

ANNUAL WINTER MAINTENANCE REPORT

2012-2013 Learning to Use Less Salt Without Compromising Safety

Wisconsin Department of Transportation Division of Transportation System Development Bureau of Highway Maintenance Winter Operations Unit

January 2014

Acknowledgments

Many people at Wisconsin DOT contributed to the development of this report, including:

- Todd Matheson, Bureau of Highway Maintenance
- Mike Sproul, Bureau of Highway Maintenance
- Mike Adams, Bureau of Highway Maintenance
- Cathy Meinholz, Bureau of Highway Maintenance
- Lisa Meinholz, Bureau of Highway Maintenance
- Donald Lyden, Bureau of Transportation Safety
- Michael Sillence, Transportation Modeling & Information Unit

We wish to thank these individuals for their contributions to and assistance with this report.

In addition, we extend our thanks to Jay Wells of Washington State DOT for the use of his map of nationwide salt costs (see page 58).

Table of Contents

1. Introduction	5
About This Report	7
Report Structure and Data Sources	7
Working with County Highway Departments	8
This Winter in Wisconsin	
2. Winter Weather	
Winter Weather Challenges	
This Winter's Weather	
Winter Severity Index	
3. Winter Operations	
3A Materials	
Salt	
Abrasives	
Prewetting	
Anti-icing	
3B Equipment & Technology	
RWIS	
MDSS	
Equipment Calibration	
Product and Equipment Testing	
Winter Maintenance Research	51
3C Labor	53
Winter Operations Training	
4. Performance	73
4A Compass	
4B Winter Maintenance Management	
Storm Reports	
Winter Patrol Sections	
4C Response Time	
Maintenance Crew Reaction Time	
Time to Bare/Wet Pavement	
4D Costs	
4E Travel and Crashes	
5. Looking Ahead	
Annondix	117
Appendix	

List of Tables

1. Introduction	5
Table 1.1. Statewide Summary: This Winter Versus Last Winter, by the Numbers	6
Table 1.2. Highway Categories for Winter Maintenance	8
Table 1.3. County Winter Service Groups	9
Table 1.5. Winter in Wisconsin, 2011–2012.	
2. Winter Weather	-
Table 2.1. Storms and Incidents	27
3. Winter Operations	
Table 3.1. Statewide Sand Use	
Table 3.2. Statewide Prewetting Agent Use for Salt	
Table 3.3. Cost of Anti-icing vs. Deicing	
Table 3.4. Statewide Anti-icing Agent Use	
Table 3.5. Labor Hours/Lane Miles/Severity Index Ranking	64
4. Performance	73
Table 4.1. Statewide Compass Measures for Winter	74
Table 4.2. Average Patrol Section Lengths by Winter Service Group	
Table 4.3. Maintenance Crew Reaction Time	77
Table 4.4. Average Time to Bare/Wet Pavement	
Table 4.5. Total Winter Costs Relative to Winter Severity	
Table 4.6. Winter Costs as Billed to WisDOT by Counties	
Table 4.7. Crashes and Vehicle Miles Traveled by Region	
Table 4.8. Winter Maintenance Sections	
Table 4.9. Storm Start vs. Crew Out	
Table 4.10. Winter Maintenance Costs per Lane Mile	
Table 4.11. Cost per Lane Mile per Severity Index Ranking	
Table 4.12. Crashes per 100 Million Vehicle Miles of Travel	
Table 4.13. Motor Vehicle Crashes on Roads with Snow/Ice/Slush	

Appendix	
Table A-1. Storm Report Summary	
Table A-2. Weather Forecasting Service Usage	
Table A-3. Anti-icing Details	
Table A-4. Annual Anti-icing Agent Usage	
Table A-5. Actual Anti-Icing Costs	
Table A-6. Salt Brine Use	
Table A-7. Annual Prewetting Agent Usage for Salt	
Table A-8. Annual Abrasives Usage and Prewetting Agent Usage for Abrasives	
Table A-9. History of Salt Use on State Trunk Highways	

List of Figures

1. Introduction	5
Figure 1.1. WisDOT Regional Divisions	8
2. Winter Weather	19
Figure 2.1. Statewide Snowfall, 2011–2012	20
Figure 2.2. Winter Severity Index, 2011–2012	21
Figure 2.3. 2011–2012 Winter Severity Index vs. 5-Year Average	21
Figure 2.4. Salt Use per Lane Mile and Average Severity Index	22
3. Winter Operations	
Figure 3.1. Salt Used per Lane Mile	
Figure 3.2. Salt Used per Lane Mile and Severity Index	
Figure 3.3. Salt Prices Across the United States	
Figure 3.4. Salt Prices Over Time	
Figure 3.5. Anti-icing as a Percentage of Winter Costs	
Figure 3.6. Counties Using Anti-Icing	
Figure 3.7. Counties Using Ground Speed Controllers	43
Figure 3.8. Counties Using Underbody Plows	44
Figure 3.9. Counties Prewetting Salt	45
Figure 3.10. 2011–2012 Salt Use per Lane Mile vs. 5-Year Average - WI	57
Figure 3.11. 2011–2012 Salt Use per Lane Mile vs. 5-Year Average - Nationwide	58
4. Performance	73
Figure 4.1. Winter Costs per Lane Mile	78
Figure 4.2. Change in Costs Since 2006-2007	79
Figure 4.3. Statewide Winter Costs by Category	80
Figure 4.4. Regional Winter Costs by Category	81
Figure 4.5. Costs per Lane Mile by Category	83
Figure 4.6. Winter Crashes and Winter Severity Index	84
Figure 4.7. Winter Crash Locations	85
Figure 4.8. 2011-2012 Winter Costs vs. 5-Year Average	
Appendix	
Figure A-1. WisDOT Regional Organization	
Figure A-2. Snow Plowing and Ice Control Categories During a Storm	

This page intentionally left blank

1 Introduction

To our partners

In contrast to the mild winter of 2011-12, 2012-13 was the most costly winter on record. There were several late spring storms that kept the crews working into May. The overspending of approximately \$50 million led to a 13.10 spending request that was approved by the Legislature. Without the approved request many of the summer activities would have had to have been reduced or eliminated. But with the additional money summer maintenance activities will go on as scheduled.

We commend the county maintenance crews for their dedicated response to this difficult winter. We also want to recognize the role of WisDOT regional staff in coordinating these efforts and providing the counties with priorities. We continually stress the importance of improving processes and procedures for snow removal and especially applaud the counties for working closely with us in partnership to give the taxpayers in Wisconsin an acceptable level of service for a reasonable cost. To capture these efforts, this report features:

- Five sections that correspond to the key components of winter and the counties' response, including Introduction, Winter Weather, Snow and Ice Control, Performance, and Looking Ahead.
- Two key tables that summarize important data at a glance: Winter by the Numbers (page 6) highlights statewide facts and figures. Winter in Wisconsin (pages 13-17) compiles key data for all 72 counties. These tables should be a first point of reference throughout the year whenever you need a winter statistic.
- Three maps that compare key data for this winter with the previous five years. These maps put each county's experience with winter severity (page 21), salt use (page 57) and total costs (page 101) in the context of what's normal for that county.
- Two graphs that put Wisconsin's experience with salt costs in the context of what other states pay (pages 36 and 37), and a map of salt cost data for all snowy states compiled by Washington State DOT (page 58).
- Best Practices sidebars throughout the report that highlight efficient practices.

Because this report has a wide and diverse audience, the text includes some explanations of winter maintenance technologies and best practices, such as anti-icing, pre-wetting, and use of the new AVL-GPS Systems. The State Highway Maintenance Manual is the first resource for more information on any of these items, and there are other resources available on WisDOT's extranet site. Links to these resources are provided throughout this report. For more information, contact your regional WisDOT representative or Mike Sproul, WisDOT's state winter operations engineer, at michael.sproul@dot.wi.gov.

Sincerely,

David Vieth, Director Bureau of Highway Maintenance

Table 1.1. Statewide Summary: This Winter Versus Last Winter, by the Numbers

		2011-2012 winter	2012-2013 winter
	Lane miles	33,944 miles	34,192 miles
Infrastructure	Patrol sections	770	769
	Average patrol section length	44.08 lane miles	44.46 lane miles
	Average statewide Winter Severity Index	24.33	37.17
Weather	Number of storms, statewide average and range across counties	Average: 26 Range: 16 to 43	Average: 36 Range: 23 to 65
	Snowfall, statewide average and range across counties	Average: 51.2 inches Range: 20 to 170 inches	Average: 93.2 inches Range: 43 to 249 inches
	Salt used	355,519 tons 10.5 tons per lane mile	621,207 tons 18.1 tons per lane mile
	Average cost of salt	\$59.18 per ton	\$58.34 per ton
Materials ¹	Prewetting liquid used	1,082,163 gal.	2,124,834 gal.
	Anti-icing agents used	1,164,394 gal.	1,110,886 gal.
	Sand used	33,944 miles770ection length44.08 lane milesde Winter Severity Index24.33is, statewide average and range acrossAverage: 26 Range: 16 to 43ide average and range across countiesAverage: 51.2 inches Range: 20 to 170 incheside average and range across countiesAverage: 51.2 inches Range: 20 to 170 incheside average and range across countiesAverage: 51.2 inches Range: 20 to 170 incheside average and range across countiesAverage: 51.2 inches Range: 20 to 170 incheside average and range across counties10.5 tons per lane mile 18.1isalt\$59.18 per toni used1,082,163 gal.i used1,164,394 gal.i used1,164,394 gal.i used1,164,394 gal.i used1,164,394 gal.i used1,164,394 gal.i used1,89 hoursse rane mile\$1,656action time from start of storm1.89 hoursads to bare/wet pavement target times)79%iformation System (RWIS) stations60it spreaders equipped with on-board58 of 72 (80%)is6619iderbody plows57 of 72 (79%)ed to use anti-icing agents66 of 72 (92%)ed to use anti-icing agents66 of 72 (92%)winter labor hours3103,332 hrs.inouncements aired6,016 radii; 652 TV6,016 radii; 652 TV5,9	18,589 cubic yd.
	Total winter costs ²	\$56,217,319	\$94,982,937
	Total winter costs per lane mile	\$1,656	\$2,778
	Average crew reaction time from start of storm	1.89 hours	2.42 hours
	Percentage of roads to bare/wet pavement (Within WisDOT target times)	79%	73%
	Road Weather Information System (RWIS) stations	60	60
Costs, Equipment and Performance	Average cost of salt\$59.18 per tonPrewetting liquid used1,082,163 gal.Anti-icing agents used1,164,394 gal.Sand used7,513 cubic yd.Total winter costs²\$56,217,319Total winter costs per lane mile\$1,656Average crew reaction time from start of storm1.89 hoursPercentage of roads to bare/wet pavement (Within WisDOT target times)79%Road Weather Information System (RWIS) stations60Counties with salt spreaders equipped with on-board prewetting unit58 of 72 (80%)Counties with salt spreaders equipped with ground- speed controller unit619Counties with underbody plows57 of 72 (79%)Counties equipped to use anti-icing agents66 of 72 (92%)	58 of 72 (80%)	
		68 of 72 (94%)	67 of 72 (93%)
	Underbody plows	619	658
	Counties with underbody plows	57 of 72 (79%)	55 of 72 (76%)
	Counties equipped to use anti-icing agents	66 of 72 (92%)	66 of 72 (92%)
	Counties that used anti-icing agents during the winter season	60 of 72 (83%)	65 of 72 (90%)
	Regular county winter labor hours ³	103,332 hrs.	212,090 hrs.
	Overtime county winter labor hours	82,657 hrs.	137,225 hrs.
Labor and Services	Public service announcements aired		7,154 total 5,919 radio; 1,235 TV
	Cost of public service announcements	(\$268,399	\$36,000 (\$241,380 market value)

1. All material usage quantities are from the county storm reports except for salt. Salt quantities are from WisDOT's Salt Inventory Reporting System.

2. Costs refer to final costs billed to WisDOT for all winter activities, including activities such as installing snow fences and thawing culverts.

3. Labor hours come from county storm reports, and reflect salting, sanding, plowing and anti-icing efforts.

About This Report

Every year, WisDOT gathers a multitude of data on winter weather and the state's response to it. Tracking and analyzing this data helps us become more efficient by identifying good performance as well as areas that need improvement. In this way we use our limited resources to achieve the greatest benefit.

Through this report, WisDOT's Bureau of Highway Maintenance shares data with the department's regional maintenance staff and with our partners in the county highway departments. This allows regional and county staff to compare resource use with that of their peers across the state. The report has also been shared with the WisDOT Secretary's Office, the state legislature, national organizations such as Clear Roads, and the general public.

Report Structure and Data Sources

Following this section, this report is divided into four main sections:

- Section 2: Weather
- Section 3: Winter Operations
- Section 4: Performance
- Section 5: Looking Ahead

Each section has several subsections; refer to the Table of Contents for more detail. To improve readability, this year's report includes more statewide summary tables within the text, while county-by-county data appears at the end of each section.

Within many of the county-by-county tables in this report, the counties are grouped by region, in acknowledgement of the role that WisDOT's regional staff plays in coordinating winter maintenance in their counties. In some tables, counties are divided by Winter Service Group (Groups A, B, C, D, E and F), which reflect the difference in the level of service provided on roads in these counties and facilitate comparisons within these groups. See Tables 1.3 and 1.4 on page 9 for more information on Winter Service Groups.

In most tables, raw numbers (such as total salt used) are presented along with data that has been adjusted for differences between counties (such as salt used per lane mile per Winter Severity Index point). This allows more accurate comparisons between regions in different parts of the state.

This report presents data from several sources:

- The weekly winter storm reports completed by the county highway departments, which detail the counties' estimates of the weather they faced and the materials, equipment and labor they used in responding to it. (See Section 4 for more information about storm reports.)
- Final cost and materials data as billed to WisDOT.
- Data on weather, crashes, travel and other topics from other bureaus within WisDOT and other agencies.

The final billed amounts are considered the most accurate source of cost and materials data, and are presented wherever possible. The source of the data in each table is indicated in the table's heading.

When interpreting the data in this report, readers should remember that many factors affect a county's response to winter, including the local Winter Severity Index, local traffic generators, the mix of highway types and classifications in a county, the type of equipment being used, and the length of patrol sections. Some tables in this report give data that is adjusted for one or more of these factors (for example, salt use per lane mile per severity index point), while others provide raw data.

Working with County Highway Departments

WisDOT's Bureau of Highway Maintenance, in partnership with the five WisDOT regional offices, is responsible for the maintenance of the state trunk and Interstate highway system. This system includes 34,192 lane miles of highway and around 4,570 bridges.

WisDOT contracts with the state's 72 county highway departments to provide snow and ice control on all state- and U.S.owned highways in Wisconsin, including the Interstate system. This partnership was set up more than 100 years ago and is unique to the nation.

This relationship benefits both WisDOT and the county highway departments. WisDOT receives the services of a skilled, experienced work force at fair labor rates, and the counties are able to purchase more pieces and types of equipment than they could otherwise afford. This equipment is then available for use on both county and state roads, an arrangement that allows WisDOT and the counties to avoid duplicating equipment and facilities. This arrangement also allows for increased efficiencies in work crews, thus reducing labor costs to taxpayers.

Staff at WisDOT's five regional offices work closely with the county highway departments. Regional managers administer the contracts with the counties, and work with the counties to plan maintenance activities and set priorities. Regional staff oversee county highway departments' maintenance expenditures, and are responsible for ensuring that the counties use resources efficiently and adhere to state guidelines for materials use. Regional staff also serve as a resource for the counties on state and federal rules and regulations, and can provide training assistance.

Figure 1.1. WisDOT Regional Divisions

Snow Removal Strategy

In order to gain the most benefit from limited resources, counties provide different levels of service on highways according to the amount of daily traffic they receive. High-volume roads typically receive 24-hour coverage, while lower-volume roads receive 18-hour coverage. On 18-hour routes the service hours are adjusted based on timing of the storms. On lower-volume four-lane highways, the passing lanes may receive less attention than the driving lanes and ramps.

Category	Definition	Lane miles	% of total
1	Major urban freeways and most highways with six lanes and greater	3,001	9%
2	High volume four-lane highways (Average Daily Traffic \geq 25,000) and some four-lane highways (ADT < 25,000), and some 6-lane highways.	3,179	9%
3	All other four-lane highways (ADT < 25,000)	8,945	26%
4	Most high volume two-lane highways (ADT \geq 5,000) and some 2-lanes (ADT <5000)	4,688	14%
5	All other two-lane highways	14,379	42 %
Total		34,192	

Table 1.2. Highway Categories for Winter Maintenance

Table 1.2 shows how WisDOT categorizes the state's highways for winter maintenance. For more detail on the categories and which category each highway is assigned to, see the 2012 map on page 118 in the Appendix.

To facilitate comparisons between counties that provide similar levels of service, WisDOT divides the 72 counties into six Winter Service Groups—A, B, C, D, E and F, with A being the most urban and F the most rural. Table 1.3 explains the divisions between the groups. This table also shows which counties are assigned to each service group. In many tables throughout this report, the counties are arranged according to these groups. Group A contains the fewest counties, while Group B has the most.

In addition, each county highway department divides its highways into winter patrol sections. One snowplow truck is generally assigned to each patrol section. This winter, there were 769 patrol sections on state-maintained highways, with an average of 44.46 lane miles per patrol section. Patrol section length is another factor that can affect performance; see Section 4 for a complete discussion of patrol sections

Winter Service Group	Definition	County Names	Number of Counties	% of Counties
A	 1,000 or more lane miles and all counties have some roads with six or more lanes 900,000 or more square feet of bridge deck 20 or more plow routes; most routes are 24 hour routes 	Dane, Milwaukee,Waukesha	3	4%
В	 600 to 1,000 lane miles; some counties have roads with six or more lanes; all counties have high mileage on four-lane roads 400,000 to 900,000 square feet of bridge deck 14 to 20 plow routes; most routes are 24 hour routes 	Brown, Chippewa, Columbia, Dodge, Eau Claire, Fond du Lac, Grant, Jefferson, Kenosha, Marathon, Monroe, Outagamie, Portage, Racine, Rock, Sauk, St. Croix, Walworth, Washington, Waupaca, Winnebago	21	29 %
c	 450 to 600 lane miles; some counties have roads with six or more lanes; all counties medium mileage on four-lane roads 170,000 to 450,000 square feet of bridge deck 7 to 14 plow routes; mix of 18 and 24 hour routes 	Barron, Clark, Crawford, Douglas, Dunn, Iowa, Jackson, Juneau, La Crosse, Lincoln, Manitowoc, Oconto, Pierce, Shawano, Sheboygan, Vernon, Wood	17	24%
D	 325 to 450 lane miles; no counties have roads with six or more lanes; all counties have low to medium mileage on four-lane roads; highest mileage is in two-lane roads 140,000 to 170,000 square feet of bridge deck 4 to 7 plow routes; mix of 18 and 24 hour routes 	Bayfield, Buffalo, Door, Green, Green Lake, Lafayette, Marinette, Marquette, Oneida, Ozaukee, Polk, Richland, Trempealeau, Washburn, Waushara	15	21%
E	 175 to 325 lane miles; no counties have roads with six or more lanes; few counties have four-lane roads; medium to high mileage on two-lane roads 50,000 to 140,000 square feet of bridge deck 2 to 4 plow routes; nearly all with 18 hour routes 	Ashland, Burnett, Calumet, Forest, Iron, Langlade, Pepin, Price, Rusk, Sawyer, Taylor, Vilas	12	17%
F	 90 to 175 lane miles; no counties have roads with six or more lanes; counties have 0 to 5 lane miles of four-lane roads; two-lane roads have low to medium mileage Less than 50,000 square feet of bridge deck Fewer than 2 plow routes; all 18 hour routes 	Adams, Florence, Kewaunee, Menominee	4	6%

This Winter in Wisconsin

Table 1.5 on pages 13-17 summarizes key data from this winter for all 72 counties, including total salt use and cost data. This table facilitates comparisons in these core areas across regions and counties, and serves as a quick reference for commonly used data. The table uses a similar format to the Storm Report Summary (Table A-1 on page 117 of the Appendix), but the cost data in Table 1.5 are actual billed costs as submitted to WisDOT by the counties, rather than estimates from the storm reports.

County-by-County Quick Reference Winter Summary Table for Section 1: Introduction This page intentionally left blank

County	Lane miles	Severity Index	Snowfall (inches)	Total salt used (tons)	Salt used (tons) per lane mile	Salt used per lane mile per Severity Index	Total salt costs	Total salt costs per lane mile	Total winter costs	Total winter costs per lane mile	Total winter costs per lane mile per Severity Index
lorth Central Regio	on										
Adams	193.82	36.22	88.4	4,014	20.71	0.57	\$281,909	\$1,454	\$621,717	\$3,208	\$88.56
Vilas	305.24	36.66	112.2	5,962	19.53	0.53	\$345,824	\$1,133	\$942,057	\$3,086	\$84.19
Marquette	245.09	28.42	74.3	4,216	17.20	0.61	\$237,007	\$967	\$562,453	\$2,295	\$80.75
Waupaca	546.64	37.22	93.9	11,129	20.36	0.55	\$660,936	\$1,209	\$1,578,270	\$2,887	\$77.57
Shawano	519.55	35.13	99.4	9,113	17.54	0.50	\$564,352	\$1,086	\$1,368,106	\$2,633	\$74.96
Menominee	90.26	24.57	58.5	1,326	14.69	0.60	\$71,781	\$795	\$159,766	\$1,770	\$72.04
Waushara	345.01	26.96	86.8	3,311	9.60	0.36	\$200,139	\$580	\$667,014	\$1,933	\$71.71
Portage	581.81	43.62	77.0	9,004	15.48	0.35	\$589,933	\$1,014	\$1,648,714	\$2,834	\$64.96
Forest	312.38	52.16	125.7	7,513	24.05	0.46	\$453,655	\$1,452	\$1,014,435	\$3,247	\$62.26
Wood	428.50	39.62	89.9	6,100	14.24	0.36	\$317,618	\$741	\$1,020,274	\$2,381	\$60.10
Florence	141.07	44.96	117.9	2,511	17.80	0.40	\$162,805	\$1,154	\$375,492	\$2,662	\$59.20
Iron	249.56	62.86	248.6	4,497	18.02	0.29	\$286,930	\$1,150	\$927,431	\$3,716	\$59.12
Langlade	292.19	42.94	104.8	4,996	17.10	0.40	\$316,854	\$1,084	\$736,985	\$2,522	\$58.74
Oneida	396.79	60.37	111.4	7,792	19.64	0.33	\$415,388	\$1,047	\$1,312,520	\$3,308	\$54.79
Marathon	885.39	43.63	97.0	11,529	13.02	0.30	\$792,391	\$895	\$2,110,808	\$2,384	\$54.64
Green Lake	156.94	37.17	81.1	1,506	9.60	0.26	\$79,752	\$508	\$301,502	\$1,921	\$51.68
Lincoln	418.33	50.52	93.8	5,597	13.38	0.26	\$324,111	\$775	\$1,018,268	\$2,434	\$48.18
Price	322.26	61.00	117.4	5,253	16.30	0.27	\$337,961	\$1,049	\$918,060	\$2,849	\$46.70
Region total	6,430.83			105,370			\$6,439,346		\$17,283,871		
Region average	357.27	42.45	104.3	5854	16.39	0.39	\$357,741	\$1,001	\$960,215	\$2,688	\$63.32

Table 1.5. Winte	r in Wiscons	sin, 2012	2-2013								
County	Lane miles	Severity Index	Snowfall (inches)	Total salt used (tons)	Salt used (tons) per lane mile	Salt used per lane mile per Severity Index	Total salt costs	Total salt costs per lane mile	Total winter costs	Total winter costs per lane mile	Total winter costs per lane mile per Severity Index
Northeast Region											
Brown	532.55	29.99	82.3	8,366	15.71	0.52	\$417,958	\$785	\$1,662,008	\$3,121	\$104.06
Manitowoc	421.41	30.45	84.8	7,650	18.15	0.60	\$390,309	\$926	\$1,332,601	\$3,162	\$103.85
Kewaunee	268.55	29.53	75.4	4,471	16.65	0.56	\$242,589	\$903	\$819,777	\$3,053	\$103.37
Calumet	519.68	27.96	75.3	8,331	16.03	0.57	\$501,763	\$966	\$1,431,833	\$2,755	\$98.54
Door	600.53	31.01	73.4	10,082	16.79	0.54	\$525,181	\$875	\$1,723,953	\$2,871	\$92.57
Outagamie	110.41	30.42	86.5	1,511	13.69	0.45	\$78,148	\$708	\$291,387	\$2,639	\$86.76
Oconto	597.30	33.48	91.8	10,282	17.21	0.51	\$588,540	\$985	\$1,664,720	\$2,787	\$83.25
Marinette	732.26	34.76	72.0	13,727	18.75	0.54	\$777,232	\$1,061	\$2,068,002	\$2,824	\$81.25
Winnebago	201.53	31.46	98.5	2,473	12.27	0.39	\$127,708	\$634	\$490,980	\$2,436	\$77.44
Fond du Lac	467.45	36.35	105.6	6,446	13.79	0.38	\$383,618	\$821	\$1,070,607	\$2,290	\$63.01
Sheboygan	421.42	38.82	108.0	7,043	16.71	0.43	\$392,452	\$931	\$1,028,605	\$2,441	\$62.87
Region total	4,873.09			80,383			\$4,425,499		\$13,584,471		
Region average	443.01	32.20	86.7	7308	16.50	0.51	\$402,318	\$908	\$1,234,952	\$2,788	\$86.57
Sources: Cost data a	are final billed co	sts as bille	ed to WisD	OT by the coun	ties. Salt da	ta is taken f	from WisDOT's	s Salt Inven	tory Reporting S	ystem.	

											Total winter
						Salt used		Total			costs per
						per lane		salt		Total	lane mile
					Salt used	mile per		costs		winter	per
Country	l ana milao		Snowfall	Total salt	(tons) per	Severity	Total salt	per lane	Total winter	costs per	Severity
County	Lane miles	Index	(inches)	used (tons)	lane mile	Index	costs	mile	costs	lane mile	Index
Northwest Reg					10.11	0.04	*•••••••••••••	A757	<u> </u>	AE (70	<u></u>
Sawyer	367.44	36.30	103.6	4,560	12.41	0.34	\$278,249	\$757	\$2,012,916	\$5,478	\$150.92
Eau Claire	537.76	37.51	107.3	11,552	21.48	0.57	\$710,100	\$1,320	\$1,799,004	\$3,345	\$89.19
Dunn	516.55	34.97	112.1	10,808	20.92	0.60	\$621,582	\$1,203	\$1,555,895	\$3,012	\$86.13
Chippewa	654.65	36.06	99.5	12,561	19.19	0.53	\$761,853	\$1,164	\$1,941,859	\$2,966	\$82.26
Jackson	515.00	39.41	137.0	10,544	20.47	0.52	\$597,826	\$1,161	\$1,475,871	\$2,866	\$72.72
Washburn	372.14	33.78	112.5	5,599	15.05	0.45	\$358,341	\$963	\$867,362	\$2,331	\$69.00
Clark	402.44	40.10	102.3	6,622	16.45	0.41	\$445,581	\$1,107	\$1,066,029	\$2,649	\$66.06
Pierce	365.81	40.60	95.2	5,916	16.17	0.40	\$325,281	\$889	\$974,128	\$2,663	\$65.59
Trempealea	u 441.05	38.38	73.8	7,121	16.14	0.42	\$452,377	\$1,026	\$1,101,814	\$2,498	\$65.09
Rusk	213.47	33.26	110.0	2,245	10.52	0.32	\$145,753	\$683	\$456,205	\$2,137	\$64.25
Douglas	440.77	46.41	108.8	8,500	19.28	0.42	\$586,083	\$1,330	\$1,279,372	\$2,903	\$62.54
Pepin	112.38	32.20	90.4	1,148	10.22	0.32	\$74,967	\$667	\$220,646	\$1,963	\$60.98
Buffalo	316.86	31.13	91.0	3,126	9.87	0.32	\$187,172	\$591	\$576,571	\$1,820	\$58.45
Taylor	233.90	46.23	87.8	3,902	16.68	0.36	\$245,112	\$1,048	\$626,812	\$2,680	\$57.97
Barron	423.09	45.42	114.2	4,217	9.97	0.22	\$272,151	\$643	\$1,106,332	\$2,615	\$57.57
Polk	385.05	54.22	128.2	7,523	19.54	0.36	\$445,916	\$1,158	\$1,178,244	\$3,060	\$56.44
Bayfield	316.90	58.43	187.0	5,649	17.83	0.31	\$373,483	\$1,179	\$930,760	\$2,937	\$50.27
Burnett	233.64	43.64	105.9	3,189	13.65	0.31	\$231,456	\$991	\$492,946	\$2,110	\$48.35
Ashland	247.57	58.17	212.0	3,836	15.49	0.27	\$235,664	\$952	\$611,785	\$2,471	\$42.48
St. Croix	621.36	41.17	97.8	13,434	21.62	0.53	\$775,560	\$1,248	\$668,062	\$1,075	\$26.12
Region total	7,717.83			132,053			\$8,124,510	÷.,=.10	\$20,942,613	÷.,	+
Region averag		41.37	113.8	6603	16.15	0.39	\$406,226	\$1,053	\$1,047,131	\$2,714	\$65.59

Table 1.5. Winte	Lane miles	Severity Index		Total salt used (tons)	Salt used (tons) per lane mile	Salt used per lane mile per Severity Index	Total salt costs	Total salt costs per lane mile	Total winter costs	Total winter costs per lane mile	Total winter costs per lane mile per Severity Index
Southeast Region											
Walworth	698.71	22.49	55.00	16,336	23.38	1.04	\$863,031	\$1,235	\$1,990,505	\$2,849	\$126.67
Ozaukee	307.47	28.32	57.60	8,432	27.42	0.97	\$430,285	\$1,399	\$1,090,001	\$3,545	\$125.18
Milwaukee	1876.91	30.96	42.70	39,318	20.95	0.68	\$2,068,913	\$1,102	\$6,428,807	\$3,425	\$110.63
Washington	600.63	30.06	82.10	14,474	24.10	0.80	\$773,346	\$1,288	\$1,872,962	\$3,118	\$103.74
Waukesha	1110.39	25.62	68.10	15,919	14.34	0.56	\$803,591	\$724	\$2,446,946	\$2,204	\$86.01
Kenosha	642.12	25.78	48.30	9,440	14.70	0.57	\$528,546	\$823	\$1,403,460	\$2,186	\$84.78
Racine	684.45	30.19	54.70	10,303	15.05	0.50	\$543,586	\$794	\$1,442,514	\$2,108	\$69.81
Region total	5,920.68			114,222			\$6,011,298		\$16,675,194		
Region average	845.81	27.63	58.4	16317	19.29	0.70	\$858,757	\$1,015	\$2,382,171	\$2,816	\$101.93

Table 1.5. Winte		,									Total winter
						Salt used		Total			costs per
						per lane		salt		Total	lane mile
					Salt used	mile per		costs		winter	per
		· · · · · · · · · · · · · · · · · · ·	Snowfall	Total salt	(tons) per	Severity	Total salt	per lane	Total winter	costs per	Severity
County	Lane miles	Index	(inches)	used (tons)	lane mile	Index	costs	mile	costs	lane mile	Index
Southwest Region											
Dane	1535.68	31.73	63.8	50,488	32.88	1.04	\$3,452,847	\$2,248	\$6,288,439	\$4,095	\$129.0
Dodge	630.41	32.53	84.1	19,932	31.62	0.97	\$1,206,677	\$1,914	\$2,419,754	\$3,838	\$118.00
Jefferson	549.15	25.74	75.7	12,133	22.09	0.86	\$744,943	\$1,357	\$1,627,483	\$2,964	\$115.14
Columbia	792.92	41.67	97.8	23,101	29.13	0.70	\$1,389,756	\$1,753	\$3,081,827	\$3,887	\$93.27
Sauk	578.72	32.51	73.1	13,612	23.52	0.72	\$804,444	\$1,390	\$1,747,960	\$3,020	\$92.91
Rock	651.64	27.69	44.1	12,176	18.69	0.67	\$773,295	\$1,187	\$1,646,724	\$2,527	\$91.26
lowa	457.98	30.98	68.8	6,183	13.50	0.44	\$370,542	\$809	\$1,011,149	\$2,208	\$71.27
Juneau	494.51	37.10	85.7	8,425	17.04	0.46	\$494,475	\$1,000	\$1,303,765	\$2,636	\$71.06
Lafayette	293.88	32.88	69.1	2,491	8.48	0.26	\$172,809	\$588	\$646,932	\$2,201	\$66.95
Green	312.72	27.82	65.3	2,852	9.12	0.33	\$157,876	\$505	\$576,777	\$1,844	\$66.30
La Crosse	488.24	36.67	89.1	6,534	13.38	0.36	\$385,347	\$789	\$1,140,037	\$2,335	\$63.68
Grant	621.78	32.92	70.3	8,434	13.56	0.41	\$543,740	\$874	\$1,238,740	\$1,992	\$60.52
Vernon	467.04	37.18	89.6	5,311	11.37	0.31	\$347,048	\$743	\$1,029,486	\$2,204	\$59.29
Monroe	654.71	41.34	88.5	10,196	15.57	0.38	\$564,247	\$862	\$1,506,764	\$2,301	\$55.67
Richland	325.26	29.07	62.5	2,965	9.11	0.31	\$198,190	\$609	\$491,656	\$1,512	\$52.00
Crawford	394.85	39.20	67.0	4,349	11.01	0.28	\$272,244	\$689	\$739,294	\$1,872	\$47.76
Region total	9,249.49			189,181			\$11,878,478		\$26,496,788		
Region average	578.09	33.56	74.7	11824	20.45	0.61	\$742,405	\$1,284	\$1,656,049	\$2,865	\$85.3
Statewide total	34,191.92		93.2	621,208	18.17		\$36,863,377		\$94,982,937		
Statewide average		37.17						\$1,052			

This page intentionally left blank

2 Winter Weather

In this section...

Winter Weather Challenges	20
This Winter's Weather	20
Winter Severity Index	21

Every winter is different. The number and type of storms, the range of temperatures, the amount of snow – these factors, along with many others, combine to create varying challenges for Wisconsin's county highway departments each year.

The 2012-2013 winter season was much more severe than the mild winter of 2011-2012. Snowfall was much heavier statewide, with an average of approximately 93 inches. This was approximately double the snowfall total of the previous winter.

This section describes the weather Wisconsin experienced during the 2012-2013 winter, and the tools and methodologies WisDOT uses to analyze individual storms and the winter as a whole. The Winter Severity Index is one such tool – WisDOT uses it to facilitate comparisons from one winter to the next, and from county to county within the same season.

Winter Weather, 2012-2013

1. All data in this table is from Winter Storm Reports, 2012-2013.

Tracking the Winter

Each week during winter, representatives from the 72 county highway departments complete winter storm reports. These reports give WisDOT the tools to manage statewide materials use and maintenance expenses as the winter progresses. See page 73 for more information.

Winter Weather Challenges

Each year, county highway departments face unique combinations of temperatures and storms, and draw on their experience in deciding what combination of snow and ice control strategies to employ. The number of storms has a more significant impact on resources expended than snowfall totals, since staff and equipment may be mobilized even if only 0.1 inches of snow or freezing rain falls. Weekend and evening storms may also be more costly than weekday storms because of overtime pay.

Storms with low temperatures can be difficult for crews because deicing agents become less effective at lower temperatures. Storms with high winds also are a challenge, because snow blows back onto the roadway quickly after the plows pass.

Counties in the northern half of the state tend to face colder temperatures and heavier snowfall than those in the southern half. Wisconsin's average annual snowfall ranges from about 40 inches in the south to as much as 160 inches along the shores of Lake Superior. The statewide average annual snowfall is 52.4 inches (30-year normal as recorded by the Wisconsin State Climatology Office).

On average, about 35 to 40 winter weather events hit Wisconsin each winter. While only a couple of large freezing rain events normally strike the state each winter, the state experiences numerous freezing drizzle and freezing fog events that cause roads to ice over.

This Winter's Weather

The 2012-13 winter season featured a reversal of the trends seen in the previous several winters. That is, the season started out mild with little snow. Winter then turned cold and snowy after about February 1 and remained that way into April. In fact, some portions of northern Wisconsin experienced a rare May snow event.

Winter began in earnest in early December when a storm system dropped 6 to 12 inches of snow in areas of west central Wisconsin. A second major storm affected most of the state on December 20-21. This one impacted southern Wisconsin the hardest, with up to 20 inches of snow being reported in some areas just north of Madison.

After a fairly benign January, snowfall picked up again in February. Amounts for the month ranged from 125 to 300 percent above normal. All locations received at least 15 inches of snow.

March featured a complete reversal from the previous year. In 2012, record warmth bathed the state and almost no snow fell statewide. In 2013, most areas saw above-average snow amounts for the month. Many locations set one or more daily snowfall records during March.

Figure 2.1. Statewide Snowfall, 2012-2013 From Winter Storm Reports

Note: If you are looking at a black-and-white version of this map, you may download a color version of this report at https://trust.dot.state.wi.us/extntgtwy/dtid_bho/extranet/ winter/reports/reports.shtm.

The winter season lingered into April across the northern half of the state. Some areas in far northwestern Wisconsin received as much as 40 inches of snow in April, more than they had gotten in some previous entire winters. The trend continued into May. On May 2, up to a foot of heavy wet snow blanketed northwest Wisconsin.

During the 2012–2013 winter season, county highway departments responded to:

- A statewide average of 36 winter storm events per county, with a high of 65 in Iron County and a low of 22 in Green County.
- A statewide average of 4 frost events.
- A statewide average of 6 freezing rain events.

Figure 2.1 shows the total snowfall received in Wisconsin this winter based on storm report data. Snowfall varied quite a bit across the state; the highest snowfall recorded was in Iron County, at 249 inches; the lowest was in Milwaukee County, at 43 inches. Both figures were well above those of the previous winter. Statewide, this winter's total snowfall was well above average.

Winter Severity Index

WisDOT's Winter Severity Index is a management tool that allows the department to maximize winter maintenance efficiency by evaluating the materials, labor and equipment used based on the severity of the winter in a given county or region.

Developed in 1995, the severity index is calculated using a formula that includes:

- Number of snow events
- Number of freezing rain events
- Total snow amount
- Total storm duration
- Total number of incidents

Since all of these factors can affect materials use, the severity index gives the department a simple way to quantify severity that incorporates multiple factors into a single number. WisDOT uses the severity index in two ways:

1. <u>Season-to-season comparisons.</u> This lets the department compare apples to apples when evaluating materials use and costs over several seasons, and identify trends in winter weather that can be useful in planning materials purchases. In the case of cost trends, adjusting cost data for severity index ranking can help WisDOT separate cost increases due to more severe winters from those due to increased labor costs, equipment costs, lane miles and other factors.

Figure 2.2. Winter Severity Index, 2012-2013

Note: If you are looking at a black-and-white version of the maps on this page, you may download a color version of this report at https:// trust.dot.state.wi.us/extntgtwy/dtid_bho/extranet/winter/reports/ reports.shtm.

Figure 2.3. 2012-2013 Winter Severity Index vs. 5-Year Average (2008-2009 to 2012-2013)

2. <u>Regional comparisons.</u> Since snowfall, number of storms, and other factors vary widely across the state, the severity index also helps WisDOT compare resources use from one region or county to another within a single winter. This allows WisDOT to assess whether materials are being used consistently, whether counties have enough staff, and other factors that affect each region's response to winter.

Data from weekly storm reports are used to calculate the Winter Severity Index for each county according to a weighted formula. The index expresses winter severity on a scale from 0 to 100. This winter:

- The statewide average Winter Severity Index was 37.2, which is 14 percent higher than the average of the previous ten winters (32.6).
- Oneida and Price Counties had the highest severity indexes; both greater than 60.
- Menominee and Walworth County had the lowest severity indexes. They were the only counties under 25.

With some exceptions across the state, this winter was much more severe than normal. Figure 2.2 on the previous page shows how severity index varied by county this winter, while Figure 2.3 shows how this winter's severity index for each county compares to the average of the previous five years in that county.

Figure 2.4 plots the average statewide salt use per lane mile versus the average statewide Winter Severity Index. Normally, salt use tends to increase as the severity index increases. This year's salt use was similar to 2010-11, the last year with a similar severity index.

Since the Winter Severity Index is an important tool for comparing cost and materials data from year to year, this report includes several charts that compare trends in winter measures over time with changes in severity index.

Figure 2.4. Salt Use per Lane Mile and Average Severity Index

From Salt Inventory Reporting System, 1992–2013

These include Figure 2.4 on the previous, as well as Figure 3.2 (salt used per lane mile; page 35), Figure 4.2 (winter costs; page 79), and Figure 4.6 (winter crashes; page 84).

Because of concerns about consistency across all counties in reporting incidents, beginning with the 2005–2006 winter WisDOT adjusted the formula for computing the severity index to remove cleanup and bridge deck snow removal as components in the calculation. The effect of this change is slight, but readers should be aware of it when comparing severity index data from the last four winters against earlier data. The severity index for some counties may appear slightly lower using the new formula.

More information on the severity index is available by request from WisDOT:

- A report describing the process that was used to develop the severity index, including data on the five-yearaverage severity index for each county (March 1998).
- A table showing Winter Severity Index values for each county for the previous 10 winter seasons.

On page 27, Table 2.1 gives details about the types of storms and other incidents (such as frost, ice, and drifting or blowing snow) that each county experienced this winter, as reported by the counties in their winter storm reports.

