38.7	-140.5	29.8	-6.5		25.0	19.1	0.7
24			43.4	-147.5	30.1	-6.8		24.2	19.1	0.6
25			30.6	-142.4	29.5	-6.6		22.6	20.3	0.6
26		.9 6	22.5	-140.9	29.1	-6.5	8 2	21.9	22.2	0.6
27			35.5	-137.4	29.7	-6.4		L9.6	23.4	0.5
28	92	.5 6	59.6	-140.8	30.8	-6.5	8 1	13.2	22.9	0.5
Absolute	26	.4			34.3			(1	C = 7	37.5 ms
	79	.3				-6.8	9	()	[=	65.2 ms
				CAS	E METHOD					
Γ =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.	6 1.
RP	550.8	377.0	203.3	29.6	0.0					
RX.	772.8	717.2	679.6	652.7	631.0	610.8	590.5	572.1	557.	5 543.
2U	550.8	377.0	203.3	29.6	0.0					
RAU = 4	86.2 (k	ips); R	A2 =	685.3 ()	(ips)					
Current CA	PWAP Ru	= 554.0	(kips)	; Corresp	onding J	(RP)= 0.	00; J(R	x) = 1.	65	
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QU	S KE
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kip	s kips/i
17.9	35.95	685.3	734.1	734.1	1.33	0.30	0.30	45.4	669.	2 119
			ודס	F PROFT	E AND PI	LE MODEL				
	Depth			rea	E-Modu	-	Spec. W	Veight		Perim
	ft		ir			ksi	-	o/ft ³		ferim
	0.0		21	.4	2999	2 2		92.000		4.7
	0.0				2999	2.2		2.000		

Top Segment Length 3.30 ft, Top Impedance 38 kips/ft/s Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16818.2 ft/s Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c 11.0 ms Total volume: 13.747 ft³; Volume ratio considering added impedance: 1.000

Pile Top

Bottom

581.0 kips

485.0 kips 1.56 in

1.81 in

0.25 in

96.0 kips

RU =

SF =

EB =

Dy =

Dx =

SET/BI =

Load (kips)

300

200

100

0

0.00

0.40

0.80

1.20

1.60

2.00

2.40

Displacement (in)

400

D = 16 in

Davisson Offset:436 kips

500

600

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

USH	10 over	LLBDM;	Pile:	PIER	12	#23	EOID
APE	D30-42,	HP 14	x 73;	Blow:	488	3	
GRL	Enginee	rs, Inc					

			CAPW	AP SUMMARY	RESULTS			
<u>Total CAP</u>	WAP Capac:	ity: 58	1.0; alor	ng Shaft	96.0; at 1	roe 485	.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				581.0				
1	13.2	8.6	0.0	581.0	0.0	0.00	0.00	0.00
2	19.8	15.2	0.0	581.0	0.0	0.00	0.00	0.00
3	26.4	21.8	4.0	577.0	4.0	0.61	0.13	0.23
4	33.0	28.5	4.0	573.0	8.0	0.61	0.13	0.23
5	39.6	35.1	4.0	569.0	12.0	0.61	0.13	0.23
6	46.3	41.7	4.0	565.0	16.0	0.61	0.13	0.23
7	52.9	48.3	5.0	560.0	21.0	0.76	0.16	0.23
8	59.5	54.9	5.0	555.0	26.0	0.76	0.16	0.23
9	66.1	61.5	6.0	549.0	32.0	0.91	0.19	0.23
10	72.7	68.1	6.0	543.0	38.0	0.91	0.19	0.23
11	79.3	74.7	6.0	537.0	44.0	0.91	0.19	0.23
12	85.9	81.3	14.0	523.0	58.0	2.12	0.45	0.23
13	92.5	87.9	38.0	485.0	96.0	5.75	1.22	0.23
Avg. Sh	aft		7.4			1.09	0.23	0.23
То	e		485.0				351.84	0.15
Soil Model	l Paramete	ers/Extens	ions		Sha	ft To	be	
Quake		(i:	n)		0.	08 0.4	15	
Case Damp:	ing Factor	r			0.	58 1.9	90	
Damping Ty	ype				Visco	ous Smit	:h	
Unloading	Quake	(%	of loadi	ing quake)		91 15	52	
Reloading	Level	(%	of Ru)		1	.00 10	00	
Unloading	Level	(%	of Ru)			98		
Resistance	e Gap (ind	cluded in	Toe Quake	e) (in)		0.2	22	
CAPWAP mat	tch qualit	tv =	4.30	(Way	ve Up Match)	: RSA = 0		
Observed:	-	-	0.25 i		7 Count	-	b/ft	
Computed:			0.22 1		7 Count		b/ft	
Transducer				•	L: 93.0; RF: 1			
				; A4(K3550) CA				
max. Top (Comp. Stre	ess =	33.3 k	si (T=	36.1 ms, 1	max= 1.016	ix Top)	
max. Comp.	. Stress	=	33.8 k	si (Z=	26.4 ft,	r= 37.5 n	າສ)	
max. Tens		=	-5.87 1	•			•	
max. Energ	gy (EMX)	=	43.3 k	ip-ft; max	. Measured	Top Displ.	(DMX)=	1.30 in