This page intentionally left blank

County-by-County Tables for Section 2 Winter Weather This page intentionally left blank

						Number	т	Types of Storms	Storms		Number		Types	Types of Incidents	ents			Anti-
Region	County	Snow Depth	Lane Miles	Salt Used	Tons /LM	of Storms	Wet Snow	Dry Snow	Freezing \$ Rain	Sleet	of Incidents	Drifting	Blowing Frost Snow		Ice B	Bridge C Decks	Clean Up	lcing applic.
NC	ADAMS	88.4	193.82	4014	20.71	32	23	17	80	13	16	7	80	0	6	-	11	6
	FLORENCE	117.9	141.07	2511	17.80	48	23	24	14	7	14	ო	5	-	2	0	10	10
	FOREST	125.7	312.38	7513	24.05	55	26	25	5	9	17	11	0	0	ω	0	5	~
	GREEN LAKE	81.1	156.94	1506	9.60	31	21	11	7	1	34	24	24	-	9	7	15	4
	IRON	248.6	249.56	4497	18.02	65	35	30	5	ი	18	5	-	-	ю	0	10	2
	LANGLADE	104.8	292.19	4996	17.10	44	28	21	10	10	19	11	9	-	12	~	15	7
	LINCOLN	93.8	418.33	5597	13.38	39	31	14	17	23	29	11	12	9	4	6	17	13
	MARATHON	97.0	885.39	11529	13.02	47	26	18	0	9	35	12	11	7	12	4	22	17
	MARQUETTE	74.3	245.09	4216	17.20	27	17	10	5	2	19	5	11	0	ю	0	14	4
	MENOMINEE	58.5	90.26	1326	14.69	33	12	16	4	2	20	~	0	0	0	0	20	0
	ONEIDA	111.4	396.79	7792	19.64	50	25	33	21	20	14	ო	ო	თ	ъ	~	8	24
	PORTAGE	77.0	581.81	9004	15.48	49	26	25	10	;-	18	7	10	с	4	10	14	6
	PRICE	117.4	322.26	5253	16.30	54	32	37	15	16	15	7	0	2	0	4	7	12
	SHAWANO	99.4	519.55	9113	17.54	33	22	15	4	9	27	17	13	e	7	10	15	10
	VILAS	112.2	305.24	5962	19.53	37	21	4	0	0	19	0	-	0	12	0	9	ю
	WAUPACA	93.9	546.64	11129	20.36	36	27	7	9	2	13	5	ю	0	с	0	4	5
	WAUSHARA	86.8	345.01	3311	9.60	29	16	11	ю	2	4	ო	7	0		0	0	7
	WOOD	89.9	428.50	6100	14.24	37	25	22	£	17	24	17	16	10	12	0	13	8
Region	Region Average	104.3	357.27	5854	16.57	41	24	19	8	6	20	8	8	2	9	7	11	∞

From Winter Storm Reports, 2012-2013

Table 2.1. Storms and Incidents

Page 1 of 6

Final totals as of Tuesday, July 16, 2013

						Number	T)	Types of Storms	Storms		Number		Types (Types of Incidents	lents			Anti-
Region	County	Snow Depth		Lane Salt Tons Miles Used /LM	Tons /LM	of Storms	Wet Snow	Dry Snow	Freezing S Rain	Sleet	of Incidents		Drifting Blowing Frost Snow		Ice B I	Bridge Clean Decks Up		lcing applic.
NE	BROWN	72.0	732.26	732.26 13727 18.75	18.75	31	25	18	11	0	19	2	6	4	0	റ	-	48
	CALUMET	98.5	201.53	2473 12.	12.27	23	14	10	-	-	29	21	20	0	4	-	10	-
	DOOR	75.4	268.55	4471	16.65	26	17	14	2	ω	20	15	15	13	12	0	6	13
	FOND DU LAC	91.8	597.30	597.30 10282 17.	17.21	27	20	7	-	0	25	19	ø	-	6	4	12	25
	KEWAUNEE	86.5	110.41	1511	13.69	24	19	ω	с	5	21	19	0	0	17	0	4	10
	MANITOWOC	84.8	421.41	7650	18.15	27	18	ω	7	5	20	17	17	ო	17	16	18	11
	MARINETTE	108.0	421.42	7043	16.71	33	21	ω	4	10	46	10	4	2	20	14	32	42
	OCONTO	105.6	467.45	6446	13.79	35	25	10	4	თ	17	10	10	-	7	ω	12	21
	OUTAGAMIE	82.3	532.55	8366 15.	15.71	30	26	6	ю	9	13	7	7	7	12	7	2	9
	SHEBOYGAN	75.3	519.68	8331	16.03	25	11	17	ю	4	23	10	4	ო	7	ო	ი	9
	WINNEBAGO	73.4	600.53	600.53 10082 16.	16.79	30	15	16	4	5	31	7	6	2	з	13	24	8
Region	Region Average	86.7	443.01	7307 15.	15.98	28	19	11	3	5	24	12	6	ю	6	9	12	17

Table 2.1. Storms and Incidents From Winter Storm Reports, 2012-2013 Page 2 of 6

Final totals as of Tuesday, July 16, 2013

						Number	ту	Types of Storms	Storms		Number		Types	Types of Incidents	ents			Anti-
Region	County	Snow Depth	Lane Miles	Salt Used	Tons /LM	of Storms	Wet Snow	Dry Snow	Freezing Rain	Sleet	of Incidents	Drifting	Drifting Blowing Frost Snow		Ice B	Bridge C Decks	Clean Up	lcing applic.
ΜN	ASHLAND	212.0	247.57	3836	15.49	49	28	18	10	ω	12	5	ю	4	ო	0	10	4
	BARRON	114.2	423.09	4217	9.97	44	29	18	9	10	40	22	16	7	5	11	21	7
	BAYFIELD	187.0	316.90	5649	17.83	53	23	33	0	13	25	11	с	-	4	4	13	8
	BUFFALO	91.0	316.86	3126	9.87	32	13	16	2	5	34	9	5	-	13	0	18	6
	BURNETT	105.9	233.64	3189	13.65	44	23	17	10	16	19	13	4	0	15	5	10	0
	CHIPPEWA	99.5	654.65	12561	19.19	44	20	21	с	9	13	4	-	0	-	-	ω	0
	CLARK	102.3	402.44	6622	16.45	42	26	16	4	з	21	13	-	0	11	-	12	10
	DOUGLAS	108.8	440.77	8500	19.28	48	24	21	7	7	25	10	0	0	с	с	15	11
	DUNN	112.1	516.55	10808	20.92	38	18	18	с	4	15	0	9	-	-	0	8	0
	EAU CLAIRE	107.3	537.76	11552	21.48	44	27	21	2	с	22	2	0	0	-	0	21	21
	JACKSON	137.0	515.00	10544	20.47	47	41	5	0	44	23	7	9	0	ო	7	23	23
	PEPIN	90.4	112.38	1148	10.22	35	15	21	5	18	7	5	5	5	4	e	5	4
	PIERCE	95.2	365.81	5916	16.17	39	20	18	8	14	21	12	9	5	17	5	10	5
	POLK	128.2	385.05	7523	19.54	43	16	23	7	2	42	24	24	ო	19	0	11	4
	RUSK	110.0	213.47	2245	10.52	36	26	6	0	16	33	12	14	0	12	12	24	0
	SAINT CROIX	97.8	621.36	13434	21.62	42	21	18	5	11	28	15	8	0	10	e	10	0
	SAWYER	103.6	367.44	4560	12.41	39	27	4	7	2	22	5	~	0	10	4	7	0
	TAYLOR	87.8	233.90	3902	16.68	41	36	15	10	9	32	15	13	-	13	Ð	14	18
	TREMPEALEAU	73.8	441.05	7121	16.15	39	19	15	10	5	22	ø	5	0	0	o	11	7
	WASHBURN	112.5	372.14	5599	15.05	31	21	10	1	8	33	3	4	4	26	8	5	5
Region	Region Average	113.8	385.89	6603	16.15	42	24	17	5	10	24	10	6	-	6	4	13	7

From Winter Storm Reports, 2012-2013

Table 2.1. Storms and Incidents

Final totals as of Tuesday, July 16, 2013

Page 3 of 6

						Number		Types of Storms	Storms	Number	ber		Types of Incidents	of Incic	lents			Anti-
Region	Region County	Snow Depth	Snow Lane Salt Tons Depth Miles Used /LM	Salt Used	Tons /LM	of Storms	Wet Snow	Dry I Snow	Freezing Sleet Rain	et Incidents		Drifting Blowing Frost Snow	lowing F Snow		Ice B	Bridge Clean Decks Up		lcing applic.
SE	KENOSHA	48.3	48.3 642.12 9440 14.70	9440	14.70	29	13	12	4	9	.	8	7	-	2	0	7	13
_	MILWAUKEE	42.7	42.7 1,876.91 39318 20.	39318	20.95	26	20	9	9	6 1	12	0	e	œ	2	9	0	10
_	OZAUKEE	57.6	57.6 307.47 8432 27.	8432	27.42	27	16	14	S	2	29	7	с	7	œ	9	17	7
_	RACINE	54.7	54.7 684.45 10303 15.	10303	15.05	29	13	22	5	8	19	10	9	0	15	ω	13	4
_	WALWORTH	55.0	55.0 698.71 16336 23.	16336	23.38	24	12	0	ю	2	12	4	4	ω	7	-	9	11
_	WASHINGTON		82.1 600.63 14474 24	14474	24.10	27	13	16	4	4	12	10	ω	~	0	-	ი	7
-	WAUKESHA	68.1	68.1 1,110.39 15919 14.	15919	14.34	29	14	15	5	6	3	2	0	0	-	0	2	7
Region	Region Average	58.4	58.4 845.81 16317 19.	16317	19.99	27	14	13	4	6 1	14	9	4	ю	4	ю	80	œ

 Table 2.1. Storms and Incidents

 From Winter Storm Reports, 2012-2013

Final totals as of Tuesday, July 16, 2013

						Number	Typ	oes of	Types of Storms		Number		Types of Incidents	of Incid	lents			Anti-
Region	n County	Snow Depth		Lane Salt [.] Miles Used	Tons /LM	of Storms	Wet Snow	Dry Snow	Freezing Rain	Sleet	of Incidents	Drifting	of Incidents Drifting Blowing Frost Snow		Ice B	Bridge Clean Decks Up		lcing applic.
SW	COLUMBIA	97.8	792.92	23101	29.13	35	14	21	4	4	20	6	6	~	ω	ო	12	20
	CRAWFORD	67.0	394.85	4349	11.01	33	13	16	13	4	23	17	7	0	10	0	17	8
	DANE	63.8	1,535.68	50488	32.88	31	13	13	9	5	14	5	9	~	0	0	10	-
	DODGE	84.1	630.41	630.41 19932	31.62	32	16	17	~	10	19	10	11	2	5	0	9	0
	GRANT	70.3	621.78	8434	13.56	31	18	10	4	9	28	œ	12	2	6	0	12	2
	GREEN	65.3	312.72	2852	9.12	22	6	10	0	5	39	14	4	4	ω	2	28	2
	IOWA	68.8	457.98	6183	13.50	33	16	13	5	~	21	5	12	0	e	-	15	10
	JEFFERSON	75.7	549.15	549.15 12133	22.09	27	13	1	~	ω	18	13	11	~	თ	7	1	0
	JUNEAU	85.7	494.51	8425	17.04	35	26	ო	9	13	14	6	6	0	£	-	7	11
	LA CROSSE	89.1	488.24	6534	13.38	33	17	19	9	e	22	12	10	10	10	7	ი	12
	LAFAYETTE	69.1	293.88	2491	8.48	30	20	7	9	9	13	0	e	0	7	0	0	10
	MONROE	88.5	654.71	10196	15.57	42	23	14	6	5	13	7	6	10	~	4	13	10
	RICHLAND	62.5	325.26	2965	9.12	30	13	10	7	7	19	4	9	~	16	с	4	9
	ROCK	44.1	651.64	651.64 12176	18.69	27	10	18	9	5	25	7	ъ	с	7	7	13	с
	SAUK	73.1	578.72	578.72 13612	23.52	32	18	10	ω	5	28	с	ю	0	16	0	20	32
	VERNON	89.6	467.04	5311	11.37	36	18	11	9	5	24	16	5	3	18	1	7	11
Region	Region Average	74.7	578.09	11824	17.51	32	16	13	9	9	21	6	8	2	8	-	12	6

 Table 2.1. Storms and Incidents

 From Winter Storm Reports, 2012-2013

Page 5 of 6

Final totals as of Tuesday, July 16, 2013

From	From Winter Storm Reports, 2012-2013	n Rep(orts, 2	012-2	2013													
						er	тy	Types of Storms	Storms		Number		Types	Types of Incidents	dents			Anti-
		Snow Lane	Lane	Salt	Tons	of	Wet	Dry	Wet Dry Freezing Sleet lincidents Drifting Blowing Frost Ice Bridge Clean Icing	Sleet	of Incidente	Drifting	Blowing	Frost	Ice E	Sridge	Clean	lcing
Region	Region County	Depth	Depth Miles Used	Used	/LM		Snow	Snow	Rain		ווממפוומ		Snow			Decks	Чp	applic.
Statewid	Statewide Averages	1	475	475 8628	16.90	6.90 35.9 20.5 15.4	20.5	15.4	5.6	7.7	5.6 7.7 21.5	9.3	7.2	7.2 2.2 7.6 3.2 11.8	7.6	3.2	11.8	9.3

Table 2.1. Storms and Incidents

Final totals as of Tuesday, July 16, 2013

Winter Operations

In this section...

3A Materials	34
Salt	34
Abrasives	37
Prewetting	
Anti-icing	40
3B Equipment & Technology	46
RWIS	46
MDSS	48
Product and Equipment Testing	50
Winter Maintenance Research	51
3C Labor	53
Winter Operations Training	54

Wisconsin county highway departments use an array of strategies to combat winter storms. Materials, equipment and labor are three key pieces of the puzzle; county patrol superintendents use their skills and experience to combine these pieces in the most efficient way possible for each storm.

This section describes the counties' response to the 2012-2013 winter season, including materials use, best practices in equipment and technology, and training efforts. Most counties have added prewetting and anti-icing to their arsenal of best practices—strategies that help them use materials efficiently, save money and minimize environmental impacts.

Statewide Materials Use, 2012-2013

Total salt used ¹	621,207 tons
Total salt used per lane mile	18.1 tons
Total cost of salt used ²	\$37,689,968
Average cost per ton of salt	\$58.34
Total prewetting agents used ³	2,124,834 gal.
Counties prewetting salt	68 of 72 (94%)
Total abrasives used	18,589 cubic yards
Counties prewetting abrasives	7 of 49 using sand (14%)
Total anti-icing agents used	1,110,886 gal.
Counties equipped to use anti-icing	66 of 72 (92%)

There's More on the Web!

Looking for more information about winter maintenance in Wisconsin? WisDOT's extranet site features detailed reports on products, equipment, best practices and more.

See https://trust.dot.state.wi.us/ extntgtwy/dtid_bho/extranet/winter/reports/reports.shtm.

1. Salt use data is final data from WisDOT's Salt Inventory Reporting System.

^{2.} Cost data is actual salt costs as billed to WisDOT by the counties.

^{3.} Prewetting, abrasives and anti-icing data are estimates from Winter Storm Reports.

3A. Materials

Salt remains the primary material used in winter maintenance. The advent of prewetting technology has improved the efficiency of materials use, and proactive anti-icing applications have reduced the amount of salt needed to keep roads clear.

Salt

Salt is a critical part of a highway crew's response to winter storms. When salt combines with ice or snow, it creates a brine solution with a lower freezing point than water. This solution then acts to break the bond between the ice or packed snow and the pavement, which allows the snow to be removed more easily through plowing.

Because of cost and environmental concerns, maintenance crews strive to use the smallest amount of salt necessary to provide an appropriate level of service for each roadway. Using anti-icing agents can help reduce overall materials use; see pages 40 - 42 for details on statewide anti-icing use.

Historically, counties have used more salt during more severe winters; see Figure 2.4 on page 22 for a detailed comparison. This winter 's statewide Winter Severity Index of 37.2 was 14 percent higher than the previous 10-year average of 32.6 Salt use was 74 percent higher than the previous year, at 621,207 tons. See Table 1.5 on page 13 for county-by-county salt use data for this winter.

Wisconsin counties applied a statewide average of 18.1 tons of salt per lane mile on state highways, an increase of 72 percent compared with the 2011-2012 winter. (See Figure 3.10 on page 57 for a county-by-county comparison.) When

compared with nearby states, which differ by winter severity and level of service standards, Wisconsin salt use is relatively high. In the last year with comparable data available - 2009-2010 - Wisconsin used 12.2 tons of salt per lane mile on state highways. In that same year, Minnesota (5.9 tons per lane mile), lowa (9.8) and Indiana (11.8) used less while Illinois (12.3) and Michigan (12.6) used more. Several factors may contribute to other states' lower rates of salt used per lane mile, including salt shortages that prevented several states from obtaining the quantity of salt that they would normally use. In addition, some states provide a lower level of service that prescribes less salt and more sand use. Winter severity also varies from state to state. Data on total salt use (not adjusted for lane miles) for most states is available on page 58 in a map of salt use and costs produced by Washington State DOT.

Figure 3.1 shows the regional levels of salt use per lane mile. Counties in the Southeast Region used an average of 20.0 tons of salt per lane mile, which reflects the greater number of highways in these counties receiving 24-hour service.

Figure 3.2 on page 35 shows salt use per lane mile in each county, overlaid with severity index to allow a further "apples to apples" comparison of salt use in each county. The counties in Winter Service Groups A and B have more urban highways and tend to use more salt per lane mile for a given level of severity.

For more detail on salt use in previous years, see Table A-9, "History of Salt Use on State Trunk Highways," on page 171 of the Appendix.
Figure 3.2. Salt Used per Lane Mile and Severity Index

From Salt Inventory Reporting System, 2012-2013

Salt used (tons) per lane mile ----Severity Index

Figure 3.3. Salt Prices Across the United States

Source: Washington State DOT data

Note: Three states supplied a range of prices rather than an average. For these states, the midpoint of the range was used in this graph.

Cost of Salt

Salt prices continues to remain high, which WisDOT's salt vendors attribute to multiyear supply and demand issues. Prices have generally leveled out, however, after several years of large increases. This winter, WisDOT spent \$37,689,968 on salt statewide, purchasing salt at an average of \$58.34 per ton.

Fuel prices have contributed to higher salt transportation costs in recent years: The average of \$58.34 per ton is a 1 percent decrease compared to prices paid under last winter's salt contract, but an increase of 65 percent compared with the average price of \$35.22 seven winters ago.

Despite this increase, WisDOT pays less per ton for salt than most other snowy states across the country, according to data compiled by Washington State DOT: Only thirteen states pay less on average per ton, one state (Connecticut) pays about the same, and 27 states pay more. (See Figure 3.3.) Washington State DOT created a map of per-ton salt costs and average salt use across the country, which we have reproduced

Figure 3.4. Salt Prices Over Time

Source: Data from 14+ states, 2000-2013

Source: Historical data supplied by Illinois, Indiana, Iowa, Maine, Massachusetts, Michigan, Minnesota, Missouri, Nebraska, New Hampshire, North Dakota, New York, Ohio, Virginia, Pennsylvania, Utah, Washington, West Virginia and Wisconsin and compiled by Iowa DOT. (the number of states included in the average has gradually increased to 19).

on page 58. Per-ton costs for straight rock salt range from \$31 in Utah to \$145 in Alaska (California pays the next highest cost at \$130). Figure 3.4 shows that Wisconsin has historically paid less for salt than other states.

The department speculates that the flexibility of its contracting method may account for some of these cost savings. Wisconsin's contracts include a 100 percent provision, which means that the department guarantees that it will purchase 100 percent of the contracted amount of salt. Some other states' contracts

include an 80/120 provision that requires the salt vendor to keep 120 percent of the contracted salt amount on reserve, and commits the state to purchasing only 80 percent of the contracted amount. This 40 percent spread could translate to higher costs for states under an 80/120 contract.

For more on costs, see Section 4 starting on page 71.

A Note About Materials Data

This winter marks the fourth year that all salt data in this report comes from WisDOT's Salt Inventory Reporting System (SIRS). In previous years, some tables used preliminary salt use data collected in the weekly winter storm reports. Sand use data continues to come from the storm reports, as does some detailed antiicing and prewetting data. These materials use estimates are included in this report because they provide a level of detail and of correlation with storm events that is not available from SIRS or from final financial data. The source of each table's data is indicated below the table title.

Abrasives

County highway departments sometimes use sand and other abrasives to improve vehicles' traction on icy or snowy roads when temperatures are too low for salt to be effective. Abrasives are somewhat effective in low-speed trouble spots and intersections. Abrasives should be prewetted with a liquid agent for better adherence to the roadway.

Table 3.1. Statewide Sand Use From storm reports data, 1998–2013

Year	Sand used (cubic yards)
2012-2013	18,589
2011-2012	7,513
2010-2011	18,941
2009-2010	19,081
2008-2009	44,179 ¹
2007-2008	80,133 ¹
2006-2007	13,636
2005-2006	15,997
2004-2005	15,843
2003-2004	17,959
2002-2003	19,864
2001-2002	18,154
2000-2001	67, 1 08 ¹
1999-2000	17,677 ¹
1998-1999	35,709

1. Higher than normal sand use on the state system during the winters of 2007–2008 and 2000–2001 was caused by greater use of salt/ sand mixes due to the low supply of salt toward the end of the winter. In 2008–2009, the higher total reflects counties' use of leftover sand from the previous winter. A total of 18,589 cubic yards of sand was used by 49 counties on state highways this winter, a decrease of 77 percent compared with 2007–2008's record-setting 80,133 cubic yards, and a 47 percent decrease from the average of the five previous winters (35,194 cubic yards).

The Bureau of Highway Maintenance commissioned a synthesis report, "Limitations of the Use of Abrasives in Winter Maintenance Operations" (see page 59), to substantiate WisDOT's guidance to Wisconsin counties on reducing sand use. The report cites factors recommending against the use of sand that have been supported by research, and offers the following general conclusions:

- Sand exhibits limited effectiveness at higher vehicle speeds, especially when it has not been prewetted. Mixing sand with salt to keep it from freezing also limits sand's effectiveness.
- Sand used in a salt-abrasive mixture does not contribute to accident reductions.
- Salt is more cost-effective than sand in winter maintenance operations.

Table 3.1 on page 37 compares this winter's statewide sand use with previous years'. Refer to Table A-8 on page 162 of the Appendix for county-by-county sand use data for this winter.

The billed cost of sand varies greatly across the state, depending on the local availability of the sand and transportation costs. In 2002–2003, the last year for which data is available, most counties paid about \$10.00 to \$16.00 per cubic yard, with a statewide range of \$3.50 to \$34.00 per cubic yard. It should be noted that sand is typically mixed with 5 percent salt to keep it from freezing. The cost of the added salt and the mixing of the two together is typically not reported.

For more information on using and storing abrasives, see Chapter 35 of the State Highway Maintenance Manual. A Wisconsin Transportation Bulletin on salt and sand use is also available at https://trust.dot.state.wi.us/extntgtwy/dtid_bho/extranet/winter/best-practices/pdf/iie6.pdf.

BEST PRACTICES: Prewetting

WisDOT encourages counties to prewet both salt and sand before applying it to the roadway. Agencies across the country and worldwide consider prewetting a best practice, and some require that all material be prewetted before it is placed. Studies have shown that prewetting significantly improves the amount of material that stays on the road.

Dane County is taking prewetting to the next level as it tests a salt slurry generator from Monroe Equipment that first grinds salt into fine particles and then mixes it with liquid deicer to create a slurry. This mixture is then dispensed onto the roadway by a spinner disc. The slurry reportedly begins melting ice faster than standard prewetted salt, and more material stays on the road. This allows operators to reduce the amount of material used saving time and money and reducing environmental impacts.

A salt slurry generator mounted on a salt truck

For more information on prewetting, see Chapter 35 of the State Highway Maintenance Manual.

Prewetting

Prewetting salt and sand with liquid deicing agents before or during their application to the pavement has several advantages. When used with salt, prewetting reduces loss of salt from bouncing and traffic action, which reduces the amount of material needed. Prewetting also improves salt penetration into ice and snow pack, and begins dissolving the salt, which allows it to work more quickly. When used with abrasives, prewetting helps keep the sand on the pavement and may allow crews to use higher truck spreading speeds.

WisDOT encourages all county highway departments to prewet their salt and sand, and to explore stocking more than one deicing agent so that different agents can be used as conditions warrant. For example, salt brine can be reasonably used at pavement temperatures down to about 15°F, whereas agents such as magnesium chloride and calcium chloride are effective at lower pavement temperatures, to about 0°F. See Table 3.2 for details on statewide prewetting agent use.

Salt brine is a relatively inexpensive choice for prewetting. Salt brine use has increased significantly since counties first tested it a decade ago; 56 counties used salt brine for prewetting this winter (see Table A-6 on page 152 of the Appendix for details). Counties used far more salt brine for prewetting this winter—1,874,631 gallons—due to a significant increase in the amount of salt used statewide compared with last year's mild winter. Overall use of prewetting liquids increased 97 percent compared with last year's total, and salt brine use increased 98 percent.

In addition to salt brine, some counties used calcium chloride, magnesium chloride, or agricultural-based products for prewetting this year. See Table A-7 on page 154 for details. Organic blends seem to be preferred over the straight chemical products. The addition of the organics helps reduce corrosion to equipment.

Although once the only option for prewetting, calcium chloride is a more corrosive chemical than other prewetting liquids, and can damage equipment and be more difficult for operators to handle. WisDOT encourages counties to explore other options for prewetting, such as salt brine.

Several counties have also tested pretreated salt, in which a liquid prewetting agent is spray-applied to the salt supply before the salt is placed in storage. See https://trust.dot.state.wi.us/extntgtwy/dtid_bho/ extranet/winter/reports/reports.shtm for details.

While prewetting salt is the best practice in Wisconsin—66 of 72 counties (92 percent) prewetted their salt this winter—prewetting abrasives is far less common. Of the 49 counties that used sand this winter, only 7 counties prewetted it (see Table A-8 on page 162 for details). WisDOT strongly encourages counties to prewet their sand, since keeping sand on the pavement can reduce the amount of material used, which saves money and reduces environmental impacts.

Chemical	Gallons used	Counties using
Salt brine	1,874,631	56
Calcium chloride-based products		
Calcium chloride – liquid	159,665	13
Calcium chloride with rust inhibitor	11,828	1
Magnesium chloride-based products		
Magnesium chloride	4,777	5
Freeze Guard	10,509	2
Agricultural-based products		
Ice Ban-M80	8,150	1
Ice Ban-MC95	30,856	11
GeoMelt55	13,693	6
Total	2,124,834 gallons of liquid	66

Table 3.2. Statewide Prewetting Agent Use for Salt

Anti-icing

Anti-icing is a proactive snow and ice control strategy that involves applying a small amount of liquid deicing agent to pavements and bridge decks before a storm to prevent snow and ice from bonding with the surface. It is often used prior to light snowfall or freezing drizzle, and is also effective at preventing frost from forming on bridge decks and pavements.

Anti-icing can reduce salt use, reduce materials costs, and improve safety. The benefits of anti-icing also include:

- Less chemicals are required to prevent ice bonding than to remove ice after it has bonded to the pavement.
- Clean-up after a storm may be easier with less ice bonded to pavement.
- Application can be made during regular working hours, reducing some overtime costs.
- Anti-icing applications may last for several days, particularly in preventing frost on bridge decks.
- Better pavement conditions (improved friction) can be achieved, reducing the number of crashes.
- It aids in providing more time for the initial response to storms.

This winter, counties used a record 1,110,886 gallons of anti-icing liquid (see Table A-4 on page 142 for details). Currently, 66 of 72 counties (92 percent) are equipped to perform anti-icing operations, and this winter 65 counties made at least one anti-icing application. (Counties may choose not to anti-ice if weather conditions do not warrant it.) On the whole, anti-icing use has steadily increased in Wisconsin since the technology became part of winter operations in the state in 1999. Use of anti-icing materials was down around 5 percent over last year. Throughout the past five winters, use of anti-icing materials has steadily increased, however. Salt brine, the most commonly used anti-icing agent, has limited effectiveness at temperatures below 15°F. Some counties are mixing agents such as magnesium chloride and GeoMelt55 with salt brine to lower the working temperature of the salt brine. GeoMelt55 is a natural, agricultural product with ice control performance equal to or greater than salt brine. It has a freezing point 38.8° lower than salt brine.

Accurate weather forecast information is critical to the success of anti-icing—if a forecasted storm does not arrive, resources may be wasted; if a storm hits sooner than expected, the opportunity for anti-icing may be lost. Through Wisconsin's Road Weather Information System, counties have access to detailed weather information, including the Maintenance Decision Support System (MDSS), and 60 weather stations with pavement sensors across the state. See page 46 for more information on RWIS.

BEST PRACTICES: Anti-icing

Anti-icing is a best practice not only nationwide, but across the globe. Agencies are finding that this technique, once reserved for bridge decks and trouble spots, yields excellent results on highways as well. More agencies are turning to anti-icing to help them use labor and materials efficiently, especially as salt prices continue to rise.

This winter, Wisconsin counties used 714,860 gallons of anti-icing liquid—the most on record and an increase of 36 percent over last winter's total. Yet at 0.5 percent of total winter expenditures, anti-icing continues to represent a small fraction of winter costs.

For more information on anti-icing, see WisDOT's Winter Information Web page at https://trust.dot.state.wi.us/extntgtwy/dtid_bho/extranet/winter/index.shtm (click "Best Practices," then "Anti-icing").

Winter Service Group		0	st of anti-icin r possible fro	0		Counties reporting anti-icing costs		0	ost of deicing for frost even			Counties reporting deicing costs
	2008- 2009	2009- 2010	2010- 2011	2011- 2012	2012- 2013		2008- 2009	2009- 2010	2010- 2011	2011- 2012	2012- 2013	
Α	\$1,099	\$2,263	\$1,984	\$3,949	\$3,630	2	\$12,338	\$8,509	\$18,284	\$19,126	\$16,382	1
В	\$1,730	\$898	\$1,060	\$1,186	\$1,437	8	\$3,435	\$4,082	\$4,459	\$3,889	\$4,240	9
С	\$728	\$790	\$798	\$686	\$653	7	\$2,348	\$1,987	\$3,583	\$2,051	\$1,567	12
D	\$690	\$826	\$745	\$739	\$692	8	\$1,372	\$1,521	\$1,854	\$2,607	\$1,734	6
E	\$471	\$531	\$479	\$531	\$793	3	\$2,151	\$1,103	\$1,962	\$1,526	\$1,770	5
F	NA	\$331	\$340	\$485	\$614	1	\$1,061	\$240	\$1,694	\$927	NA	0

Table 3.3. Cost of Anti-icing vs. Deicing

Anti-icing Costs

In Wisconsin, proactive anti-icing applications for possible frost events are about three times less costly than reactive deicing operations for actual frost events. Table 3.3 compares the two strategies based on storm reports data. Costs vary from year to year in part because of variations in the number of counties reporting this data and the number of events represented.

At \$727,387, anti-icing costs made up slightly less than 1 percent of total winter maintenance costs this winter (see Figure 3.5). This percentage has remained fairly steady over the years—always around 1 percent of total statewide winter costs. Investing in anti-icing is a cost-effective way to reduce overall materials use.

Anti-icing Agents

As with prewetting, the use of salt brine for anti-icing operations has increased significantly since its introduction a decade ago, including an 85 percent increase between the 2004–2005 and 2006–2007 winter seasons. This winter, 61 of 72 counties (85 percent) used a total of 1,091,968 gallons of salt brine for anti-

icing. This is a 4 percent decrease in brine used compared to last winter, but an increase in the number of counties applying brine. See Table A-6 on page 150 of the Appendix for county-by-county data on salt brine use.

WisDOT encourages counties to explore stocking more than one agent for prewetting and anti-icing, so that a choice of agents is available for use according to pavement temperature and weather conditions. Table 3.4 shows the agents used for anti-icing in Wisconsin this winter; see Table A-4 on page 142 of

the Appendix for county-by-county anti-icing data.

Figure 3.5. Anti-icing as a Percentage of Winter Costs

Table 3.4. Statewide Anti-icing Agent Use

Chemical	Gallons used	Counties using
Salt brine	1,091,968	61
Calcium chloride – liquid	1,665	3
Calcium chloride with rust inhibitor	711	1
Magnesium chloride	575	2
Freeze Guard	1,650	1
Ice Ban-M80	900	1
Ice Ban-MC95	5,283	4
GeoMelt55	8,134	4
Total	1,110,886	

Figure 3.6. Counties Using Anti-Icing

Figure 3.7. Counties Using Closed Loop Ground Speed Controllers

Controller Status

None in Fleet

Figure 3.9. Counties Prewetting

3B. Equipment and Technology

As winter maintenance technology and practices evolve, the counties are continually expanding their arsenal of snow and ice control strategies. Some of the counties' snowplows are equipped with underbody plows, which can be used in place of the front plow for removing lighter snowfalls of up to 4 inches. A portion of the counties' salt spreaders are equipped with ground speed controllers, and some have on-board prewetting units. In recent years, Road Weather Information Systems have become an increasingly important part of counties' efforts.

Road Weather Information Systems (RWIS)

WisDOT has had a Road Weather Information System in place since 1986, and continues to expand and enhance the information available through this system. Designed to provide maintenance crews with the most accurate information about current and future weather conditions, WisDOT's RWIS system includes:

- 60 weather and pavement condition sensors along state highways.
- Detailed weather forecasts via the Maintenance Decision Support System (MDSS).
- A winter storm warning service for county highway departments.
- Over 500 mobile infrared pavement temperature sensors on patrol trucks around the state.

Information WisDOT is able to gain from RWIS includes:

- Air temperature
- Humidity
- Wind speed and direction
- Precipitation type and intensity
- Visibility
- Pavement temperature
- Pavement status (wet, icy, etc.)
- Chemical concentration

WisDOT contracts with an RWIS consultant to manage its RWIS program. This onsite consultant serves as WisDOT's staff meteorologist and RWIS program manager, and provides ongoing technical and administrative support for the state's RWIS systems.

A roadside weather sensor.

Major activities in WisDOT's RWIS program this year included:

- Management of the MDSS implementation.
- Assisting with WisDOT's AVL-GPS implementation.
- · Coordinating with Meridian (Wisconsin's contracted weather forecast provider) on forecast services.
- Performing an annual weather forecast verification study, and monitoring comments from counties using the service.
- Providing MDSS and RWIS training for regional operations staff and county highway departments.
- · Overseeing maintenance and repair of the department's RWIS equipment.
- Managing WisDOT's rest area weather program.
- Representing WisDOT on the Aurora Program board. Aurora is a group of states and Canadian provinces whose
 mission is to perform RWIS-related research.

In addition, the RWIS program manager works to coordinate WisDOT's RWIS activities within Wisconsin and with other state and national agencies, including:

- Coordinating activities with the National Weather Service.
- Participating in national RWIS initiatives, such as Clarus. Clarus is an FHWA initiative to gather and quality check all RWIS observations.
- Providing RWIS presentations to WisDOT groups and agencies outside WisDOT.

Other ongoing services provided by the RWIS program manager include:

- Managing contracts for weather forecast and winter storm warning services, and for system maintenance.
- Coordinating use of Winter Severity Index data as an accurate tool to measure the relative severity of winter seasons.
- Establishing a plan for replacement of aging infrastructure, such as roadside towers and television monitors at rest areas.
- Ongoing assessment of new RWIS technology.
- Representing the Bureau of Highway Maintenance Winter Section at The University of Wisconsin Traffic Operations and Safety Lab committee meetings.
- Supporting counties' use of vehicle-mounted infrared pavement temperature sensors.
- RWIS program management (budgeting, billing, planning, etc.).

BEST PRACTICES: Ground speed controllers

Ground speed controllers have been shown to reduce salt use by controlling the amount of salt spread according to the speed of the truck. These controllers can also provide accurate data on salt use.

In addition to reducing costs, controlling salt application can help limit the amount of chlorides that get into the environment, minimizing the degradation of plant species and water quality near roadways. See Guideline 36.25 in the Winter Maintenance Manual for more information.

Maintenance Decision Support System (MDSS)

MDSS is a major project undertaken by WisDOT since 2009. Initial deployment took place in 2009 along the Interstate corridors. The bulk of the second phase of deployment occurred in 2010-11. During this phase, WisDOT added four or five "representative" routes in each county so that county highway departments could get an accurate weather forecast and treatment recommendation for the various types of routes in their county. In 2011, BHM input the remainder of the state's routes into MDSS. These will be used for tracking purposes only.

<u>Capabilities.</u> MDSS provides hourly forecasts of all weather conditions. It also provides constantly-updated treatment recommendations based on what actions have already been performed and what weather is predicted into the future. It has a module that provides decision support for summertime operations. It has a robust reporting ability that allows managers to track performance on a storm-by-storm, operator-by-operator, or seasonal basis.

<u>MDSS Pooled Fund.</u> At the time of the initial deployment, WisDOT joined the MDSS Pooled Fund. This group of states had been in existence since 2003 with the goal of researching and deploying the MDSS technologies developed by FHWA. They contracted with Meridian Environmental Technology to provide the service. At the time Wisconsin was beginning its deployment, the MDSS Pooled Fund was operating the only fully functional, commercially available MDSS.

<u>Configuration</u>. In order for MDSS to function properly, accurate descriptions of plow routes are required. Using the same process as had been developed the previous year, BHM continued to provide routes to Meridian for input into MDSS. The routes selected were "representative" routes for each county. That meant BHM worked with the Regions and the county highway departments to determine which routes best represented each county based on a combination of traffic volume, pavement types, and weather conditions.

Integration with AVL/GPS. BHM worked with Meridian to ensure that data was properly flowing from the Automatic Vehicle Location (AVL) systems many of them had installed into MDSS. The biggest issue that arose was the data dictionary for the controller units. Each county was free to name their outputs as they saw fit, leading to materials applied being called numerous names. Resolving this issue was a point of emphasis at the end of the winter season.

Issues. As expected numerous issues arose during the first full season of MDSS use. Some of the most common were:

- <u>Perceived forecast accuracy.</u> Forecast accuracy remained fairly constant compared to the previous winter. Many perceived that quality dropped, mostly because of the change to a new system. This phenomenon also occurred when WisDOT switched from SSI to Meridian in 2005.
- <u>System speed.</u> Many users noted that MDSS ran too slowly on their computers. While Meridian has been unable to pinpoint the cause, one possibility is the large number of routes Wisconsin has input compared to other states.
- <u>Treatment recommendations.</u> Reports of both too much and too little salt being recommended occurred. But if there was a pattern, it was that the treatment recommendations were too high.

<u>MDSS Training</u>. Training was a major focus of the MDSS deployment in 2011-12. BHM worked closely with Meridian (including one person who had deployed MDSS for Indiana DOT before moving to Meridian) to develop a comprehensive training plan. The training was completed in larger groups than the previous year, with emphasis on new features and storm examples. Some one-on-one sessions were also held to bring new users up to speed. Attendees included county patrol superintendents, state patrol, a few highway commissioners, and WisDOT Region personnel.

Current Status

Forecast Routes: 415 in MDSS Tracking Routes: 321 in MDSS <u>Future Priorities.</u> Ongoing training will continue, for both new and advanced users. This will again be provided by Meridian and Weather Management Solutions. WisDOT will more fully employ the MDSS management tools to track material usage and crew deployments compared to MDSS recommendations. WisDOT will also work with the MDSS Pooled Fund to develop more a mobile and web-friendly user interface so that supervisors can have easy access, including remote access from the field.

Weather Forecast Service Use and Satisfaction

The weekly winter storm reports ask the counties to report whether they used the Meridian forecast service, and ask them to rate the quality of the forecast if they did use it. The Meridian forecast was used in 67 percent of winter storm events this year, down from the previous winter. Regionally, the usage rate varied from a high of 78 percent in the Northcentral Region to a low of 55 percent in the Northwest Region.

The Northwest Region rated the service the highest (2.31 on a scale of 1 to 3), while the Southeast Region rated it lowest at 1.89. The statewide average was 2.12, about the same as last year's 2.17.

For more details on the evaluation of the Meridian forecast service, see a summary report on page 123 of the Appendix, or view the full report at https://trust.dot.state.wi.us/extntgtwy/dtid_bho/extranet/winter/reports/reports.shtm. For more detail on the use of the service, see Table A-2 on page 130 of the Appendix.

For more information on RWIS activities in Wisconsin, see the program's annual report at https://trust.dot.state.wi.us/ extntgtwy/dtid_bho/extranet/winter/reports/reports.shtm.

BEST PRACTICES: MDSS

The Maintenance Decision Support System (MDSS) was originally developed by the Federal Highway Administration and several National Laboratories beginning in 1999. The basic concept combines small-scale weather forecasts with an agency's rules of practice to produce treatment recommendations for winter weather. MDSS is a constantly evolving technology that has been proven to reduce salt usage in states with large deployments. A study conducted by the TOPS Lab showed a cost savings/benefit associated with MDSS.

The MDSS Pooled Fund (which WisDOT participates in) took the concept several steps beyond that. Its version of MDSS includes management tools, tracking of maintenance vehicles, and numerous other enhancements. Currently, 23 states and several local agencies nationwide are using some version of MDSS. WisDOT has fielded the system to a much greater extent than any other state.

Bayfie Douglas Vilas Burnett ashbur Oneid Polk Rusł Barron l incolr Taylo St. Croix Dunn Maratho Eau Claire Clark ierce Jackson Waushar Ranking Columbi Sau Upper 25% 26 to 50% Dan lowa 51 to 75% Raci Green Rock Lower 25% afavette Counties shown in white did not access MDSS

MDSS Usage Winter 2012-2013

Equipment Calibration

Ensuring correct calibration of winter operations equipment—including salt spreaders, anti-icing applicators, and prewetting application equipment—is a key step in providing precise, consistent materials application, which reduces waste and saves money. Winter vehicles should be calibrated prior to the start of the season and whenever equipment is repaired. WisDOT regional staff are tasked with working with the counties to ensure proper calibration.

Calibration Scales – Proper calibration has and always be an important part of winter maintenance. If the calibration is off by even 10 percent, thousands of dollars worth of salt can be wasted in one winter season. The purchase of the three ScaleTech scales has shown that to be a benefit with respect to the process of calibrating salt spreaders. The scales increase the accuracy, speed up the process, and make the process safer for the technicians doing the work. Originally there was going to be a two year study on the scales but after calibrating a few spreaders it was very obvious that the scales would help the process. Therefore the study was discontinued and an email was sent to all the counties recommending that each county should consider adding a scale to their inventory. At about \$3k per scale the costs of the scales can be recovered in less than one winter season.

Product and Equipment Testing

Winter maintenance is a continuously evolving field—new technology and innovations are developed each year. In previous years, WisDOT managed test and evaluation projects of the most promising new equipment by the counties. These test results are available on the WisDOT extranet.

WisDOT encourages county highway departments to consider new technologies when purchasing equipment. Testing new products both equipment and materials—can lead to improved processes and more efficient operations. This year, WisDOT released a video Field Guide to Testing Deicing Chemicals. BHO staff are available to assist

counties in structuring a testing and evaluation program for any products they wish to test.

Recent product and equipment evaluation projects have included:

- Alternative anti-icing and deicing materials:
 - Pretreated salt, where a liquid prewetting agent is spray-applied to the salt supply before the salt is placed in storage, exhibited good results in county tests.
 - Counties reported that prewetting salt with a mixture of salt brine and GeoMelt55 has been effective as an anti-icing agent. GeoMelt55 is less corrosive than traditional brines.
 - Counties have reported that blending pre-wetting materials with calcium and other mixes have made them more effective in lower temperatures.

More information on many test projects is available at https://trust.dot.state.wi.us/extntgtwy/dtid_bho/extranet/ winter/reports/reports.shtm (scroll to the "Winter maintenance research reports" heading).

Winter maintenance technology and equipment

TowPlow – TowPlow is one of the technologies implemented by the Wisconsin Department of Transportation to improve the efficiency and reduce the cost of winter maintenance operations. Findings suggest that the TowPlow can reduce the cost of winter maintenance during a snow event. When compared to regular plows, TowPlow can result in operational cost (labor and fuel) savings between 32 to 43 percent. Based on the storm report database for the last 10 years, TowPlow could have been used by a county for 270 hours in a year on average. The resultant cost savings are estimated to be \$14,500 per year, and the TowPlow could pay for itself in five years. For counties with greater snowfall, savings per year would be greater and cost recovery time shorter. A plow truck with a minimum of 350 hp engine is required to operate the TowPlow.

Winter Maintenance Research

In an effort to stay informed of the latest methods, equipment and materials, WisDOT joins other state DOTs in funding research projects of common interest. These pooled fund projects allow WisDOT to leverage its research dollars to support projects at a higher funding level that are important to all research partners. WisDOT participates in these three pooled fund projects:

Clear Roads. In 2008–2009, Wisconsin handed over the role of lead state in this pooled fund project to Minnesota. The pooled fund project focuses on rigorous testing of winter maintenance materials, equipment and methods for use by highway maintenance crews. Launched in 2004, Clear Roads now has 18 member states and has initiated 11 research projects.

Clear Roads research addresses topics that may be of interest to Wisconsin counties and WisDOT regional staff. See the Clear Roads Web site (http://www.clearroads.org) for a final report and two-page research brief on a project that evaluated the calibration accuracy of manual and ground-speed-control spreaders. The report provides guidelines to help snowplow operators establish and maintain accurate calibration of ground speed controllers. The project also included the development of a Calibration Guide for use in the field. See http://www.clearroads.org/research-projects/05-02calibration.html.

Other projects that have been completed:

- Synthesis of Best Practices for Eliminating Fogging and Icing on Winter Maintenance Vehicles *Results:* The report compiles a range of solutions, both long-term and short-term, for keeping snow plow glass and mirror surfaces clean of winter precipitation.
- Determining Effectiveness of Deicing Materials and Procedures *Results:* A practical field guide for testing the effectiveness of deicers.
- Calibration Accuracy of Manual and Ground-Speed-Control Spreaders
 Results: The report provides guidelines to help snow plow operators establish and maintain accurate
 calibration of ground speed controllers. The project also included the development of a Calibration Guide for
 use in the field.
- Development of a Toolkit for Cost-benefit Analysis of Specific Winter Maintenance Practices, Equipment and Operation

Results: A standard web-based tool and manual for cost-benefit analysis of specific winter maintenance practices, equipment and operations.

Transportation Synthesis Reports compile research and best practices on topics including:

- Snow and ice control at extreme temperatures
- Limitations of abrasives
- Post-storm meetings
- Recording material use
- Training winter operations supervisors
- Material spreader use

These reports are available for download at http://www.clearroads.org/synthesis-reports.html.

An e-newsletter of winter maintenance news items, publications and research in progress. Read the newsletter online at http://www.clearroads.org/winter-maintenance-news.html.

Clear Roads also initiated a national multimedia winter safety campaign designed to educate drivers about the importance of driving safely in winter conditions. The Clear Roads Web site houses sample campaign materials, photos and videos with the "Ice and Snow... Take It Slow" slogan developed for the campaign. WisDOT used the campaign this winter, both on its Web site and as part of its public service announcements.

Aurora. Aurora is an international pooled fund partnership of public agencies that work together to perform joint research

on road weather information systems (RWIS). Its membership includes 13 sate DOTs, FHWA, and one international agency. WisDOT attended two meetings in person and participated in two web conferences. WisDOT remained the champion of a project to assess MDSS costs, and took over as project champion of a project to study a pavement precipitation estimation system. That project was subsequently completed. WisDOT was also a member of the technical panels on several other projects. That entailed participating in numerous project-related conference calls.

See http://www.aurora-program.org/ for more information about this pooled fund project.

SICOP. The Snow and Ice Pooled Fund Cooperative Program sponsors testing of new winter maintenance technologies that are developed in the U.S. and internationally. SICOP was developed by AASHTO and is overseen by AASHTO's Winter Maintenance Technical Service Program. WisDOT has been involved in several SICOP programs, including:

- Revising the computer-based training program on anti-icing practices and RWIS systems for snowplow drivers, managers and operators to make it web-compatible.
- Participating in a survey about the use of automatic vehicle location systems and GPS technology in winter maintenance.
- Participating in a survey about the use of Fixed Anti-icing Spray System Technology (FAST).
- Contributing to the Snow and Ice Listserv, a community of hundreds of winter maintenance professionals. The listserv provides a forum for discussing a wide range of winter maintenance issues.

See http://www.sicop.net/ for more information about this pooled fund project.

Clarus. A joint effort of FHWA and the National Weather Service, this initiative aims to consolidate all road weather data into a national database. A key feature of this database is the quality checking of all RWIS observations. A WisDOT representative attended the annual project meeting in Madison in August, 2012. The anticipated Clarus transition to the National Weather Service Meteorological Assimilation Data Ingest System occurred in FY 2013. As of June 30, 2013, only some of the required quality checks are being performed by MADIS. The remainder will be implemented in the next year. Now that the transition is underway, WisDOT will explore ways to integrate MADIS information.

See http://www.clarusinitiative.org/ for more information.

3C. Labor

Over 1,500 employees of Wisconsin's county highway departments are licensed to operate a snowplow, and over 1,000 of them are permanently assigned to the state highway system. Because a snowstorm can hit at any time of day, snowplow operators frequently put in overtime, and may plow for extended periods during heavy snowfall.

Labor costs vary from county to county according to each area's contracts, which also define when overtime hours can be charged. This winter, counties spent \$23.5 million on labor, for an average of \$688 per lane mile. Per-lane-mile labor expenditures increased 31 percent compared with last year's winter. An average of 25 percent of counties' winter maintenance costs were spent on labor, with a high of 33 percent in the Southeast Region, where hourly labor rates tend to be higher. Labor hours were up 105 percent for regular hours and 66 percent for overtime hours compared with last winter, a significant increase due to this winter's increase in overall severity index. See Table 4.10 on page 92 for county-by-county labor expenditures, and see Table 3.6 on page 64 for county-by-county estimated labor hours and costs from the winter storm reports.

Winter Operations Training

Before each winter season, BHO provides and supports a variety of training efforts for WisDOT regional staff and county highway departments. Recent efforts have included:

- <u>AASHTO Computer-Based Training</u>. AASHTO offers seven computer-based training courses that can be completed by winter maintenance staff at their own pace as schedules permit. Course topics include anti-icing/ RWIS, mitigating environmental impacts, equipment maintenance, plowing techniques, deicing, mitigating blowing snow, performance measures, and winter maintenance management. Counties are encouraged to have their operators complete the appropriate training courses, including courses for supervisors. For more information, see http://www.transportation.org/sites/sicop/docs/CBT_Handout.pdf.
- <u>RWIS Training</u>. WisDOT's RWIS program manager provides training for both WisDOT regional operations staff and county highway departments. A summary of these training activities can be found in the RWIS Annual Report, available at https://trust.dot.state.wi.us/extntgtwy/dtid_bho/extranet/winter/reports/reports.shtm.
- <u>Regional Operations/County Fall Training Sessions.</u> These sessions are held in all regions in preparation for the upcoming winter season, at some locations in conjunction with Snowfighters' Roadeos. WisDOT provided support and participated in some of these training sessions.
- <u>Snowfighters' Roadeos</u>. These events are held by some counties annually, with some roadeos held jointly by two or three counties. WisDOT prepared a Roadeo Manual in August 1997 to assist counties in organizing these roadeos (see https://trust.dot.state.wi.us/extntgtwy/dtid_bho/extranet/winter/best-practices/pdf/vib1.pdf). In addition, organizations such as the Wisconsin chapter of the American Public Works Association and the Wisconsin County Highways Association periodically host statewide Snowfighters' Roadeos.
- <u>MDSS Training</u>. Training was a major focus of the MDSS deployment in 2011-12. BHM worked closely with Meridian (including one person who had deployed MDSS for Indiana DOT before moving to Meridian) to develop a comprehensive training plan. The training was completed in larger groups than the previous year, with emphasis on new features and storm examples. Some one-on-one sessions were also held to bring new users up to speed. Attendees included county patrol superintendents, state patrol, a few highway commissioners, and WisDOT Region personnel.

Past training efforts have included:

 <u>Winter Operations Workshops</u>. Facilitated by BHO staff, these interactive one-day workshops for WisDOT regional staff and county highway department patrol superintendents covered winter maintenance topics such as use of RWIS and weather forecast programs, anti-icing, living snow fences, and winter maintenance guidelines. The workshops were first held in October 2004 and held again at five locations in October 2005.

County-by-County Tables and Figures for Section 3: Snow and Ice Control

This page intentionally left blank

Figure 3.10. 2012-2013 Salt Use per Lane Mile vs. 5-Year Average

Figure 3.11 2012-2013 Nationwide Salt Price Comparison Map

research@dot.state.wi.us

Transportation Synthesis Report

RESEARCH & LIBRARY SERVICES

Limitations of the Use of Abrasives in Winter Maintenance Operations

Prepared for Bureau of Highway Operations

Prepared by CTC & Associates LLC WisDOT Research & Library Unit December 30, 2008

Transportation Synthesis Reports are brief summaries of currently available information on topics of interest to WisDOT staff throughout the department. Online and print sources for TSRs include NCHRP and other TRB programs, AASHTO, the research and practices of other transportation agencies, and related academic and industry research. Internet hyperlinks in TSRs are active at the time of publication, but changes on the host server can make them obsolete. To request a TSR, e-mail <u>research@dot.state.wi.us</u> or call (608) 261-8198.

Request for Report

In the interest of developing more effective winter maintenance operating procedures, WisDOT's Bureau of Highway Operations is interested in knowing more about the limitations of the use of sand in winter maintenance operations. As the lead state for the Clear Roads winter maintenance pooled fund, WisDOT will share the results of this research with the Clear Roads member states.

Summary

While sand, the most common abrasive used in winter maintenance, cannot melt snow and ice, it does play a role in many winter maintenance programs. According to NCHRP Report 526, *Snow and Ice Control: Guidelines for Materials and Methods*, "the primary function of abrasives is to provide temporary traction (friction) improvement on snow/ice surfaces." Many agencies use sand to maintain safety at hills, curves, intersections and low-volume roads, and on packed snow or ice that is too thick for chemicals to penetrate. We summarize **WisDOT's Current Practice** in the use of abrasives in winter maintenance below.

Sand's use over time has declined due to a variety of **Limiting Factors**, including its **Effectiveness**, **Environmental Impacts**, **Safety Implications** and **Cost**. See below for findings from reports and studies that address the limitations of the use of sand in winter maintenance operations. We conclude with **Recommended Best Practices** for the use of abrasives in winter maintenance programs compiled from two 2001 documents.

WisDOT's Current Practice

Chapter 35 of the State Highway Maintenance Manual provides recommendations for the use of abrasives in winter operations. Sand and other locally available abrasive materials can be used when high winds or storm conditions preclude the use of salt, or when pavement temperatures are too low (10°F or less) for deicing agents to work effectively. When conditions warrant, abrasives may be applied to predetermined low-speed areas such as certain grades, curves, intersections, structures and isolated areas where hazards exist. Abrasives should not be used where vehicle speeds exceed 45 mph. Prewetting of abrasives with a deicing agent is recommended to improve adherence to the roadway. Contact the WisDOT Library at <u>library@dot.state.wi.us</u> for a copy of WisDOT's State Highway Maintenance Manual.

Limiting Factors

Effectiveness

Sand has exhibited limited effectiveness at higher vehicle speeds, especially when it has not been prewetted. Mixing sand with salt to keep it from freezing also limits sand's effectiveness.

- Studies suggest that at highway speeds sand is swept off the road after relatively few vehicle passes (eight to 12) and that friction gains from sanding (when the sand remains on the road) are minimal (<u>Nixon 2001b</u>, page 1).
- Snow- and ice-covered roadways that have been treated with abrasives provide friction values that are far less than "bare" or "wet" pavement (<u>NCHRP</u>, page 25).
- During storm periods when anti-icing operations are successful, abrasive applications provide no consistent or apparent benefit in hard-braking friction, traction or pavement condition (<u>FHWA 1998</u>, page 208 of the PDF).
- Mixing sand with 50 to 100 pounds of salt per cubic yard is necessary to prevent freezing and keep it workable (Wisconsin Transportation Center, page 4).
- A mix of abrasives and chemical will usually be no more effective as an anti-icing treatment during snowstorms than the same amount of chemical placed alone (FHWA 1996b; click on 2.5 Abrasives Use).
- A 1973 study (<u>Keyser</u>, pages 4-6 of the Word file) indicates that the melting of snow and ice will be delayed by using a mixture of salt and sand.
- In a blend, sand and salt often work against each other. The salt in the mix may blow away as vehicles travel the roadway. If the sand remains on snow, tires can push the sand down into the slush, making it ineffective for improving traction. Also, salt melts less ice when mixed with sand (<u>Wisconsin</u> <u>Transportation Center</u>, page 4).
- Use of salt/abrasives mixes at moderately or much higher application rates than straight chemical does not lead to corresponding improvements in hard-braking friction or pavement conditions. Comparisons of test and control operations using identical salt/abrasives mixes show that more frequent applications at similar rates also do not lead to corresponding improvements in friction or pavement conditions and even indicate that the more frequent applications can lead to slightly worse conditions (<u>FHWA 1998</u>, Section 7.4.1 on page 208 of the PDF).

Environmental Impacts

Studies have shown that sand remains in the environment after its application, resulting in negative impacts on land, water and health.

- An Oregon DOT study in the early 1990s found that 50 to 90 percent of sand applied to pavements remains in the environment after cleanup (FHWA 1996c).
- Up to 70 percent of sand entering Lake Tahoe was shown to be from snow and ice control. Sand was being carried by snowmelt into culverts that drained into the lake (FHWA 1996a).
- Sand creates debris deposits on roadways, mixing with oil, grease and other automotive byproducts. Sand remaining on roadways clogs storm water catch basins and fills streambeds, clouding the water, hurting aquatic animals and leading to an increase in microorganisms. If collected at the end of winter maintenance, sand may have to be disposed of as a hazardous waste. Sand is also ground into a fine dust by traffic, which can trigger respiratory problems like asthma (EPA).
- The use of abrasives can contribute to increased levels of ambient PM₁₀, the very small airborne particulate matter that is inhaled into the lungs and can cause respiratory problems. Researchers found that the use of abrasives increased the rate of road dust re-entrainment. Street sweeping, a practice intended to minimize air quality impacts of roadway abrasives, was found to actually increase the observed emission rate (Gertler, page 5984).
- Uncovered sand piles mixed with salt are susceptible to leaching. One study indicated that 10 inches of precipitation leached out 50 percent of the salt (<u>Walker</u>, page 2).

Safety Implications

Some research has concluded that sand used in a salt-abrasive mixture does not contribute to accident reductions.

 Accident rate reductions on two-lane highways were less with salt-abrasive mixtures than with salt only. Accident rates dropped dramatically after achievement of bare pavement with salt only but more slowly with salt-abrasive mixes. Accident reductions for freeways were much less and took much longer to occur when salt-abrasive mixtures were used, as compared with the use of salt only (Kuemmel and Bari, page 9 of the PDF).

Cost

Research indicates that salt is more cost-effective than sand in winter maintenance operations.

- Abrasives must be used in large quantities and applied frequently, making abrasives more expensive than salt in terms of material and manpower (<u>Salt Institute 2004</u>, page 8).
- When mixed with enough ice control chemical, abrasives will support anti-icing and deicing strategies; however, this is very inefficient and costly, as the abrasives for the most part are "going along for the ride" while the chemical portion of the mix is doing the work (<u>NCHRP</u>, page 14).
- A loaded salt truck, spreading at the rate of 500 pounds per two-lane mile for general storm conditions, can treat a 22.5-mile stretch of roadway, traveling a total of 45 miles. A sand truck requires seven loads, must travel a distance of 187 miles to treat the same section of road, and requires four times more fuel (<u>Salt Institute 1995</u>, page 3).
- Benefit-cost calculations showed that the application of salt-abrasive mixtures did not recover winter maintenance costs on two-lane highways during the 12-hour analysis period. Benefit-cost calculations showed that freeway operations recovered costs in six hours, substantially longer than the 35 minutes with salt only (Kuemmel and Bari, page 11 of the PDF).
- Cost analyses indicate that, where cleanup is performed, the most significant reduction in operational costs will result from the elimination of the use of abrasives as an anti-icing treatment (<u>FHWA 1998</u>, page 208 of the PDF).
- The cost for distributing abrasives on roads is several times higher than those for distribution of salt. Tests carried out on selected road sections in Zurich and Chur, Switzerland, indicate that in a normal winter, the costs for distributing abrasives over a 1-kilometer section are approximately six times higher than those for distributing salt. In a severe winter this factor rose to as high as 10 (Schlup and Ruess, page 49).
- Windshield damage from airborne particulates is 365 percent higher in areas using sand and abrasives instead of salt (<u>Salt Institute 2004</u>, page 9).

Recommended Best Practices

Two 2001 reports published by Wilfrid Nixon provide recommendations for the use of abrasives based on road type. The first report offers general recommendations for the use of dry abrasives (see <u>pages 20-22 of the PDF</u>). The second report expands on those recommendations to consider three different abrasive types: dry abrasives, abrasives prewetted with liquid deicers at the spreader or tailgate, and abrasives applied using a hot method (see <u>pages 44-45</u>). Examples of hot methods include heating abrasives to high temperatures (approximately 180°C) just before application and mixing the abrasives with hot water (about 90°C) as they are placed on the road. Nixon considers the hot application methods experimental, though promising. Nixon's guidelines for abrasive use include:

Rural Roads. Rural roads can see high-speed traffic. For this reason, if electing to apply dry abrasives, limit application to hills and curves on low-speed, low-volume roads. Application of prewetted abrasives on paved roads allows the abrasives to stay on the roadway longer than if the abrasives had been applied dry. Prewetted abrasives can also melt the snowpack and provide for extended increase in road surface friction.

Rural Intersections. Given the low speeds associated with rural intersections, abrasives could be applied dry. However, if the intersection is not gravel, prewetting the abrasive will allow the treatment to remain in place longer. High-Speed Urban Roads. No benefit is expected when applying dry abrasives to these roads where posted speed limits exceed 30 mph. Application of prewetted abrasives may be appropriate for this road type; hot abrasives may also be considered.

Low-Speed Urban Roads. Limit dry abrasive application to the parts of the road where braking, accelerating or maneuvering is done, and only use this approach when the snowpack is expected to persist. Application of prewetted abrasives will allow the material to remain on the road surface longer. Again, hot application methods may be appropriate.

Urban Intersections. Dry abrasives can be used where the intersection is likely to be snow- or ice-covered for a longer-than-normal period of time. Prewetted abrasives will remain in place longer; hot application methods might also be considered

References

EPA. 2005. "What You Should Know About Safe Winter Roads and the Environment," EPA 901-F-05-020. http://www.epa.gov/region1/topics/water/pdfs/winterfacts.pdf

FHWA. 1996a. "Anti-icing Strategies Improve Safety and Protect the Environment," Focus, May 1996. http://www.tfhrc.gov/focus/archives/56nevada.htm

FHWA. 1996b. Manual of Practice for an Effective Anti-icing Program: A Guide for Highway Winter Maintenance Personnel.

http://www.fhwa.dot.gov/reports/mopeap/mop0296a.htm

FHWA. 1996c. "Saving Money and the Environment," Publication No. FHWA-SA-96-045 (CS092). http://ops.fhwa.dot.gov/weather/resources/publications/tech briefs/cs092.htm

FHWA. 1998. Test and Evaluation Project No. 28: Anti-icing Technology, Field Evaluation Report, Publication No. FHWA-RD-97-132.

http://ntl.bts.gov/lib/5000/5700/5786/132.pdf

Gertler, A., et al. 2006. "A Case Study of the Impact of Winter Road Sand/Salt and Street Sweeping on Road Dust Re-entrainment," Atmospheric Environment 40, 5976-5985.

Keyser, J.H. 1973. "De-icing Chemicals and Abrasives: State of the Art," Highway Research Record 425, 36-51. http://www.clearpathicemelt.net/docs/DE-ICING%20CHEMICALS%20AND%20ABRASIVES%20STATE%20OF%20THE%20ART.doc

Kuemmel, D.A., and Q. Bari. 1996. "Benefit-Cost Comparison of Salt-Only Versus Salt-Abrasive Mixtures Used in Winter Highway Maintenance in the United States." In Snow Removal and Ice Control Technology, Selected Papers Presented at the Fourth International Symposium, Reno, Nevada, August 11-16, 1996. http://www.saltinstitute.org/marquette2-full.pdf

NCHRP. 2004. Report 526: Snow and Ice Control: Guidelines for Materials and Methods. http://onlinepubs.trb.org/Onlinepubs/nchrp/nchrp rpt 526.pdf

Nixon, W.A. 2001a. The Use of Abrasives in Winter Maintenance: Final Report of Project TR 434, Iowa DOT. http://www.iihr.uiowa.edu/products/pubvid/pdf/IIHR416.pdf

Nixon, W.A. 2001b. "Use of Abrasives in Winter Maintenance at the County Level," Transportation Research *Record* 1741. See abstract at http://pubsindex.trb.org/document/view/default.asp?lbid=688956.

Salt Institute. 1995. "Deicing Salt Facts: A Quick Reference." http://www.saltinstitute.org/snowfighting/deicingsaltfacts.zip

Salt Institute. 2004. Highway Salt and Our Environment. http://www.saltinstitute.org/publications/saltandenvironment-english.pdf Schlup, U., and B. Ruess. 2001. "Abrasives and Salt: New Research on Their Impact on Security, Economy and the Environment," *Transportation Research Record 1741*. See abstract at <u>http://pubsindex.trb.org/document/view/multi.asp?pub=1&recordlist=688957</u>].

Walker, D. 2005. "The Truth about Sand and Salt for Winter Maintenance," *Salt and Highway Deicing*, Vol. 42, No. 2, 1-4. http://www.saltinstitute.org/publications/shd/shd-june-2005.pdf

Wisconsin Transportation Center. 2005. Wisconsin Transportation Bulletin No. 6: "Using Salt and Sand for Winter Road Maintenance." <u>http://epdfiles.engr.wisc.edu/pdf_web_files/tic/bulletins/Bltn_006_SaltNSand.pdf</u> Table 3.5. Labor Hours/Lane Miles/Severity Index Ranking (Group A)

From Winter Storm Reports, 2012-2013

	Lane Miles	Severity Index	Salt per Lane Mi	Labor Cost per Lane Mi	Reg Hrs	OT Hrs	Total Hours	% 0T	Total Hrs Total Hrs pe per Lane Mi Lane Mi/SI	Total Hrs per Lane Mi/SI
MILWAUKEE SE	1876.91	30.96	20.95	\$919	11630 12009	12009	23639	50.8%	12.59	0.41
DANE SW	1535.68	31.73	32.88	\$762	8683	11038	19721	56.0%	12.84	0.40
WAUKESHA SE	1110.39	25.62	14.34	\$481	6606	3589	10195	35.2%	9.18	0.36
Group A Avg	1,507.66	29.44	22.72	\$721	8973 8879	8879	17852	47.3%	11.54	0.39

Final totals as of Wednesday, August 07, 2013

(Group B)
Ranking (
Index F
Miles/Severity
Labor Hours/Lane
Table 3.5. I

							l	l	l		
County	Region	Lane Miles	Severity Index	Salt per Lane Mi	Labor Cost per Lane Mi	Reg Hrs	OT Hrs	Total Hours	% 0T	Total Hrs per Lane Mi	Total Hrs per Lane Mi/SI
EAU CLAIRE	ΝN	537.76	37.51	21.48	\$774	5635	3554	9189	38.7%	17.09	0.46
PORTAGE	NC	581.81	43.62	15.48	\$614	5618	2151	7769	27.7%	13.35	0.31
FOND DU LAC	ШN	597.30	33.48	17.21	\$590	3828	3061	6889	44.4%	11.53	0.34
CHIPPEWA	NN	654.65	36.06	19.19	\$588	4353	3642	7995	45.6%	12.21	0.34
DODGE	SW	630.41	32.53	31.62	\$562	3993	3250	7243	44.9%	11.49	0.35
SAINT CROIX	NN	621.36	41.17	21.62	\$553	3351	3317	6668	49.7%	10.73	0.26
COLUMBIA	SW	792.92	41.67	29.13	\$552	4568	3764	8332	45.2%	10.51	0.25
BROWN	ШZ	732.26	34.76	18.75	\$549	5990	2395	8385	28.6%	11.45	0.33
WINNEBAGO	ШN	600.53	31.01	16.79	\$530	4359	2758	7117	38.8%	11.85	0.38
KENOSHA	SE	642.12	25.78	14.70	\$526	4151	1638	5789	28.3%	9.02	0.35
OUTAGAMIE	ШN	532.55	29.99	15.71	\$517	4143	1937	6080	31.9%	11.42	0.38
WASHINGTON	SE	600.63	30.06	24.10	\$503	2613	3042	5655	53.8%	9.42	0.31
MARATHON	NC	885.39	43.63	13.02	\$498	6905	1983	8888	22.3%	10.04	0.23
WAUPACA	NC	546.64	37.22	20.36	\$462	3656	1551	5207	29.8%	9.53	0.26
SAUK	SW	578.72	32.51	23.52	\$444	3585	2449	6034	40.6%	10.43	0.32
ROCK	SW	651.64	27.69	18.69	\$441	2810	2716	5526	49.1%	8.48	0.31
WALWORTH	SE	698.71	22.49	23.38	\$441	5061	1122	6183	18.1%	8.85	0.39
JEFFERSON	SW	549.15	25.74	22.09	\$436	2366	2262	4628	48.9%	8.43	0.33

Page 1 of 2

Table 3.5. Labor Hours/Lane Miles/Severity Index Ranking (Group B)

From Winter Storm Reports, 2012-2013

County Re	Region	Lane Miles	Severity Index	Salt per Lane Mi	Labor Cost per Lane Mi	Reg Hrs	OT Hrs	Total Hours	% 0T	Total Hrs per Lane Mi	Total Hrs Total Hrs per per Lane Mi Lane Mi/SI
RACINE	SE	684.45	30.19	15.05	\$410	2717	2332	5049	46.2%	7.38	0.24
MONROE	SW	654.71	41.34	15.57	\$386	3184	2520	5704	44.2%	8.71	0.21
GRANT S	SW	621.78	32.92	13.56	\$330	2775	2139	4914	43.5%	7.90	0.24
Group B Avg		637.88	33.87	19.57	\$510	4079 2552	2552	6631	39.1%	10.47	0.31

Page 2 of 2

$\widehat{\Omega}$
(Group C)
ndex Ranking (
Index
les/Severity
Ξ
Labor Hours/Lane N
Table 3.5.

County	Region	Lane Miles	Severity Index	Salt per Lane Mi	Labor Cost per Lane Mi	Reg Hrs	OT Hrs	Total Hours	% 0T	Total Hrs per Lane Mi	Total Hrs per Lane Mi/Sl
BARRON	MN	423.09	45.42	26.6	\$567	4246	1497	5743	26.1%	13.57	0.30
DUNN	MN	516.55	34.97	20.92	\$549	2856	2416	5272	45.8%	10.21	0.29
MANITOWOC	ШZ	421.41	30.45	18.15	\$530	2813	1086	3899	27.9%	9.25	0.30
DOUGLAS	MN	440.77	46.41	19.28	\$515	2415	1994	4409	45.2%	10.00	0.22
SHAWANO	NC	519.55	35.13	17.54	\$505	3638	2403	6041	39.8%	11.63	0.33
WOOD	NC	428.50	39.62	14.24	\$498	2303	1916	4219	45.4%	9.85	0.25
CLARK	MN	402.44	40.10	16.45	\$491	2374	1663	4037	41.2%	10.03	0.25
PIERCE	MN	365.81	40.60	16.17	\$483	2136	1153	3289	35.1%	8.99	0.22
LA CROSSE	SW	488.24	36.67	13.38	\$479	2994	1759	4753	37.0%	9.73	0.27
LINCOLN	NC	418.33	50.52	13.38	\$459	3513	1039	4552	22.8%	10.88	0.22
JACKSON	MN	515.00	39.41	20.47	\$456	3650	2011	5661	35.5%	10.99	0.28
JUNEAU	SW	494.51	37.10	17.04	\$450	2122	2113	4235	49.9%	8.56	0.23
OCONTO	ШZ	467.45	36.35	13.79	\$441	2307	1764	4071	43.3%	8.71	0.24
SHEBOYGAN	ШN	519.68	27.96	16.03	\$440	3071	1351	4422	30.6%	8.51	0.30
IOWA	SW	457.98	30.98	13.50	\$434	2532	1971	4503	43.8%	9.83	0.32
VERNON	SW	467.04	37.18	11.37	\$345	2464	1434	3898	36.8%	8.35	0.22
CRAWFORD	SW	394.85	39.20	11.01	\$333	1913	1124	3037	37.0%	7.69	0.20

Page 1 of 2

able 3.5. Labor Hours/Lane Miles/Severity Index Ranking (Group	p C)
r Hou	rou
r Hou	Ranking
r Hou	Index
r Hou	everity
r Hou	Miles/S
	urs/Lane
able 3.5. L	
	ble 3.5. L

က
201
$\widetilde{\sim}$
$\overline{\Box}$
5
2012-20
ceports
Z
S
Ð
Ŕ
_
1
D
が
0)
5
Itel
<u> </u>
\geq
\leq
E
ron
Ľ.

County Re	gion	Lane Miles	Severity Index	verity Salt per ndex Lane Mi	Labor Cost per Lane Mi	Reg Hrs	OT Hrs	Total Hours	% 0T	Total Hrs per Lane Mi	Total Hrs Total Hrs per per Lane Mi Lane Mi/Sl
Group C Avg		455.36	38.12	15.45	\$469	2785	1688	4473	37.8%	9.81	0.26

Group D)
Ranking (Gr
Index
Miles/Severity
Labor Hours/Lane N
Table 3.5.

County	Region	Lane Miles	Severity Index	Salt per Lane Mi	Labor Cost ner I ane Mi	Reg Hrs	OT Hrs	Total Hours	%T0	Total Hrs	Total Hrs per Lane Mi/SI
ONEIDA	N	396.79	60.37	19.64	\$691	5433	595	6028	9.9%	15.19	0.25
BAYFIELD	MN	316.90	58.43	17.83	\$620	3196	1309	4505	29.1%	14.22	0.24
MARINETTE	NE	421.42	38.82	16.71	\$551	3047	1046	4093	25.6%	9.71	0.25
DOOR	NE	268.55	29.53	16.65	\$546	1075	1499	2574	58.2%	9.58	0.32
POLK	MN	385.05	54.22	19.54	\$486	2296	1584	3880	40.8%	10.08	0.19
OZAUKEE	SE	307.47	28.32	27.42	\$439	1787	760	2547	29.8%	8.28	0.29
TREMPEALEAU	MN	441.05	38.38	16.15	\$428	2508	1720	4228	40.7%	9.59	0.25
LAFAYETTE	SW	293.88	32.88	8.48	\$408	1298	1381	2679	51.5%	9.12	0.28
WASHBURN	MN	372.14	33.78	15.05	\$394	1421	1376	2797	49.2%	7.52	0.22
GREEN	SW	312.72	27.82	9.12	\$391	1718	1226	2944	41.6%	9.41	0.34
MARQUETTE	NC	245.09	28.42	17.20	\$381	1074	849	1923	44.1%	7.85	0.28
BUFFALO	MN	316.86	31.13	9.87	\$376	1799	953	2752	34.6%	8.69	0.28
GREEN LAKE	NC	156.94	37.17	09.6	\$360	813	337	1150	29.3%	7.33	0.20
WAUSHARA	NC	345.01	26.96	09.6	\$319	2016	463	2479	18.7%	7.19	0.27
RICHLAND	SW	325.26	29.07	9.12	\$305	1346	777	2123	36.6%	6.53	0.22
Group D Avg		327.01	37.02	14.80	\$446	2055	1058	3113	36.0%	9.35	0.26

Page 1 of 1

Final totals as of Wednesday, August 07, 2013

_	
Ш	
р Е)	
dno.	
2	
Ū	
J	
g	
ij,	
Ť	
a	
R	
X	
de	
Ĕ	
erity Index Ranking (Gro	
L L	
/Se/	
5	
les/	
i	
Ξ	
Φ	
Ľ	
S/	
Ľ	
5	
Ĭ	
5	
0	
at	
Labor Hours/Lane N	
S.	
2.5	
D D	
le	
ab	
Ĕ	

County	Region	Lane Miles	Severity Index	Salt per Lane Mi	Labor Cost per Lane Mi	Reg Hrs	OT Hrs	Total Hours	% 0T	Total Hrs per Lane Mi	Total Hrs per Lane Mi/Sl
IRON	NC	249.56	62.86	18.02	\$765	1923	1452	3375	43.0%	13.52	0.22
PRICE	NC	322.26	61.00	16.30	\$576	2091	1674	3765	44.5%	11.68	0.19
LANGLADE	NC	292.19	42.94	17.10	\$479	1766	1183	2949	40.1%	10.09	0.24
CALUMET	ШN	201.53	31.46	12.27	\$435	1345	681	2026	33.6%	10.05	0.32
TAYLOR	MN	233.90	46.23	16.68	\$433	1535	765	2300	33.3%	9.83	0.21
RUSK	MN	213.47	33.26	10.52	\$430	1396	658	2054	32.0%	9.62	0.29
FOREST	NC	312.38	52.16	24.05	\$426	1945	1255	3200	39.2%	10.24	0.20
ASHLAND	NΝ	247.57	58.17	15.49	\$425	1664	660	2324	28.4%	9.39	0.16
VILAS	NC	305.24	36.66	19.53	\$411	1536	866	2402	36.1%	7.87	0.21
BURNETT	ΝN	233.64	43.64	13.65	\$411	996	904	1870	48.3%	8.00	0.18
PEPIN	ΝN	112.38	32.20	10.22	\$382	646	346	992	34.9%	8.83	0.27
SAWYER	NN	367.44	36.30	12.41	\$343	1383	1069	2452	43.6%	6.67	0.18
Group E Avg		257.63	44.74	15.52	\$460	1516	959	2476	38.1%	9.65	0.22

Page 1 of 1

Final totals as of Wednesday, August 07, 2013
g (Group
Ranking
Index
verity
Miles/Se
s/Lane
Hours
Labor
Table 3.5. L

ш

ന
2012-2013
0
\sim
(N
Ξ
\mathcal{O}
(\mathbf{N})
20
nts,
Q
Reports
Ð
r
_
F
5
ī
J.
Ŧ
/I
\leq
2
3
no
2
ш

County	Region	Lane Miles	Severity Index	everity Salt per Index Lane Mi	Labor Cost per Lane Mi	Reg Hrs	OT Hrs	Total Hours	% 0T	Total Hrs per Lane Mi	Total Hrs Total Hrs per per Lane Mi Lane Mi/Sl
KEWAUNEE	NE	110.41	30.42	13.69	\$475	733	276	1009	27.4%	9.14	0.30
ADAMS	NC	193.82	36.22	20.71	\$389	1186	318	1504	21.1%	7.76	0.21
FLORENCE	NC	141.07	44.96	17.80	\$382	863	273	1136	24.0%	8.05	0.18
MENOMINEE	NC	90.26	24.57	14.69	\$154	361	57	418	418 13.6%	4.63	0.19
Group F Avg		133.89	34.04	16.72	\$350	786	231	1017	1017 21.5%	7.40	0.22

Page 1 of 1

This page intentionally left blank

4

Performance

In this section...

4A Compass	74
4B Winter Maintenance Management	74
Storm Reports	75
Winter Patrol Sections	
4C Response Time	77
Maintenance Crew Reaction Time	77
Time to Bare/Wet Pavement	78
4D Costs	78
4E Travel and Crashes	

Since weather can vary drastically from year to year, planning and budgeting for winter highway maintenance can be challenging. Throughout the winter, WisDOT staff and county highway departments evaluate progress in several areas, including materials use, money spent, and response time. When the season is complete, WisDOT can gather all the data and analyze this winter's performance across all regions and compared to previous winters.

This section begins with a description of the winter maintenance portion of Compass, WisDOT's operations performance measurement program, which measures trends in areas like response time and winter costs per lane mile. This section also discusses costs, using charts to visually compare spending in different categories from region to region and from year to year, and presents winter crash rates and customer satisfaction data.

Performance and Costs, 2012-2013

Total lane miles	34,192
Total patrol sections	769
Average lane miles per patrol section	44.46
Roads to bare/wet pavement within WisDOT targets ¹	73%
Average crew reaction time from start of storm	2.42 hours
Total winter costs ²	\$94,982,937
Total winter costs per lane mile	\$2,778
Total winter crashes ³	7,767
Total winter crashes per 100 million VMT	29

1. Time to bare/wet pavement and crew reaction time data are from storm reports.

1. Time to bare/ wet pavement and crew reaction time data are from storm repor

Cost data are actual costs as billed to WisDOT by the counties.
 Crash data are from WisDOT's Bureau of Transportation Safety.

3. Crash data are from wisDOT's Bureau of Transportation Safety.

An Economical Choice

Proactive anti-icing operations are about three times less costly than treating frost once it has formed. Anti-icing costs made up only 1 percent of total winter maintenance costs this year. See page 46 for more information on anti-icing costs.

4A. Compass

Developed in 2001, Compass is WisDOT's quality assurance and asset management program for highway maintenance operations. Annual Compass reports provide information on winter maintenance activities as well as other aspects of highway operations.

Measures for winter operations were established in 2003, and data from the winter of 2003–2004 was used to establish baseline measures for future winter seasons. The measures that were chosen included:

- time to bare/wet pavement
- winter weather crashes per vehicle miles traveled
- cost per lane mile per Winter Severity Index point

Table 4.1 gives the statewide average values for these measures for the last six winters. More detail on these measures is provided later in this section.

WisDOT has gathered several years of baseline data and plans to establish targets for these measures. Until then, the data can be used to make a year-to-year comparison in these areas. Other winter measures that are being investigated for possible future use include:

- · Percent of winter operations equipment that is calibrated before winter begins
- Average traffic speed recovery after a storm event (progress reports are available from WisDOT)

Table 4.1. Statewide Compass Measures for Winter

	2008-09	2009-10	2010-11	2011-12	2012-13
Percentage of roads to bare/wet pavement (Within WisDOT target times)	58%	67%	79%	79%	73%
Cost per lane mile	\$2,365	\$2,222	\$2,696	\$1,656	\$2,778
Winter Severity Index	36.2	26.6	38.5	24.3	37.2
Cost per lane mile per Winter Severity Index point	\$65.33	\$83.53	\$70.03	\$68.06	\$74.68
Winter weather crashes	40 per 100 million VMT	22 per 100 million VMT	35 per 100 million VMT	20 per 100 million VMT	29 per 100 million VMT

Annual Compass reports are available at

https://trust.dot.state.wi.us/extntgtwy/dtid_bho/extranet/compass/reports/index.shtm.

4B. Winter Maintenance Management

History of Snow and Ice Control in Wisconsin

The counties' plowing and salting strategies have evolved considerably over the past several decades. For many years beginning in the 1950s, WisDOT maintained a "bare pavement" policy for state highways, striving to ensure that the roadways were kept essentially clear of ice and snow during winter. Snowplows operated continuously during storms and simultaneously applied deicing salts. In the 1970s, however, economic and environmental concerns compelled the department to modify this policy. The national energy crisis and the high cost of employee overtime strained the maintenance budget, and WisDOT made the decision to reduce winter maintenance coverage on less traveled state highways. To address the risk of environmental damage by chloride chemicals, the policy was modified further to include provisions calling for the prudent use of chemicals, and limiting each application of salt to 300 pounds per lane mile.

In 2002, a detailed salt application table was added to the maintenance manual's winter guidelines. The table provides variable salt application rates for initial and repeated applications, depending on the type of precipitation, pavement temperature, wind speeds, and other weather variables. Anti-icing application rates were also established; county highway departments were instructed to perform anti-icing applications prior to predicted frost, black ice, or snow events in order to minimize the amount of salt used during the event. With the implementation of MDSS, this process has become more automated. Patrol superintendents receive treatment recommendations based on the characteristics of the route, such as traffic volume and pavement type, residual de-icers, and forecasted weather.

Storm Reports

One way that WisDOT has worked to increase efficiency in recent years is through the Winter Storm Reports. Every week during the winter, the county highway departments complete online storm report forms. These storm reports let county and WisDOT staff track the season's weather and the counties' response to it throughout the season, which allows the counties to adjust their resource use midseason if necessary. Storm reports track data such as types of storm events, salt use, anti-icing applications, labor hours, and cost estimates. Uses for this data include:

WisDOT Central Office

- Create weekly reports and maps that track salt use and costs. These can help identify inconsistencies in service levels provided by neighboring counties.
- Calculate the severity index; use this to justify additional funding if conditions are more severe than normal
- MAAPS measures
- DTSD Performance Measures

WisDOT Regional Offices

- Justify additional funding if conditions are more severe than normal
- Manage salt inventory
- · Post-storm analysis of county's response
- Training tool for new staff

Counties

- Post-storm analysis of crew's response
- Compare their response (materials use, anti-icing, labor hours, etc.) to that of neighboring counties
- Justify funding to county boards

BEST PRACTICES: MDSS

MDSS combines current weather observations and forecasts with WisDOT's winter maintenance rules of practice to provide users with storm treatment recommendations. These recommendations are based on plow route characteristics like traffic volume, pavement structure, and levels of service.

Weather forecasts, pavement conditions, and treatment recommendations are continuously updated during the storm based on inputs from AVL-GPS and weather and pavement models. When treatment recommendations are followed, salt is used more efficiently.

See https://transportal.cee.wisc.edu/storm-report/ for more detail on how to use the storm report data.

WisDOT relies on the county highway departments to make the storm reports a reliable tool by entering data accurately each week. Historically, the cost and salt use data in the storm reports has been relatively accurate when compared with final costs billed to WisDOT and end-of-season salt inventory figures. In 2010 the UW TOPS Lab took over the storm report input programming. As a result the data entry has been restricted to the point that erroneous entries have been nearly eliminated. This will result in even more accuracy going forward.

Winter Patrol Sections

Many factors influence a county's response to winter storms, including the timing of snow events, the mix of highway types and classifications in a county, and the type of equipment being used. Another important factor is the length of each county's patrol sections.

Each county highway department divides the state highways it is responsible for plowing into patrol sections. In general, one snowplow operator is assigned to each patrol section. This winter, the state highway system was divided into 769 winter patrol sections, an average of 10.7 sections per county. The length of patrol sections varies, with counties that are more urban (Group A) tending to have shorter patrol sections than more rural counties (Groups D, E and F). Local traffic patterns, highway geometrics, number of traffic lanes, intersections, interchanges, and other factors affect the length of patrol sections in each county.

In responding to a storm, operators in longer patrol sections may use more salt in an effort to melt any snow that accumulates between plowings. In addition, drivers may notice that some roads appear to be cleared faster than others, since the longer a patrol section, the longer it takes a snowplow operator to clear all the roads in his section. Three counties have undertaken snowplow route optimization studies in the past to make their patrol section lengths as efficient as possible; see https://trust.dot.state.wi.us/extntgtwy/dtid_bho/extranet/winter/reports/reports.shtm for details.

Table 4.2 shows the average patrol section length for the counties in each Winter Service Group. For county-bycounty patrol section data, see Table 4.8 on page 87.

Winter service group	Average patrol section length (lane miles)	Range of average patrol section lengths by county (lane miles)
Α	52.9	50 - 58
В	43.5	33 - 62
C	43.7	29 - 52
D	46.4	30- 58
E	48.4	34 - 58
F	41.9	37 - 47
Statewide average	44.5	29 - 62

Table 4.2. Average Patrol Section Lengths by Winter Service Group

4C. Response Time

WisDOT tracks two types of response time data—the time it takes a maintenance crew to get on the road after the start of a storm, and the time it takes the pavement to return to a bare/wet condition after the end of a storm. The first measure can impact the second. In general, a quicker response means the crews are dealing with less packed snow. However, WisDOT guidelines dictate that lower-volume highways receive 18-hour winter maintenance coverage rather than 24-hour coverage, so slower average reaction times are expected on 18-hour roads.

Maintenance Crew Reaction Time

Being proactive in getting on the road—even before the start of a storm—can result in bare/wet pavement being achieved faster and with less effort. Knowing this, county highway departments are becoming more proactive in their response to winter storms. Plows and salt spreader trucks are often on the road before a storm starts or shortly afterward.