USH 10 over LLBDM; Pile: PIER 12 #23 EOID APE D30-42, HP 14 x 73; Blow: 488 GRL Engineers, Inc. Test: 21-Apr-2015 10:18 CAPWAP(R) 2014-1 OP: RF

		EXTI	REMA TABL	Е				
Dist.	max.	min.	max.	max	. m	ax.	max.	max.
Below	Force	Force	Comp.	Tens	. Trns	fd. V	/eloc.	Displ.
Gages	ł		Stress	Stres	s Ene	rgy		
ft	kips	kips	ksi	ks	i kip	-ft	ft/s	ir
3.3	712.6	-43.0	33.3	-2.0	1 4	3.3	17.8	1.28
		-32.3	33.3				17.7	1.26
		-35.9	33.4					1.22
		-49.7	33.5	-2.3	2 4	1.9	17.6	1.18
26.4	724.2	-63.0	33.8	-2.9	4 4	1.0	17.3	1.13
33.0	712.4	-65.1	33.3	-3.0	4 3	8.9	17.0	1.08
39.6		-72.0	32.8	-3.3	73	6.7	16.8	1.02
46.3	691.5	-80.4	32.3	-3.7			16.5	0.96
49.6	677.9	-77.4	31.7	-3.6			16.3	0.93
52.9	682.7	-77.5	31.9	-3.6	2 3	2.0	16.2	0.90
								0.87
								0.83
								0.80
								0.76
								0.72
								0.69
								0.65
								0.61
								0.57
								0.54
								0.50
		-52.3	32.8				22.7	0.47
26.4			33.8			(1	· _	37.5 ms)
				-5.8	7	-		67.4 ms)
		CAS	SE METHOD					
0.0	0.2 0.4	4 0.6	0.8	1.0	1.2	1.4	1.6	5 1.8
578.6 4	412.9 247.3	L 81.4	0.0					
347.6	792.9 746.4	4 730.8	719.7	708.7	697.7	686.7	675.7	664.7
578.6 4	412.9 247.3	L 81.4	0.0					
8.7 (kip	s); RA2 =	765.0 ()	kips)					
WAP Ru =	581.0 (kips); Corre	sponding	J(RP)= 0	.00;			
s higher	damping; se	e PDA-W						
TVP V	/T1*Z FT3	l fmx	DMX	DFN	SET	EMX	OUS	S KEB
35.95 6	583.3 724.0	724.0	1.30					
	P	ILE PROFI	LE AND PI	LE MODEL				
Depth		Area	E-Modu	lus	Spec. W	eight		Perim.
Depcii				ksi	15	/ft³		ft
ft	:	in²		KSI	10	/10		
		in² 21.4	2999			2.000		4.70
	Below Gages ft 3.3 6.6 13.2 19.8 26.4 33.0 39.6 46.3 49.6 52.9 56.2 59.5 62.8 66.1 69.4 72.7 76.0 79.3 82.6 85.9 89.2 92.5 26.4 79.3 0.0 578.6 85.9 89.2 92.5 26.4 79.3 82.6 85.9 89.2 92.5 26.4 79.3 82.6 85.9 89.2 92.5 26.4 79.3 82.6 85.9 89.2 92.5 26.4 79.3 82.6 85.9 89.2 92.5 26.4 79.3 82.6 85.9 89.2 92.5 26.4 79.3 82.6 85.9 89.2 92.5 26.4 79.3 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	Below Force Gages ft kips 3.3 712.6 6.6 713.0 13.2 713.9 19.8 716.0 26.4 724.2 33.0 712.4 39.6 701.3 46.3 691.5 49.6 677.9 52.9 682.7 56.2 664.6 59.5 670.0 62.8 652.7 66.1 658.0 69.4 636.1 72.7 640.7 76.0 618.9 79.3 632.9 82.6 645.0 85.9 684.1 89.2 681.4 92.5 702.2 26.4 79.3 0.0 0.2 0.4 578.6 412.9 247.3 8.7 (kips); RA2 = WAP Ru = 581.0 (kips s higher damping; se TVP VT1*Z FT3 ms kips kips 35.95 683.3 724.0	Dist. max. min. Below Force Force Gages ft kips kips 3.3 712.6 -43.0 6.6 713.0 -32.3 13.2 713.9 -35.9 19.8 716.0 -49.7 26.4 724.2 -63.0 33.0 712.4 -65.1 39.6 701.3 -72.0 46.3 691.5 -80.4 49.6 677.9 -77.4 52.9 682.7 -77.5 56.2 664.6 -82.1 59.5 670.0 -89.2 62.8 652.7 -89.4 66.1 658.0 -95.8 69.4 636.1 -108.1 72.7 640.7 -123.2 76.0 618.9 -125.5 79.3 632.9 -125.8 82.6 645.0 -107.1 85.9 684.1 -90.4 89.2 681.4 -59.5 92.5 702.2 -52.3 26.4 79.3 27.5 70.2 -52.3 26.4 79.3 26.4 79.3 27.5 70.2 -52.3 26.4 79.3 27.5 70.2 -52.3 26.4 79.3 27.5 70.2 -52.3 26.4 79.3 27.5 70.2 -52.3 26.4 79.3 27.5 70.2 -52.3 26.4 79.3 27.5 70.2 -52.3 26.4 79.3 27.5 70.2 -52.3 26.4 79.3 27.5 70.0 -72.5 70.0 -72.5 70.	Dist. max. min. max. Below Force Force Comp. Gages Stress ft kips kips ksi 3.3 712.6 -43.0 33.3 6.6 713.0 -32.3 33.3 13.2 713.9 -35.9 33.4 19.8 716.0 -49.7 33.5 26.4 724.2 -63.0 33.8 33.0 712.4 -65.1 33.3 39.6 701.3 -72.0 32.8 46.3 691.5 -80.4 32.3 49.6 677.9 -77.4 31.7 52.9 682.7 -77.5 31.9 56.2 664.6 -82.1 31.0 59.5 670.0 -89.2 31.3 62.8 652.7 -89.4 30.5 66.1 658.0 -95.8 30.7 69.4 636.1 -108.1 29.7 72.7 640.7 -123.2 29.9 76.0 618.9 -125.5 28.9 79.3 632.9 -125.8 29.6 82.6 645.0 -107.1 30.1 85.9 684.1 -90.4 32.0 89.2 681.4 -59.5 31.8 92.5 702.2 -52.3 32.8 26.4 33.8 79.3 CASE METHOD 0.0 0.2 0.4 0.6 0.8 578.6 412.9 247.1 81.4 0.0 847.6 792.9 746.4 730.8 719.7 578.6 412.9 247.1 81.4 0.0 8.7 (kips); RA2 = 765.0 (kips) WAP Ru = 581.0 (kips); Corresponding s higher damping; see PDA-W TVP VT1*Z FT1 FMX DMX ms kips kips kips in 35.95 683.3 724.0 724.0 1.30	Below Gages Force t Force bitress Comp. Stress Tens Stress 1 kips kips ksi ksi 3.3 712.6 -43.0 33.3 -2.0 6.6 713.0 -32.3 33.3 -1.6 19.8 716.0 -49.7 33.5 -2.3 26.4 724.2 -63.0 33.8 -2.9 33.0 712.4 -65.1 33.3 -3.0 39.6 701.3 -72.0 32.8 -3.3 46.3 691.5 -80.4 32.3 -3.7 49.6 677.9 -77.4 31.7 -3.6 52.9 682.7 -77.5 31.9 -3.6 56.2 664.6 -82.1 31.0 -3.8 59.5 670.0 -89.2 31.3 -4.1 62.8 652.7 -89.4 30.5 -4.1 69.4 636.1 -108.1 29.7 -5.0 72.7 640.7	Dist. max. min. max. <t< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></t<>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Top Segment Length 3.30 ft, Top Impedance 38 kips/ft/s