Using data from the weekly winter storm reports, Table 4.3 shows the average reaction time to storm events in each Winter Service Group. The counties had become more proactive in responding to winter storm events over the last five winter seasons. This winter the average reaction time was 15 percent faster than in 2003–2004. As expected, average reaction times for Group B counties, which provide the highest level of service (24-hour coverage), were less than those counties that provide 18-hour coverage.

In recent years, the statewide average reaction time and has increased somewhat throughout previous winters. However, this past year broke that trend with an average reaction time of 1.49 hours, the lowest reaction time recorded in eight years. Increases in reaction time can often be attributed to increased use of the anti-icing technique. However, faster reaction times can result in higher labor costs.

		Average reaction time (hours)								Percent change	Percent change
Winter Service Group	2004- 2005	2005- 2006	2006- 2007	2007- 2008	2008- 2009	2009- 2010	2010- 2011	2011- 2012	2012- 2013	Average 2004-2005 to 2011-2012	2012-2013 vs Average
А	1.03	0.56	1.24	0.61	1.02	1.74	0.49	0.19	0.63	0.86	- 27 %
В	1.46	1.65	1.57	1.38	1.46	1.78	1.60	1.11	1.27	1.50	-15%
С	2.35	2.44	2.75	2.87	2.70	3.37	2.87	2.15	2.38	2.69	-11 %
D	2.45	2.95	3.35	2.89	3.46	4.23	3.25	2.54	3.77	3.14	20%
E	3.78	3.81	3.71	4.05	4.00	4.71	3.48	3.16	2.99	3.84	-22%
F	3.66	3.99	3.94	5.04	5.08	5.79	5.68	3.39	3.79	4.57	-17%
Statewide average (unweighted)	2.37	2.55	2.69	2.66	2.78	3.38	2.74	2.08	2.42	2.66	-9%

Table 4.3. Maintenance Crew Reaction Time From winter storm reports, 2004/2005–2012/2013

Time to Bare/Wet Pavement

As explained in Section 1, county highway departments provide different levels of effort during and after a storm according to each highway's category rating, as determined by average daily traffic. It would be expected that an urban freeway would receive more materials, labor and equipment—and would show a quicker recovery to bare/wet pavement—than a rural, two-lane

highway. For more information on these categories, see page 8.

"Time to bare/wet pavement" is measured from the reported end time of a storm. Table 4.3 shows that the trend for average time to bare/wet pavement is as expected: More heavily traveled highways show a shorter average time to bare/wet pavement. From storm to storm, however, most variability is due to weather effects

Highway Category		Percent of Times Time to Bare/Wet Requirement Met (4 hours for 24-hour roads, 6 hours for 18-hour roads)									
	2008-09	2009-10	2010-11	2011-12	2012-13						
24-hour	61%	70%	83%	83%	75%						
18-hour	56%	65%	75%	76%	70%						
Statewide	58%	67%	79%	79%	73%						

(type, duration and severity of storms throughout the winter season), according to analysis performed through the Compass program.

The percentage of roadways cleared to bare/wet pavement increased over the first four winters that this measure was tracked, but for the winters of 2007–2008 and 2008–2009 multiple factors combined to make it more challenging for crews to clear roads quickly, which increased the statewide average. This winter's statewide average was 73% which is lower than both last year's mild winter and 2010-2011's extreme winter.

4D. Costs

The total billed cost of statewide winter operations this winter was \$94.98 million, making it 69 percent more costly than 2011-2012. Counties experienced increases in salt costs per lane mile, and labor and equipment costs per lane mile increased as well. Cost per lane mile increased about 68 percent compared to last year.

Higher fuel prices have raised salt transportation costs in recent years: The average of \$58.34 per ton paid this winter is one percent less than last winter, and an increase of 65 percent compared with the average of \$34.98 seven winters ago.

As Figure 4.2 shows, all regions experienced an increase in costs compared with last winter, with the Southwest Region experiencing the most significant increase in costs. This year's 53 percent increase in the severity of the winter contributed to this increase in costs.

Figure 4.1. Winter Costs per Lane Mile

Statewide Average Winter Costs per Lane Mile and Severity

The average Winter Severity Index increased in all regions compared with last winter.

In individual expenditure categories for the 2012–2013 winter, statewide:

 Salt expenditures were \$37.7 million. This was a 78 percent increase compared to the previous winter, with the North Central region experiencing the biggest increase from last winter at 97 percent. The Southeast region saw the smallest increase at 56 percent above last year.

Table 4.5. Total Winter Costs Relative to Winter Severity

Region	Average Winter Severity Index	Actual cost per lane mile	Relative cost per severity index point
SW	33.56	\$2,865	\$85.37
SE	27.63	\$2,816	\$103.69
NE	32.20	\$2,788	\$86.27
NC	42.45	\$2,688	\$63.32
NW	41.37	\$2,714	\$65.60
Statewide	37.17	\$2,778	\$74.74

 Equipment expenditures were \$16.4 million, an increase of 78 percent compared to the previous winter. The Northeast region experienced the largest increase of 104 percent compared to 2011-2012.

Figure 4.2. Change in Costs Since 2006-2007

- Labor expenditures were \$23.5 million, an increase of 49 percent from the previous winter, with the Southwest region seeing the greatest increase of 71 percent.
- Expenditures for materials other than salt were \$1.4 million, a decrease of 7 percent compared with the previous winter. Expenditures at the regional level ranged from a 37 percent decrease over the 2011–2012 winter in the Southwest Region to a 34 percent increase in the Southeast Region.

Figure 4.5 on page 81 shows each region's expenditures per lane mile in each category.

This winter's statewide average cost per lane mile of \$2,778 was much higher than last year's cost of \$1,656 per lane mile. This year's cost is comparable to the 2010-11 cost of \$2,716 per lane mile. Figure 4.1 shows the trends in winter costs per lane mile and severity index over the last 15 winters. On the whole, winter costs per lane mile tend to increase as statewide average severity increases. Increases in labor rates and salt pricing will affect overall winter maintenance cost. Since this was a relatively severe winter as compared to recent years, it is no surprise that costs were higher than last year.

Figure 4.3. Statewide Winter Costs by Category

40%

Administration

Costs

3%

Furnished Material Costs _ 2% Equipment

Costs

32%

Figure 4.4. Regional Winter Costs by Category

യ	
_	
$\mathbf{\nabla}$	
Φ	
0	
J.	

82

Winter 2012-13 Experience for County Services

			County				Five Year Avg	% Costs
	Labor Costs	Equipment Costs	Furnished Material Costs	Administration Costs	Cost of Salt Used	Total Costs for Winter	Cost for Winter over Five ('08-'12 avg) Year Average	over Five Year Average
Region 1 / Southwest	\$5,560,579	\$7,514,794	\$346,586	\$981,965	\$12,092,864	\$26,496,788	\$21,814,900	121%
Region 2 / Southeast	\$5,502,887	\$4,651,822	\$139,270	\$328,545	\$6,052,670	\$16,675,194	\$16,617,200	100%
Region 3 / Northeast	\$3,561,456	\$4,722,489	\$275,866	\$505,013	\$4,519,647	\$13,584,471	\$10,966,000	124%
Region 4 / Northcentral	\$4,146,004	\$5,755,923	\$245,794	\$582,635	\$6,553,515	\$17,283,871	\$13,528,600	128%
Region 5 / Northwest	\$4,748,290	\$6,611,191	\$406,789	\$705,071	\$8,471,272	\$20,942,613	\$14,549,600	144%

on Totals	\$23.519.216	\$29.256.219	\$1.414.305	\$3.103.229	\$37.689.968	\$94.982.937	\$77.476.300	123%
	25%	31%	1%	3%	40%			

Figure 4.5. Costs per Lane Mile by Category

Table 4.5 on page 77 lists the total cost per lane mile for winter maintenance in each region, along with the region's Winter Severity Index. The level of service provided in each county affects total costs, as do the factors listed below. For these reasons, the Southeast Region historically experiences significantly higher costs relative to winter severity than the other regions.

Components of Winter Costs

Major components of winter costs include labor, equipment, salt, other materials such as sand and chemicals, and administrative costs. A region's expenditures in each area are affected by the severity of its winter and the portion of its highways receiving 24-hour coverage. In addition:

- Labor costs are based on rates set in each county's union contracts. Hourly rates tend to be higher in more urban counties. Timing of storms can increase labor costs if more overtime hours are required.
- Equipment costs are determined by the state Machinery Management Committee, which assigns an hourly rate to each piece of equipment that includes depreciation from the purchase price, maintenance costs, and fuel costs. Rising fuel costs have contributed to increased equipment costs, as have some counties' purchase of larger,

more expensive vehicles. These larger vehicles are often more useful for vearround maintenance tasks and are also more efficient in the winter, as they can accommodate larger plows and carry more salt.

- Salt costs are affected by salt prices per ton, which vary because of transportation costs. For example, salt entering the state at the Port of Milwaukee doesn't have to travel as far to reach counties in the Southeast region as it does to reach counties in the center of the state.
- Costs for materials other than salt, such as sand, are also affected by transportation costs. In addition, some counties use more expensive deicing agents that are more effective at lower temperatures (see Table Source: WisDOT Bureau of Transportation Safety 3.5 on page 46 for details on deicing agent costs).

Administrative costs are calculated at 4.25 percent of each county's combined labor, equipment and materials • costs, and cover the overhead costs for office activities.

A comparison of total costs from year to year shows that the breakdown of costs among these five categories does not change a lot from year to year. To illustrate this, Figure 4.3 shows the breakdown of costs for this winter compared to the more severe winter of 2010-2011 and the winter of 2007-2008, considered to be an "average" winter.

However, the breakdown of expenditures by category varies among regions because of the factors described above. For example, the Southeast Region spends more on labor because hourly labor rates tend to be higher in those counties, while equipment

expenditures make up a smaller percentage of that region's total expenditures. Figure 4.4 on page 79 shows the distribution of costs by category for each region.

Statewide winter cost data is presented in Table 4.6 on page 80. County-by-county cost data is available in Table 4.10 on page 92.

Table 4.7. Crashes and Vehicle Miles Traveled by Region

Region	Average Winter Severity Index	VMT (100 million)	Crashes	Crashes per 100 million VMT (2011–2012)	Crashes per 100 million VMT (2011–2012)
NC	42.45	33.49	1,137	23	34
NE	32.20	46.59	1,577	23	34
NW	41.37	38.81	1,422	22	37
SE	27.63	80.343	1,546	16	19
SW	33.56	65.88	2,085	22	32
Statewide	37.17	265.12	7,767	20	29

Source: WisDOT Bureau of Transportation Safety

A Note About Cost Data

The tables at the end of this section were generated with data from two sources—final costs as billed to WisDOT, and preliminary costs from the winter storm reports. The tables created from preliminary storm reports data (such as Table 4.11 on page 98, Cost per Lane Mile per Severity Index Ranking) are included in this report because they provide countyby-county breakdowns of cost data not available elsewhere. Many of the tables in the Appendix also include cost data

from the storm reports. The source of each table's data is indicated below the table title.

Final cost data includes expenses for all winter activities, including putting up snow fence, transporting salt, filling salt sheds, thawing out frozen culverts, calibrating salt spreaders, producing and storing salt brine, and anti-icing applications, as well as plowing and salting. Cost data from storm reports, however, include only plowing, sanding, salting and anti-icing expenses.

4E. Travel and Crashes

From black ice to freezing rain to white-out snowstorms, winter weather creates challenging conditions for even the most careful drivers. Many factors influence winter crash rates, most of which cannot be controlled by winter maintenance crews. However, by keeping roads as clear as possible within

their expected level of service (18- or 24-hour coverage), maintenance crews have an opportunity to help prevent some winter crashes.

In the winter of 2012-2013, there were 7,767 reported winter weather crashes (those that occurred on pavements covered with snow, slush or ice). In part, this data reflects the fact that the higher number of storm events increases the exposure rate. The crash rate (number of crashes per 100 million vehicle miles traveled) increased drastically (45%) this winter to a statewide average of 29, up from last winter's crash rate of 20. However, this is less than the 2010-11 crash rate of 35, which was a relatively comparable year in terms of severity. Last winter, 5,241 winter crashes were reported.

Crash rates tend to increase in more severe winters. Figure 4.6 shows the trends in total crashes statewide over the last 13 years overlaid with the Winter Severity Index. Compared to the mild winter in 2011-2012, it is no surprise that the number of crashes would increase in 2012-2013.

It's important to note that crash rates provide only a portion of the picture of overall winter safety. Crash rates include only "reportable" crashes, which exclude those that cause property damage under \$1,000 that aren't required by law to be reported to police. Also, crashes in urban areas are more likely to occur at lower speeds and cause fewer deaths, while crashes on high-speed rural roads are more likely than low-speed crashes to be fatal.

Figure 4.7. Winter Crash Locations

Crashes and Vehicle Miles Traveled

More urban areas such as the Southeast Region often have fewer winter weather crashes per 100 million vehicle miles traveled. This is partly due to the fact that a single crash in a county with low VMT has a bigger impact on the overall crash rate. In addition, urban regions have more highways with 24-hour coverage, which means that these roadways are more likely to be in passable condition. This year, all regions saw an increase in crash rates compared with last year's unusually low rate. The Northwest Region saw the steepest increase in crash rate, with this year's crash rate at 37 crashes per 100 million VMT reflecting a 68 percent increase over last year's crash rate. The North Central and Northeast regions had increases in crash rates of 47 percent. The Southeast region showed the lowest crash rate, reporting 19 crashes per 100 million VMT (see Table 4.7). Table 4.12 on page 105 gives the estimated number of vehicle miles traveled in each county this winter (November 2012 to April 2013), and the number of crashes that occurred in each county.

WisDOT tracks crashes according to the type of road where they occurred (urban or rural, and Interstate or other state or U.S. highway), and whether the road was divided or nondivided. Figure 4.7 shows that most winter crashes occur on rural state or U.S. highways, largely because there are more lane miles in this category than in the others. Table 4.13 on page 108 shows the breakdown of crashes in each county according to highway type.

How VMT Is Calculated

WisDOT's Traffic Forecasting Section uses a number of factors to estimate Vehicle Miles of Travel for the state's roads. Annual average daily traffic counts are taken in about one-third of Wisconsin's counties every year, and estimates are made for the counties not counted. In addition, forecasters factor in gallons of gas sold, fuel tax collected, and average vehicle miles per gallon.

Total winter VMT for all counties is shown in Table 4.12 on page 105. This winter, total VMT ranged from a low of 14.3 million in Menominee County to a high of 2.9 billion in Milwaukee County. VMT estimates at the county level tend to be less reliable than at the statewide level, because current traffic counts are not available for all counties, and more variability exists in the data at finer levels of resolution.

County-by-County Tables and Figure for Section 4: Performance

This page intentionally left blank

Table 4.8. Winter Maintenance Sections

NC Re	gion			
County	Lane Miles	Winter Patrol Sections 2013 Survey	Lane Miles per Patrol Section	Winter Service Group
Adams	193.82	5	38.76	F
Florence	141.07	3	47.02	F
Forest	312.38	6	52.06	E
Green Lake	156.94	3	52.31	D
Iron	249.56	6	41.59	E
Langlade	292.19	6	48.70	E
Lincoln	418.33	10	41.83	С
Marathon	885.39	22	40.25	В
Marquette	245.09	5	49.02	D
Menominee	90.26	2	45.13	F
Oneida	396.79	10	39.68	D
Portage	581.81	13	44.75	В
Price	322.26	6	53.71	E
Shawano	519.55	14	37.11	С
Vilas	305.24	6	50.87	E
Waupaca	546.64	12	45.55	В
Waushara	345.01	6	57.50	D
Wood	428.50	15	28.57	С
Region Avera	ge		45.25	

NE Re	gion			
County	Lane Miles	Winter Patrol Sections 2013 Survey	Lane Miles per Patrol Section	Winter Service Group
Brown	732.26	18	40.68	В
Calumet	201.53	6	33.59	E
Door	268.55	9	29.84	D
Fond du Lac	597.30	16	37.33	В
Kewaunee	110.41	3	36.80	F
Manitowoc	421.41	11	38.31	С
Marinette	421.42	8	52.68	D
Oconto	467.45	10	46.75	С
Outagamie	532.55	16	33.28	В
Sheboygan	519.68	12	43.31	С
Winnebago	600.53	17	35.33	В
Region Avera	ge		38.90	

SE Re	gion			
County	Lane Miles	Winter Patrol Sections 2013 Survey	Lane Miles per Patrol Section	Winter Service Group
Kenosha	642.12	17	37.77	В
Milwaukee	1876.91	37	50.73	А
Ozaukee	307.47	9	34.16	D
Racine	684.45	17	40.26	В
Walworth	698.71	14	49.91	В
Washington	600.63	15	40.04	В
Waukesha	1110.39	19	58.44	A
Region Avera	ge		44.47	

NW R	legion			
County	Lane Miles	Winter Patrol Sections 2013 Survey	Lane Miles per Patrol Section	Winter Service Group
Ashland	247.57	5	49.51	E
Barron	423.09	11	38.46	С
Bayfield	316.90	6	52.82	D
Buffalo	316.86	7	45.27	D
Burnett	233.64	5	46.73	E
Chippewa	654.65	16	40.92	В
Clark	402.44	10	40.24	С
Douglas	440.77	9	48.97	С
Dunn	516.55	11	46.96	С
Eau Claire	537.76	13	41.37	В
Jackson	515.00	9	57.22	С
Pepin	112.38	3	37.46	E
Pierce	365.81	7	52.26	С
Polk	385.05	7	55.01	D
Rusk	213.47	4	53.37	E
Saint Croix	621.36	10	62.14	В
Sawyer	367.44	6	61.24	E
Taylor	233.90	4	58.47	E
Trempeleau	441.05	11	40.10	D
Washburn	372.14	7	53.16	D
Region Avera	ige		49.08	

SW R	legion]		
County	Lane Miles	Winter Patrol Sections 2013 Survey	Lane Miles per Patrol Section	Winter Service Group
Columbia	792.92	16	49.56	В
Crawford	394.85	8	49.36	С
Dane	1535.68	31	49.54	A
Dodge	630.41	16	39.40	В
Grant	621.78	11	56.53	В
Green	312.72	10	31.27	D
lowa	457.98	11	41.63	E
Jefferson	549.15	14	39.23	В
Juneau	494.51	10	49.45	С
LaCrosse	488.24	13	37.56	С
Lafayette	293.88	6	48.98	D
Monroe	654.71	13	50.36	В
Richland	325.26	6	54.21	D
Rock	651.64	14	46.55	В
Sauk	578.72	14	41.34	В
Vernon	467.04	11	42.46	С
Region Avera	ige		45.46	

	Lane Miles	Winter Patrol Sections 2013 Survey	Lane Miles per Patrol Section
Statewide Totals	34,191.92	769.0	44.46
Statewide Averages	474.89	10.7	44.46
Group A Averages	1507.66	29.0	52.90
Group B Averages	637.88	15.0	43.45
Group C Averages	455.20	10.7	43.68
Group D Averages	327.01	7.3	46.40
Group E Averages	273.04	5.7	48.38
Group F Averages	133.89	3.3	41.93

2012 data - 2013 data was never submitted.

Table 4.9. Storm Start vs. Crew Out by Precipitation Type, Group A

From Winter Storm Reports, 2012-2013

			F	Precipitatio	on Type			Cost per
County	Region	Dry Snow	Wet Snow	Freezing Rain	Sleet	All Precip. Types	Severity Index	LM per Severity Index
			(Av	erage Time	in Hou	rs)		
DANE	SW	0.72	0.72 0.59 0.66 0.52 0.66					2.22
WAUKESHA	SE	1.24	1.22	1.44	1.27	1.24	25.62	1.66
MILWAUKEE	SE	0.00	0.00	0.00	0.00	0.00	30.96	1.42
Group A Ave	rages	0.65	0.60	0.70	0.59	0.63	29.44	1.76

Table 4.9. Storm Start vs. Crew Out by Precipitation Type, Group B

From Winter Storm Reports, 2012-2013

			F	Precipitatio	on Type			Cost per
County	Region	Dry Snow	Wet Snow	Freezing Rain	Sleet	All Precip. Types	Severity Index	LM per Severity Index
			(Av	erage Time	in Hou	rs)		in a c A
EAU CLAIRE	NW	0.09	0.12	-0.02	-1.07	0.02	37.51	5.61
DODGE	SW	0.15	0.14	0.18	0.18	0.14	32.53	4.94
SAUK	SW	1.64	1.50	1.43	1.64	1.47	32.51	4.53
JEFFERSON	SW	0.63	0.70	0.79	0.85	0.69	25.74	4.26
PORTAGE	NC	1.84	1.85	1.79	1.83	1.84	43.62	4.17
WASHINGTON	SE	0.96	0.96	0.93	1.13	0.96	30.06	4.13
COLUMBIA	SW	0.38	0.38	0.41	0.54	0.37	41.67	3.99
SAINT CROIX	NW	1.67	1.64	1.58	1.60	1.64	41.17	3.94
CHIPPEWA	NW	2.68	2.70	2.46	1.94	2.68	36.06	3.92
WAUPACA	NC	1.25	1.24	1.20	1.12	1.24	37.22	3.87
FOND DU LAC	NE	1.37	1.61	2.30	1.76	1.76	33.48	3.83
WINNEBAGO	NE	1.76	1.75	1.27	1.33	1.75	31.01	3.71
OUTAGAMIE	NE	0.98	1.03	0.74	0.72	0.90	29.99	3.68
WALWORTH	SE	0.44	0.48	0.49	0.26	0.48	22.49	3.12
ROCK	SW	-0.18	-0.13	-0.09	-0.20	-0.02	27.69	2.99
MONROE	SW	2.98	2.88	2.84	2.46	2.85	41.34	2.87
BROWN	NE	2.07	2.01	2.18	2.00	2.00	34.76	2.85
KENOSHA	SE	0.32	0.33	0.40	0.36	0.33	25.78	2.83
GRANT	SW	1.95	1.80	1.41	1.41	1.76	32.92	2.55
RACINE	SE	1.02	1.07	1.03	0.97	1.07	30.19	2.38
MARATHON	NC	2.82	2.84	2.78	3.34	2.85	43.63	2.20
Group B Ave	rages	1.28	1.28	1.24	1.15	1.27	33.87	3.64

Table 4.9. Storm Start vs. Crew Out by Precipitation Type, Group C

From Winter Storm Reports, 2012-2013

			F	Precipitatio	on Type			Cost per
County	Region	Dry Snow	Wet Snow	Freezing Rain	Sleet	All Precip. Types	Severity Index	LM per Severity Index
			(Av	erage Time	in Hou	rs)		
CLARK	NW	2.54	2.52	2.22	0.53	2.42	40.10	5.45
PIERCE	NW	4.31	4.21	3.90	3.83	4.22	40.60	5.31
MANITOWOC	NE	1.03	1.13	0.97	0.98	1.09	30.45	4.92
DOUGLAS	NW	4.91	4.94	4.22	5.10	4.93	46.41	4.88
DUNN	NW	1.91	1.91	1.47	1.34	1.91	34.97	4.81
JACKSON	NW	1.70	1.64	2.14	2.34	1.62	39.41	4.73
WOOD	NC	2.52	2.76	2.48	2.45	2.50	39.62	4.72
LINCOLN	NC	3.91	4.12	4.00	4.07	4.00	50.52	4.70
BARRON	NW	1.56	1.64	1.75	1.53	1.60	45.42	4.69
JUNEAU	SW	1.28	1.10	1.38	1.36	1.37	37.10	4.30
SHAWANO	NC	3.42	3.61	3.15	3.24	3.33	35.13	4.11
IOWA	SW	1.49	1.40	1.16	0.73	1.41	30.98	3.87
SHEBOYGAN	NE	1.06	1.06	1.00	0.97	1.12	27.96	3.79
OCONTO	NE	2.51	2.23	2.62	2.42	2.46	36.35	3.68
LA CROSSE	SW	2.16	2.27	2.06	2.09	2.30	36.67	3.66
CRAWFORD	SW	2.85	2.82	2.70	1.88	2.83	39.20	3.59
VERNON	SW	1.36	1.32	1.27	1.23	1.32	37.18	3.24
Group C Ave	rages	2.38	2.39	2.26	2.12	2.38	38.12	4.38

Table 4.9. Storm Start vs. Crew Out by Precipitation Type, Group D

From Winter Storm Reports, 2012-2013

			F	Precipitatio	on Type			Cost per
County	Region	Dry Snow	Wet Snow	Freezing Rain	Sleet	All Precip. Types	Severity Index	LM per Severity Index
GREEN LAKE	NO	0.04	· ·	erage Time		, <i>i</i>	07.47	0.01
	NC	3.64	3.66	3.73	4.05	3.77	37.17	8.61
OZAUKEE	SE	0.90	0.90	0.75	0.49	0.91	28.32	7.91
BAYFIELD	NW	4.23	4.28	3.89	3.76	4.34	58.43	7.91
MARQUETTE	NC	2.71	2.73	3.26	2.24	2.65	28.42	7.74
DOOR	NE	3.01	3.01	2.83	2.72	2.94	29.53	7.69
ONEIDA	NC	4.79	4.87	4.78	5.29	4.79	60.37	6.95
POLK	NW	3.71	3.86	3.66	2.88	3.69	54.22	5.99
MARINETTE	NE	2.87	2.85	2.60	2.74	2.97	38.82	5.35
LAFAYETTE	SW	3.55	3.10	2.86	3.18	2.88	32.88	4.73
GREEN	SW	2.07	1.71	1.32	1.96	1.93	27.82	4.72
WASHBURN	NW	4.07	4.07	3.11	3.97	4.05	33.78	4.65
BUFFALO	NW	2.73	2.82	2.41	2.27	2.73	31.13	4.48
TREMPEALEAU	NW	1.76	1.65	1.70	2.40	1.65	38.38	4.36
RICHLAND	SW	3.00	3.01	3.06	2.93	3.00	29.07	3.82
WAUSHARA	NC	2.66	2.61	2.53	2.05	2.52	26.96	3.68
Group D Ave	rages	3.05	3.01	2.83	2.86	2.99	37.02	5.91

Table 4.9. Storm Start vs. Crew Out by Precipitation Type, Group E

From Winter Storm Reports, 2012-2013

			F	Precipitatio	on Type			Cost per
County	Region	Dry Snow	Wet Snow	Freezing Rain	Sleet	All Precip. Types	Severity Index	LM per Severity Index
			(Ave	erage Time	in Hou	rs)		maex
PEPIN	NW	4.27	4.52	4.30	4.31	4.34	32.20	13.63
IRON	NC	4.33	4.31	3.05	3.73	4.29	62.86	10.56
TAYLOR	NW	3.05	3.14	2.73	2.33	2.95	46.23	9.58
CALUMET	NE	2.76	2.80	2.45	1.86	2.65	31.46	8.12
ASHLAND	NW	3.62	3.45	3.38	3.27	3.49	58.17	7.81
RUSK	NW	2.52	2.50	2.75	2.81	2.75	33.26	7.71
FOREST	NC	3.38	3.43	3.60	3.49	3.42	52.16	7.57
VILAS	NC	7.32	7.30	7.61	7.26	7.26	36.66	7.29
BURNETT	NW	4.68	4.52	4.23	4.02	4.47	43.64	7.14
PRICE	NC	3.01	3.33	3.33	3.34	3.33	61.00	7.12
LANGLADE	NC	3.55	3.50	3.34	3.23	3.58	42.94	6.75
SAWYER	NW	2.66	2.40	2.45	1.42	2.69	36.30	4.19
Group E Ave	erages	3.76	3.77	3.60	3.42	3.77	44.74	8.12

Table 4.9. Storm Start vs. Crew Out by Precipitation Type, Group F

From Winter Storm Reports, 2012-2013

			F	Precipitatio	on Type			Cost per
County	Region	Dry Snow	Wet Snow	Freezing Rain	Sleet	All Precip. Types	Severity Index	LM per Severity Index
			(Av	erage Time	in Hou	rs)		macx
KEWAUNEE	NE	3.48	3.29	3.28	3.85	3.29	30.42	15.75
FLORENCE	NC	4.36	4.49	4.29	4.30	4.34	44.96	14.38
MENOMINEE	NC	3.15	3.36	2.99	3.56	3.17	24.57	13.14
ADAMS	NC	4.31	4.37	4.16	4.27	4.37	36.22	11.90
Group F Ave	rages	3.83	3.88	3.68	3.99	3.79	34.04	13.79

			Labor \$'s per		Equip S's per		Materials S's		Cost of	Tons of	Total FY 2013	2013 LOS	Winter Costs Per
County #	*	Labor	Lane Mile	Equipment	Lane Mile	Materials	Lane Mile	Admin	Salt Used	Salt Used	Winter Costs	Lane Miles	Lane Mile
	REGION 1 / SOUTHWEST	HWEST											
11	Columbia	\$528,266	\$666	\$736,044	\$928	\$70,168	\$88	\$122,194	\$1,625,155	23,101	\$3,081,827	792.92	\$3,887
12	Crawford	\$173,506	\$439	\$239,054	\$605	\$1,663	\$4	\$54,263	\$270,808	4,349	\$739,294	394.85	\$1,872
13	Dane	\$1,409,044	\$918	\$1,409,878	\$918	\$42,042	\$27	\$238,678	\$3,188,797	50,488	\$6,288,439	1,535.68	\$4,095
14	Dodge	\$409,521	\$650	\$673,880	\$1,069	\$16,198	\$26	\$86,769	\$1,233,386	19,932	\$2,419,754	630.41	\$3,838
22	Grant	\$272,814	\$439	\$378,593	\$609	\$37,011	\$60	\$39,475	\$510,847	8,434	\$1,238,740	621.78	\$1,992
23	Green	\$164,082	\$525	\$199,792	\$639	\$5,945	\$19	\$20,650	\$186,308	2,852	\$576,777	312.72	\$1,844
25	Iowa	\$244,044	\$533	\$346,737	\$757	\$4,476	\$10	\$37,003	\$378,889	6,183	\$1,011,149	457.98	\$2,208
28	Jefferson	\$295,217	\$538	\$503,486	\$917	\$43,321	\$79	\$53,133	\$732,325	12,133	\$1,627,482	549.15	\$2,964
29	Juneau	\$257,641	\$521	\$387,248	\$783	\$5,456	\$11	\$54,472	\$598,947	8,425	\$1,303,764	494.51	\$2,636
32	La Crosse	\$280,981	\$575	\$435,153	\$891	\$13,244	\$27	\$38,641	\$372,018	6,534	\$1,140,037	488.24	\$2,335
33	Lafayette	\$149,133	\$507	\$226,637	\$771	\$94,813	\$323	\$26,088	\$150,261	2,491	\$646,932	293.88	\$2,201
41	Monroe	\$266,560	\$407	\$505,489	\$772	\$13,636	\$21	\$44,983	\$676,097	10,196	\$1,506,765	654.71	\$2,301
52	Richland	\$103,988	\$320	\$156,767	\$482	\$9,372	\$29	\$22,273	\$199,257	2,965	\$491,657	325.26	\$1,512
53	Rock	\$389,696	\$598	\$536,927	\$824	(\$31,742)	(\$49)	\$58,787	\$693,056	12,176	\$1,646,724	651.64	\$2,527
56	Sauk	\$332,139	\$574	\$437,581	\$756	\$1,270	\$2	\$41,039	\$935,931	13,612	\$1,747,960	578.72	\$3,020
62	Vernon	\$283,947	\$608	\$341,528	\$731	\$19,713	\$42	\$43,517	\$340,781	5,311	\$1,029,486	467.04	\$2,204
	SW TOTAL	\$5,560,579	\$601	\$7,514,794	\$812	\$346,586	\$37	\$981,965	\$12,092,864	189,181	\$26,496,788	9,249.49	\$2,865

Table 4.10. Winter Maintenance Costs per Lane Mile

Fiscal Year 2013 Winter Maintenance Costs Per Lane Mile

			Labor S's per		Equip S's per		Materials S's		Cost of	Tons of	Total FY 2013	2013 LOS	Winter Costs Per
County #		Labor	Lane Mile	Equipment	Lane Mile	Materials	Lane Mile	Admin	Salt Used	Salt Used	Winter Costs	Lane Miles	Lane Mile
	REGION 2 / SOUTHEAST	HEAST											
30	Kenosha	\$411,232	\$640	\$425,337	\$662	\$11,748	\$18	\$42,173	\$512,970	9,440	\$1,403,460	642.12	\$2,186
40	Milwaukee	\$2,887,474	\$1,538	\$1,441,490	\$768	\$36,041	\$19	\$0	\$2,063,802	39,318	\$6,428,807	1,876.91	\$3,425
45	Ozaukee	\$298,860	\$972	\$287,773	\$936	\$17,597	\$57	\$31,033	\$454,738	8,432	\$1,090,001	307.47	\$3,545
51	Racine	\$384,204	\$561	\$436,002	\$637	\$13,738	\$20	\$42,317	\$566,253	10,303	\$1,442,514	684.45	\$2,108
64	Walworth	\$403,871	\$578	\$646,792	\$926	\$1,786	\$3	\$89,891	\$848,165	16,336	\$1,990,505	698.71	\$2,849
99	Washington	\$402,568	\$670	\$568,590	\$947	\$21,039	\$35	\$47,207	\$833,558	14,474	\$1,872,962	600.63	\$3,118
67	Waukesha	\$714,678	\$644	\$845,838	\$762	\$37,321	\$34	\$75,924	\$773,185	14,247	\$2,446,946	1,110.39	\$2,204
	SE TOTAL	\$5,502,887	\$929	\$4,651,822	\$786	\$139,270	\$24	\$328,545	\$6,052,670	112,550	\$16,675,194	5,920.68	\$2,816
	REGION 3 / NORTHEAST	THEAST											
5	Brown	\$466,066	\$636	\$771,974	\$1,054	\$51,298	\$70	\$75,833	\$702,831	13,727	\$2,068,002	732.26	\$2,824
8	Calumet	\$126,047	\$625	\$214,171	\$1,063	\$4,580	\$23	\$16,396	\$129,786	2,473	\$490,980	201.53	\$2,436
15	Door	\$210,418	\$784	\$301,425	\$1,122	\$22,727	\$85	\$35,687	\$249,519	4,471	\$819,776	268.55	\$3,053
20	Fond du Lac	\$405,073	\$678	\$547,476	\$917	\$27,990	\$47	\$50,914	\$633,267	10,282	\$1,664,720	597.30	\$2,787
31	Kewanee	\$79,744	\$722	\$116,130	\$1,052	\$5,274	\$48	\$9,567	\$80,672	1,511	\$291,387	110.41	\$2,639
36	Manitowoc	\$407,778	\$968	\$420,367	\$998	\$45,300	\$107	\$52,168	\$406,987	7,650	\$1,332,600	421.41	\$3,162
38	Marinette	\$239,231	\$568	\$332,573	\$789	\$157	\$0	\$41,935	\$414,709	7,043	\$1,028,605	421.42	\$2,441
42	Oconto	\$267,107	\$571	\$389,757	\$834	\$8,925	\$19	\$31,643	\$373,175	6,446	\$1,070,607	467.45	\$2,290
44	Outagamie	\$528,167	\$992	\$572,183	\$1,074	\$60,988	\$115	\$56,276	\$444,394	8,366	\$1,662,008	532.55	\$3,121
59	Sheboygan	\$406,000	\$781	\$419,260	\$807	\$35,135	\$68	\$61,513	\$509,927	8,331	\$1,431,835	519.68	\$2,755
70	Winnebago	\$425,825	\$709	\$637,173	\$1,061	\$13,492	\$22	\$73,081	\$574,382	10,082	\$1,723,953	600.53	\$2,871

Table 4.10. Winter Maintenance Costs per Lane Mile

			Labor S's per		Equip S's per		Materials S's		Cost of	Tons of	Total FY 2013	2013 LOS	Winter Costs Per
County #		Labor	Lane Mile	Equipment	Lane Mile	Materials	Lane Mile	Admin	Salt Used	Salt Used	Winter Costs	Lane Miles	Lane Mile
	REGION 4 / NORTHCENTRAI	JCENTRAL											
-	Adams	\$121,862	\$629	\$169,303	\$874	\$12,963	\$67	\$29,337	\$288,252	4,014	\$621,717	193.82	\$3,208
19	Florence	\$72,734	\$516	\$141,678	\$1,004	\$592	\$4	\$10,666	\$149,822	2,511	\$375,492	141.07	\$2,662
21	Forest	\$183,984	\$589	\$339,988	\$1,088	\$25,318	\$81	\$30,649	\$434,496	7,513	\$1,014,435	312.38	\$3,247
24	Green Lake	\$98,506	\$628	\$95,005	\$605	\$4,279	\$27	\$11,683	\$92,030	1,506	\$301,503	156.94	\$1,921
26	Iron	\$261,541	\$1,048	\$337,471	\$1,352	\$12,702	\$51	\$29,236	\$286,480	4,497	\$927,430	249.56	\$3,716
34	Langlade	\$185,921	\$636	\$245,554	\$840	\$1,778	\$6	\$25,548	\$278,184	4,996	\$736,985	292.19	\$2,522
35	Lincoln	\$261,573	\$625	\$369,604	\$884	\$7,971	\$19	\$31,166	\$347,954	5,597	\$1,018,268	418.33	\$2,434
37	Marathon	\$503,166	\$568	\$729,118	\$823	\$39,378	\$44	\$66,815	\$772,331	11,529	\$2,110,808	885.39	\$2,384
39	Marquette	\$133,165	\$543	\$151,345	\$618	\$875	\$4	\$15,230	\$261,838	4,216	\$562,453	245.09	\$2,295
73	Menominee	\$28,401	\$315	\$51,358	\$569	\$4,956	\$55	\$4,027	\$71,025	1,326	\$159,767	90.26	\$1,770
43	Oneida	\$297,403	\$750	\$441,870	\$1,114	\$13,793	\$35	\$39,888	\$519,566	7,792	\$1,312,520	396.79	\$3,308
49	Portage	\$461,003	\$792	\$527,416	\$907	\$22,766	\$39	\$50,117	\$587,412	9,004	\$1,648,714	581.81	\$2,834
50	Price	\$237,251	\$736	\$297,616	\$924	\$3,823	\$12	\$36,734	\$342,636	5,253	\$918,060	322.26	\$2,849
58	Shawano	\$331,652	\$638	\$460,182	\$886	\$34,807	\$67	\$44,730	\$496,735	9,113	\$1,368,106	519.55	\$2,633
63	Vilas	\$194,885	\$638	\$290,951	\$953	\$10,883	\$36	\$26,295	\$419,043	5,962	\$942,057	305.24	\$3,086
68	Waupaca	\$330,211	\$604	\$546,636	\$1,000	\$31,244	\$57	\$64,219	\$605,960	11,129	\$1,578,270	546.64	\$2,887
69	Waushara	\$206,897	\$600	\$226,921	\$658	\$5,882	\$17	\$31,248	\$196,066	3,311	\$667,014	345.01	\$1,933
71	Wood	\$235,849	\$550	\$333,907	\$779	\$11,784	\$28	\$35,047	\$403,686	6,100	\$1,020,273	428.50	\$2,381
	NC TOTAL	S4,146,004	\$645	\$5,755,923	S895	\$245,794	\$38	\$582,635	\$6,553,515	105,370	\$17,283,871	6,430.83	\$2.688

Table 4.10. Winter Maintenance Costs per Lane Mile

Fiscal Year 2013 Winter Maintenance Costs Per Lane Mile

Mile
Lane
per I
Costs
Maintenance
Winter
4.10.
Table

2013	itenance Costs Per Lane Mile
Fiscal Year 2013	Winter Maintenand

Control Jath Jath Tank Jath				Labor \$'s per		Equip \$'s per		Materials S's		Cost of	Tons of	Total FY 2013	2013 LOS	Winter Costs Per
REGION 5 / NORTIMEST Static for the state of the state o	County #	4	Labor	Lane Mile	Equipment	Lane Mile	Materials	Lane Mile	Admin	Salt Used	Salt Used	Winter Costs	Lane Miles	Lane Mile
Athird $512,178$ 594 $514,890$ 886 $517,103$ 569 51639 Barron $534,650$ 826 $542,210$ $51,000$ $52,575$ 556 $543,270$ Barron $534,650$ 826 $542,210$ $51,000$ $52,575$ 556 $543,270$ Burron $515/622$ 540 $532,343$ $51,112$ $515,302$ 549 $513,302$ 547 $513,302$ 548 $513,302$ Burron $515/622$ 573 553 $513,600$ 5649 $513,400$ 548 $513,400$ 548 $513,722$ Burron $512,100$ 573 533 $533,430$ $513,400$ 544 $51,230$ $543,230$ Burron $512,100$ 573 $533,430$ $513,400$ $513,400$ $538,247$ $538,247$ Burron $526,138$ $539,471$ $513,600$ $514,890$ $538,418$ $539,412$ $589,412$ Dum $560,138$ $539,417$ $513,600$ $539,610$ $539,610$ $539,610$ Burron $560,138$ $539,410$ $539,610$ $539,610$ $539,610$ Dum $560,120$ $533,610$ $531,610$ $531,610$ $531,610$ $531,610$ Burron $560,138$ $569,120$ $531,610$ $531,610$ $531,610$ $531,610$ Burron $560,120$ $533,610$ $531,610$ $531,610$ $531,610$ $531,610$ Burron $560,120$ $533,610$ $531,610$ $531,610$ $531,610$ $531,610$ Buro		REGION 5 / NORT	HWEST											
BurronS49.660S82654.210S1,00S2.575S5654.370BurfielS20,68256.40S32,343 $31,112$ $31,502$ 548 $53,2347$ BurfielS17,62254.91 $230,507$ 56.47 $51,299$ 54 $51,8782$ BurnetS12,467555.43 $513,660$ 56.49 $51,390$ 5353 $53,2343$ BurnetS12,467555.355.3 55.356 57.32 51.3469 51.3469 53 53.2363 BurnetS12,40751.3 57.315 57.315 57.315 57.326 57.317 58.3239 ChiphwaS26,133S39 57.3956 57.317 58.3239 58.917 $58.329,33$ 58.913 DouglasS26,133S39 57.3956 57.317 $58.329,33$ 58.917 $58.329,33$ 58.247 DurneS60,147 5712 57.916 $57.329,535$ $58.17,39$ $58.32,329$ 58.247 DurneS60,147 5712 57.916 $57.329,535$ 58.917 $58.329,935$ 58.2427 DurneS60,147 5712 $57.329,535$ 58.917 $58.339,935$ 58.7599 58.7599 58.7599 58.7599 DurneS20,420S773 59.94997 57.329 57.329 57.329 57.929 57.929 DurneS20,420S773 57.949 57.329 57.329 57.329 57.929 57.929 DurneS20,420S773 59.32460 </th <th>7</th> <th>Ashland</th> <th>\$122,178</th> <th>\$494</th> <th>\$214,899</th> <th>\$868</th> <th>\$17,103</th> <th>\$69</th> <th>\$16,839</th> <th>\$240,766</th> <th>3,836</th> <th>\$611,785</th> <th>247.57</th> <th>\$2,471</th>	7	Ashland	\$122,178	\$494	\$214,899	\$868	\$17,103	\$69	\$16,839	\$240,766	3,836	\$611,785	247.57	\$2,471
Byritid S20.682 S640 S32.343 S1.112 S15.302 S48 S23.247 Burriet S137.622 S497 S205.607 S647 S1.290 S4 S13.86 Burnet S13.465 S534 S11.660 S649 S13.469 S8 S17.185 Burnet S13.4075 S534 S15.199 S787 S515.499 S787 S13.469 S8 S13.469 S8 S17.185 Burnet S13.407 S13 S13.6 S449 S1 S449.21 S13.469 S8 S3.943 S3.943 Chiphena S20.138 S593 S449.11 S82 S44.017 S8 S3.41.87 S43.24 Dungias S20.147 S13 S44.017 S82 S44.017 S8 S43.24 S43.24 Duriet S33.816 S71 S82 S44.017 S82 S44.28 S44.28 S44.28 S44.28 S44.28 S44.28 S44.28 S44.28 S44.28 S44.28 </th <th>3</th> <th>Barron</th> <td>\$349,650</td> <td>\$826</td> <td>\$423,210</td> <td>\$1,000</td> <td>\$23,575</td> <td>\$56</td> <td>\$43,270</td> <td>\$266,627</td> <td>4,217</td> <td>\$1,106,332</td> <td>423.09</td> <td>\$2,615</td>	3	Barron	\$349,650	\$826	\$423,210	\$1,000	\$23,575	\$56	\$43,270	\$266,627	4,217	\$1,106,332	423.09	\$2,615
Burfalo $515/62$ 547 512.40 $517/62$ 549 512.40 513.762 513.762 513.760 5649 513.469 58 517.18 Burnett 512.403 531.4 513.160 5649 513.469 58 517.18 517.18 Chippewa 515.190 5787 551.586 578 53.171 58 559.043 Chippewa 520.338 593 549.517 589 53.711 58 539.043 Dunglas 530.147 5712 544.951 51.019 541.872 543.22 Dunglas 530.147 5712 543.921 581.92 51.712 $58532.740Dunglas530.1475712543.921581.7251.72158547.129Dunglas530.1475712540.17058157.721581.721587.2460Dunglas550.142572.601593.601573.601573.601573.601Dunglas567.012573.235.013593.2460581.726577.26577.26577.126577.126577.126577.126577.126577.126577.126577.126577.126577.126577.126577.126577.126574.013Polk573.7240573.2400573.2400573.2400573.2400573.2400573.2400573.2400573.2400573.2400573.2400573.2400573.2400573.2400573.$	4	Bayfield	\$202,682	\$640	\$352,343	\$1,112	\$15,302	\$48	\$28,247	\$332,186	5,649	\$930,760	316.90	\$2,937
Burnett $$124,67$$ $$534$ $$151,60$ $$549$ $$13,460$ $$58$ $$21,318$ $$51,318$ $$513,100$ $$515,100$ $$515,100$ $$515,866$ $$578$ $$524,820$ $$58$590,43Chipnewa$240,212$610$532,533$819$51,110$8$248,20$58$590,43Duuglas$220,138$530,147$515,866$578$54,820$590,43$590,43$590,43Duuglas$230,147$571$571,02$549,207$593$549,907$59$549,242Duuglas$230,430$571$573,600$544,907$593$549,907$593$549,202Duuglas$500,420$573$540,170$583,200$573$510,907$593$547,202Duuglas$500,420$573$540,907$593$540,907$593$547,600Jackson$570,200$573$513,000$573$573$579$574,000$570$574,000$570$574,000Polk$222,200$573$502,600$573$573,2460$573$573,2460$573,2460$574,000$593,540$574,000$571,200$571,200$571,200$574,000$574,000$574,000$574,000$574,000$574,000$574,000$574,000$574,000$574,000$574,000$574,000$574,000$574,000$	9	Buffalo	\$157,622	\$497	\$205,007	\$647	\$1,299	\$4	\$18,782	\$193,862	3,126	\$576,572	316.86	\$1,820
Chippeva $515,190$ 5787 $5515,866$ 5788 $524,220$ $559,043$ Clark $2249,212$ 5619 $532,535$ 8819 $53,171$ 58 $59,043$ Duuglas $236,147$ 5715 $544,071$ 819 $541,859$ $59,22$ $543,242$ Duuglas $236,147$ 5715 $544,0171$ 8822 $(51,59)$ (53) $543,242$ Duuglas $536,147$ 5715 $544,0171$ 8822 $(51,59)$ (53) $54,1817$ Duuglas $530,420$ $5337,816$ 5724 $849,077$ 593 $547,180$ Duuglas $530,420$ 5732 $544,0173$ 5926 $51,9207$ $59,977$ $547,180$ Duuglas $567,078$ $5732,916$ 5926 $59,977$ $593,976$ $547,180$ Peter $520,420$ $5337,346$ 5832 $59,977$ $593,977$ $547,180$ $547,180$ Polk $522,240$ $583,7560$ $583,7560$ $573,226$ $517,226$ $547,180$ $547,120$ Polk $5232,200$ $533,73,460$ $583,77,226$ $517,26$ $517,97$ $547,180$ Polk $513,770$ $533,7560$ $573,226$ $577,226$ $577,126$ $519,776$ $547,180$ Polk $513,770$ $533,7560$ $573,226$ $577,126$ $519,776$ $517,772$ Polk $513,770$ $513,776$ $513,7760$ $513,776$ $516,173$ Polk $513,770$ $513,772$ $520,109$ $516,172$ $570,120$ <	7	Burnett	\$124,675	\$534	\$151,660	\$649	\$13,469	\$58	\$17,185	\$185,956	3,189	\$492,945	233.64	\$2,110
Chark $32.40,212$ 5619 $532,535$ 5819 $53,171$ 58 $226,331$ Duuglas $250,147$ 573 $543,951$ $51,019$ $541,859$ 595 $543,242$ Duu $3560,147$ 5715 $5440,171$ 8822 $(51,59)$ (53) $541,817$ Duu $3560,147$ 5715 $5440,171$ 8822 $(51,59)$ (53) $541,817$ Duu $3560,147$ 5721 $5549,15$ 5998 $549,907$ 593 $547,189$ Jackson $567,078$ 5721 $5536,915$ 5926 $57,808$ 513 $547,189$ Jackson $567,078$ 5597 $569,490$ 5818 $57,126$ 514 56560 Polk $520,420$ 5897 $560,490$ 5818 $57,126$ 519 $547,139$ Polk $513,740$ 5533 $569,490$ 5881 $57,126$ 519 $547,139$ Polk $513,740$ 5833 $537,460$ 5881 $57,126$ 519 $547,139$ Nover $511,3740$ 5533 $516,750$ $577,20$ $519,997$ $597,907$ $516,793$ Row $511,3740$ 5333 $516,750$ $577,20$ $519,798$ $577,126$ $519,793$ Row $511,3740$ 5333 $516,773$ $577,126$ 519 $516,793$ Row 510 $513,7740$ 5732 $571,209$ $514,973$ Row $513,7740$ $512,8760$ $512,876$ $516,793$ $516,793$ Subor <th>6</th> <th>Chippewa</th> <td>\$515,199</td> <td>\$787</td> <td>\$515,866</td> <td>\$788</td> <td>\$24,829</td> <td>\$38</td> <td>\$59,043</td> <td>\$826,922</td> <td>12,561</td> <td>\$1,941,859</td> <td>654.65</td> <td>\$2,966</td>	6	Chippewa	\$515,199	\$787	\$515,866	\$788	\$24,829	\$38	\$59,043	\$826,922	12,561	\$1,941,859	654.65	\$2,966
Douglas 5261,338 5393 544,951 51,019 54,1859 595 542,22 Dum 3360,147 5715 5440,171 5822 (51,539) 633 54,347 Dum 3360,147 5715 5440,171 5822 (51,539) 633 54,347 Eau Chaic 3387,816 5712 533,6915 593 547,125 593 547,907 593 547,139 Jackson 567,078 533 547,125 5926 57,308 515 547,139 Pepin 567,078 533 547,125 5926 57,308 515 547,139 Point 2238,209 553 532,460 581 57,126 519 547,139 Point 2238,709 533 516,775 57,126 519 547,149 Suvert 511,3740 533 516,772 52,019 53 54,616 Suvert 511,3740 533 516,772 52,019 51 56,616	10	Clark	\$249,212	\$619	\$329,535	\$819	\$3,171	\$8	\$28,531	\$455,580	6,622	\$1,066,029	402.44	\$2,649
Dum 3360,147 5715 5440,171 5822 (51,559) (53) 541,817 Eau Chaire 3387,816 5721 5336,915 5938 549,907 593 557,660 Jackson 5200,420 5339 547,125 5926 57,808 515 547,189 Pepin 567,078 5339 547,125 5926 57,808 515 547,189 Pepin 567,078 5339 547,125 5926 57,126 519 547,199 Point 5234,090 563 5332,460 581 57,126 519 547,04 Point 5238,209 5333 516,4755 57,126 519 547,04 Nott 513,740 533 516,4755 57,126 519 547,04 Nott 513,740 533 516,475 57,126 519 547,04 Swyet 514,373 5336,461 5332,460 532,548 533,548 547,93 566,509 547,93 566	16	Douglas	\$261,338	\$593	\$448,951	\$1,019	\$41,859	\$95	\$48,242	\$478,982	8,500	\$1,279,372	440.77	\$2,903
Eau Chaire 3387,816 5721 5336,915 5998 549,907 593 557,660 Jackson \$200,420 \$339 \$477,125 \$926 \$7,808 \$15 \$47,189 Pepin \$67,078 \$539 \$477,125 \$926 \$7,808 \$15 \$47,189 Pepin \$67,078 \$539 \$547,125 \$926 \$7,126 \$19 \$6,560 Point \$234,090 \$673 \$532,460 \$881 \$7,126 \$19 \$6,560 Point \$228,209 \$533 \$164,755 \$57,248 \$98 \$47,973 Rusk \$113,740 \$533 \$164,755 \$7,126 \$19 \$56,60 Swytet \$143,373 \$339 \$164,755 \$7,126 \$19 \$6,5616 Swytet \$14,373 \$539 \$164,755 \$7,126 \$19 \$6,5616 Swytet \$14,373 \$539 \$516,793 \$51 \$52,616 \$51 \$56,616 Swytet \$14	17	Dunn	\$369,147	\$715	\$440,171	\$852	(\$1,559)	(\$3)	\$41,817	\$706,319	10,808	\$1,555,895	516.55	\$3,012
Jackson \$2:0,420 \$3:89 \$477,125 \$9:26 \$7,808 \$15 \$47,189 \$9 Pepin \$67,078 \$5:97 \$6:0490 \$6:18 \$3:94 \$4 \$6:560 Pierce \$2:46,199 \$673 \$3:32,460 \$8:81 \$7,126 \$19 \$5:4014 \$9 Paik \$2:28,209 \$5:93 \$3:73,440 \$8:81 \$7,126 \$19 \$3:4014 \$9 Paik \$2:28,209 \$5:93 \$3:73,546 \$9:83 \$3:7,548 \$9 \$4:7973 \$9 Rusk \$113,740 \$5:33 \$164,755 \$7:126 \$9 \$3:4014 \$9 Swyer \$113,740 \$5:33 \$164,755 \$5:73 \$5:09 \$5:666 \$9 Swyer \$143,73 \$5:09 \$5:13,754 \$5:33 \$5:167 \$9 \$5:666 \$9 Swyer \$143,73 \$5:09 \$5:09 \$5:09 \$5:09 \$5:069 \$5:09 \$5:0610 \$5 \$5:0610	18	Eau Claire	\$387,816	\$721	\$536,915	\$998	\$49,907	\$93	\$57,660	\$766,705	11,552	\$1,799,003	537.76	\$3,345
Pepin \$67,078 \$597 \$60,490 \$618 \$394 \$4 \$6.560 Pierce \$2.46,190 \$673 \$322,460 \$881 \$7,126 \$19 \$34,014 \$9 Palk \$2.28,209 \$593 \$373,346 \$883 \$7,126 \$19 \$34,014 \$9 Palk \$2.28,209 \$593 \$373,346 \$983 \$37,548 \$98 \$47,973 \$9 \$34,014 \$9 Rusk \$113,740 \$533 \$164,755 \$5772 \$2,019 \$9 \$24,0973 \$9 Swyer \$143,373 \$390 \$192,864 \$572 \$5,150 \$14 \$16,773 \$9 \$24,014 \$9 \$56,600 \$9 \$56,600 \$9 \$56,600 \$9 \$56,600 \$9 \$56,600 \$9 \$56,600 \$9 \$56,600 \$9 \$56,600 \$9 \$56,600 \$9 \$56,600 \$9 \$56,600 \$9 \$56,600 \$9 \$56,600 \$9 \$56,600 <	27	Jackson	\$200,420	\$389	\$477,125	\$926	\$7,808	\$15	\$47,189	\$743,329	10,544	\$1,475,871	515.00	\$2,866
Pierce 3246(1)9 5673 5322460 581 57,126 519 534014 Palk 3238.209 5593 5373.46 593 537,548 598 547973 Rusk 5113.740 5333 5164.755 5772 52,019 59 547973 Rusk 5113.740 5330 5164.755 5772 52,019 59 56,616 Swyer 5143.73 5390 5192.864 55.5 55,150 514 516,598 St. Cruix 514.74 577 556.50 5905 516,590 516,792 Taylor 5128.779 5551 518,678 5777 58,833 516,173 Taylor 5128.779 5551 518,678 5777 58,833 536,500 516,73 Taylor 512.8779 5555 530,5109 536,500 516,73 516,73 Taylor 512.8779 536,610 577 58,833 539,610 516,717 516,73 516,717 5	46	Pepin	\$67,078	\$597	\$69,499	\$618	\$394	\$4	\$6,560	\$77,114	1,148	\$220,645	112.38	\$1,963
Park 3238,240 5393 5378,346 5983 537,548 598 547,973 Rusk \$113,740 \$533 \$164,755 \$772 \$2,019 \$9 \$26,616 Rusk \$113,740 \$533 \$164,755 \$772 \$2,019 \$9 \$26,616 Sawyer \$143,373 \$390 \$192,864 \$55.150 \$14 \$16,598 St. Cruix \$470,474 \$777 \$562,630 \$905 \$516,50 \$16,173 Taylor \$128,779 \$551 \$181,678 \$777 \$8,833 \$516,173 Trylor \$128,779 \$551 \$181,678 \$777 \$8,833 \$516,173 Trylor \$128,779 \$551 \$181,678 \$777 \$8,833 \$516,173 Wathburn \$161,488 \$43,461 \$776 \$52,167 \$66 \$43,419 WY TOTAL \$47,48,290 \$61,4191 \$857 \$641,191 \$857 \$640,789 \$53 \$716,77	47	Pierce	\$246,199	\$673	\$322,460	\$881	\$7,126	\$19	\$34,014	\$364,329	5,916	\$974,128	365.81	\$2,663
Rusk \$113,740 \$533 \$164,755 \$772 \$2,019 \$9 \$26,616 Sawyer \$143,373 \$390 \$192,864 \$55.5 \$5,150 \$14 \$16,598 Swyer \$143,373 \$390 \$192,864 \$555 \$5,150 \$14 \$16,598 St. Cruix \$470,474 \$777 \$56,590 \$155 \$67,092 Taylor \$128,779 \$551 \$18,678 \$777 \$8,833 \$516,173 Taylor \$128,779 \$551 \$18,678 \$777 \$8,833 \$516,173 Trylor \$128,779 \$555 \$335,461 \$777 \$8,833 \$516,173 Washburn \$161,488 \$30,816 \$827 \$521,67 \$66 \$43,419 NW TOTAL \$412,420 \$611,91 \$857 \$406,780 \$53 \$7419	48	Polk	\$228,209	\$593	\$378,346	\$983	\$37,548	\$98	\$47,973	\$486,167	7,523	\$1,178,243	385.05	\$3,060
Sawyer \$143,373 \$390 \$192,864 \$525 \$5,150 \$14 \$16,598 St. Croix \$470,474 \$777 \$56,630 \$905 \$96,590 \$155 \$67,092 Taylor \$128,779 \$551 \$181,678 \$777 \$8,833 \$57,092 \$77,092 Taylor \$128,779 \$551 \$181,678 \$777 \$8,833 \$567,092 \$717 Trajlor \$128,779 \$551 \$181,678 \$777 \$8,833 \$567,092 \$717 Washburn \$249,011 \$565 \$335,461 \$761 \$30,199 \$68 \$39,821 Washburn \$161,488 \$434 \$307,816 \$827 \$22,167 \$60 \$43,419 NW TOTAL \$47,48,290 \$65,01,191 \$857 \$406,789 \$543,419 \$543 \$543,419	54	Rusk	\$113,740	\$533	\$164,755	\$772	\$2,019	\$9	\$26,616	\$149,076	2,245	\$456,206	213.47	\$2,137
St. Cruix \$470,474 \$757 \$56,530 \$905 \$96,590 \$155 \$67,092 Taylor \$128,779 \$551 \$181,678 \$777 \$8,833 \$38 \$16,173 Taylor \$128,779 \$551 \$181,678 \$777 \$8,833 \$38 \$16,173 Trempeateu \$240,011 \$565 \$335,461 \$761 \$530,199 \$68 \$39,821 Washburn \$161,488 \$434 \$307,816 \$827 \$22,167 \$60 \$434,99 NW TOTAL \$47,8290 \$65,11,91 \$857 \$406,789 \$53 \$746,789 \$54	57	Sawyer	\$143,373	\$390	\$192,864	\$525	\$5,150	\$14	\$16,598	\$310,078	4,560	\$668,063	367.44	\$1,818
Taylor \$128,779 \$551 \$181,678 \$777 \$8,833 \$38 \$16,173 Trempeateu \$2-40,011 \$565 \$335,461 \$761 \$30,199 \$68 \$39,821 Washburn \$16,1488 \$434 \$307,816 \$827 \$22,167 \$60 \$43,419 NW TOTAL \$47,48,290 \$65 \$6,611,191 \$857 \$406,789 \$53 \$705,071 \$8	55	St. Croix	\$470,474	\$757	\$562,630	\$905	\$96,590	\$155	\$67,092	\$816,131	13,434	\$2,012,917	621.36	\$3,240
Trempealeu \$2-40,011 \$565 \$335,461 \$761 \$30,199 \$68 \$39,821 Washburn \$161,488 \$4,34 \$307,816 \$827 \$22,167 \$60 \$43,419 NW TOTAL \$4,78,290 \$65 \$6,611,191 \$857 \$406,789 \$53 \$705,071 \$8	60	Taylor	\$128,779	\$551	\$181,678	\$777	\$8,833	\$38	\$16,173	\$291,349	3,902	\$626,812	233.90	\$2,680
Washburn \$161,488 \$434 \$307,816 \$827 \$22,167 \$60 \$43,419 NW TOTAL \$4,748,290 \$615 \$6,611,191 \$857 \$406,789 \$53 \$705,071 \$8	61	Trempealeau	\$249,011	\$565	\$335,461	\$761	\$30,199	\$68	\$39,821	\$447,321	7,121	\$1,101,813	441.05	\$2,498
\$4,748,290 \$615 \$6,611,191 \$857 \$406,789 \$53 \$705,071	65	Washburn	\$161,488	\$434	\$307,816	\$827	\$22,167	\$60	\$43,419	\$332,473	5,599	\$867,363	372.14	\$2,331
\$4,748,290 \$6,611,191 \$857 \$406,789 \$53 \$705,071														
		NW TOTAL	\$4,748,290	\$615	\$6,611,191	S857	\$406,789	\$53	\$705,071	\$8,471,272	132,053	\$20,942,613	7,717.83	\$2,714

Fiscal Year 2013 Winter Maintena	Fiscal Year 2013 Winter Maintenance Costs Per Lane Mile	s Per Lane Mi	le									
		Labor S's per		Equip S's per		Materials \$'s		Cost of	Tons of	Total FY 2013	2013 LOS	Winter Costs Per
	Labor	Lane Mile	Equipment	Lane Mile	Materials	Lane Mile	Admin	Salt Used	Salt Used	Winter Costs	Lane Miles	Lane Mile
STATEWIDE SUMMARY	IMARY											
SW Region	\$5,560,579	8601	\$7,514,794	\$812	\$346,586	\$37	\$981,965	\$12,092,864	189,181	\$26,496,788	9,249.49	\$2,865
SE Region	\$5,502,887	\$929	\$4,651,822	\$786	\$139,270	\$24	\$328,545	\$6,052,670	112,550	\$16,675,194	5,920.68	\$2,816
NE Region	\$3,561,456	\$731	\$4,722,489	8963	\$275,866	\$57	\$505,013	\$4,519,647	80,383	\$13,584,471	4,873.09	\$2,788
NC Region	\$4,146,004	\$645	\$5,755,923	\$895	\$245,794	\$38	\$582,635	\$6,553,515	105,370	\$17,283,871	6,430.83	\$2,688
NW Region	\$4,748,290	\$615	\$6,611,191	\$857	\$406,789	\$53	\$705,071	\$8,471,272	132,053	\$20,942,613	7,717.83	\$2,714
Statewide Totals	\$23,519,216	\$688	\$29,256,219	\$856	\$1,414,305	\$41	\$3,103,229	\$37,689,968	619,536	\$94,982,937	34,191.92	\$2,778

per Lane Mile
S
Maintenance Cost
. Winter
Table 4.10.

prepared by: Cathy Meinholz/Bureau of Highway Operations u:/winterfy13wntr.xlw

August 29, 2013

2012–2013: Learning to Use Less Salt Without Compromising Safety

Figure 4.8. 2012-2013 Winter Costs vs. 5-Year Average

County	Region	Lane Miles	Severity Index	Snow Depth (in)	Salt (ton)	Salt per LM	Salt per LM per Severity Index	Total Cost	Total \$/LM	Cost per LM per Severity Index
DANE	SW	1,535.68	31.73	63.8	50488	32.88	1.04	\$5,199,000	\$3,403	2.22
MILWAUKEE	SE	1,876.91	30.96	42.7	39318	20.95	0.68	\$4,971,000	\$2,659	1.42
WAUKESHA	SE	1,110.39	25.62	68.1	15919	14.34	0.56	\$2,028,000	\$1,839	1.66
Group A Averages		1,507.66	29.44	58.2	35242	22.72	0.76	\$4,066,000	\$2,633	1.76

Final totals as of Wednesday, August 07, 2013

B	
(Group	
.11. Cost per Lane Mile per Severity Index Ranking (Group E	
Index	
Severity	
per	
Mile	
Lane	
per	1
Cost	
<u> </u>	(
4	
able	
Ĕ	I

From Winter Storm Reports, 2012-2013

IRIA SW 792.92 41.67 97.8 23101 29.13 0.70 \$2.511,000 E SW 630.41 32.53 84.1 19932 31.62 0.97 \$1,965,000 AIRE NW 537.76 37.51 107.3 11552 21.48 0.57 \$1,651,000 AIRE NW 537.76 37.51 107.3 11552 21.48 0.57 \$1,679,000 AIRT NW 537.76 32.61 73.1 13612 23.52 0.72 \$1,679,000 EWA NW 654.65 36.06 99.5 12561 19.19 0.53 \$1,679,000 EWA NW 651.64 30.06 82.1 14474 24.10 0.66 \$1,670,00 CROIX NW 621.36 41.17 97.8 13434 21.62 0.53 \$1,557,000 CROIX NW 621.36 43.67 75.7 12133 22.09 0.66 \$1,54000	County	Region	Lane Miles	Severity Index	Snow Depth (in)	Salt (ton)	Salt per LM	Salt per LM per Severity Index	Total Cost	Total \$/LM	Cost per LM per Severity Index
ESW630.4132.5384.11993231.620.9781,965.000LAIRENW537.7637.51107.31155221.480.5781,621,000LAIRENW578.7232.5173.11361223.520.7281,517,000EWANW654.6536.0699.51256119.190.5381,679,000EWANW654.6536.0699.51256119.190.5381,679,000EWANW651.3641.1797.81447424.100.8081,424,000CROIXNW621.3641.1797.81447424.100.8081,424,000CROIXNW621.3641.1797.81447424.100.8081,424,000CROIXNW621.3641.1797.81343421.620.5381,62,000CROIXNW621.3641.1797.81243421.620.5581,424,000CROIXNW621.3641.1797.81243421.620.5581,424,000CROIXNW621.3641.1797.81243421.620.5581,424,000CROIXNW621.3641.1797.81243421.620.5581,424,000CROIXNW621.3641.1797.81243221.620.5581,424,000CROIXNK629.331.0173.41028216.720.5181,557,000D	COLUMBIA	SW	792.92	41.67	97.8	23101	29.13	0.70	\$2,511,000	\$3,167	3.99
MRE NW 537.76 37.51 107.3 11552 21.48 0.57 \$1,621,000 EWA NW 578.72 32.51 73.1 13612 23.52 0.72 \$1,517,000 EWA NW 654.65 36.06 99.5 12561 19.19 0.53 \$1,679,000 NGTON SE 600.63 30.06 82.1 14474 24.10 0.80 \$1,434,000 NGTON SE 600.63 30.06 82.1 14474 24.10 0.80 \$1,424,000 NGTON NW 651.81 43.62 77.0 9004 15.48 0.35 \$1,424,000 CROIX NW 651.81 43.62 77.0 9004 15.48 0.35 \$1,620,000 CROIX NW 651.81 43.62 77.0 9004 15.48 0.35 \$1,424,000 CROIX NW 651.61 73.0 126.22 0.35 \$1,526,000 RESON SW	DODGE	SW	630.41	32.53	84.1	19932	31.62	0.97	\$1,965,000	\$3,117	4.94
Kind Size Size <th< td=""><td>EAU CLAIRE</td><td>NN</td><td>537.76</td><td>37.51</td><td>107.3</td><td>11552</td><td>21.48</td><td>0.57</td><td>\$1,621,000</td><td>\$3,018</td><td>5.61</td></th<>	EAU CLAIRE	NN	537.76	37.51	107.3	11552	21.48	0.57	\$1,621,000	\$3,018	5.61
EWA NW 654.65 36.06 99.5 12561 19.19 0.53 51,679,000 NGTON SE 600.63 30.06 82.1 14474 24.10 0.80 51,424,000 NGTON NW 621.36 41.17 97.8 13434 21.62 0.53 51,424,000 CROIX NW 621.36 41.17 97.8 13434 21.62 0.53 51,404,000 CROIX NV 549.15 25.74 75.7 9004 15.48 0.35 51,404,000 RSON SW 549.15 25.74 75.7 12133 22.09 0.86 51,557,000 BAGO NE 597.30 33.48 91.8 10282 17.21 0.51 51,557,000 BAGO NE 597.30 33.48 91.8 10282 16.79 0.54 51,557,000 BAGO NE 600.53 31.01 73.4 10082 16.79 0.54 51,517,000	SAUK	SW	578.72	32.51	73.1	13612	23.52	0.72	\$1,517,000	\$2,622	4.53
NGTON SE 600.63 30.06 82.1 14474 24.10 0.80 81,424,000 CROIX NW 621.36 41.17 97.8 13434 21.62 0.53 81,522,000 GE NC 581.81 43.62 77.0 9004 15.48 0.35 81,404,000 GE NC 581.81 43.62 77.0 9004 15.48 0.35 81,404,000 RSON SW 549.15 25.74 75.7 12133 22.09 0.86 \$1,257,000 RSON SW 597.30 33.48 91.8 10282 17.21 0.51 \$1,357,000 DULAC NE 698.71 22.49 55.0 16.79 0.54 \$1,305,000 DULAC NE 698.71 22.49 55.0 16.79 0.54 \$1,305,000 ORTH SE 698.71 22.49 55.0 16.79 0.54 \$1,517,000 ORTH SE 698.71	CHIPPEWA	NN	654.65	36.06	99.5	12561	19.19	0.53	\$1,679,000	\$2,564	3.92
CROIX NW 621.36 41.17 97.8 13434 21.62 0.53 \$1,522,000 AGE NC 581.81 43.62 77.0 9004 15.48 0.35 \$1,404,000 RSON SW 549.15 25.74 75.7 12133 22.09 0.86 \$1,259,000 BSON SW 549.15 25.74 75.7 12133 22.09 0.86 \$1,259,000 BAGO NE 597.30 33.48 91.8 10082 16.79 0.54 \$1,357,000 BAGO NE 600.53 31.01 73.4 10082 16.79 0.54 \$1,357,000 ORTH SE 698.71 22.49 55.0 16.36 \$1,577,000 ORTH SE 698.71 22.49 55.0 16336 23.38 11.04 \$1,517,000 ORTH SE 698.71 22.49 55.0 16336 20.36 \$1,517,000 ACA NC 546.64	WASHINGTON	SE	600.63	30.06	82.1	14474	24.10	0.80	\$1,424,000	\$2,481	4.13
(GE NC 581.81 43.62 77.0 9004 15.48 0.35 \$1,404,000 RSON SW 549.15 25.74 75.7 12133 22.09 0.86 \$1,259,000 DU LAC NE 597.30 33.48 91.8 10282 17.21 0.51 \$1,357,000 BAGO NE 600.53 31.01 73.4 10082 16.79 0.54 \$1,357,000 BAGO NE 600.53 31.01 73.4 10082 16.79 0.54 \$1,357,000 ORTH SE 698.71 22.49 55.0 16336 23.38 1.04 \$1,517,000 ORTH SE 698.71 22.49 55.0 16336 23.38 1.04 \$1,517,000 ORTH SE 698.71 22.49 57.0 16.79 20.56 \$1,517,000 ORTH SE 698.71 22.49 57.2 20.36 0.55 \$1,517,000 MC NE	SAINT CROIX	NN	621.36	41.17	97.8	13434	21.62	0.53	\$1,522,000	\$2,450	3.94
RSON SW 549.15 25.74 75.7 12133 22.09 0.86 \$1,259,000 DU LAC NE 597.30 33.48 91.8 10282 17.21 0.51 \$1,357,000 BAGO NE 600.53 31.01 73.4 10082 16.79 0.54 \$1,357,000 CRTH SE 698.71 22.49 55.0 16336 23.38 1.04 \$1,517,000 ORTH SE 698.71 22.49 55.0 16336 23.38 1.04 \$1,517,000 ORTH SE 698.71 22.49 55.0 16336 20.36 \$1,517,000 ORTH SE 698.71 22.49 55.0 16336 20.36 \$1,517,000 ORTH SE 698.71 22.49 55.0 16336 20.36 \$1,517,000 ACA NC 546.64 37.22 93.9 11129 20.36 \$1,54,000 N NE 732.56 21.36	PORTAGE	NC	581.81	43.62	77.0	9004	15.48	0.35	\$1,404,000	\$2,428	4.17
DU LAC NE 597.30 33.48 91.8 10282 17.21 0.51 \$1,357,000 EAGO NE 600.53 31.01 73.4 10082 16.79 0.54 \$1,305,000 CATH SE 698.71 22.49 55.0 16336 23.38 1.04 \$1,517,000 ORTH SE 698.71 22.49 55.0 16336 23.38 1.04 \$1,517,000 ORTH SE 698.71 22.49 55.0 11129 20.36 \$1,517,000 ACA NC 546.64 37.22 93.9 11129 20.36 \$1,54,000 ACA NC 732.26 34.76 72.0 13727 18.75 0.54 \$1,54,000 AMIE NE 732.26 34.76 72.0 13727 18.75 0.54 \$1,54,000 AMIE NE 532.55 29.99 82.3 8366 15.71 0.52 \$1,030,000 HON NC	JEFFERSON	SW	549.15	25.74	75.7	12133	22.09	0.86	\$1,259,000	\$2,341	4.26
BAGO NE 600.53 31.01 73.4 10082 16.79 0.54 \$1,305,000 ORTH SE 698.71 22.49 55.0 16336 23.38 1.04 \$1,517,000 ORTH N F46.64 37.22 93.9 11129 20.36 0.55 \$1,54,000 ACA NC 546.64 37.22 93.9 11129 20.36 0.55 \$1,54,000 ACA N NE 732.26 34.76 72.0 13727 18.75 0.54 \$1,528,000 AMIE NE 532.55 29.99 82.3 8366 15.71 0.52 \$1,030,000 AMIE NC 885.39 43.63 97.0 11529 13.02 0.30 \$1,721,000 SW 651.64 27.69 4.41 12176 13.02 0.30 \$1,721,000	FOND DU LAC	NE	597.30	33.48	91.8	10282	17.21	0.51	\$1,357,000	\$2,287	3.83
ORTH SE 698.71 22.49 55.0 16336 23.38 1.04 \$1,517,000 ACA NC 546.64 37.22 93.9 11129 20.36 0.55 \$1,154,000 N NE 732.26 34.76 72.0 13727 18.75 0.54 \$1,528,000 SAME NE 532.55 29.99 82.3 8366 15.71 0.52 \$1,030,000 SAME NC 885.39 43.63 97.0 11529 13.02 0.30 \$1,721,000 SW 651.64 27.69 44.1 12176 13.02 0.30 \$1,721,000	WINNEBAGO	NE	600.53	31.01	73.4	10082	16.79	0.54	\$1,305,000	\$2,227	3.71
ACA NC 546.64 37.22 93.9 11129 20.36 0.55 \$1,154,000 N NE 732.26 34.76 72.0 13727 18.75 0.54 \$1,528,000 SAMIE NE 532.55 29.99 82.3 8366 15.71 0.52 \$1,030,000 FHON NC 885.39 43.63 97.0 11529 13.02 0.30 \$1,721,000 SW 651.64 27.69 44.1 12176 18.69 0.67 \$1,721,000	WALWORTH	SE	698.71	22.49	55.0	16336	23.38	1.04	\$1,517,000	\$2,178	3.12
N NE 732.26 34.76 72.0 13727 18.75 0.54 \$1,528,000 SAMIE NE 532.55 29.99 82.3 8366 15.71 0.52 \$1,030,000 FHON NC 885.39 43.63 97.0 11529 13.02 0.30 \$1,721,000 SW 651.64 27.69 44.1 12176 18.69 0.67 \$1,721,000	WAUPACA	NC	546.64	37.22	93.9	11129	20.36	0.55	\$1,154,000	\$2,118	3.87
BAMIE NE 532.55 29.99 82.3 8366 15.71 0.52 \$1,030,000 FHON NC 885.39 43.63 97.0 11529 13.02 0.30 \$1,721,000 SW 651.64 27.69 44.1 12176 18.69 0.67 \$1,723,000	BROWN	NE	732.26	34.76	72.0	13727	18.75	0.54	\$1,528,000	\$2,087	2.85
THON NC 885.39 43.63 97.0 11529 13.02 0.30 \$1,721,000 SW 651.64 27.69 44.1 12176 18.69 0.67 \$1.723,000	OUTAGAMIE	NE	532.55	29.99	82.3	8366	15.71	0.52	\$1,030,000	\$1,961	3.68
SW 65164 2769 441 12176 1869 0.67 81263.000	MARATHON	NC	885.39	43.63	97.0	11529	13.02	0.30	\$1,721,000	\$1,952	2.20
	ROCK	SW	651.64	27.69	44.1	12176	18.69	0.67	\$1,263,000	\$1,949	2.99

Page 1 of 2

Table 4.11. Cost per Lane Mile per Severity Index Ranking (Group B) From Winter Storm Reports, 2012-2013

County	Region	Lane Miles	Severity Index	Snow Depth (in)	Salt (ton)	Salt per LM	Salt per LM per Severity Index	Total Cost	Total \$/LM	Cost per LM per Severity Index
MONROE	SW	654.71	41.34	88.5	10196	15.57	0.38	\$1,230,000	\$1,879	2.87
KENOSHA	SE	642.12	25.78	48.3	9440	14.70	0.57	\$1,166,000	\$1,816	2.83
RACINE	SE	684.45	30.19	54.7	10303	15.05	0.50	\$1,111,000	\$1,627	2.38
GRANT	SW	621.78	32.92	70.3	8434	13.56	0.41	\$988,000	\$1,588	2.55
Group B Averages	s	637.88	33.87	79.3	12467	19.57	0.60	\$1,441,524	\$2,279	3.64

ΰ	
Q	
n	
Ĕ	
<u>e</u>	
δ	
in	
¥	
al	
X	
þ	
ţ	
V	
O	
5	
e	,
Ē	(
\geq	
Je	
ar	
er	
	1
St	
. Cost per Lane Mile per Severity Index Ranking (Group C)	
<u> </u>	(
7	
4.	;
Ð	
q	
Ta	I
•	

From Winter Storm Reports, 2012-2013

UNN NW 516.55 34.97 11.21 10808 20.92 0.60 81.24,00 5.477 4.81 JACKSOU NW 515.00 39.41 137.0 105.44 20.47 0.22 81.26.00 52.439 473 JACKSOU NW 402.44 40.10 102.3 6622 16.45 0.41 5882.000 52.133 4.81 JUNCLAN NW 400.77 46.41 108 8500 19.26 0.412 545 545 JUNCLAU NV 449.51 37.10 85.7 99.4 9113 17.54 0.50 57.134 411 JUNEAU NV 447.1 30.45 84.8 7560 17.04 0.40 57.134 43.1 JUNEAU NV 447.1 30.45 84.8 7560 17.04 0.40 57.134 43.2 JUNEAU NV 423.41 30.45 84.7 14.2 43.0 JUNEAU NV	County	Region	Lane Miles	Severity Index	Snow Depth (in)	Salt (ton)	Salt per LM	Salt per LM per Severity Index	Total Cost	Total \$/LM	Cost per LM per Severity Index
NN 515.00 39.41 137.0 105.44 20.47 5.56.00 5.2459 NN 402.44 40.10 102.3 6622 16.45 0.41 5882.000 52.193 AS NN 440.77 46.41 108.8 8550 19.28 0.42 \$894.000 \$2.193 AS NN 440.77 46.41 108.8 8550 19.28 0.42 \$894.000 \$2.193 NO NS 494.51 37.10 85.7 8425 17.64 0.50 \$1.050.00 \$2.194 NO NS 494.51 37.10 85.7 8425 17.64 0.50 \$1.64 NO NS 494.51 37.10 85.7 8425 17.64 0.50 \$2.124 NO NS 425.00 425.1 14.24 0.50 \$1.66.00 \$2.124 NO NS 425.0 18.15 0.60 \$1.66.00 \$2.124 NO NS <td< td=""><td>DUNN</td><td>NW</td><td>516.55</td><td>34.97</td><td>112.1</td><td>10808</td><td>20.92</td><td>09.0</td><td>\$1,284,000</td><td>\$2,487</td><td>4.81</td></td<>	DUNN	NW	516.55	34.97	112.1	10808	20.92	09.0	\$1,284,000	\$2,487	4.81
NW 402.44 40.10 102.3 6622 16.45 0.41 \$882.000 \$2.163 AS NW 440.77 46.41 108.8 8500 19.28 0.42 \$849.00 \$2.163 NO NV 519.55 35.13 99.4 9113 17.54 0.50 \$1097.000 \$2.134 NO NV 49451 37.10 85.7 84.8 7650 18.15 0.60 \$2.164 0.74 NOC NV 421.41 30.45 84.8 7650 18.15 0.60 \$2.190 \$2.194 NOC NV 421.41 30.45 84.8 7650 14.12 0.50 \$1.060.00 \$2.194 NOC NV 421.41 30.45 84.8 7650 14.12 0.50 \$1.965 0.74 NOC NV 423.09 45.42 114.2 421 0.36 \$863.000 \$1.967 NO NV 418.3 50.52 93	JACKSON	NW	515.00	39.41	137.0	10544	20.47	0.52	\$1,256,000	\$2,439	4.73
ASNW440.7746.41108.8850019.280.428949,000\$2,153NONC519.5535.1399.4911317.540.50\$1,097,000\$2,134JSW494.5137.1085.784.5765018.150.60\$865,000\$2,124JNOCNE421.4130.4584.8765018.150.60\$865,000\$2,074JNOCNC428.5039.6289.9610014.240.36\$865,000\$2,074NOCNC428.5039.6289.9610014.240.36\$865,000\$2,074NOCNU423.0945.42114.242179.970.36\$865,000\$2,074NUNU423.0945.42114.242179.970.36\$865,000\$2,074NUNU423.0945.42114.242179.970.36\$865,000\$1,956NUNU423.0945.42114.242179.970.36\$869,000\$1,956NUNU423.0945.42114.2659713.380.26\$809,000\$1,956NUNU248.350.6559116.070.495196,000\$1,956NUNU248.430.9668.8610014.240.50\$1,956NUNU248.22592931659713.380.36\$869,000\$1,943	CLARK	NM	402.44	40.10	102.3	6622	16.45	0.41	\$882,000	\$2,193	5.45
NO NC 519.55 35.13 99.4 9113 17.54 0.50 \$1,097,000 \$2,134 J SW 494.51 37.10 85.7 8425 17.04 0.46 \$1,097,000 \$2,124 WOC NE 421.41 30.45 84.8 7650 18.15 0.60 \$865,000 \$2,024 WOC NE 428.50 39.62 89.9 6100 14.24 0.36 \$865,000 \$2,024 WOC NC 428.50 39.62 89.9 6100 14.24 0.36 \$865,000 \$2,024 N NU 423.09 45.42 114.2 4217 9.97 0.36 \$863,000 \$1,975 N NU 141.33 50.52 93.8 8331 16.03 0.57 \$1,906,000 \$1,975 N NU 141.33 50.52 93.8 5597 13.38 0.56 \$1,956 N NU NU 141.33 0	DOUGLAS	NW	440.77	46.41	108.8	8500	19.28	0.42	\$949,000	\$2,153	4.88
JSW494.5137.1085.784.2517.040.46\$1.050,000\$2.124WOCNE421.4130.4584.8765018.150.60\$865,000\$2.074WOCNC428.5039.6289.9610014.240.36\$865,000\$2.074NUNU423.0945.42114.224179970.36\$865,000\$1.952NUNU423.0945.42114.242179970.22\$828,000\$1.972NUNU418.3350.5293.855.9116.030.57\$1.06,000\$1.972NUNU10418.3350.5293.855.9116.030.26\$809,000\$1.972NUNU365.8140.6095.2591616.170.40\$7.09,000\$1.972NUNU365.8160.5293.855.9113.380.26\$809,000\$1.972NUNU365.8160.5293.855.9113.380.26\$809,000\$1.972NUNU365.8160.5665.9165.9167.9367.9367.94NUNU457.9830.9668.861.8313.500.345866,00051.74NUSW457.9830.9668.861.8313.790.34\$803,00051.74NUSW457.9830.9668.963.1111.370.34\$803,00051.74	SHAWANO	NC	519.55	35.13	99.4	9113	17.54	0.50	\$1,097,000	\$2,134	4.11
WMOC NE 421.41 30.45 84.8 7650 18.15 0.60 5865,000 5.074 NC 428.50 39.62 89.9 6100 14.24 0.36 5865,000 52,074 N NC 428.50 39.62 89.9 6100 14.24 0.36 5865,000 52,021 N NU 423.09 45.42 114.2 4217 9.97 0.36 5863,000 51,965 YGAN NU 423.09 45.42 114.2 4217 9.97 0.26 586,000 51,965 YGAN NU 418.33 50.52 93.8 5597 13.38 0.26 580,000 51,967 NU NU 365.81 40.60 95.2 5916 15.17 0.40 5709.00 51,967 NU 365.81 40.60 95.2 5916 13.38 0.26 5809,000 51,967 NU 365.81 40.60 95.2 5916	JUNEAU	SW	494.51	37.10	85.7	8425	17.04	0.46	\$1,050,000	\$2,124	4.30
NC 428.50 39.62 89.9 6100 14.24 0.36 \$863,000 \$2,021 N NW 423.09 45.42 114.2 4217 9.97 0.22 \$828,000 \$1,985 YGAN NE 519.68 27.96 75.3 8331 16.03 0.57 \$1,006,000 \$1,972 YGAN NE 519.68 27.96 75.3 8331 16.03 0.57 \$1,006,000 \$1,972 NU NC 418.33 50.52 93.8 5597 13.38 0.26 \$809,000 \$1,967 NU NU 365.81 40.60 95.2 5916 16.17 0.40 \$709,000 \$1,967 SSE SW 488.24 36.67 89.1 6534 13.38 0.36 \$866,000 \$1,943 SSE SW 488.24 36.57 13.38 0.36 \$866,000 \$1,943 SW 488.24 36.53 13.38 0.36 \$866,0	MANITOWOC	NE	421.41	30.45	84.8	7650	18.15		\$865,000	\$2,074	4.92
NW423.0945.42114.242179.970.22\$828,000\$1,965YGANNE519.6827.9675.3833116.030.57\$1,006,000\$1,972LNNC418.3350.5293.8559713.380.26\$809,000\$1,967LNNC418.3350.5293.8559113.380.26\$809,000\$1,967LNNV365.8140.6095.2591616.170.40\$709,000\$1,943SN488.2436.6789.1653413.380.36\$866,000\$1,743OSESW457.9830.9868.8618313.500.44\$813,000\$1,774ONNE467.4536.35105.6644613.790.38\$803,000\$1,774ONSW467.0437.1889.6613111.370.31\$813,000\$1,774ONSW467.0437.1889.6631111.370.31\$813,000\$1,774ONSW467.0437.1889.6631111.370.31\$707,000\$1,774ONSW394.85392.067.0434911.010.28\$559,000\$1,417	WOOD	NC	428.50	39.62	89.9	6100	14.24	0.36	\$863,000	\$2,021	4.72
YGANNE519.6827.9675.3833116.030.57\$1,006,000\$1,972LNNC418.3350.5293.8559713.380.26\$809,000\$1,967ENW365.8140.6095.2591616.170.40\$709,000\$1,943CSESW488.2436.6789.1653413.380.36\$866,000\$1,785OSESW457.9830.9868.8618313.500.44\$813,000\$1,785TONE467.4536.35105.6644613.790.36\$803,000\$1,774NSW467.0437.1889.6531111.370.31\$1,770\$1,774NSW467.0437.1889.6531111.370.31\$1,700\$1,774NSW394.8539.2067.0434911.010.28\$559,000\$1,417	BARRON	NW	423.09	45.42	114.2	4217	9.97	0.22	\$828,000	\$1,985	4.69
IN NC 418.33 50.52 93.8 5597 13.38 0.26 \$809,000 \$1,967 E NW 365.81 40.60 95.2 5916 16.17 0.40 \$709,000 \$1,943 OSE SW 488.24 36.67 89.1 6534 13.38 0.36 \$866,000 \$1,785 OSE SW 457.98 30.98 68.8 6183 13.50 0.44 \$813,000 \$1,774 OSE N 457.98 30.98 68.8 6183 13.50 0.44 \$813,000 \$1,774 OS NE 467.45 36.35 105.6 6446 13.79 0.38 \$1,774 N SW 467.04 37.18 89.6 0.38 \$803,000 \$1,774 N SW 467.04 37.18 89.6 0.38 \$303,000 \$1,774 N SW 467.04 37.18 89.6 0.39 \$303,000 \$1,774	SHEBOYGAN	NE	519.68	27.96	75.3	8331	16.03	0.57	\$1,006,000	\$1,972	3.79
ENW365.8140.6095.2591616.170.40\$709,000\$1,943OSEESW488.2436.6789.1653413.380.36\$866,000\$1,785OSESW457.9830.9868.8618313.500.44\$813,000\$1,774TONE467.4536.35105.6644613.790.38\$803,000\$1,774NSW467.0437.1889.6531111.370.38\$803,000\$1,720NSW394.8539.2067.0434911.010.28\$559,000\$1,417	LINCOLN	NC	418.33	50.52	93.8	5597	13.38		\$809,000	\$1,967	4.70
OSSESW488.2436.6789.1653413.380.36\$866,000\$1,785NSW457.9830.9868.8618313.500.44\$813,000\$1,774TONE467.4536.35105.6644613.790.38\$803,000\$1,720NSW467.0437.1889.6531111.370.31\$707,000\$1,515FORDSW394.8539.2067.0434911.010.28\$559,000\$1,417	PIERCE	NW	365.81	40.60	95.2	5916	16.17	0.40	\$709,000	\$1,943	5.31
SW457.9830.9868.8618313.500.44\$813,000\$1,774TONE467.4536.35105.6644613.790.38\$803,000\$1,720DNSW467.0437.1889.6531111.370.31\$707,000\$1,515FORDSW394.8539.2067.0434911.010.28\$559,000\$1,417	LA CROSSE	SW	488.24	36.67	89.1	6534	13.38	0.36	\$866,000	\$1,785	3.66
NE 467.45 36.35 105.6 6446 13.79 0.38 \$803,000 \$1,720 SW 467.04 37.18 89.6 5311 11.37 0.31 \$707,000 \$1,515 SW 394.85 39.20 67.0 4349 11.01 0.28 \$559,000 \$1,417	IOWA	SW	457.98	30.98	68.8	6183	13.50	0.44	\$813,000	\$1,774	3.87
SW 467.04 37.18 89.6 5311 11.37 0.31 \$707,000 \$1,515 SW 394.85 39.20 67.0 4349 11.01 0.28 \$559,000 \$1,417	OCONTO	NE	467.45	36.35	105.6	6446	13.79	0.38	\$803,000	\$1,720	3.68
SW 394.85 39.20 67.0 4349 11.01 0.28 \$559,000 \$1,417	VERNON	SW	467.04	37.18	89.6	5311	11.37	0.31	\$707,000	\$1,515	3.24
	CRAWFORD	SW	394.85	39.20	67.0	4349	11.01	0.28	\$559,000	\$1,417	3.59