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16818.2 ft/s

Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c 11.0 ms

Total volume: 13.747 ft^{3;} Volume ratio considering added impedance: 1.000

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

USH	10 over	LLI	BDM;	E	vile:	PIER	12	#56	EOID
APE	D30-42,	HP	14 :	x	73;	Blow:	426	5	
GRL	Enginee	rs,	Inc	•					

			CAPW	AP SUMMARY	RESULTS			
Total CAPV	WAP Capaci	ity: 53	3.0; alor	ng Shaft	93.0; at	Toe 44	0.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				533.0				
1	19.8	8.7	0.0	533.0	0.0	0.00	0.00	0.00
2	26.5	15.4	0.0	533.0	0.0	0.00	0.00	0.00
3	33.1	22.0	3.0	530.0	3.0	0.45	0.10	0.24
4	39.7	28.6	4.0	526.0	7.0	0.60	0.13	0.24
5	46.3	35.2	4.0	522.0	11.0	0.60	0.13	0.24
6	52.9	41.8	4.0	518.0	15.0	0.60	0.13	0.24
7	59.5	48.4	4.0	514.0	19.0	0.60	0.13	0.24
8	66.1	55.0	4.0	510.0	23.0	0.60	0.13	0.24
9	72.7	61.6	5.0	505.0	28.0	0.76	0.16	0.24
10	79.4	68.3	10.0	495.0	38.0	1.51	0.32	0.24
11	86.0	74.9	15.0	480.0	53.0	2.27	0.48	0.24
12	92.6	81.5	40.0	440.0	93.0	6.05	1.29	0.24
Avg. Sha	aft		7.8			1.14	0.24	0.24
То	e		440.0				319.19	0.14
Soil Mode	l Paramete	ers/Extens	ions		Sh	aft T	oe	
Quake		(i:	n)		0	.10 0.	52	
Case Dampi	ing Factor	<u>,</u>	-		0	.58 1.	61	
Damping Ty	-				Visc	ous Smi	th	
Unloading	Quake	(%	of loadi	ing quake)		92	76	
Reloading	Level	(%	of Ru)			100 1	00	
Resistance	e Gap (ind	cluded in		e) (in)		0.	24	
CAPWAP mat	tch qualit		4.19	(Wav	e Up Match); RSA = ()	
Observed:	-	-	0.30	•	Count		b/ft	
Computed:			0.26	•	Count		5 b/ft	
Transducer				; F4(D815) CA				
	A3(K252	4) CAL: 360); RF: 1.02	; A4(K3550) CA	L: 360; RF:	1.02		
max. Top (Comp. Stre	ess =	32.8]	ksi (T=	36.1 ms,	max= 1.02	0 х Тор)	
max. Comp.	. Stress	=	33.4]	csi (Z=	33.1 ft,		•	
max. Tens.	. Stress	=	-6.16 }	ksi (Z=	72.7 ft,	T= 67.6	ms)	
	qy (EMX)	=		kip-ft; max				