Final totals as of Wednesday, August 07, 2013

Page 1 of 2

Table 4.11. Cost per Lane Mile per Severity Index Ranking (Group C) From Winter Storm Reports, 2012-2013

ΣÞ	
Cost per LM per Severity Index	
Total \$/LM	
Total Cost	
Salt per LM per Severity Index	
Salt per LM	
Salt (ton)	
Snow Depth (in)	
Severity Index	
Lane Miles	
Region	
ounty	
ŭ	

4.38

\$1,982

\$902,706

0.42

15.45

7097

95.2

38.12

455.36

Group C Averages
ā	
d	
П	
2	
Ū	
bu	
Ξ	
Sa	
L	
6	
p	
ţ	
Ľ	
×e	
Ō	
0	
e	~
Wile per Severity Index Ranking (Group D)	2
le	č
Σ	C
Φ	Ş
Ĩ	C
Ľ	-
. Cost per Lane M	
9 O	
Ļ	Ĺ
SC	
ŭ	
_	
7	
4.	
Table 4.1	
q	
Гa	
	L

County	Region	Lane Miles	Severity Index	Snow Depth (in)	Salt (ton)	Salt per LM	Salt per LM per Severity Index	Total Cost	Total \$/LM	Cost per LM per Severity Index
ONEIDA	NC	396.79	60.37	111.4	7792	19.64	0.33	\$1,089,000	\$2,758	6.95
BAYFIELD	MN	316.90	58.43	187.0	5649	17.83	0.31	\$793,000	\$2,505	7.91
OZAUKEE	SE	307.47	28.32	57.6	8432	27.42	0.97	\$744,000	\$2,431	7.91
POLK	MN	385.05	54.22	128.2	7523	19.54	0.36	\$883,000	\$2,306	5.99
MARINETTE	NE	421.42	38.82	108.0	7043	16.71	0.43	\$948,000	\$2,255	5.35
DOOR	NE	268.55	29.53	75.4	4471	16.65	0.56	\$552,000	\$2,065	7.69
TREMPEALEAU	ΝN	441.05	38.38	73.8	7121	16.15	0.42	\$847,000	\$1,921	4.36
MARQUETTE	NC	245.09	28.42	74.3	4216	17.20	0.61	\$465,000	\$1,897	7.74
WASHBURN	ΝN	372.14	33.78	112.5	5599	15.05	0.45	\$642,000	\$1,732	4.65
GREEN	MS	312.72	27.82	65.3	2852	9.12	0.33	\$462,000	\$1,477	4.72
BUFFALO	MN	316.86	31.13	91.0	3126	9.87	0.32	\$450,000	\$1,419	4.48
LAFAYETTE	SW	293.88	32.88	69.1	2491	8.48	0.26	\$408,000	\$1,389	4.73
GREEN LAKE	NC	156.94	37.17	81.1	1506	9.60	0.26	\$211,000	\$1,351	8.61
WAUSHARA	NC	345.01	26.96	86.8	3311	9.60	0.36	\$438,000	\$1,268	3.68
RICHLAND	SW	325.26	29.07	62.5	2965	9.12	0.31	\$404,000	\$1,242	3.82
Group D Averages		327.01	37.02	92.3	4940	14.80	0.42	\$622,400	\$1,868	5.91

Table 4.11. Cost per Lane Mile per Severity Index Ranking (Group E) From Winter Storm Reports, 2012-2013

County	Region	Lane Miles	Severity Index	Snow Depth (in)	Salt (ton)	Salt per LM	Salt per LM per Severity Index	Total Cost	Total \$/LM	Cost per LM per Severity Index
IRON	NC	249.56	62.86	248.6	4497	18.02	0.29	\$656,000	\$2,635	10.56
FOREST	NC	312.38	52.16	125.7	7513	24.05	0.46	\$739,000	\$2,366	7.57
PRICE	NC	322.26	61.00	117.4	5253	16.30	0.27	\$736,000	\$2,294	7.12
TAYLOR	MN	233.90	46.23	87.8	3902	16.68	0.36	\$521,000	\$2,241	9.58
VILAS	NC	305.24	36.66	112.2	5962	19.53	0.53	\$678,000	\$2,225	7.29
LANGLADE	NC	292.19	42.94	104.8	4996	17.10	0.40	\$574,000	\$1,972	6.75
ASHLAND	NN	247.57	58.17	212.0	3836	15.49	0.27	\$478,000	\$1,933	7.81
BURNETT	MN	233.64	43.64	105.9	3189	13.65	0.31	\$389,000	\$1,667	7.14
RUSK	MN	213.47	33.26	110.0	2245	10.52	0.32	\$351,000	\$1,645	7.71
CALUMET	NE	201.53	31.46	98.5	2473	12.27	0.39	\$328,000	\$1,636	8.12
SAWYER	NN	367.44	36.30	103.6	4560	12.41	0.34	\$566,000	\$1,540	4.19
PEPIN	NM	112.38	32.20	90.4	1148	10.22	0.32	\$172,000	\$1,531	13.63
Group D Averages		257.63	44.74	126.4	4131	15.52	0.35	\$515,667	\$1,974	8.12

Ē	
Q	
n	
2	
G	
ũ	
X	
JU	
Ř	
×	
<u>e</u>	
DC	
—	
Ę	
L	
Ž	
Se	
<u> </u>	
)e	C
	Š
i	C
Σ	2
Ð	S
an	
Ľ	-
J.	9
ď	ć
st	-
ő	
. Cost per Lane Mile per Severity Index Ranking (Group F)	
.	1
Σ.	
4	
ble	-
Tabl	9
Ĕ	Ľ

13
201
$\overline{-}$
2012-2013
rts
8
Reports
Ē
Ľ
5
Ś
fer
.⊆
\geq
Ε
lon
ц

County	Region	Lane Miles	Severity Index	Snow Depth (in)	Salt (ton)	Salt per LM p	er Salt per LM per Severity Index	Total Cost	Total \$/LM	Cost per LM per Severity Index
ADAMS	NC	193.82	36.22	88.4	4014	20.71	0.57	\$447,000	\$2,307	11.90
FLORENCE	NC	141.07	44.96	117.9	2511	17.80	0.40	\$286,000	\$2,028	14.38
KEWAUNEE	NE	110.41	30.42	86.5	1511	13.69	0.45	\$192,000	\$1,739	15.75
MENOMINEE	NC	90.26	24.57	58.5	1326	14.69	0.60	\$107,000	\$1,186	13.14
Group D Averages		133.89	34.04	87.8	2341	16.72	0.50	\$258,000	\$1,815	13.79

Table 4.12. Crashes per 100 Million Vehicle Miles of Travel

Bureau of Transportation Safety data, November 2012 - April 2013

Bureau of Transportation Sa	nety data, November 2012 - April 2013		
			CRASHES/
COUNTY		CRASHES	100,000,000 VMT
ADAMS	107,600,000	20	19
FLORENCE	36,000,000	10	28
FOREST	55,800,000	17	30
GREEN LAKE	90,400,000	20	43
IRON	46,600,000	11	-0
LANGLADE	97,900,000	23	23
LINCOLN	183,700,000	65	35
MARATHON	711,800,000	398	56
MARQUETTE	126,800,000	20	16
MENOMINEE	14,300,000	49	343
ONEIDA	227,800,000	137	60
PORTAGE	383,600,000	6	2
PRICE	77,800,000	75	96
SHAWANO	266,000,000	46	17
VILAS	145,200,000	75	52
WAUPACA	296,300,000	60	20
WAUSHARA	178,600,000	100	56
WOOD	303,100,000	5	2
Total	3,349,300,000.00	1,137	34
lotal	0,040,000,000.00	1,107	
BROWN	1,042,700,000	234	22
CALUMET	162,900,000	74	45
DOOR	159,400,000	30	19
FOND DU LAC	533,300,000	198	37
KEWAUNEE	83,900,000	22	26
MANITOWOC	366,900,000	154	42
MARINETTE	224,100,000	66	29
OCONTO	239,400,000	57	24
OUTAGAMIE	658,200,000	252	38
SHEBOYGAN	440,800,000	103	23
WINNEBAGO	747,000,000	387	52
Total	4,658,600,000.00	1,577	34

Table 4.12. Crashes per 100 Million Vehicle Miles of TravelBureau of Transportation Safety data, November 2012 - April 2013

CRASHES/ 100,000,000	
COUNTY WINTER VMT CRASHES VMT	
ASHLAND 82,000,000 18	22
BARRON 257,800,000 63	22 24
BAYFIELD 132,400,000 36	24 27
BUFFALO 79,800,000 30	38
BURNETT 79,300,000 15	
CHIPPEWA 381,700,000 114	30
CLARK 171,800,000 82	30 48
DOUGLAS 213,500,000 80	40 37
DUNN 286,900,000 126	37 44
EAU CLAIRE 457,400,000 241	44 53
JACKSON 242,400,000 85	35
PEPIN 34,700,000 10	29
PIERCE 145.600,000 77	29 53
POLK 214,200,000 48	22
RUSK 79,700,000 21	26
ST.CROIX 534,600,000 205	38
SAWYER 112,400,000 15	13
TAYLOR 78,100,000 29	37
TREMPEALEAU 170,900,000 88	51
WASHBURN 126,100,000 39	31
Total 3,881,300,000.00 1,422	37
10001,000,000.00	07
KENOSHA 680,000,000 155	23
MILWAUKEE 2,857,600,000 479	17
OZAUKEE 484,900,000 67	14
RACINE 736,200,000 203	28
WALWORTH 545,700,000 115	17
WASHINGTON 662,300,000 235	11
WAUKESHA 2,067,600,000 292	14
Total 8,034,300,000.00 1,546	19

Table 4.12. Crashes per 100 Million Vehicle Miles of TravelBureau of Transportation Safety data, November 2012 - April 2013

·			CRASHES/
COUNTY	WINTER VMT	CRASHES	100,000,000 VMT
COLUMBIA	438,800,000	151	34
CRAWFORD	84,800,000	28	33
DANE	2,159,200,000	541	25
DODGE	433,100,000	149	34
GRANT	240,000,000	77	32
GREEN	141,000,000	55	39
IOWA	185,500,000	68	37
JEFFERSON	462,600,000	108	23
JUNEAU	287,300,000	92	32
LA CROSSE	429,200,000	210	49
LAFAYETTE	94,100,000	31	33
MONROE	336,100,000	153	46
RICHLAND	89,900,000	41	46
ROCK	712,300,000	241	34
SAUK	379,900,000	93	24
VERNON	114,500,000	47	41
Total	6,588,300,000.00	2,085	32
Statewide Totals	26,511,800,000.00	7,767	29

Table 4.13

Motor Vehicle Crashes on Roads with Snow/Ice/Slush Bureau of transportation Safety data, Nov. 1, 2012 - April 30, 2013 State, U.S. and Interstate Highways only

Urban IH Rural IH

NC Region

	-			
COUNTY	TOTAL		Urban STH	Rural STH
ADAMS	20]	0	20
FLORENCE	10		0	10
FOREST	17		0	17
GREEN LAKE	20		5	15
IRON	11		0	11
LANGLADE	23		5	18
LINCOLN	65		6	59
MARATHON	398		115	251
MARQUETTE	20		0	5
ONEIDA	49		3	46
PORTAGE	137		33	63
PRICE	6		0	6
SHAWANO	75		8	67
VILAS	46		0	46
WAUPACA	75		1	74
WAUSHARA	60		0	39
WOOD	100		54	46
MENOMINEE	5		0	5
TOTAL	1,137]	230	798

Urban	State High	way	Rural	State High	way
Non-div	Divided	Unkn	Non-div	Divided	Unkn
0	0	0	17	3	0
0	0	0	10	0	0
0	0	0	17	0	0
5	0	0	15	0	0
0	0	0	10	1	0
4	1	0	17	1	0
6	0	0	24	35	0
41	74	0	80	171	0
0	0	0	5	0	0
0	3	0	42	4	0
16	17	0	15	48	0
0	0	0	6	0	0
8	0	0	25	41	0
0	0	0	43	3	0
0	1	0	33	41	0
0	0	0	35	4	0
24	30	0	23	23	0
0	0	0	5	0	0
104	126	0	422	375	0

NE Region

COUNTY	TOTAL
BROWN	234
CALUMET	74
DOOR	30
FOND DU LAC	198
KEWAUNEE	22
MANITOWOC	154
MARINETTE	66
OCONTO	57
OUTAGAMIE	252
SHEBOYGAN	103
WINNEBAGO	387
TOTAL	1,577

Urban STH	Rural STH	Urban IH	Rural IH
161	37	18	18
7	67	0	0
3	27	0	0
48	150	0	0
0	22	0	0
45	38	5	66
7	59	0	0
0	57	0	0
117	135	0	0
28	54	0	21
121	266	0	0
537	912	23	105

Urban	State High	way	Rural	State High	way
Non-div	Divided	Unkn	Non-div	Divided	Unkn
52	109	0	14	23	0
0	7	0	58	9	0
0	3	0	20	7	0
31	17	0	68	82	0
0	0	0	21	1	0
20	25	0	38	0	0
5	2	0	36	23	0
0	0	0	20	37	0
44	73	0	62	73	0
17	11	0	31	23	0
79	42	0	56	210	0
248	289	0	424	488	0

NW Region

COUNTY	TOTAL
ASHLAND	18
BARRON	63
BAYFIELD	36
BUFFALO	30
BURNETT	15
CHIPPEWA	114
CLARK	82
DOUGLAS	80
DUNN	126
EAU CLAIRE	241
JACKSON	85
PEPIN	10
PIERCE	77
POLK	48
RUSK	21
ST. CROIX	205
SAWYER	15
TAYLOR	29
TREMPEALEAU	88
WASHBURN	39
TOTAL	1,422

Urban STH	Rural STH	Urban IH	Rural IH
7	11	0	0
0	63	0	0
0	36	0	0
0	30	0	0
0	15	0	0
15	99	0	0
0	82	0	0
49	23	8	0
19	45	8	54
70	43	84	44
0	40	0	45
0	10	0	0
10	67	0	0
0	48	0	0
0	21	0	0
15	108	28	54
0	15	0	0
0	29	0	0
0	77	0	11
0	39	0	0
185	901	128	208

Urban	Urban State Highway			State High	way
Non-div	Divided	Unkn	Non-div	Divided	Unkn
5	2	0	11	0	0
0	0	0	42	21	0
0	0	0	34	2	0
0	0	0	28	1	1
0	0	0	15	0	0
5	10	0	31	68	0
0	0	0	37	45	0
33	16	0	12	11	0
16	3	0	43	2	0
10	60	0	26	17	0
0	0	0	36	4	0
0	0	0	10	0	0
6	4	0	64	3	0
0	0	0	46	2	0
0	0	0	21	0	0
6	9	0	75	33	0
0	0	0	14	1	0
0	0	0	28	1	0
0	0	0	75	2	0
0	0	0	14	25	0
81	104	0	662	238	1

SE Region

COUNTY	TOTAL
KENOSHA	155
MILWAUKEE	479
OZAUKEE	67
RACINE	203
WALWORTH	115
WASHINGTON	235
WAUKESHA	292
TOTAL	1,546

Urban STH	Rural STH	Urban IH	Rural IH
47	55	8	45
338	0	141	0
22	13	8	24
114	36	6	47
22	64	0	29
107	128	0	0
126	79	55	32
776	375	218	177

Urban State Highway			Rural S	State High	way
Non-div	Divided	Unkn	Non-div	Divided	Unkn
31	16	0	18	37	0
92	245	1	0	0	0
13	9	0	6	7	0
43	71	0	25	11	0
15	7	0	45	19	0
62	45	0	52	76	0
33	93	0	37	41	1
289	486	1	183	191	1

SW Region

COUNTY	TOTAL	1	Urban STH	Rural STH	Urban IH	Rural IH
COLUMBIA	151	1	7	78	1	65
CRAWFORD	28		5	23	0	0
DANE	541		234	195	10	102
DODGE	149		8	141	0	0
GRANT	77		1	76	0	0
GREEN	55		4	51	0	0
IOWA	68		0	68	0	0
JEFFERSON	108		22	62	0	24
JUNEAU	92		0	33	0	59
LA CROSSE	210		109	60	23	18
LAFAYETTE	31		0	31	0	0
MONROE	153		30	50	4	69
RICHLAND	41		0	41	0	0
ROCK	241		63	101	23	54
SAUK	93		14	64	0	15
VERNON	47		0	47	0	0
TOTAL	2,085]	497	1,121	61	406

Urban	Urban State Highway			Rural State Highway		
Non-div	Divided	Unkn	Non-div	Divided	Unkn	
6	1	0	68	9	1	
5	0	0	22	1	0	
41	193	0	107	88	0	
7	1	0	80	60	1	
1	0	0	59	17	0	
1	3	0	47	4	0	
0	0	0	28	40	0	
20	2	0	38	24	0	
0	0	0	32	1	0	
53	56	0	31	29	0	
0	0	0	23	8	0	
15	15	0	50	0	0	
0	0	0	37	4	0	
15	48	0	82	19	1	
10	3	1	51	13	0	
0	0	0	42	5	0	
174	322	1	797	322	2	

STH = State highways or non-interstate US highways

IH = Interstate highways Non-div = Non-divided

Rural = An unincorporated area or an incorporated area with a population under 5,000

Urban = An incorporated area with a population of 5,000 or more.

*2013 figures are preliminary at this time.

**Does not include deer or other animal crashes

5 Looking Ahead

The winter of 2012-2013 was the most expensive winter in history. It had the 3rd highest severity and 2nd highest salt use. It seemed as if winter would never end as it extended well into May.

In 2013-2014, WisDOT will continue to work on implementing and expanding the best practices. However, focus over the next year will move towards identifying service providers who are efficient and cost effective as the department will explore regionalization and performance based contracting.

Areas of focus for the 2013-2014 winter:

 WisDOT is going to look into all maintenance activities and determine which ones can be regionalized. Regionalization efforts will be directed by a steering committee that will be led by the maintenance bureau director and will include representatives from the regions and service providers.

- 2. Under new state law service providers no longer have to be paid by actual costs methods for work performed. The new law instructs WisDOT to investigate the merits of performance based maintenance.
- 3. AVL/GPS (Automatic Vehicle Location/Global Positioning System) has become standard equipment and is now being utilized in 49 counties. The effort to implement the technology statewide is proceeding with a higher emphasis on service providers with Interstates and Expressways and counties who are actively using the MDSS forecasting-treatment recommendation program.
- 4. WisDOT is going to partner with Dane County Highway Department to and conduct a route optimizing study on Dane County's highways. The software call 'Route Smart' is being jointly purchased for the study.
- 5. The MDSS system is continuing to improve and move towards accessibility on smart phones for next winter. WisDOT will begin implementing the improved reporting capabilities of MDSS. Reporting down to route level will be explored since this will enable WisDOT to more easily track material usage down to a smaller scale. Additional training will be provided.
- 6. Mixing liquid deicers is becoming more popular nationwide. As is the technique of getting more liquids on the roadway during plowing operations through the use of slurry generators. We will work with counties to begin investigating and testing these techniques.
- 7. The snowplow operator training modules for training operator and supervisors was stalled in 2011-12 but will progress with earnest in 2013-14.

Appendix

Figure A-1. WisDOT Regional Organization	115
Figure A-2. Snow Plowing and Ice Control Categories During a Storm	
Table A-1. Storm Report Summary	117
Weather Forecast Service Evaluation Summary	123
Table A-2. Weather Forecasting Service Usage	130
Table A-3. Anti-icing Details	
Table A-4. Annual Anti-icing Agent Usage	142
Table A-5. Actual Anti-icing Costs	148
Table A-6. Salt Brine Use	150
Table A-7. Annual Prewetting Agent Usage for Salt	152
Table A-8. Annual Abrasives Usage and Prewetting Agent Usage for Abrasives	158
Table A-9. History of Salt Use on State Trunk Highways	1646

This page intentionally left blank

Wisconsin Department of Transportation New regional organization Effective May 29, 2005 (updated July 18, 2005)

\sim	
<u>v</u>	
S	
••	
÷	
0	
ŏ	
5	
Ð	
M	
rm	
0	
Ľ	
S	
0,	
-	
~	
1	
⁽¹⁾	
-	
Ō	
-	1

.

From Winter Storm Reports, 2012-2013

Notes: 1) Costs shown in table are estimated and do not include the 4.63% Administrative Costs; 2) Material Costs includes Salt, Sand, and other Deicing and Anti-Icing Agents; 3) Equipment Costs are based on \$60 per hour per unit; 4) Labor Costs are based on each County's average labor rate; 5) Total Salt Available = salt in sheds as of May '12 (modified as

Region	Miles	Lane Severity Snow Miles Index Amount	Snow Amount	Events	Events this Season		Freez. Pain	Total T	Total Salt	Total Salt	Salt	Total Thaw_	Cloar	Total	Total Bog	Total	Estim	nated Co	Estimated Cost Per Lane Mile	ine Mile	Estimated	Salt per
NC County	3	5	(inches)	Anti- Icing	Storms	Inci- dent	(D)		sed ons)	ü.	tons)	Rox (tons)	Lane (tons)	Used (CY)	Hours	Hours	Mat'I	Equip	Labor	Total	Cost to Date	Severity Index
ADAMS	193.82	36.22	88.4	െ	32	16	18	4,701	4,014	687	20.7	0	-	0	1186.0	318.0	\$1,472	\$446	\$389	\$2,307	\$447,162	0.57
FLORENCE	141.07	44.96	117.9	10	48	14	18	3,532	2,511	1,021	17.8	171	-	35	863.0	273.0	\$1,169	\$478	\$382	\$2,028	\$285,714	0.40
FOREST	312.38	52.16	125.7	-	55	17	20	8,488	7,513	975	24.1	0	7	0	1945.0	1255.0	\$1,392	\$549	\$426	\$2,366	\$739,174	0.46
GREEN LAKE	156.94	37.17	81.1	4	31	34	17	2,262	1,506	756	9.6	0	-	0	813.0	337.0	\$583	\$408	\$360	\$1,351	\$211,363	0.26
IRON	249.56	62.86	248.6	2	65	18	11	7,673	4,497	3,176	18.0	0	-	324	1923.0	1452.0	\$1,132	\$739	\$765	\$2,635	\$655,635	0.29
LANGLADE	292.19	42.94	104.8	7	44	19	19	6,745	4,996	1,749	17.1	0	-	8	1766.0	1183.0	\$947	\$546	\$479	\$1,972	\$573,503	0.40
LINCOLN	418.33	50.52	93.8	13	39	29	30	6,305	5,597	708	13.4	264	-	557	3513.0	1039.0	\$943	\$565	\$459	\$1,967	\$808,710	0.26
MARATHON	885.39	43.63	97.0	17	47	35	11	16,029 11	1,529	4,500	13.0	0	-	136	6905.0	1983.0	\$880	\$575	\$498	\$1,952	\$1,721,270	0.30
MARQUETTE	245.09	28.42	74.3	4	27	19	9	5,943	4,216	1,727	17.2	0	-	0	1074.0	849.0	\$1,047	\$468	\$381	\$1,897	\$464,894	0.61
MENOMINEE	90.26	24.57	58.5	0	33	20	4	2,208	1,326	882	14.7	0	-	62	361.0	57.0	\$765	\$267	\$154	\$1,186	\$107,023	0.60
ONEIDA	396.79	60.37	111.4	24	50	14	37	9,662	7,792	1,870	19.6	0	-	299	5433.0	595.0	\$1,305	\$762	\$691	\$2,758	\$1,089,135	0.33
PORTAGE	581.81	43.62	77.0	6	49	18	18	10,154	9,004	1,150	15.5	0	-	677	5618.0	2151.0	\$1,018	\$796	\$614	\$2,428	\$1,404,239	0.35
PRICE	322.26	61.00	117.4	12	54	15	32	6,378	5,253	1,125	16.3	0	-	117	2091.0	1674.0	\$1,058	\$659	\$576	\$2,294	\$735,993	0.27
SHAWANO	519.55	35.13	99.4	10	33	27	12	9,994	9,113	881	17.5	0	-	357	3638.0	2403.0	\$987	\$641	\$505	\$2,134	\$1,096,874	0.50
VILAS	305.24	36.66	112.2	ę	37	19	2	9,636	5,962	3,674	19.5	0	ю	677	1536.0	866.0	\$1,351	\$463	\$411	\$2,225	\$677,898	0.53
WAUPACA	546.64	37.22	93.9	2	36	13	10	11,677 11	1,129	548	20.4	0	-	0	3656.0	1551.0	\$1,090	\$566	\$462	\$2,118	\$1,154,439	0.55
WAUSHARA	345.01	26.96	86.8	7	29	4	6	5,314	3,311	2,003	9.6	0	-	0	2016.0	463.0	\$566	\$384	\$319	\$1,268	\$437,606	0.36
MOOD	428.5	39.62	89.9	œ	37	24	19	8,520 (6,100	2,420	14.2	0	-	135	2303.0	1916.0	\$937	\$586	\$498	\$2,021	\$863,083	0.36
Region Total	al	I	1	I	I	1	1	135,221 105,369	J5,369	29,852	1	435	21	3384	1	1	1	1	:	:	13,473,715	
Region Average	erage	42.45	104.3	8.1	41.4	19.7	16.3	7,512	5,854	1,658	16.6	24	-	188	2591.1	1131.4	\$1,036	\$550	\$465	\$2,050	\$748,540	0.41

Page 1 of 6

Final totals as of Monday, October 21, 2013

Notes: 1) Costs shown in table are estimated and do not include the 4.63% Administrative Costs; 2) Material Costs includes Salt, Sand, and other Deicing and Anti-icing Agents; 3) Equipment Costs are based on \$60 per hour per unit; 4) Labor Costs are based on each County's average labor rate; 5) Total Salt Available = salt in sheds as of May '12 (modified as required) plus early seasonal fill plus seasonal fill plus vendor reserve available.

Region	Lane	Lane Severity Snow Miles Index Amount	Lane Severity Snow Miles Index Amount	Events	Events this Season		Freez.	Total To Salt S	Total . Salt	Total Salt	Salt	Total	Total	Total	Total	Total	Estime	ted Cos	Estimated Cost Per Lane Mile	ne Mile	Estimated	Salt per
NE County			(inches)		Anti- Storms Inci- Icing dent				- 0	Ŀ.	per LM (tons)	Rox (tons)	Lane (tons)	Used (CY)	Hours	د	Mat'l E	Equip	Labor	Total	Cost to Date	Lim per Severity Index
BROWN	732.26	34.76	72.0	48	31	19	41		13,727	3,303	18.7	0	` -	135	5990.0	2395.0	\$940	\$599	\$549	\$2,087	\$1,527,753	0.54
CALUMET	201.53	31.46	98.5	-	23	29	ę	2,803 2	2,473	330	12.3	0	~	0	1345.0	681.0	\$646	\$555	\$435	\$1,636	\$327,717	0.39
DOOR	268.55	29.53	75.4	13	26	20	10	4,756 4	4,471	285	16.6	0	~	0	1075.0	1499.0	\$944	\$575	\$546	\$2,065	\$551,918	0.56
FOND DU LAC	597.3	33.48	91.8	25	27	25	e	13,152 10	10,282	2,870	17.2	0	~	0	3828.0	3061.0 \$	\$1,078	\$620	\$590	\$2,287	\$1,356,653	0.51
KEWAUNEE	110.41	30.42	86.5	10	24	21	10	1,861 1	1,511	350	13.7	0	~	165	733.0	276.0	\$716	\$548	\$475	\$1,739	\$191,896	0.45
MANITOWOC	421.41	30.45	84.8	1	27	20	9	9,923 7	7,650	2,273	18.2	0	-	0	2813.0	1086.0	\$989	\$555	\$530	\$2,074	\$864,685	0.60
MARINETTE	421.42	38.82	108.0	42	33	46	6	7,608 7	7,043	565	16.7	1,101	-	66	3047.0	1046.0 \$	\$1,185	\$520	\$551	\$2,255	\$947,678	0.43
OCONTO	467.45	36.35	105.6	21	35	17	11	7,701 6	6,446	1,255	13.8	0	-	0	2307.0	1764.0	\$783	\$495	\$441	\$1,720	\$803,147	0.38
OUTAGAMIE	532.55	29.99	82.3	9	30	13	9	12,193 8	8,366	3,827	15.7	0	7	19	4143.0	1937.0	\$871	\$573	\$517	\$1,961	\$1,029,593	0.52
SHEBOYGAN	519.68	27.96	75.3	9	25	23	5	13,177 8	8,331	4,846	16.0	100	-	9	3071.0	1351.0 \$	\$1,043	\$489	\$440	\$1,972	\$1,006,391	0.57
WINNEBAGO	600.53	31.01	73.4	8	30	31	£	12,308 10	10,082	2,226	16.8	0	-	16	4359.0	2758.0 \$	\$1,068	\$629	\$530	\$2,227	\$1,304,537	0.54
Region Total	a	1	I	1	1	1	-	102,512 8	80,382	22,130	1	1,201	12	409	1	1		:	1	1	\$9,911,969	
Region Average	erage	32.20	86.7	17.4	28.3	24.0	7.5	9,319	7,307	2,012	16.0	109	-	37	2973.7	1623.1	\$933	\$560	\$509	\$2,002	\$901,088	0.50

Final totals as of Monday, October 21, 2013

Page 2 of 6

	Estimated	Cost to Date	\$478,371	\$828,352	\$793,003	\$449,687	\$389,476	\$1,678,651	\$881,969	\$948,796	\$1,284,459	\$1,620,836	\$1,255,837	\$172,108
	Estimated Cost Per Lane Mile	Total	\$1,933	\$1,985	\$2,505	\$1,419	\$1,667	\$2,564	\$2,193	\$2,153	\$2,487	\$3,018	\$2,439	\$1,531
as	st Per La	Labor	\$425	\$567	\$620	\$376	\$411	\$588	\$491	\$515	\$549	\$774	\$456	\$382
Agents; 3 (modified	ated Co	Equip	\$543	\$747	\$852	\$444	\$428	\$748	\$589	\$542	\$570	\$830	\$549	\$452
nti-icing May '12	Estim	Mat'I	\$964	\$672	\$1,033	\$599	\$828	\$1,228	\$1,113	\$1,096	\$1,368	\$1,415	\$1,434	\$698
g and Ar ds as of	Total	Hours	660.0	1497.0	1309.0	953.0	904.0	3642.0	1663.0	1994.0	2416.0	3554.0	2011.0	346.0
ner Deicin alt in she	Total	Hours	1664.0	4246.0	3196.0	1799.0	966.0	4353.0	2374.0	2415.0	2856.0	5635.0	3650.0	646.0
d, and otl ailable = s	Total	Used (CY)	149	308	227	102	0	804	0	34	ę	140	25	31
s Salt, San al Salt Ave	Total	Lane (tons)	2	~	-	~	-	-	~	~	-	-	-	-
4.63% Administrative Costs; 2) Material Costs includes Salt, Sand, and other Deicing and Anti-icing Agents; 3) are based on each County's average labor rate; 5) Total Salt Available = salt in sheds as of May '12 (modified ve available.	Total Thaw_	Rox (tons)	0	0	0	0	0	0	0	0	195	0	0	0
Material Co erage labor	Salt	per LM (tons)	15.5	10.0	17.8	9.9	13.6	19.2	16.5	19.3	20.9	21.5	20.5	10.2
Costs; 2) I unty's ave	Total	Remain. (tons)	200	865	960	251	471	320	534	451	461	77	200	235
strative (each Co	Total	Used (tons)	3,836	4,217	5,649	3,126	3,189	12,881 12,561	6,622	8,500	11,269 10,808	11,629 11,552	10,744 10,544	1,383 1,148
4.63% Admini are based on ve available.	Total	Avail. (tons)	4,536	5,082	6,609	3,377	3,660	12,881	7,156	8,951	11,269	11,629	10,744	1,383
the 4.63% osts are t sserve ava	Freez. Rain	Events	21	15	13	б	18	12	13	12	œ	14	39	16
t include Labor C rendor re	eason	Inci- dent	12	40	25	34	19	13	21	25	15	22	23	7
r unit; 4) fill plus v	Events this Season	Anti- Storms Inci- Icing dent	49	44	53	32	4	4	42	48	38	44	47	35
nated ar hour pe easonal	Event		4	7	8	6	0	0	10	1	7	21	23	4
are estin \$60 per ill plus se	Snow	(inches)	212.0	114.2	187.0	91.0	105.9	99.5	102.3	108.8	112.1	107.3	137.0	90.4
in table pased or asonal fi	Lane Severity Snow Viles Index Amount		58.17	45.42	58.43	31.13	43.64	36.06	40.10	46.41	34.97	37.51	39.41	32.20
sts showr osts are k s early se	Lane S Miles	3	247.57	423.09	316.9	316.86	233.64	654.65	402.44	440.77	516.55	537.76	515	112.38
Notes: 1) Costs shown in table are estimated and do not include the 4.63% Administrative Costs; 2) Material Costs includes Salt, Sand, and other Deicing and Anti-icing Agents; 3) Equipment Costs are based on \$60 per hour per unit; 4) Labor Costs are based on each County's average labor rate; 5) Total Salt Available = salt in sheds as of May '12 (modified as required) plus early seasonal fill plus seasonal fill plus vendor reserve available.	Region	NW County	ASHLAND	BARRON	BAYFIELD	BUFFALO	BURNETT	CHIPPEWA	CLARK	DOUGLAS	DUNN	EAU CLAIRE	JACKSON	PEPIN

Table A-1. Storm Report Summary 0010 0010 From Winte

III VVIIIIEI OLOTII 大ビPOILS, ∠U I ∠-∠U I ろ : 1) Costs shown in table are estimated and do not include the 4.63% Administrative Costs; 2) Material Costs includes Salt, Sand, and ot mot Costs am based on \$50 ps. Provide Administrative Costs 30 Administrative Costs; 2) Material Costs includes Salt, Sand, and ot	Ly s average labor rate; 3/ rotal Salt Available
estrative Costs; 2) Material Costs includes Salt, Sand,	Ly saverage labor rale; 3/ 101al Sail Avail
strative Costs; 2) Material Costs includes Salt, S	Ly saverage labor rale; 3/ rotal Sait A
strative Costs; 2) Material Costs includes Sal	LY S AVELAUE IADUL LALE, 2) IULAI 30
strative Costs; 2) Material Costs includes	LY S AVELAUE IADUL LALE, D/ 1016
strative Costs; 2) Material Costs inclu	LY S AVELAUE IAUUT TALE, 2)
strative Costs; 2) Material Costs in	IN S AVELAUE IADUI TALE
strative Costs; 2) Material Cos	l jour agerage labor r
strative Costs; 2) Material	ry s average iai
strative Costs; 2) Mate	ly s average
strative Costs; 2) N	iy save
strative Costs;	2
strative Cos	
strative	
stra	ج
	BB
inin a	5
Adr	J36G
33%	Ď
9.4 °	0 0
S the c	ŝ
	5
	9
	f
	5
à, ∠ Tan	b
	5
s i D S i i D S i i D	5
D % %	2
E ⊟ 1 E ar	5
	בכ
	nag
n LE s sh efe	212
	٥.
[1] VVIIIIEI SUOTII REPORS, ZUIZ-ZUI3 :1) Costs shown in table are estimated and do not include th most Costs are based on set on hour portunity. All Jone Cost	2

Salt per LM per Severity Index

0.22

0.27

0.31 0.32 0.31 0.53 0.41 2012-2013: Learning to Use Less Salt Without Compromising Safety

0.36 0.34

\$520,510

\$2,241 \$1,921 \$1,771 ł

\$564 \$497 \$452

\$565,936

\$1,522,291

\$2,450 \$1,540

\$616

3317.0 \$1,281

425 0 106

\$371

\$826 765.0 \$1,245 \$995 \$925

1069.0

0.42 0.45

\$847,311

\$428

1720.0

1143

560 2,254

7,681 7,121

22 33

ß \sim

112.5

372.14

73.8

TREMPEALEAU441.05

7,853

601

3,902

4,503

5,203 4,560

22 32

1376.0

1421.0 2508.0

> 99 4176 209

\$394 ł

\$656,252 16,836,499 \$841,825

0.32

0.42 0.60 0.57 0.52 0.40 0.36

\$708,616 \$882,778 \$351,259

\$1,943

\$483 \$486

\$479

\$981 1584.0 \$1,273

1153.0

2136.0

229

0 0 0 0 0 0 0 0

16.2 19.5

594 583 800 89 643

5,916 7,523 3,045 2,245 13,523 13,434

6,510

16 13 17 4 7 30 12 9

5 42

39 43 36 42 39 4 39 3 L

ß 4 0 0 0 30

95.2 128.2

40.60 54.22 33.26 41.17 36.30 46.23 38.38 33.78

365.81 385.05 213.47

PIERCE POLK RUSK

8,106

33 28

110.0 97.8 103.6 87.8

SAINT CROIX 621.36

367.44 233.9

SAWYER TAYLOR

2296.0 1396.0 3351.0 1383.0 1535.0

379

\$548 \$535

0.32 0.53

\$1,645 \$2,306

> \$430 \$553 \$343 \$433

\$680

658.0

ß

10.5

21.6 12.4 16.7 16.1 15.0 Page 3 of 6

0.40

\$2,086

\$485

\$568 ł

1629.6 \$1,033

2491.3 ÷

3

195 10

16.1 ł

11,649 582

143,701 132,052 5,599

6,603

7,185

14.9 ł

24.5

41.5

6.9

113.8

41.37

Region Average

L

ł

ł

L

Region Total WASHBURN

ł

Final totals as of Monday, October 21, 2013

Notes: 1) Costs shown in table are estimated and do not include the 4.63% Administrative Costs; 2) Material Costs includes Salt, Sand, and other Deicing and Anti-icing Agents; 3) Equipment Costs are based on \$60 per hour per unit; 4) Labor Costs are based on each County's average labor rate; 5) Total Salt Available = salt in sheds as of May '12 (modified as required) plus early seasonal fill plus seasonal fill plus vendor reserve available.

Region	Lane S Miles	severity Index A	Lane Severity Snow Miles Index Amount	Events	Lane Severity Snow Events this Season Freez. Miles Index Amount Rain	ň		Total Total	Total . Salt	Total Salt	Salt IIcod	Total Thaw	Total Clear-	Total	Total	Total	Estimé	ated Cos	Estimated Cost Per Lane Mile	ne Mile	pa	Salt per
SE County	3		(inches)		Anti- Storms Inci- Icing dent	Inci- Ev dent			_ ~	ii în	per LM (tons)	Rox (tons)		Used (CY)	(0	Hours	Mat'l I	Equip	Labor	Total	Cost to Date	Lim per Severity Index
KENOSHA	642.12 25.78	25.78	48.3	13	29	11	ى ى	13,424 9	9,440	3,984	14.7	0	5	4	4151.0	1638.0	\$786	\$504	\$526	\$1,816	\$1,166,076	0.57
MILWAUKEE 1876.91	1876.91	30.96	42.7	10	26	12	6	61,966 39,318		22,648	20.9	0	-	0	11630.0 12009.0	2009.0	\$1,096	\$644	\$919	\$2,659	\$4,971,498	0.68
OZAUKEE	307.47	28.32	57.6	7	27	29	9	10,408 8	8,432	1,976	27.4	0	0	0	1787.0	760.0 \$1,495	\$1,495	\$497	\$439	\$2,431	\$743,924	0.97
RACINE	684.45	30.19	54.7	4	29	19	, б	18,176 10	10,303	7,873	15.1	0	-	0	2717.0	2332.0	\$825	\$392	\$410	\$1,627	\$1,110,915	0.50
WALWORTH	698.71 22.49	22.49	55.0	5	24	12	4	22,344 16	16,336	6,008	23.4	0	-	0	5061.0	1122.0 \$1,205	\$1,205	\$532	\$441	\$2,178	\$1,516,544	1.04
WASHINGTON 600.63 30.06	N 600.63	30.06	82.1	7	27	12	б	16,474 14	14,474	2,000	24.1	0	ю	0	2613.0	3042.0 \$1,483	\$1,483	\$495	\$503	\$2,481	\$1,424,182	0.80
WAUKESHA 1110.39 25.62	1110.39	25.62	68.1	7	29	e	1	33,280 15	15,919 1	17,361	14.3	0	-	0	6606.0	3589.0	\$806	\$551	\$481	\$1,839	\$2,028,116	0.56
Region Total	al	I	I	ł	1		1	176,072 11	14,222 (61,850	1	0	11	4	I	:	1	1	:	-	12,961,255	
Region Average	erage	27.63	58.4	8.4	8.4 27.3 14	14.0	7.6 2	25,153 1	16,317	8,836	20.0	0	2	-	4937.9	3498.9 \$	\$1,100	\$516	\$531	\$2,147	\$1,851,608	0.73

Final totals as of Monday, October 21, 2013

Summary	
Report	
Storm	
A-1.	
Table	

Notes: 1) Costs shown in table are estimated and do not include the 4.63% Administrative Costs; 2) Material Costs includes Salt, Sand, and other Deicing and Anti-icing Agents; 3) Equipment Costs are based on \$60 per hour per unit; 4) Labor Costs are based on each County's average labor rate; 5) Total Salt Available = salt in sheds as of May '12 (modified as

Region	Lane S Miles	Lane Severity Snow Miles Index Amoun	severity Snow	Event	Events this Season		Freez.	Total To	Fotal 7	Total Salt	Salt	Total	Total	Total	Total	Total	Estima	ated Cos	Estimated Cost Per Lane Mile	ne Mile	Estimated	Salt per
SW County	3		(inches)	Anti- Icing	Anti- Storms Inci- Icing dent				F @	'n.	tons)	Rox (tons)	Lane (tons)	Used (CY)	Hours	Hours	Mat'l	Equip	Labor	Total	Cost to Date	Lim per Severity Index
COLUMBIA	792.92	41.67	97.8	20	35	20	10	30,169 23	23,101	7,068	29.1	0	-	583	4568.0	3764.0	\$1,993	\$621	\$552	\$3,167	\$2,510,967	0.70
CRAWFORD	394.85	39.20	67.0	œ	33	23	18	5,744 4	4,349	1,395	11.0	0	2	1110	1913.0	1124.0	\$668	\$416	\$333	\$1,417	\$559,279	0.28
DANE	1535.68	31.73	63.8	-	31	14	6	59,947 50,488		9,459	32.9	39	-	36	8683.0	8683.0 11038.0	\$2,055	\$586	\$762	\$3,403	\$5,198,870	1.04
DODGE	630.41	32.53	84.1	7	32	19	10	18,838 19	9,932 -	-1,094	31.6	0	-	0	3993.0	3250.0	\$1,904	\$652	\$562	\$3,118	\$1,965,437	0.97
GRANT	621.78	32.92	70.3	7	31	28	9	10,557 8	8,434	2,123	13.6	0	-	2491	2775.0	2139.0	\$802	\$456	\$330	\$1,588	\$987,554	0.41
GREEN	312.72	27.82	65.3	7	22	39	5	4,057 2	2,852	1,205	9.1	0	-	187	1718.0	1226.0	\$581	\$505	\$391	\$1,477	\$461,748	0.33
IOWA	457.98	30.98	68.8	10	33	21	ω	8,220 6	6,183	2,037	13.5	0	-	3	2532.0	1971.0	\$809	\$531	\$434	\$1,774	\$812,621	0.44
JEFFERSON	549.15	25.74	75.7	0	27	18	0	17,034 12	2,133	4,901	22.1	0	-	0	2366.0	2262.0	\$1,396	\$508	\$436	\$2,341	\$1,258,849	0.86
JUNEAU	494.51	37.10	85.7	1	35	4	18	11,283 8	8,425	2,858	17.0	0	~	0	2122.0	2113.0	\$1,201	\$473	\$450	\$2,124	\$1,050,288	0.46
LA CROSSE	488.24	36.67	89.1	12	33	22	12	11,643 6	6,534	5,109	13.4	0	40	428	2994.0	1759.0	\$782	\$523	\$479	\$1,785	\$865,850	0.36
LAFAYETTE	293.88	32.88	69.1	10	30	13	13	3,861 2	2,491	1,370	8.5	0	-	2485	1298.0	1381.0	\$500	\$481	\$408	\$1,389	\$408,206	0.26
MONROE	654.71	41.34	88.5	10	42	13	20	12,199 10	0,196	2,003	15.6	0	44	156	3184.0	2520.0	\$1,010	\$483	\$386	\$1,879	\$1,229,595	0.38
RICHLAND	325.26	29.07	62.5	9	30	19	ი	3,838 2	2,965	873	9.1	0	-	310	1346.0	777.0	\$596	\$341	\$305	\$1,242	\$404,033	0.31
ROCK	651.64	27.69	44.1	e	27	25	12	16,969 12	2,176	4,793	18.7	20	~	6	2810.0	2716.0	\$1,059	\$449	\$441	\$1,949	\$1,263,253	0.67
SAUK	578.72	32.51	73.1	32	32	28	12	19,386 13	3,612	5,774	23.5	20	~	29	3585.0	2449.0	\$1,582	\$596	\$444	\$2,622	\$1,517,276	0.72
VERNON	467.04	37.18	89.6	11	36	24	15	7,852 5,	311	2,541	11.4	0	-	2789	2464.0	1434.0	\$718	\$451	\$345	\$1,515	\$707,260	0.31
Region Tota	tal	I	ł	I	ł		1	241,597 189,182		52,415	ł	29	66	10616	ł	1	1	I	I	1	21,201,087	
Region Average	erade	33.56	74.7	8.8	31.8	21.3	11.6	15,100 17	11.824	3.276	17.5	5	9	664	3021.9	2620.2	\$1,104	\$505	\$441	\$2 040	\$1 325 068	0 53

Page 5 of 6

Notes: 1) Costs shown in table are estimated and do not include the 4.63% Administrative Costs; 2) Material Costs includes Salt, Sand, and other Deicing and Anti-icing Agents; 3) Equipment Costs are based on \$60 per hour per unit; 4) Labor Costs are based on each County's average labor rate; 5) Total Salt Available = salt in sheds as of May '12 (modified as required) plus early seasonal fill plus seasonal fill plus vendor reserve available.

Statewide Total	1	I	I	ł	I	I	799,103 621,207	177,896	I	1,910	164	18589.0	I	1	I	1	1		\$74,384,527	1
Statewide Average	37.17	93.2	9.3	35.9	21.5	12.7	11,099 8,628	2,471	16.9	26.5	2.3	258.2	2945.7	1905.9	\$1,040	\$543	3 \$478 \$2,062	2,062	\$1,033,118	0.48

Final totals as of Monday, October 21, 2013

6/17/2013

WMS

WEATHER FORECAST SERVICES EVALUATION 2013

Michael J. Adams

This page intentionally left blank

Executive Summary

Introduction

In 2012-13, the Wisconsin Department of Transportation (WisDOT) continued using weather and pavement forecast information provided by Iteris (formerly Meridian). The information is received through the Maintenance Decision Support System (MDSS).

In order to assess the quality of these weather and pavement temperature forecasts provided to WisDOT and the county highway departments who provide winter maintenance on the state trunk highway system, the WisDOT Road Weather Information System (RWIS) Program Manager performed a verification study on these forecasts. The primary aim of this study is to uncover any potential problems in forecast accuracy. The ultimate goal of this project is to use the findings of this study to improve the quality of weather and pavement temperature forecast information provided by Iteris or any other provider of forecast information.

For all information presented in this report, results for the winter seasons of 1998-99 through 2004-05 are for forecasts provided by Surface Systems, Inc., while results after that are for forecasts provided by Iteris, first via a web site and, after 2009-10, MDSS.

Verification Procedures

Forecasts for eight locations were examined: Madison, Milwaukee, Green Bay, Wausau, La Crosse, Eau Claire, and Rhinelander, and Rice Lake. The time period covered by the verification study was December 1, 2012 through March 31, 2013. This is the standard verification time span, though this year it does omit several snow events that occurred in April. Four specific criteria were examined: snow, freezing precipitation, wind speed, and pavement temperature.

For the first two criteria, the verification methodology is based on a paper presented by John Thornes at the 1998 Standing International Road Weather Commission (SIRWEC) conference. It is based on common meteorological forecast verification techniques. The basis of the method is to choose two time periods (in our case 0 to 6 hours and 6 to 24 hours after forecast issuance) during the forecasts and see if the particular criterion was forecast to occur and whether it actually occurred during the periods being examined. In other words, was snow forecast to occur and did it occur? Two-by-two contingency tables are then constructed. A number of statistics were calculated, each of which provides a different piece of intelligence. Goal scores for each statistic have also been established. For pavement temperature and wind speed, the forecast values 3 and 9 hours after forecast issuance times were compared to the actual values and error statistics were computed. In addition, the timing error for the start and stop of precipitation and the lead time provided by the winter storm alert service were also examined.

Results of this and previous studies are made available to Iteris or whoever the current forecast provider is. It is expected that Iteris will use the results of these studies to continue to improve upon their weather support to WisDOT and the county highway departments.

This page intentionally left blank

Verification Results

• **Precipitation forecasts.** Accuracy in the short term forecasts remained relatively steady and rose somewhat in the longer term forecasts.

• **Timing error.** On the other hand, timing errors for both the start and end times of snow continue to be superb. For the second consecutive year, the short term timing errors for the start time were the best we've recorded.

• **Pavement temperature.** Performance continued to be excellent. However, forecasts were slightly worse than the previous winter.

• Winds. Wind forecast accuracy remained relatively constant at an excellent level.

• Winter storm warnings. Performance was slightly worse than the previous winter, and again failed to meet expectations. For the winter, 53 percent of events were preceded by a warning issued more than two hours in advance, as required by WisDOT's contract with Iteris. About 30 percent of events were preceded by no warning at all, though many of these were likely inconsequential.

Survey Results

WisDOT BHM distributed a comprehensive survey to the county highway departments in May 2012 to determine their opinions of various services such as MDSS and AVL-GPS. Users were asked numerous questions about the quality of forecast services.

Some key findings from the survey are summarized below:

- More than half of the responding county patrol superintendents used MDSS on a daily basis. If those who only used it during storms are included, the usage rate jumps to about 65 percent.
- Users rated the accuracy of air temperature and wind forecasts the highest, and rated treatment recommendations the lowest.
- Training on both MDSS and AVL-GPS remains an issue, with approximately 40 percent of users stating they need more training on the PreCise web site and a slightly lower number asking for more training on MDSS, specifically, storm examples.

__ _

Table A-2. Weather Forecasting Service	vice Usage	
-2. Weather	g Ser	
-2. Weather	Forecastin	
	Weather	
Table		. (
	Table	

က
ò
N
C N
2012-201
20,
(N
rts
<u> </u>
Q
Reports
Φ
С
_
∟
orn
5
ā
5
Ψ
Ċ
/ji
\leq
_
З
ō
2
Ш

Region	Region County	Good	Fair	Poor	Times Used	Times Not Used	% of Events Used	Salt Used (tons)	Snow Amount (inches)	Severity Index	Salt per LM per Severity Index	No. of Storms Events	No. of Incidents Reported	No.of Freezing Rains	No. of Anti-Ice Appl.
SW	JEFFERSON	-	14	12	27	0	100%	12,133	75.7	25.7	0.86	27	18	-	0
<u>]</u>	VERNON	34	З	0	37	10	79%	5,311	89.6	37.2	0.31	36	24	9	11
	CRAWFORD	4	22	6	35	9	85%	4,349	67.0	39.2	0.28	33	23	13	ω
	DANE	5	16	10	31	~	97%	50,488	63.8	31.7	1.04	31	14	9	-
	DODGE	0	~	~	2	32	6%	19,932	84.1	32.5	0.97	32	19	~	2
	GRANT	19	11	~	31	2	94%	8,434	70.3	32.9	0.41	31	28	4	2
	IOWA	2	14	17	33	10	77%	6,183	68.8	31.0	0.44	33	21	5	10
	COLUMBIA	15	7	0	17	38	31%	23,101	97.8	41.7	0.70	35	20	4	20
	JUNEAU	4	23	œ	35	11	76%	8,425	85.7	37.1	0.46	35	41	9	11
	LA CROSSE	9	6	7	17	28	38%	6,534	89.1	36.7	0.36	33	22	9	12
	LAFAYETTE	19	10	0	29	11	73%	2,491	69.1	32.9	0.26	30	13	9	10
	MONROE	10	23	19	52	0	100%	10,196	88.5	41.3	0.38	42	13	0	10
	RICHLAND	0	0	0	0	36	%0	2,965	62.5	29.1	0.31	30	19	7	9
	ROCK	0	10	18	28	7	93%	12,176	44.1	27.7	0.67	27	25	9	ę
<u></u>	SAUK	4	22	e	29	35	45%	13,612	73.1	32.5	0.72	32	28	ω	32
	GREEN	20	2	-	23	-	96%	2,852	65.3	27.8	0.33	22	39	2	2
Region	Region Average	8.9	11.4	6.3	26.6	13.9	68%	11,824	75	33.6	0.53	31.8	21.3	5.6	8.8

ce Usage	
Table A-2. Weather Forecasting Service Usage	013
Weather Fore	From Winter Storm Reports, 2012-2013
Table A-2.	From Winter Stol

4

Regio	Region County	Good Fair Poor	Fair	Poor	Times Used	Times Not Used	% of Events Used	Salt Used (tons)	Snow Amount (inches)	Severity Index	Salt per LM per Severity Index	No. of Storms Events	No. of Incidents Reported	No.of Freezing Rains	No. of Anti-Ice Appl.
SE	OZAUKEE	0	14	16	30	4	88%	8,432	57.6	28.3	0.97	27	29	ę	7
	KENOSHA	0	0	0	0	42	%0	9,440	48.3	25.8	0.57	29	11	4	13
	MILWAUKEE	~	0	0	~	35	3%	39,318	42.7	31.0	0.68	26	12	9	10
	RACINE	0	28	~	29	4	88%	10,303	54.7	30.2	0.50	29	19	5	4
	WALWORTH	9	11	12	29	9	83%	16,336	55.0	22.5	1.04	24	12	Э	11
	WAUKESHA	4	15	2	21	15	58%	15,919	68.1	25.6	0.56	29	с	5	7
	WASHINGTON	5	23	0	28	9	82%	14,474	82.1	30.1	0.80	27	12	4	7
Regio	Region Average	2.3	2.3 13.0 4.4	4.4	19.7	16.0	57%	16,317	58	27.6	0.73	27.3	14.0	4.3	8.4

Page 2 of 6

Usage
Sa
Ŝ
i
Z
S
r Forecasting Service
.
st
Ca
Foreca
0
Weather
atl
Ve
Š
-2.
Table /
ab
Ľ

WW ENUCLARE 0 10 <	Region	County	Good	Fair	Poor	Times Used	Times Not Used	% of Events Used	Salt Used (tons)	Snow Amount (inches)	Severity Index	Salt per LM per Severity Index	No. of Storms Events	No. of Incidents Reported	No.of Freezing Rains	No. of Anti-Ice Appl.
28 13 10 51 2 96% 3.836 212.0 58.2 0.27 49 12 10 10 7 7 1 15 46 25% 5.649 187.0 58.4 0.31 53 25 0 6 7 1 1 25 16 61% 3.180 105.0 31.1 0.31 53 25 0 6 7 1 2 4 40 9% 3.189 105.0 31.1 0.31 44 19 10 <t< td=""><td>MN</td><td>EAU CLAIRE</td><td>6</td><td>24</td><td>16</td><td>49</td><td>16</td><td>75%</td><td>11,552</td><td>107.3</td><td>37.5</td><td>0.57</td><td>44</td><td>22</td><td>7</td><td>21</td></t<>	MN	EAU CLAIRE	6	24	16	49	16	75%	11,552	107.3	37.5	0.57	44	22	7	21
2 40 0 42 9 82% 4,217 14,4 65 44 40 66 6 17 7 1 25 16 61% 3,126 91.0 31.1 0.32 25 0 6 17 7 1 25 16 61% 3,126 91.0 31.1 0.32 35 34 25 0 0 17 1 2 4 10 15 3,189 105.9 43.6 0.31 44 19 10 10 10 12 44 10 10 11 44 19 10 <td><u> </u></td> <td>ASHLAND</td> <td>28</td> <td>13</td> <td>10</td> <td>51</td> <td>7</td> <td>%96</td> <td>3,836</td> <td>212.0</td> <td>58.2</td> <td>0.27</td> <td>49</td> <td>12</td> <td>10</td> <td>4</td>	<u> </u>	ASHLAND	28	13	10	51	7	%96	3,836	212.0	58.2	0.27	49	12	10	4
2 3 10 15 46 25% 5,649 187.0 58.4 0.31 53 25 0 0 1 1 2 1 25 16 61% 3,156 91.0 31.1 0.32 32 34 25 1 1 2 4 0 9% 3,189 105.9 346 0.31 44 19 10 2 10 0 1 1 5 6,622 102.3 40.1 041 42 21 4 2 7 4 10]	BARRON	0	40	0	42	6	82%	4,217	114.2	45.4	0.22	44	40	9	7
17 7 1 25 16 61% 3,126 91.0 31.1 0.32 32 34 2 2 1 1 1 2 4 40 9% 3,189 105.9 43.6 0.31 44 19 10 1 1 2 4 10 51 2% 6,622 102.3 40.1 0.41 44 19 10	J	BAYFIELD	0	e	10	15	46	25%	5,649	187.0	58.4	0.31	53	25	0	8
1 1 2 4 40 9% 3,189 105.9 43.6 0.31 44 19 10 10 1 0 0 1 1 51 2% 6,622 102.3 401 0.41 42 21 44 20 0 46 13 78% 8,500 103.83 46.4 0.42 48 25 7 4 10 0 0 0 46 13 78% 8,500 103.83 46.4 0.42 48 25 7 4 11 34 12 47 23 67% 10,504 137.0 394 395 22 7 7 3 1 4]	BUFFALO	17	2	~	25	16	61%	3,126	91.0	31.1	0.32	32	34	7	6
0 0 1 1 51 2% 6,622 102.3 40.1 42 21 4 20 26 0 46 13 78% 8,500 108.8 46.4 0.42 48 25 7 4 1 20 26 0 46 13 78% 10,608 112.1 35.0 0.60 38 15 3 3 1 34 12 47 10,808 112.1 35.0 0.60 38 15 3 4 4 3 3 1 4 4 3 3 1 3 3 <td>J</td> <td>BURNETT</td> <td>-</td> <td>~</td> <td>2</td> <td>4</td> <td>40</td> <td>%6</td> <td>3,189</td> <td>105.9</td> <td>43.6</td> <td>0.31</td> <td>44</td> <td>19</td> <td>10</td> <td>0</td>	J	BURNETT	-	~	2	4	40	%6	3,189	105.9	43.6	0.31	44	19	10	0
20 26 0 46 13 78% 8.500 108.8 46.4 0.42 48 25 7 1 3 22 6 31 9 78% 10,808 112.1 35.0 0.60 38 15 3 3 1 1 34 12 47 23 67% 10,560 103.6 36.3 0.34 39 22 7 1 34 12 47 23 67% 10,563 36.3 0.34 39 22 7 1 34 12 47 23 67% 10,563 36.3 0.34 39 17 33 1 1 34 13 64% 5,902 87.8 46.2 0.35 41 33 1 33 1 33 1 33 1 33 1 1 33 1 33 1 33 1 33 1]	CLARK	0	0	~	-	51	2%	6,622	102.3	40.1	0.41	42	21	4	10
3 22 6 31 9 78% 10,808 112.1 35.0 0.60 38 15 3 1 0 0 0 0 39 0% 4,560 103.6 36.3 0.34 39 22 7 7 1 34 12 47 23 67% 10,544 137.0 39.4 0.52 47 23 0 7 7 7 1 34 12 64% 5,599 112.5 33.8 0.45 31 33 1 7 7 7 1 45 6 1 52 7 88% 3,902 87.8 46.2 0.36 41 33 1 7 </td <td>]</td> <td>DOUGLAS</td> <td>20</td> <td>26</td> <td>0</td> <td>46</td> <td>13</td> <td>78%</td> <td>8,500</td> <td>80</td> <td>46.4</td> <td>0.42</td> <td>48</td> <td>25</td> <td>7</td> <td>11</td>]	DOUGLAS	20	26	0	46	13	78%	8,500	80	46.4	0.42	48	25	7	11
0 0 0 0 39 0% 4,560 103.6 36.3 0.34 39 22 7 1 34 12 47 23 67% 10,544 137.0 39.4 0.52 47 23 0 N 0 15 8 23 13 64% 5,599 112.5 33.8 0.45 31 33 1 A 45 6 1 52 7 88% 3,902 87.8 46.2 0.36 41 33 1 1 A 25 4 42 0 10,44 97.8 41.2 0.36 41 33 1 1 A 25 4 37 97.8 41.2 0.53 44 13 3 1 1 3 3 1 1 3 3 1 1 3 1 1 1 1 1 1 1]	DUNN	ო	22	9	31	6	78%	10,808	112.1	35.0	0.60	38	15	ю	2
1 34 12 47 23 67% 10.544 137.0 39.4 0.52 47 23 0 10 15 8 23 13 64% 5,599 112.5 33.8 0.45 31 23 1 11 25 7 88% 3,902 87.8 46.2 0.36 41 33 1 33 1 11 52 7 88% 3,902 87.8 46.2 0.36 41 33 1 33 1 11 25 4 42 0 10,64 13,43 97.8 46.2 0.36 41 33 1 33 1 11 25 8 44 13,33 0.32 36.1 0.53 44 13 3 3 1 3 11 24 23 10.0 33.3 0.32 36.9 44 13 3 3 3 <th< td=""><td>]</td><td>SAWYER</td><td>0</td><td>0</td><td>0</td><td>0</td><td>39</td><td>%0</td><td>4,560</td><td>03.</td><td>36.3</td><td>0.34</td><td>39</td><td>22</td><td>2</td><td>0</td></th<>]	SAWYER	0	0	0	0	39	%0	4,560	03.	36.3	0.34	39	22	2	0
IN 0 15 8 23 13 64% 5,599 112.5 33.8 0.45 31 33 1 45 6 1 52 7 88% 3,902 87.8 46.2 0.36 41 32 10 1 A 25 4 42 0 100% 13,434 97.8 41.2 0.53 42 28 5 10 1 A 25 8 4 37 7 84% 12,561 99.5 36.1 0.53 42 13 3	<u>]</u>	JACKSON	~	34	12	47	23	67%	10,544	137.0	39.4	0.52	47	23	0	23
45 6 1 52 7 88% 3,902 87.8 46.2 0.36 41 32 10 10 11 A 16 22 4 42 0 100% 13,434 97.8 41.2 0.53 42 28 5 5 A 25 8 4 37 7 84% 12,561 99.5 36.1 0.53 44 13 3<		WASHBURN	0	15	ω	23	13	64%	5,599	112.5	33.8	0.45	31	33	~	5
NIX 16 22 4 42 0 100% 13,434 97.8 41.2 0.53 42 28 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 7 84% 7,523 10.0 33.3 0.32 36 33 3]	TAYLOR	45	9	~	52	7	88%	3,902	87.8	46.2	0.36	41	32		18
A 25 8 4 37 7 84% 12,561 99.5 36.1 0.53 44 13 3]	SAINT CROIX	16	22	4	42	0	100%	13,434	97.8	41.2	0.53	42	28	5	0
0 0 0 0 36 36 2,245 110.0 33.3 0.32 36 33 0 0 34 5 0 39 8 83% 7,523 128.2 54.2 0.36 43 42 7 7 22 15 4 41 3 93% 5,916 95.2 40.6 0.40 39 21 8 7 7 8 24 8 0 32 7 82% 1,148 90.4 32.2 0.32 35 7 8 8 7 5 24 8 0 32 7 82% 1,148 90.4 32.2 0.32 7 5 7 5 5 5 5 5 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5	<u>]</u>	CHIPPEWA	25	ω	4	37	7	84%	12,561	99.5	36.1	0.53	44	13	ę	0
34 5 0 39 8 83% 7,523 128.2 54.2 0.36 43 42 7 7 22 15 4 41 3 93% 5,916 95.2 40.6 0.40 39 21 8 7 5 24 8 0 32 7 82% 1,148 90.4 322 0.32 35 7 5 LEA 25 11 1 37 9 80% 7,121 73.8 38.4 0.42 39 22 10 13.7 13.0 4.0 30.7 17.7 62% 6,603 114 41.4 0.40 41.5 24.5 5.0 6.0	<u>]</u>	RUSK	0	0	0	0	36	%0	2,245	10.	33.3	0.32	36	33	0	0
22 15 4 41 3 93% 5,916 95.2 40.6 0.40 39 21 8 8 24 8 0 32 7 82% 1,148 90.4 32.2 0.32 35 7 5 5 LEA 25 11 1 37 9 80% 7,121 73.8 38.4 0.42 39 22 10 13.7 13.0 4.0 30.7 17.7 62% 6,603 114 41.4 0.40 41.5 24.5 5.0 6.]	POLK	34	2	0	39	∞	83%	7,523	128.2	54.2	0.36	43	42	7	4
24 8 0 32 7 82% 1,148 90.4 32.2 0.32 35 7 5 LEA 25 11 1 37 9 80% 7,121 73.8 38.4 0.42 39 22 10 13.7 13.0 4.0 30.7 17.7 62% 6,603 114 41.4 0.40 41.5 24.5 5.0 6.	<u>J</u>	PIERCE	22	15	4	41	с	93%	5,916	95.2		0.40	39	21	∞	5
LEA 25 11 1 37 9 80% 7,121 73.8 38.4 0.42 39 22 10 13.7 13.0 4.0 30.7 17.7 62% 6,603 114 41.4 0.40 41.5 24.5 5.0 6.	J	PEPIN	24	ω	0	32	7	82%	1,148	90.4	32.2	0.32	35	7	5	4
13.7 13.0 4.0 30.7 17.7 62% 6,603 114 41.4 0.40 41.5 24.5 5.0 6.	<u>, </u>	TREMPEALEA	25	5	-	37	6	80%	7,121	73.8	38.4	0.42	39	22	10	7
	Region	I Average	13.7	13.0	4.0	30.7	17.7	62%	6,603	114	41.4	0.40	41.5	24.5	5.0	

Final totals as of Tuesday, January 07, 2014

ł

Usage	
Service	
Forecasting Service	
Weather	
^-2 .	
able /	

Regio	Region County	Good	Fair	Poor	Times Used	Times Not Used	% of Events Used	Salt Used (tons)	Snow Amount (inches)	Severity Index	Salt per LM per Severity Index	No. of Storms Events	No. of Incidents Reported	No.of Freezing Rains	No. of Anti-Ice Appl.
NE	DOOR	37	~	0	38	-	%26	4,471	75.4	29.5	0.56	26	20	2	13
	MANITOWOC	~	-	2	4	34	11%	7,650	84.8	30.5	0.60	27	20	0	11
	CALUMET	18	5	~	24	0	100%	2,473	98.5	31.5	0.39	23	29	~	-
	FOND DU LAC	-	24	4	29	23	56%	10,282	91.8	33.5	0.51	27	25	~	25
	KEWAUNEE	0	17	9	23	1	68%	1,511	86.5	30.4	0.45	24	21	с	10
	OCONTO	33	0	2	35	21	63%	6,446	105.6	36.4	0.38	35	17	4	21
	OUTAGAMIE	0	25	7	32	4	89%	8,366	82.3	30.0	0.52	30	13	e	9
	SHEBOYGAN	17	10	4	31	0	100%	8,331	75.3	28.0	0.57	25	23	e	9
	WINNEBAGO	12	12	7	31	7	82%	10,082	73.4	31.0	0.54	30	31	4	ω
	MARINETTE	12	15	0	27	48	36%	7,043	108.0	38.8	0.43	33	46	4	42
	BROWN	5	32	15	52	27	66%	13,727	72.0	34.8	0.54	31	19	11	48
Regio	Region Average	12.4	12.9	4.4	29.6	16.0	70%	7,307	87	32.2	0.50	28.3	24.0	3.5	17.4

Page 4 of 6

service Usage	
er Forecasting Service U	
Veathe	1
Table A-2. V	

18 37 6 61 5 92% 5.53 117.4 61.0 0.27 KE 9 39 9 57 1 98% 2.511 117.9 45.0 0.40 KE 0 12 29 41 15 7.513 125.7 52.2 0.46 KE 0 60 2 62 5 93% 4,497 24.6 62.9 0.26 KE 0 60 2 62 5 93% 4,497 24.6 62.9 0.26 M 2.0 60 2 62 3 8 41.% 11.529 97.0 43.6 0.30 M 2.0 10 1 11 11 11 13.7 0.30 0.30 M 2.0 1.326 5.597 93.8 4.306 13.76 0.30 0.30 M 2.0 1.1529 97.0 4.36 0.30	Region	n County	Good	Fair	Poor	Times Used	Times Not Used	% of Events Used	Salt Used (tons)	Snow Amount (inches)	Severity Index	Salt per LM per Severity Index	No. of Storms Events	No. of Incidents Reported	No.of Freezing Rains	No. of Anti-Ice Appl.
E 9 57 1 98% 2,511 117.9 45.0 0.40 MKE 0 12 29 41 15 73% 7,513 125.7 52.2 0.46 MKE 0 7 27 34 1 97% 1,506 81.1 37.2 0.26 MKE 0 60 2 62 5 93% 4,497 248.6 62.9 0.26 = 4 33 10 47 4 92% 4,996 104.8 42.9 0.40 = 4 33 10 47 4 92% 4,996 104.8 42.9 0.40 MN 20 6 0 26 38 41% 11,529 97.0 43.6 0.61 MN 20 6 0 26 38.4 1,326 56.5 0.26 0.30 MN 20 13 11,529 97.0	NC	PRICE	18	37	9	61	5	92%	5,253	117.4	61.0	0.27	54	15	15	12
0 12 29 41 15 73% 7,513 125.7 52.2 0.46 KE 0 7 27 34 1 97% 1,506 81.1 37.2 0.26 KE 0 7 27 34 1 97% 1,506 81.1 37.2 0.26 E 4 33 10 47 4 92% 4,996 104.8 42.9 0.40 M 20 60 2 62 38 41% 1,526 97.0 43.6 0.26 M 20 6 0 26 38 41% 1,526 97.0 43.6 0.61 M 20 6 0 26 1,326 56.55 24.6 0.61 0.55 M 20 13 1 14 31 31.3 28.4 0.61 M 21 21 23 24.6 0.55 24.6 <td></td> <td>FLORENCE</td> <td>6</td> <td>39</td> <td>ი</td> <td>57</td> <td>~</td> <td>98%</td> <td>2,511</td> <td>117.9</td> <td>45.0</td> <td>0.40</td> <td>48</td> <td>14</td> <td>14</td> <td>10</td>		FLORENCE	6	39	ი	57	~	98%	2,511	117.9	45.0	0.40	48	14	14	10
KE 0 7 27 34 1 97% 1,506 81.1 37.2 0.26 F 0 60 2 62 5 93% 4,497 248.6 62.9 0.29 F 4 7 39 50 5 93% 4,497 248.6 62.9 0.29 F 4 7 39 50 2 96% 5,597 93.8 50.5 0.26 N 20 6 0 26 38 41% 11,529 97.0 43.6 0.30 N 20 6 0 26 38 41% 11,529 97.0 43.6 0.30 N 20 18 18 40 31% 9,004 77.0 43.6 0.30 T 10 1 18 18 40 31% 99.4 35.1 0.56 T 19 14 18 13.3		FOREST	0	12	29	41	15	73%	7,513	125.7	52.2	0.46	55	17	5	~
0 60 2 62 5 93% 4,497 248.6 62.9 0.29 N = 4 33 10 47 4 92% 4,996 104.8 42.9 0.40 N M 20 6 0 26 2 96% 5,597 93.8 50.5 0.266 N M 20 6 0 26 38 41% 11,529 97.0 43.6 0.61 N M 20 6 0 26 38 41% 11,529 97.0 43.6 0.61 N M 20 6 0 26 38 41% 1,326 58.5 24.6 0.61 N		GREEN LAKE	0	7	27	34	~	97%	1,506	81.1	37.2	0.26	31	34	7	4
E 4 33 10 47 4 92% 4,996 104.8 42.9 0.40 N 20 6 0 26 38 41% 11,529 97.0 43.6 0.30 N 20 6 0 26 38 41% 11,529 97.0 43.6 0.30 TE 13 17 1 31 0 100% 4,216 74.3 28.4 0.61 TE 13 17 1 31 0 100% 4,216 74.3 28.4 0.61 TE 13 16 0 18 15 55% 1,326 58.5 24.6 0.60 37 0 0 18 40 31% 9,04 77.0 43.6 0.55 37 0 0 37 9,04 77.0 43.6 0.55 37 0 3 33% 5,962 112.2 36		IRON	0	60	7	62	5	93%	4,497	248.6	62.9	0.29	65	18	5	7
4 7 39 50 2 96% 5,597 93.8 50.5 0.26 N 20 6 0 26 38 41% 11,529 97.0 43.6 0.30 TE 13 17 1 31 0 100% 4,216 74.3 28.4 0.61 EE 7 10 1 18 15 55% 1,326 58.5 24.6 0.60 0 0 18 15 55% 1,326 58.5 24.6 0.60 10 1 18 40 31% 9,004 77.0 43.6 0.50 10 19 18 40 31% 9,013 36.7 0.50 11 5 24 44% 9,113 99.4 35.1 0.50 11 19 14 5 38 37.2 0.55 0.55 11 19 14 45 3		LANGLADE	4	33	10	47	4	92%	4,996	104.8	42.9	0.40	44	19	10	7
N 20 6 0 26 38 41% 11,529 97.0 43.6 0.30 TE 13 17 1 31 0 100% 4,216 74.3 28.4 0.61 EE 7 10 1 31 0 100% 4,216 74.3 28.4 0.61 0 0 18 15 55% 1,326 58.5 24.6 0.61 0 0 13 16 0 18 15 54.0 9,014 77.0 43.6 0.61 37 0 0 37 29.4 35.1 0.50 36.7 0.50 37 0 37 29.4 37.1 86.8 37.2 0.55 36.7 0.50 37 0 37 37.1 86.8 37.2 0.55 36.7 0.55 37 14 55 33.1 86.8 37.2 0.55 36.7		LINCOLN	4	7	39	50	2	96%	5,597	93.8	50.5	0.26	39	29	17	13
TE 13 17 1 31 0 100% 4,216 74.3 28.4 0.61 EE 7 10 1 18 15 55% 1,326 58.5 24.6 0.60 0 0 18 18 40 31% 9,004 77.0 43.6 0.60 3 16 0 19 24 44% 9,113 99.4 35.1 0.50 37 0 0 37 23 93% 5,962 112.2 36.7 0.53 19 14 5 38 3 93% 11,129 93.9 37.2 0.55 10 11 5 6 30 17% 3,311 86.8 27.0 0.55 11 5 6 30 10,122 36.7 0.55 1.55 10 11 5 6 30 11,129 93.6 0.55 0.55 11 14 45 6 30 11,129 93.9 37.2 0.55 </td <td></td> <td>MARATHON</td> <td>20</td> <td>9</td> <td>0</td> <td>26</td> <td>38</td> <td>41%</td> <td>11,529</td> <td>97.0</td> <td>43.6</td> <td>0.30</td> <td>47</td> <td>35</td> <td>7</td> <td>17</td>		MARATHON	20	9	0	26	38	41%	11,529	97.0	43.6	0.30	47	35	7	17
EE 7 10 1 18 15 55% 1,326 58.5 24.6 0.60 0 0 18 18 40 31% 9,004 77.0 43.6 0.35 1 3 16 0 19 24 44% 9,113 99.4 35.1 0.50 37 0 0 37 3 93% 5,962 112.2 36.7 0.50 19 14 5 38 3 93% 11,129 93.9 37.2 0.55 10 11 5 6 30 17% 3,311 86.8 27.0 0.55 11 14 45 0 100% 6,100 89.9 39.6 0.36 0.36 11 14 45 0 100% 6,100 89.9 39.6 0.36 0.36 10 19 11 10 70 39.1 11.1 0.50		MARQUETTE	13	17	-	31	0	100%	4,216	74.3	28.4	0.61	27	19	5	4
0 18 18 40 31% 9,004 77.0 43.6 0.35 3 3 16 0 19 24 44% 9,113 99.4 35.1 0.50 37 0 0 37 3 93% 5,962 112.2 36.7 0.53 19 14 5 38 3 93% 11,129 93.9 37.2 0.55 A 0 1 5 6 30 17% 3,311 86.8 27.0 0.55 A 0 31 14 45 0 100% 6,100 89.9 39.6 0.36 A 0 31 14 86.8 27.0 0.36 0.36 A 0 31 16.0 89.9 39.6 0.36 0.36 A 0 11 26 3 39.6 0.36 0.36 0.36 0.36 A 10 <td></td> <td>MENOMINEE</td> <td>7</td> <td>10</td> <td>~</td> <td>18</td> <td>15</td> <td>55%</td> <td>1,326</td> <td>58.5</td> <td>24.6</td> <td>0.60</td> <td>33</td> <td>20</td> <td>4</td> <td>0</td>		MENOMINEE	7	10	~	18	15	55%	1,326	58.5	24.6	0.60	33	20	4	0
0 3 16 0 19 24 44% 9,113 99.4 35.1 0.50 37 0 0 37 3 93% 5,962 112.2 36.7 0.53 19 14 5 38 3 93% 11,129 93.9 37.2 0.55 2A 0 1 5 6 30 17% 3,311 86.8 27.0 0.55 2A 0 31 14 45 0 100% 6,100 89.9 39.6 0.36 136 20 31 14 45 0 100% 6,100 89.9 39.6 0.36 136 20 39 11 70 7,792 111.4 60.4 0.37 137 20 39 11 770 5.84 1,01 0.35 0.55 136 21 0 11 7702 5.84 7,792 111.4 0.31 0.31 137		PORTAGE	0	0	18	18	40	31%	9,004	77.0	43.6	0.35	49	18	10	6
37 0 37 3 93% 5,962 112.2 36.7 0.53 19 14 5 38 3 93% 11,129 93.9 37.2 0.55 NA 0 1 5 6 30 17% 3,311 86.8 27.0 0.36 NA 0 31 14 45 0 100% 6,100 89.9 39.6 0.36 0 31 14 45 0 100% 6,100 89.9 39.6 0.36 0.36 0 19 12 31 10 76% 4,014 88.4 36.2 0.57 0.57 20 39 11 70 4,014 88.4 36.2 0.57 0.57 86 40 4,014 88.4 36.2 0.57 0.57 0.57 86 40 4,014 88.4 36.2 0.57 0.57 0.57 86 40 4,014 88.4 36.2 0.57 0.57 0.57 0.57		SHAWANO	ю	16	0	19	24	44%	9,113	99.4	35.1	0.50	33	27	4	10
(1) 14 5 38 3 93% 11,129 93.9 37.2 0.55 (A) 0 1 5 6 30 17% 3,311 86.8 27.0 0.36 (A) 0 31 14 45 0 10% 6,100 89.9 39.6 0.36 (A) 0 31 14 45 0 100% 6,100 89.9 39.6 0.36 (A) 19 12 31 10 76% 4,014 88.4 36.2 0.57 (B) 20 39 11 70 4,014 88.4 36.2 0.57 (B) 12 31 10 76% 7,792 111.4 60.4 0.33 (B) 20 39 11 770 5.84 10.4 0.33 0.41 0.41 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1		VILAS	37	0	0	37	ю	93%	5,962	112.2	36.7	0.53	37	19	7	ю
RA 0 1 5 6 30 17% 3,311 86.8 27.0 0.36 0 31 14 45 0 100% 6,100 89.9 39.6 0.36 0 19 12 31 10 76% 4,014 88.4 36.2 0.57 20 39 11 70 4 95% 7,792 111.4 60.4 0.33		WAUPACA	19	14	5	38	3	93%	11,129	93.9	37.2	0.55	36	13	9	5
0 31 14 45 0 100% 6,100 89.9 39.6 0.36 0 19 12 31 10 76% 4,014 88.4 36.2 0.57 20 39 11 70 4 95% 7,792 111.4 60.4 0.33		WAUSHARA	0	~	5	9	30	17%	3,311	86.8	27.0	0.36	29	4	e	7
0 19 12 31 10 76% 4,014 88.4 36.2 0.57 20 39 11 70 4 95% 7,792 111.4 60.4 0.33 86 40.3 10.5 38.4 36.2 0.33 0.41		WOOD	0	31	14	45	0	100%	6,100	89.9	39.6	0.36	37	24	5	ω
20 39 11 70 4 95% 7,792 111.4 60.4 0.33 R 103 105 38.4 11.1 77% 586.4 10.4 0.41		ADAMS	0	19	12	31	10	76%	4,014	88.4	36.2	0.57	32	16	ω	6
8 10 10 28 11 7700 E8E1 101 721 011		ONEIDA	20	39	11	70	4	95%	7,792	111.4	60.4	0.33	50	14	21	24
18.3 10.3 30.4 11.1 7/ 0.004 104 42.4 0.41	Regic	n Average	8.6	19.3	10.5	38.4	11.1	77%	5,854	104	42.4	0.41	41.4	19.7	7.9	8.1

Page 5 of 6

er Storm Reports, 2012-2013
s, 2012-2013
From Winter Storm Reports,

Region	County	Good	Fair	Good Fair Poor	Times Used	Times Not Used	% of Events Used	Salt Used (tons)	Snow Amount (inches)	Severity Index	Salt per LM per Severity Index	No. of Storms Events	Times Times % of Salt Snow Severity LM per No. of No. of No. of No. of Anount Index Severity Events Reported Rains //	No.of Freezing Rains	No. of Anti-Ice Appl.
Statewide Average	Average	10.0	10.0 14.2 6.2	6.2	30.5	14.8	68%	8,628	93	37.2	0.48	35.9	21.5	5.6	9.3

Details	What weather prediction caused you to anti-ice?
2-2013	Or did you do anti-icing on a routine schedule?
-icing	Anti-
ports, 207	Icing
Table A.3. Anti-icing Details From Winter Storm Reports, 2012-2013	Region County

Region	County	Anti- Icing	What Or di	What weather prediction caused you to anti-ice? Or did you do anti-icing on a routine schedule?	ction caused) icing on a rout	you to anti-ic tine schedul	ce? e?		3	Estimated Costs	osts	
		applic.	Wet Snow	Dry Snow	Frz Rain	Sleet	Frost	Routine	\$ Mat'l	\$ Equip	\$ Labor	\$ Total
NC	ADAMS	6	4	0	5	7	0	0	0	2,160	1,858	4,018
	FLORENCE	10	2	~	7	3	~	0	6,075	3,420	2,453	11,948
	FOREST	1	0	0	0	0	0	1	43	180	104	327
	GREEN LAKE	4	2	-	0	0	1	0	675	1,260	943	2,878
	IRON	2	0	0	0	0	0	2	50	540	512	1,102
	LANGLADE	7	2	3	4	0	0	0	760	2,880	2,213	5,853
	LINCOLN	13	۷	0	10	8	4	0	8,000	3,840	3,257	15,097
	MARATHON	17	0	0	0	0	0	17	6,443	10,440	8,517	25,399
	MARQUETTE	4	7	0	0	0	0	0	0	3,840	2,548	6,388
	ONEIDA	24	4	7	11	9	5	4	2,588	11,580	8,101	22,268
	PORTAGE	6	0	0	1	0	3	9	765	4,980	3,353	9,098
	PRICE	12	5	0	9	7	0	5	1,300	5,520	4,035	10,855
	SHAWANO	10	0	0	0	0	2	8	3,371	3,120	2,610	9,101
	VILAS	3	0	0	0	0	0	3	50	360	266	676
	WAUPACA	5	~	0	ю	~	0	0	424	2,220	1,562	4,206
	WAUSHARA	7	0	0	0	0	0	7	0	2,520	2,394	4,914
	WOOD	8	~	4	-	0	7	0	3,180	2,460	1,854	7,494

Final totals as of Tuesday, July 23, 2013

Table A.3. Anti-icing Details From Winter Storm Reports, 2012-2013

Region County	Anti- Icing	What Or d	What weather prediction caused you to anti-ice? Or did you do anti-icing on a routine schedule?	ction caused y icing on a routi	ou to anti-ic ne schedule	е? в?		ш П	Estimated Costs	costs	
	applic.	Wet Snow	Dry Snow Frz Rain	Frz Rain	Sleet	ost	Routine	\$ Mat'l	\$ Equip	\$ Equip \$ Labor	\$ Total
Region Total	145	30	16	50	22	23	53	33,723	61,320	46,579	46,579 141,623
Region Average	6	ł	ł	ł	1	ł	1	1,984	3,607	2,740	8,331

Page 2 of 8

Final totals as of Tuesday, July 23, 2013

From	From Winter Storm Reports, 2012-2013	ports, 20	12-2013	0								
Region	Region County	Anti- Icina	What w Or did	What weather prediction caused you to anti-ice? Or did you do anti-icing on a routine schedule?	eather prediction caused you to anti-ice? you do anti-icing on a routine schedule?	/ou to anti-ic tine schedul	se? le?		ш	Estimated Costs	osts	
		applic.	Wet Snow	Dry Snow	Frz Rain	Sleet	Frost	Routine	\$ Mat'l	\$ Equip	\$ Labor	\$ Total
NE	BROWN	48	ω	ø	7	0	4	21	1,322	23,580	19,157	44,059
	CALUMET	~		0	0	0	0	0	14	240	148	402
	DOOR	13	0	Ð	0	0	13	0	5,814	5,640	4,144	15,598
	FOND DU LAC	25	0	~	0	0	~	23	3,453	18,480	13,807	35,740
	KEWAUNEE	10	0	0	0	0	0	10	142	2,520	1,922	4,584
	MANITOWOC	11	0	0	0	0	0		2,290	4,920	4,123	11,333
	MARINETTE	42	0	0	0	0	2	40	11,870	10,560	9,273	31,703
	OCONTO	21	0	0	0	0	0	21	186	15,120	11,370	26,676
	OUTAGAMIE	9	4	0	-	0	0	2	2,286	3,300	2,499	8,085
	SHEBOYGAN	9	2	~	2	0	2	0	994	2,820	2,155	5,969

WisDOT Annual Winter Maintenance Report 5,969 2,155 2,820 994 0 2 0 2 Table A.3. Anti-icing Details 2

Final totals as of Tuesday, July 23, 2013

Page 3 of 8

19,160 210,759

26,610

7,340 75,939 6,904

5,640 92,820 8,438

13,630 42,000 3,818

 \sim

0

0 0 ł

、 7

0

0 15 ł.