USH 10 over LLBDM; Pile: PIER 12 #56 EOID APE D30-42, HP 14 x 73; Blow: 426 GRL Engineers, Inc. Test: 21-Apr-2015 10:45 CAPWAP(R) 2014-1 OP: RF

				EXT	REMA TABL	E				
Pile	Dist	. ma	ax.	min.	max.	max	• :	max.	max.	max.
Sgmnt	Belo	w Foi	ce	Force	Comp.	Tens	. Trn	sfd. '	Veloc.	Displ.
No.	Gage				Stress	Stress		ergy		
	f	t ki	.ps	kips	ksi	ks:	i ki	p-ft	ft/s	in
1	3.	3 701	.4	-39.5	32.8	-1.8	5	42.6	17.7	1.31
2	6.	6 702	2.0	-42.1	32.8	-1.9	7	42.4	17.6	1.29
4	13.	2 703	3.3	-48.8	32.9	-2.28	3	41.9	17.6	1.25
6	19.	8 704	1.9	-71.0	32.9	-3.3	2	41.3	17.5	1.21
8	26.	5 708	3.1	-87.4	33.1	-4.08	8	40.4	17.4	1.16
10	33.		5.8	-109.6	33.4	-5.12	2	39.5	17.2	1.11
12	39.	7 709	9.2	-117.3	33.1	-5.48	3	37.6	17.0	1.05
14	46.	3 697	1.6	-126.6	32.6	-5.93	1	35.3	16.7	1.00
15	49.	6 682	2.5	-121.7	31.9	-5.68	3	33.6	16.6	0.97
16	52.	9 686	5.2	-116.2	32.1	-5.43	3	33.0	16.5	0.94
17	56.	2 671	.1	-106.5	31.4	-4.98	3	31.3	16.3	0.90
18	59.	5 674	1.5	-111.0	31.5	-5.19	9	30.6	16.2	0.87
19	62.	8 659	9.4	-112.0	30.8	-5.2	3	28.9	16.1	0.84
20	66.	1 663	3.0	-120.8	31.0	-5.64	4	28.1	16.0	0.81
21	69.	4 648	8.8	-125.8	30.3	-5.88	3	26.4	15.9	0.77
22	72.	7 654	1.1	-131.9	30.6	-6.10	5	25.6	16.4	0.74
23	76.	0 639	9.7	-123.4	29.9	-5.70	5	23.7	17.4	0.70
24	79.	4 646	5.9	-114.0	30.2	-5.3	3	22.9	17.8	0.67
25	82.	7 610	.6	-97.2	28.5	-4.54	4	20.1	19.0	0.64
26	86.	0 628	8.8	-100.8	29.4	-4.7	1	19.4	20.4	0.60
27	89.	3 625	5.6	-73.6	29.2	-3.44	4	15.9	21.7	0.57
28	92.	6 64	.6	-64.3	30.3	-3.00	D	9.8	22.3	0.54
Absolute	33.	1			33.4			()	C =	37.9 ms)
	72.					-6.10	5	-	C = 7	67.6 ms)
				CA	SE METHOD					
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	5 1.8
RP	572.4	408.3	244.1	79.9	0.0					
RX	777.8	714.8	680.1	668.9	657.7	646.5	635.3	624.1	612.9	601.7
RU	572.4	408.3	244.1	79.9	0.0					
RAU = 43	88.4 (ki	ps); RA	2 =	703.9 (kips)					
Current CA	PWAP Ru	= 533.0	(kips)	; Corre	sponding	J(RP)= 0	.05;			
RMX require	es highe	r damping	j; see	PDA-W						
VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	S KEB
ft/s	ms	kips	kips	kips	in	in	in			s kips/in
17.8	35.95	680.6	712.7	712.7	1.30	0.30	0.30	42.8	_	_
			PII	LE PROFI	LE AND PI	LE MODEL				
	Depth			ea	E-Modu		Spec.	Weight		Perim.

	1100 1100			
Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in²	ksi	lb/ft ³	ft
0.0	21.4	29992.2	492.000	4.70
92.6	21.4	29992.2	492.000	4.70
Toe Area	198.5	in ²		
Top Segment Length	3.31 ft, Top I	mpedance 38	8 kips/ft/s	
Wave Speed: Pile Top Pile Damping 1.00 %	-	-		

Total volume: 13.758 ft^{3;} Volume ratio considering added impedance: 1.000

USH 10 over Little Lake	Butte des Morts;	Pile: Pier 12 #56	RestrTest: 22-Apr-2015 06:49
APE D30-42, HP 14 x 73;	Blow: 4		CAPWAP(R) 2014-1
GRL Engineers, Inc.			OP: TC

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

USH 10 over Little Lake Butte des Morts; Pile: Pier 12 #56 RestrTest: 22-Apr-2015 06:49 APE D30-42, HP 14 x 73; Blow: 4 GRL Engineers, Inc. OP: TC

			CAPW	AP SUMMARY	RESULTS			
Total CAP	WAP Capaci	ity: 553	1.0; alon	g Shaft	101.0; at	Toe 45	0.0 kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				551.0				
1	19.8	8.9	0.0	551.0	0.0	0.00	0.00	0.00
2	26.5	15.5	0.0	551.0	0.0	0.00	0.00	0.00
3	33.1	22.2	4.0	547.0	4.0	0.60	0.13	0.26
4	39.7	28.8	4.0	543.0	8.0	0.60	0.13	0.26
5	46.3	35.4	6.0	537.0	14.0	0.91	0.19	0.26
6	52.9	42.0	6.0	531.0	20.0	0.91	0.19	0.26
7	59.5	48.6	6.0	525.0	26.0	0.91	0.19	0.26
8	66.1	55.2	6.0	519.0	32.0	0.91	0.19	0.26
9	72.7	61.8	6.0	513.0	38.0	0.91	0.19	0.26
10	79.4	68.4	6.0	507.0	44.0	0.91	0.19	0.26
11	86.0	75.1	12.0	495.0	56.0	1.81	0.39	0.26
12	92.6	81.7	45.0	450.0	101.0	6.80	1.45	0.26
Avg. Sh	aft		8.4			1.24	0.26	0.26
То	e		450.0				326.45	0.17
Soil Mode	l Paramete	ers/Extens:	ions		Sh	aft T	oe	
Quake		(i1	a)		C).11 0.	44	
Case Damp	ing Factor	•			C		00	
Damping T	-				Visc			
Unloading		(%	of loadi	ng quake)			40	
Reloading	-	-	of Ru)	5 1		100 1	00	
-		luded in ?		a) (in)		0.	16	
CAPWAP mat	tch qualit		3.78	(Wa	ve Up Match	$) \cdot RSA = 0$	า	
Observed:	-	-	0.25 i		w Count		B b/ft	
Computed:			0.23 i	-	w Count		5 b/ft 5 b/ft	
Transducer				•	AL: 93.0; RF:		5 5/10	
	A3(K252			A4(K3550) C				
max. Top (Comp. Stre	ess =	33.2 k	si (T:	= 36.1 ms,			
max. Comp	. Stress	=	33.9 k	:si (Z:		T= 38.1		
max. Tens	. Stress	=	-5.67 k	:si (Z:	= 59.5 ft,	T= 62.9	ms)	
max. Energ	gy (EMX)	=	44.9 k	ip-ft; max	k. Measured	Top Displ	. (DMX)=	1.24 in

USH 10 over Little Lake Butte des Morts; Pile: Pier 12 #56 RestrTest: 22-Apr-2015 06:49 APE D30-42, HP 14 x 73; Blow: 4 CAPWAP(R) 2014-1 GRL Engineers, Inc. OP: TC

					REMA TABL					
Pile	Dis		max.	min.	max.	max		nax.	max.	max.
Sgmnt	Bel		orce	Force	Comp.	Tens			/eloc.	Displ
No.	Gag		1-4	1-4	Stress	Stress		ergy	6 + /	
			kips	kips	ksi	ksi		ọ−ft	ft/s	ir
1			11.1	-36.2	33.2	-1.69		44.9	17.9	1.26
2			11.4	-44.5	33.2	-2.08		44.7	17.9	1.25
4	13		12.2	-60.5	33.3	-2.82		44.2	17.8	1.21
6	19		13.2	-82.2	33.3	-3.84		43.5	17.8	1.16
8	26		16.3	-92.1	33.5	-4.30		42.6	17.7	1.11
10	33		26.2	-105.1	33.9	-4.91		41.6	17.4	1.06
12	39		16.7	-100.1	33.5	-4.68		39.2	17.1	1.00
14			09.2	-108.4	33.1	-5.06		36.7	16.7	0.94
15	49		84.2	-113.6	32.0	-5.31		34.3	16.4	0.91
16	52		91.2	-115.7	32.3	-5.41		33.6	16.3	0.87
17			66.7	-114.0	31.1	-5.32		31.3	16.1	0.84
18	59	.5 6	73.5	-121.3	31.5	-5.67		30.5	15.9	0.81
19	62	.8 6	49.4	-112.8	30.3	-5.27	7 2	28.2	15.7	0.77
20	66	.1 6	55.8	-115.6	30.6	-5.40) :	27.3	15.5	0.74
21	69	.4 6	32.0	-105.2	29.5	-4.91		25.1	15.3	0.70
22	72	.7 6	38.2	-105.7	29.8	-4.94	4 :	24.2	15.7	0.66
23	76	.0 6	22.4	-95.0	29.1	-4.44	4 2	22.1	16.5	0.63
24	79	.4 6	41.1	-100.0	30.0	-4.67	7 2	21.2	16.5	0.59
25	82	.7 6	48.6	-91.3	30.3	-4.26	5 1	19.3	17.9	0.56
26	86	.0 6	84.1	-93.8	32.0	-4.38	3 1	18.5	19.4	0.52
27	89	.3 6	78.2	-72.1	31.7	-3.37	7 1	15.9	20.4	0.49
28	92	.6 6	98.3	-73.6	32.6	-3.44	4 1	10.4	19.5	0.46
Absolute	33	.1			33.9			(T	=	38.1 ms)
	59	.5				-5.67	7	(T	'= (62.9 ms)
T _	0.0	0.0	0.4		SE METHOD	1 0	1 0	1 4	1 0	1 0
J = RP	0.0 656.3	0.2 506.9	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
RX	828.6	767.8	357.6 717.3	208.2 680.0	58.9 654.9	631.2	608.2	586.7	573.0	561.5
RU	656.3	506.9	357.6	208.2	58.9	031.2	000.2	500.7	575.0	501.5
	93.8 (k:			672.0 ()						
Current CA						(RP)= 0.3	14; J(R	(x) = 1.9	98	
170032	TT 7	VT1*Z	77971	TEMY	DMX	DEN	SET	EWY	OUG	KEE
VMX ft/s	TVP	kips	FT1 kips	FMX kips	in	DFN in	in	EMX kip-ft	QUS	kips/in
17.7	ms 35.95	675.7	727.4	_	1.24	0.25	0.25	44.8	_	1607
1/./	33.95	075.7	/2/.4	/20.0	1.24	0.25	0.25	44.0	/21.5	1007
			PI	LE PROFII	E AND PI	LE MODEL				
	Depth			rea	E-Modu	lus	Spec. V	Veight		Perim.
	ft		i	n²		ksi	11	o/ft ³		ft
	0.0		2	1.4	2999	2.2	49	92.000		4.70
	92.6		2	1.4	2999	2.2	49	92.000		4.70
Toe Area			1.0	8.5	in ²					

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16832.7 ft/s

Pile Damping 1.00 %, Time Incr 0.196 ms, 2L/c 11.0 ms

Total volume: 13.758 ft^{3;} Volume ratio considering added impedance: 1.000