ω

SHEBOYGAN WINNEBAGO 135

22 ł

ł.

ł

ł. 5

17

Region Average Region Total

191
Details	12-2013
. Anti-icing	Storm Reports, 2012
Table A.3.	From Winter S

Region	Region County	Anti- Icing	What Or di	What weather prediction caused you to anti-ice? Or did you do anti-icing on a routine schedule?	weather prediction caused you to anti-ice? id you do anti-icing on a routine schedule?	ou to anti-ic ine schedul	e? e?			Estimated Costs	costs	
		applic.	Wet Snow	Dry Snow	Frz Rain	Sleet	Frost	Routine	\$ Mat'l	\$ Equip	\$ Labor	\$ Total
NM	ASHLAND	4	-	2	0	0	4	0	1,161	1,620	1,190	3,972
	BARRON	7	0	0	0	0	0	7	1,638	5,040	1,922	8,599
	BAYFIELD	8	0	0	0	0	-	7	452	3,120	1,982	5,553
	BUFFALO	6	0	0	0	0	0	0	98	3,060	2,584	5,742
	CLARK	10	0	0	1	0	0	6	760	4,680	3,208	8,648
	DOUGLAS	11	1	0	2	1	0	6	5,157	4,080	3,210	12,447
	DUNN	0	0	0	~	0	0	4	0	1,020	1,138	2,158
	EAU CLAIRE	21	-	4	0	0	0	16	4,857	18,840	50,830	74,526
	JACKSON	23	0	0	0	0	0	23	2,400	9,600	6,410	18,410
	PEPIN	4	2	0	-	2	3	0	0	2,160	1,767	3,927
	PIERCE	5	1	1	2	1	-	1	762	1,920	2,969	5,651
	POLK	4	0	0	0	0	2	2	246	780	681	1,707
	TAYLOR	18	7	-	9	~	0	7	512	5,940	3,772	10,224
	TREMPEALEAU	7	0	0	0	0	0	7	316	2,700	3,379	6,395
	WASHBURN	~	0	0	0	0	. 	0	4	180	126	310
	WASHBURN	4	0	0	0	0	2	7		1,080	652	

Page 4 of 8

Table A.3. Anti-icing Details From Winter Storm Reports, 2012-2013

Region	County	Anti- Icing	What Or di	What weather prediction caused you to anti-ice? Or did you do anti-icing on a routine schedule?	ction caused y	ou to anti-ic ine schedul	e? 6?			Estimated Costs	osts	
		applic.	Wet Snow	Dry Snow Frz Rain	Frz Rain	Sleet	Frost	Frost Routine \$ Mat'l		\$ Equip \$ Labor \$ Total	\$ Labor	\$ Total
Region Total	otal	138	13	8	13	5	14	100	18,362	65,820	85,822 168,271	168,271
Region Average	verage	6	1	:	:	1	1	:	1,224	4,114	5,364	11,218

From Winter Storm Reports, 2012-2013

Region	Region County	Anti- Icing	What v Or di	weather predic d you do anti-i	What weather prediction caused you to anti-ice? Or did you do anti-icing on a routine schedule?	ou to anti-ic ine schedul	e? e?			Estimated Costs	osts	
		applic.	Wet Snow	Dry Snow	Frz Rain	Sleet	Frost	Routine	\$ Mat'l	\$ Equip	\$ Labor	\$ Total
SE	KENOSHA	13	0	0	0	0		12	1,908	6,480	6,522	14,910
	MILWAUKEE	10	0	0	0	0	ç	7	7,033	16,020	16,692	39,744
	OZAUKEE	7	S	0	۲	0	、	3	1,339	4,740	3,643	9,722
	RACINE	4	0	0	0	0	0	4	213	2,280	1,762	4,255
	WALWORTH	11	0	0	0	0	5	9	6,901	12,360	10,134	29,395
	WASHINGTON	7	0	0	0	0	.	9	308	1,620	1,641	3,568
	WAUKESHA	7	.	0	0	0	0	9	427	2,820	2,096	5,342
Region Total	otal	59	4	0	~	0		44	18,127	46,320	42,490	106,937
Region Average	lverage	8	:	1	1	1	1	1	2,590	6,617	6,070	15,277

Page 6 of 8

Details	orts, 2012-2013
Anti-icing	I Rep
Table A.3.	From Winter Storm

, 2012-2013
Reports, 3
. Storm
Winter
E

Region	Region County	Anti- Icing	What Or di	Vhat weather prediction caused you to anti-ice? Or did you do anti-icing on a routine schedule?	weather prediction caused you to anti-ice? id you do anti-icing on a routine schedule?	ou to anti-ic ine schedule	e? 3?			Estimated Costs	osts	
		applic.	Wet Snow	Dry Snow	Frz Rain	Sleet	Frost	Routine	\$ Mat'l	\$ Equip	\$ Labor	\$ Total
SW	COLUMBIA	20	0	~	0	0	0	19	462	13,500	9,648	23,610
	CRAWFORD	8	2	0	4	0	0	3	183	2,880	2,079	5,142
	DANE	٢	0	0	0	0	-	0	8	006	1,112	2,020
	DODGE	2	0	0	0	0	0	2	0	1,200	798	1,998
	GRANT	2	0	0	0	0	0	2	0	1,440	823	2,263
	GREEN	2	0	0	0	0	1	1	2	420	206	628
	IOWA	10	0	0	0	0	0	10	0	2,340	1,629	3,969
	JUNEAU	11	0	0	0	0	0	11	1,750	4,620	4,210	10,580
	LA CROSSE	12	-	0	9	0	ω	0	9,203	5,760	4,048	19,011
	LAFAYETTE	10	0	0	0	0	0	10	0	2,160	1,529	3,689
	MONROE	10	1	0	1	0	10	0	3,027	9,600	6,901	19,527
	RICHLAND	9	0	0	0	0	0	6	34	3,960	3,476	7,470
	ROCK	З	0	0	0	0	з	0	1,425	2,520	2,381	6,326
	SAUK	32	0	0	0	0	0	32	3,255	10,800	6,372	20,427
	VERNON	11	0	0	0	0	2	6	2,690	4,260	2,971	9,921
Region Total	otal	140	4	-	11	0	25	105	22,037	66,360	48,183	136,581
Region Average	lverage	6	:	:	:	:	1	:	1,469	4,424	3,212	9,105

Table A.3. Anti-icing Details From Winter Storm Reports, 2012-2013

Region	County	Anti- Icing	What Or di	What weather prediction caused you to anti-ice? Or did you do anti-icing on a routine schedule?	weather prediction caused you to anti-ice? id you do anti-icing on a routine schedule?	ou to anti-ic ine schedul	se? e?		Ш	Estimated Costs	osts	
		applic.	Wet Snow	Dry Snow Frz Rain	Frz Rain	Sleet	Frost	Frost Routine	\$ Mat'l	\$ Equip \$ Labor	\$ Labor	\$ Total
Statewide Total	te Total	673	66	40	86	27	<u> </u>	437	134,249	332,640	299,013 764,170	764,170

Page 8 of 8

		1	
		I	"

Table A.4. Annual Anti-icing Agent Usage From Winter Storm Reports, 2012-2013

Region	County	CaCl2 (gal)	NaCI Brine (gal)	MgCl2 (gal)	IB_M80 (gal)	Freeze Guard (gal)	CaCl2 DOW (gal)	Arctic Clear Gold	MC95 (gal)	Caliber M1000 (gal)	Caliber M2000 (gal)	BioMelt 64 (gal)	Geo- Melt (gal)	lce Bite 55 (gal)
NC	ADAMS	0	19,600	0	0	0	0	0	0	0	0	0	0	0
	FLORENCE	0	40,500	0	0	0	0	0	0	0	0	0	0	0
	FOREST	50	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN LAKE	0	6,750	0	0	0	0	0	0	0	0	0	0	0
	IRON	0	500	0	0	0	0	0	0	0	0	0	0	0
	LANGLADE	0	7,600	0	0	0	0	0	0	0	0	0	0	0
	LINCOLN	0	40,000	0	0	0	0	0	0	0	0	0	0	0
	MARATHON	0	21,475	0	0	0	0	0	0	0	0	0	0	0
	MARQUETTE	0	19,550	0	0	0	0	0	0	0	0	0	0	0
	MENOMINEE	0	0	0	0	0	0	0	0	0	0	0	0	0
	ONEIDA	0	25,875	0	0	0	0	0	0	0	0	0	0	0
	PORTAGE	0	3,825	0	0	0	0	0	0	0	0	0	0	0
	PRICE	0	6,500	0	0	0	0	0	0	0	0	0	0	0
	SHAWANO	0	16,856	0	0	0	0	0	0	0	0	0	0	0
	VILAS	0	360	0	0	0	0	0	0	0	0	0	40	0
	WAUPACA	0	4,238	0	0	0	0	0	0	0	0	0	0	0
	WAUSHARA	0	6,350	0	0	0	0	0	0	0	0	0	0	0
	WOOD	0	15,900	0	0	0	0	0	0	0	0	0	0	0
Region Total	tal	50	235,879	0	0	0	0	0	0	0	0	0	40	0

Region	County	CaCl2 (gal)	NaCI Brine (gal)	MgCl2 (gal)	IB_M80 (gal)	Freeze Guard (gal)	CaCl2 DOW (gal)	Arctic Clear Gold	MC95 (gal)	Caliber M1000 (gal)	Caliber BioMelt M2000 64 (gal) (gal)	BioMelt 64 (gal)	Geo- Melt (gal)	lce Bite 55 (gal)
NE	BROWN	0	132,185	0	0	0	0	0	0	0	0	0	0	0
	CALUMET	0	50	0	0	0	0	0	0	0	0	0	0	0
	DOOR	0	34,200	0	0	0	0	0	0	0	0	0	0	0
	FOND DU LAC	0	17,265	0	0	0	0	0	0	0	0	0	0	0
	KEWAUNEE	0	14,200	0	0	0	0	0	0	0	0	0	0	0
	MANITOWOC	0	11,450	0	0	0	0	0	0	0	0	0	0	0
	MARINETTE	0	118,700	0	0	0	0	0	0	0	0	0	0	0
	OCONTO	0	18,550	0	0	0	0	0	0	0	0	0	0	0
	OUTAGAMIE	0	12,700	0	0	0	0	0	0	0	0	0	0	0
	SHEBOYGAN	0	3,975	0	0	0	0	0	0	0	0	0	0	0
	WINNEBAGO	0	68,150	0	0	0	0	0	0	0	0	0	0	0
Region Total	tal	0	431,425	0	0	0	0	0	0	0	0	0	0	0

Table A.4. Annual Anti-icing Agent Usage From Winter Storm Reports, 2012-2013

Page 2 of 6

Region	County	CaCl2 (gal)	NaCI Brine (gal)	MgCl2 (gal)	IB_M80 (gal)	Freeze Guard (gal)	CaCl2 DOW (gal)	Arctic Clear Gold	MC95 (gal)	Caliber M1000 (gal)	Caliber M2000 (gal)	BioMelt 64 (gal)	Geo- Melt (gal)	lce Bite 55 (cal)
MN	ASHLAND	0	5,167	0	0	0	0	0	509	0	0	0	253	0
	BARRON	0	3,275	0	0	0	0	0	0	0	0	0	0	0
	BAYFIELD	0	3,475	0	0	0	0	0	0	0	0	0	0	0
	BUFFALO	0	9,800	0	0	0	0	0	0	0	0	0	0	0
	BURNETT	0	0	0	0	0	0	0	0	0	0	0	0	0
	CHIPPEWA	0	0	0	0	0	0	0	0	0	0	0	0	0
	CLARK	0	3,040	0	0	0	0	0	0	0	0	0	0	0
	DOUGLAS	0	0	0	0	1,650	0	0	2,850	0	0	0	0	0
	DUNN	0	600	0	0	0	0	0	0	0	0	0	0	0
	EAU CLAIRE	0	12,160	0	0	0	711	0	0	0	0	0	711	0
	JACKSON	0	29,100	0	006	0	0	0	0	0	0	0	0	0
	PEPIN	0	2,960	0	0	0	0	0	0	0	0	0	0	0
	PIERCE	0	3,810	0	0	0	0	0	0	0	0	0	0	0
	POLK	0	1,228	0	0	0	0	0	0	0	0	0	0	0
	RUSK	0	0	0	0	0	0	0	0	0	0	0	0	0
	SAINT CROIX	0	0	0	0	0	0	0	0	0	0	0	0	0
	SAWYER	0	0	0	0	0	0	0	0	0	0	0	0	0
	TAYLOR	0	5,685	0	0	0	0	0	0	0	0	0	0	0
	TREMPEALEAU	0	10,200	200	0	0	0	0	0	0	0	0	0	0
	WASHBURN	0	6,480	0	0	0	0	0	0	0	0	0	0	0
Region Total	otal	0	96,980	200	906	1,650	711	0	3,359	0	0	0	964	0

Final totals as of Tuesday, July 23, 2013

Page 3 of 6

150

Usage
Agent
Anti-icing
Annual
A.4.
able.

From Winter Storm Reports, 2012-2013

Region	County	CaCl2 (gal)	NaCI Brine (gal)	MgCl2 (gal)	IB_M80 (gal)	IB_M80 Freeze (gal) Guard (gal)	CaCl2 Arctic DOW Clear (gal) Gold	Arctic Clear Gold	MC95 (gal)	Caliber M1000 (gal)	Caliber Caliber M1000 M2000 (gal) (gal)	Caliber Caliber BioMelt M1000 M2000 64 (gal) (gal) (gal)	Geo- Melt (gal)	lce Bite 55 (gal)
SE	KENOSHA	0	0	0	0	0	0	0	1,674	0	0	0	0	0
	MILWAUKEE	50	35,020	0	0	0	0	0	0	0	0	0	0	0
	OZAUKEE	1,565	3,500	0	0	0	0	0	0	0	0	0	0	0
	RACINE	0	2,125	0	0	0	0	0	0	0	0	0	0	0
	WALWORTH	0	32,860	0	0	0	0	0	0	0	0	0	0	0
	WASHINGTON	0	2,050	0	0	0	0	0	0	0	0	0	0	0
	WAUKESHA	0	8,534	0	0	0	0	0	0	0	0	0	0	0
Region Total	tal	1,615	84,089	0	0	0	0	0	1,674	0	0	0	0	0

Page 4 of 6

Region	County	CaCl2 (gal)	NaCI Brine (gal)	MgCl2 (gal)	IB_M80 (gal)	Freeze Guard (gal)	CaCl2 DOW (gal)	Arctic Clear Gold	MC95 (gal)	Caliber M1000 (gal)	Caliber M2000 (gal)	BioMelt 64 (gal)	Geo- Melt (gal)	lce Bite 55 (gal)
SW	COLUMBIA	0	46,150	0	0	0	0	0	0	0	0	0	0	0
	CRAWFORD	0	18,300	0	0	0	0	0	0	0	0	0	0	0
	DANE	0	30	0	0	0	0	0	0	0	0	0	0	0
	DODGE	0	0	375	0	0	0	0	250	0	0	0	0	0
	GRANT	0	1,200	0	0	0	0	0	0	0	0	0	0	0
	GREEN	0	200	0	0	0	0	0	0	0	0	0	0	0
	IOWA	0	750	0	0	0	0	0	0	0	0	0	0	0
	JEFFERSON	0	0	0	0	0	0	0	0	0	0	0	0	0
	JUNEAU	0	17,500	0	0	0	0	0	0	0	0	0	0	0
	LA CROSSE	0	46,015	0	0	0	0	0	0	0	0	0	0	0
	LAFAYETTE	0	680	0	0	0	0	0	0	0	0	0	0	0
	MONROE	0	60,530	0	0	0	0	0	0	0	0	0	7,130	0
	RICHLAND	0	3,365	0	0	0	0	0	0	0	0	0	0	0
	ROCK	0	5,700	0	0	0	0	0	0	0	0	0	0	0
	SAUK	0	16,275	0	0	0	0	0	0	0	0	0	0	0
	VERNON	0	26,900	0	0	0	0	0	0	0	0	0	0	0
Region Total	tal	0	243,595	375	0	0	0	0	250	0	0	0	7,130	0

Table A.4. Annual Anti-icing Agent Usage From Winter Storm Reports, 2012-2013

152

Final totals as of Tuesday, July 23, 2013

Page 5 of 6

Usage
Agent
Anti-icing
Annual /
A.4.
able

From Winter Storm Reports, 2012-2013

Region	County	CaCl2	NaCI	MgCI2	IB_M80	M80 Freeze (CaCl2	Arctic	MC95	Caliber	Caliber	MC95 Caliber Caliber BioMelt	Geo-	Ice
		(gal)	Brine	(gal)	(gal)	Guard	DOW	Clear	(gal)	M1000 M2000	M2000	64	Melt	Bite 55
			(gal)			(gal)	(gal)	Gold		(gal)	(gal)	(gal)	(gal)	(gal)
Grand Total	tal	1,665	,665 1,091,968	575	006	1,650	711	0	5,283	0	0	0	8,134	0

Table A-5. Actual Anti-icing Costs

Final billed costs from the WisDOT accounting system, October 2012 - April 2013 County charges to Activity Code #73 (Applying Liquid Anti-icing Agents)

REGION	GROUP	COUNTY	TOTAL
SOUTHWEST	B C A C C C C C D B C C	COLUMBIA CRAWFORD DANE DODGE GRANT GREEN IOWA JEFFERSON JUNEAU LACROSSE LAFAYETTE MONROE RICHLAND ROCK SAUK VERNON	\$19,026 \$8,230 \$30,431 \$6,864 \$4,449 \$3,248 \$3,105 \$6,155 \$4,091 \$14,093 \$1,521 \$23,006 \$7,977 \$5,469 \$18,485 \$14,290
SOUTHEAST	A A A B A	TOTAL KENOSHA MILWAUKEE OZAUKEE RACINE WALWORTH WASHINGTON WAUKESHA TOTAL	\$170,440 \$12,946 \$48,434 \$9,432 \$3,126 \$14,137 \$4,874 \$8,033 \$100,982
NORTHEAST	A C C C B D C B A	BROWN CALUMET DOOR FOND DU LAC KEWAUNEE MANITOWOC MARINETTE OCONTO OUTAGAMIE SHEBOYGAN WINNEBAGO TOTAL	\$53,524 \$1,490 \$9,313 \$27,335 \$4,199 \$10,492 \$21,248 \$23,646 \$3,141 \$16,723 \$171,111

Table A-5. Actual Anti-icing Costs

Final billed costs from the WisDOT accounting system, October 2010 - April 2011 County charges to Activity Code #73 (Applying Liquid Anti-icing Agents)

REGION	GROUP	COUNTY	TOTAL
NORTH CENT	FD	ADAMS	\$3,030
	D	FLORENCE	\$8,544
	D	FOREST	\$145
	D	GREEN LAKE	\$1,751
	D	IRON	\$536
	D	LANGLADE	\$2,678
	С	LINCOLN	\$6,697
	А	MARATHON	\$18,185
	В	MARQUETTE	\$4,692
	D	MENOMINEE	
	В	ONEIDA	\$24,431
	А	PORTAGE	\$5,578
	D	PRICE	\$11,978
	В	SHAWANO	\$6,180
	С	VILAS	\$3,671
	С	WAUPACA	\$16,037
	В	WAUSHARA	\$6,762
	С	WOOD	
		TOTAL	\$120,895
NORTHWEST	D	ASHLAND	\$4,928
	D	BARRON	\$638
	D	BAYFIELD	\$3,855
	D	BUFFALO	\$5,960
	D	BURNETT	
	В	CHIPPEWA	
	С	CLARK	\$5,213
	С	DOUGLAS	\$26,887
	В	DUNN	\$3,193
	А	EAU CLAIRE	\$38,349
	С	JACKSON	\$23,295
	D	PEPIN	\$3,444
	D	PIERCE	\$8,256
	D	POLK	\$5,689
	D	RUSK	
	D	SAWYER	\$5,685
	В	ST. CROIX	\$3,781
	D	TAYLOR	
	С	TREMPEALEAU	\$12,677
	С	WASHBURN	\$12,109
		TOTAL	\$163,959
		STATE TOTAL	\$727,387

66/72 COUNTIES (92%)

Table A-6. Salt Brine UseFrom Winter Storm Reports, 2012-2013

REGION	<u>GROUP</u>	COUNTY	<u>PREWETTING</u> (GALLONS)	<u>ANTI-ICING</u> (GALLONS)	<u>TOTAL</u> (GALLONS)
SOUTHWEST	ВСАВСDСВСАССDВВС	COLUMBIA CRAWFORD DANE DODGE GRANT GREEN IOWA JEFFERSON JUNEAU LA CROSSE LAFAYETTE MONROE RICHLAND ROCK SAUK VERNON	5,200 23,580 107,026 2,170 29,445 24,363 0 105,751 7,262 27,617 0 8,614 200 26,893 1,955 2,955	46,150 18,300 30 625 1,200 200 750 0 17,500 46,015 680 67,660 3,365 5,700 16,275 26,900	51,350 41,880 107,056 2,795 30,645 24,563 750 105,751 24,762 73,632 680 76,274 3,565 32,593 18,230 29,855
SOUTHEAST	A A A B A	TOTAL KENOSHA MILWAUKEE OZAUKEE RACINE WALWORTH WASHINGTON WAUKESHA TOTAL	373,031 3,548 44,400 38,214 44,880 26,000 95,505 271,086 523,633	251,350 1,674 35,020 3,500 2,125 32,860 2,050 8,534 85,763	624,381 5,222 79,420 41,714 47,005 58,860 97,555 279,620 609,396
NORTHEAST	A C C C C C B D C B B A	BROWN CALUMET DOOR FOND DU LAC KEWAUNEE MANITOWOC MARINETTE OCONTO OUTAGAMIE SHEBOYGAN WINNEBAGO TOTAL	57,174 7,147 15,104 35,926 8,935 47,268 26,205 26,805 82,742 74,389 164,747 546,442	132,185 50 34,200 17,265 14,200 11,450 118,700 18,550 12,700 3,975 68,150 431,425	189,359 7,197 49,304 53,191 23,135 58,718 144,905 45,355 95,442 78,364 232,897 977,867

Table A-6. Salt Brine Use

From Winter Storm Reports, 2012-2013

REGION	GROUP	COUNTY	<u>PREWETTING</u> (GALLONS)	<u>ANTI-ICING</u> (GALLONS)	<u>TOTAL</u> (GALLONS)
NORTH CENTRAL	D	ADAMS	3,880	19,600	23,480
	D	FLORENCE	2,642	40,500	43,142
	D	FOREST	14,306	0	14,306
	D	GREEN LAKE	7,905	6,750	14,655
	D	IRON	19,392	500	19,892
	D	LANGLADE	27,583	7,600	35,183
	С	LINCOLN	70,242	40,000	110,242
	A	MARATHON	25,268	21,475	46,743
	B D	MARQUETTE MENOMINEE	1,940 0	19,550 0	21,490 0
	B	ONEIDA	50,918	25,875	76,793
	Ā	PORTAGE	42,207	3,825	46,032
	D	PRICE	16,645	6,500	23,145
	В	SHAWANO	59,479	16,856	76,335
	С	VILAS	9,475	400	9,875
	С	WAUPACA	30,767	4,238	35,005
	В	WAUSHARA		6,350	6,350
	С	WOOD	14,585	15,900	30,485
		TOTAL	397,234	235,919	633,153
NORTHWEST	D	ASHLAND	16,640	5,929	22,569
	D	BARRON	23,340	3,275	26,615
	D	BAYFIELD	7,000	3,475	10,475
	D	BUFFALO	8,468	9,800	18,268
	D	BURNETT	10,115	0	10,115
	В	CHIPPEWA	0	0	0
	С	CLARK	3,105	3,040	6,145
	C B	DOUGLAS DUNN	11,487	4,500	15,987
	A	EAU CLAIRE	2,415 20,525	600 13,582	3,015 34,107
	C	JACKSON	8,650	30,000	38,650
	D	PEPIN	2,991	2,960	5,951
	D	PIERCE	10,036	3,810	13,846
	D	POLK	30,953	1,228	32,181
	D	RUSK	220	0	220
	D	SAWYER	29,633	0	29,633
	В	ST. CROIX	1,588	0	1,588
	D	TAYLOR	41,650	5,685	47,335
	С	TREMPEALEAU	2,030	10,400	12,430
	С	WASHBURN	27,645	6,480	34,125
		TOTAL	258,491	104,764	363,255
		STATE TOTAL # OF COUNTIES	2,098,831 68	1,109,221 60	3,208,052 69
PREVIOUS USE		2012-2013	1,082,163	1,164,394	2,246,557
		2010-2011	1,674,472	714,760	2,389,232
		2009-2010	933,690	649,909	1,583,599
		2008-2009	1,028,457	467,943	1,496,400
		2007-2008	965,797	305,409	1,271,206
		2006-2007	530,733	456,875	987,608
		2005-2006	570,203	394,991	965,194
		2004-2005	398,661	246,813	695,474
		2003-2004	285,710	241,780	527,490
		2002-2003	174,413	228,524	402,937
		2001-2002	144,505	194,349	338,854
		2000-2001	111,816	48,149	159,965

Agen	
Table A.7. Annual Prewetting Agen	, 2012-2013
. Annual	rom Winter Storm Reports, 2012-2013
Table A.7	From Winter S
158	

Ta	Table A.7. Annual Prewettin	Anr	nual	Prev		Ag	g Agent Usage for Salt	Jsag	le fo	r Si	alt					
Froi	From Winter Storm Reports, 2012-2013	orm R(sports	, 2012)								
Region	on County	Salt (ton)	CaCl2 (ton)	CaCl2 (gal)	CaCl2 CaCl2 NaCl Brine (ton) (gal) (gal)	MgCl2 (gal)	IB-M80 (gal)	Freeze Guard (gal)	CaCl2 DOW (gal)	Arctic Clear Gold	MC95 (gal)	Caliber M2000 (gal)	BioMe It64 (gal)	Geo Melt (gal)	lce Bite55 (gal)	
NC	ADAMS	4,014	0	3,880	0	0	0	0	0	0	0	0	0	0	0	
	FLORENCE	2,511	0	0	2,642	0	0	0	0	0	0	0	0	0	0	
	FOREST	7,513	0	14,306	0	0	0	0	0	0	0	0	0	0	0	
	GREEN LAKE	1,506	0	630	7,275	0	0	0	0	0	0	0	0	0	0	
	IRON	4,497	0	0	19,392	0	0	0	0	0	0	0	0	0	0	
	LANGLADE	4,996	0	0	27,583	0	0	0	0	0	0	0	0	0	0	
	LINCOLN	5,597	0	0	64,890	0	0	0	0	0	0	0	0	0	0	
	MARATHON	11,529	0	0	23,878	0	0	0	, O	01,370	0	20	0	0	0	
	MARQUETTE	4,216	0	0	0	0	0	0	0	0	1,940	0	0	0	0	
	MENOMINEE	1,326	0	0	0	0	0	0	0	0	0	0	0	0	0	
	ONEIDA	7,792	0	604	50,314	0	0	0	0	0	0	0	0	0	0	
	PORTAGE	9,004	0	0	39,682	0	0	0	0	0	0	0	0	0	0	
	PRICE	5,253	0	0	16,645	0	0	0	0	0	0	0	0	0	0	
	SHAWANO	9,113	0	0	59,479	0	0	0	0	0	0	0	0	0	0	

WisDOT Annual Winter Maintenance Report

9,475

5,962 11,129 3,311 6,100 105,369

VILAS

 3,030

WAUSHARA WAUPACA

MOOD

14,585

30,767

1,940

0 1,370

366,607

22,450

Region Total

MgCl2 IB-M80 Freeze (gal) Arctic (gal) MCB Freeze (gal) Arctic (gal) MCB Freeze (gal) Call beac MCB Freeze (gal) Freeze (gal) Freeze (gal) Freeze (gal) Freeze (gal) MCB Freeze (gal) Freeze (gal) Freeze (gal) Freeze (gal) MCB Freeze (gal) </th <th>, mr</th> <th></th> <th>rts 20.</th> <th>12-2013</th> <th>)</th> <th></th> <th>)</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	, mr		rts 20.	12-2013))							
(gal) </th <th>Region County Salt CaCl2 CaCl2 NaCl Brine</th> <th>CI2 CaCI2 NaCI B</th> <th>IZ NaCI B</th> <th>rine</th> <th>MgC12</th> <th></th> <th>Freeze</th> <th>CaCl2</th> <th>Arctic</th> <th>MC95</th> <th>Caliber</th> <th>BioMe</th> <th>Geo</th> <th>Ice</th>	Region County Salt CaCl2 CaCl2 NaCl Brine	CI2 CaCI2 NaCI B	IZ NaCI B	rine	MgC12		Freeze	CaCl2	Arctic	MC95	Caliber	BioMe	Geo	Ice
0 0	(ton) (ton) (gal) (gal)	(gal)			(gal)	(gal)	Guard (gal)	DOW (gal)	Clear Gold	(gal)	M2000 (gal)	lt64 (gal)	Melt (gal)	Bite55 (gal)
0 0	13,727 0 0 57,	0		17		0	0	0	0	0	0	0	0	0
0 0	2,473 0 0 7,	0		4		0	0	0	0	0	0	0	0	0
	4,471 0 0 15,	0		ģ		0	0	0	0	0	0	0	0	0
0 0	10,282 7 0 31,2			ő		0	0	0	0	4,627	0	0	0	0
0 0	1,511 0 0 8,9	0	3 8,90	m		0	0	0	0	0	0	0	0	0
0 0	7,650 0 0 47,268	0				0	0	0	0	0	0	0	0	0
0 0	7,043 0 0 26,205	0		ŏ		0	0	0	0	0	0	0	0	0
0 0	6,446 1 0 26,805					0	0	0	0	0	0	0	0	0
806 0	8,366 0 0 82,7	0		4		0	0	0	0	0	0	0	0	0
0 0	8,331 0 0 73,583	0		òó			0	0	0	0	0	0	0	0
806 0 0 0 4,627 0 0 0	10,082 0 0 164,747	0				0	0	0	0	0	0	0	0	0
	80,382 8 0 541,009	0		ő		0	0	0	0	4,627	0	0	0	0

Table A.7. Annual Prewetting Agent Usage for Salt

Final totals as of Tuesday, July 23, 2013

Page 2 of 6

		lce Bite55 (gal)	0	0	0	0	0	0	0	0
		Geo Melt (gal)	692	0	0	0	0	0	0	0
		BioMe Geo It64 Melt (gal) (gal)	0	0	0	0	0	0	0	0
		Caliber M2000 (gal)	0	0	0	0	0	0	0	0
alt		MC95 (gal)	1,376	0	0	0	9,355	0	0	1,058
Ŝ		CaCl2 Arctic DOW Clear (gal) Gold	0	0	0	0	0	0	0	0
e fo		CaCl2 DOW (gal)	0	0	0	0	0	0	0	0
Jsag		Freeze GuardCacl2 DOWArctic MC95 ClearMC95 Qal)Caliber M2000(gal)(gal)Gold(gal)	0	0	0	0	0	0	0	10,429
ent L		MgCl2 IB-M80 (gal) (gal)	0	0	0	0	0	0	0	0
g Ag		MgCl2 (gal)	0	0	0	0	0	0	0	0
ewetting Agent Usage for Salt	2-2013	NaCl Brine (gal)	13,959	20,888	7,000	8,468	760	0	3,105	0
Pre	2012	CaCl2 (gal)	0	0	0	0	0	0	122	0
nual	sports,	Salt CaCl2 CaCl2 (ton) (ton) (gal)	0	0	0	0	0	0	0	0
Anr	orm R(Salt (ton)	3,836	4,217	5,649	3,126	3,189	12,561	6,622	8,500
Table A.7. Annual Pro	From Winter Storm Reports, 2012-2013	Region County	ASHLAND	BARRON	BAYFIELD	BUFFALO	BURNETT	CHIPPEWA	CLARK	DOUGLAS
L 60	Fror	Regio	MN	.		<u></u>		<u></u>	•	nn

8,347 8,347

2,415

8,150

7,704 10,036 26,164

11,828

4,789

2,991

PIERCE

PEPIN

10,544 1,148 5,916

JACKSON

11,552 10,808

EAU CLAIRE

DUNN

,650 19,298

29,633

SAINT CROIX

2,245 13,434

7,523

POLK RUSK Final totals as of Tuesday, July 23, 2013

Page 3 of 6

4,100

18,586

11,828

10,429

8,150

3,971

159,882

29,855

3,902 7,121 5,599 132,052

TREMPEALEA

WASHBURN

Region Total

4,560

SAWYER TAYLOR ,588

for
Usage
Agent
rewetting
Annual P
A.7.
Table

Salt

From Winter Storm Reports, 2012-2013

item in the image in the image integrate (ton) <th>Region</th> <th>on County</th> <th>Salt</th> <th>CaCl2</th> <th>CaCl2</th> <th>Salt CaCl2 CaCl2 NaCl Brine</th> <th>MgCI2</th> <th>IB-M80</th> <th>Freeze</th> <th></th> <th>Arctic</th> <th>CaCl2 Arctic MC95 Caliber</th> <th>Caliber</th> <th>BioMe</th> <th>Geo</th> <th>Ice</th>	Region	on County	Salt	CaCl2	CaCl2	Salt CaCl2 CaCl2 NaCl Brine	MgCI2	IB-M80	Freeze		Arctic	CaCl2 Arctic MC95 Caliber	Caliber	BioMe	Geo	Ice
HA 9,440 0 0 0 0 0 3,548 0	1		(ton)	(ton)		(gal)	(gal)	(gal)	Guard (gal)	DOW (gal)	Clear Gold		M2000 (gal)	lt64 (gal)	Melt (gal)	Bite55 (gal)
KEE39,3183542,6001,8000 </td <td>SE</td> <td></td> <td>9,440</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>3,548</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	SE		9,440	0	0	0	0	0	0	0	0	3,548	0	0	0	0
E 8,432 0 14,455 23,759 0		MILWAUKEE	39,318	35	42,600	1,800	0	0	0	0	0	0	0	0	0	0
10,303 0 14,662 30,218 0		OZAUKEE	8,432	0	14,455	23,759	0	0	0	0	0	0	0	0	0	0
RTH 16,336 0 0 25,300 1,248 1 1,4248 1 1,4248 1 1,4248 0 1 1,4248 0 1 1,4248 0 1 1,4248 0 1 1,4248 1 1,4248 1 1,4248 1 1,248		RACINE	10,303	0	14,662	30,218	0	0	0	0	0	0	0	0	0	0
GTON 14,474 96 0 95,505 0 12,918 0 32,633 0 0 0 0 0 0 0 0 0 14,228 131 104,350 443,420 0 0 0 0 3,548 0 0 14,248 12 14,248 12 14,250 131 104,350 443,420 0 0 0 0 3,548 0 0 14,248 12 14,248 12 14,350 14,3420 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <th1< td=""><td></td><td>WALWORTH</td><td>16,336</td><td>0</td><td>0</td><td>25,300</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>700</td></th1<>		WALWORTH	16,336	0	0	25,300	0	0	0	0	0	0	0	0	0	700
SHA 15,919 0 32,633 266,838 0 0 0 0 0 0 0 4,248 114,222 131 104,350 443,420 0 0 0 0 0 0 4,248		WASHINGTON		96	0	95,505	0	0	0	0	0	0	0	0	0	0
114,222 131 04,350 443,420 0 0 0 3,548 0 0 4,248		WAUKESHA	15,919	0	32,633	266,838	0	0	0	0	0	0	0	0		0
	Regi	on Total	114,222		04,350	443,420	0	0	0	0	0	3,548	0	0	4,248	200

Page 4 of 6

<u></u>
201
-20
$\overline{\mathbf{\Omega}}$
201
2012
ທົ
orts
ō
ā
ceports
С
_
F
Z
5
Ó
Ĺ
Ð
Ť
1
2
~
1
ron

Region	on County	Salt (ton)	CaCl2 (ton)	CaCl2 (gal)	NaCl Brine (gal)	MgCl2 (gal)	IB-M80 (gal)	Freeze Guard (gal)	CaCl2 DOW (gal)	Arctic Clear Gold	MC95 (gal)	Caliber M2000 (gal)	BioMe It64 (gal)	Geo Melt (gal)	lce Bite55 (gal)
SW	COLUMBIA	23,101	0	0	5,200	0	0	0	0	0	0	0	0	0	0
	CRAWFORD	4,349	0	0	22,230	0	0	0	0	0	0	0	0	0	0
	DANE	50,488	0	0	107,026	0	0	0	0	0	0	0	0	0	0
#	DODGE	19,932	0	0	1,782	0	0	0	0	0	0	0	288	0	0
11	GRANT	8,434	0	0	29,445	0	0	0	0	0	0	0	0	0	0
#	GREEN	2,852	0	0	24,363	0	0	0	0	0	0	0	0	0	0
#	IOWA	6,183	0	0	0	0	0	0	0	0	0	0	0	0	0
	JEFFERSON	12,133	0	3,010	105,751	0	0	0	0	0	0	0	0	0	0
	JUNEAU	8,425	0	0	2,444	0	0	80	0	0	0	0	0	4,738	0
11	LA CROSSE	6,534	0	0	27,617	0	0	0	0	0	0	0	0	0	0
#	LAFAYETTE	2,491	0	0	0	0	0	0	0	0	0	0	0	0	0
#	MONROE	10,196	0	0	8,007	0	0	0	0	0	0	0	0	607	0
#	RICHLAND	2,965	0	0	200	0	0	0	0	0	0	0	0	0	0
pl	ROCK	12,176	0	0	26,893	0	0	0	0	0	0	0	0	0	0
a	SAUK	13,612	0	0	1,955	0	0	0	0	0	0	0	0	0	0
<u>n</u> 1	VERNON	5,311	0	0	800	0	0	0	0	0	2,155	0	0	0	0
Regic	Region Total	189,182	0	3,010	363,713	0	0	80	0	0	2,155	0	288	5,345	0

Final totals as of Tuesday, July 23, 2013

		lce Bite55 (gal)	9,047	
		Geo Melt (gal)	13,693	
		BioMe It64 (gal)	288 1	
		Caliber M2000 (gal)	20	
alt		Arctic MC95 Clear (gal) Gold	30,856	
S		Arctic Clear Gold	1,370	
e fo		CaCl2 DOW (gal)	11,828 1,370	
Jsag		Freeze Guard (gal)	10,509	
ent l		IB-M80 (gal)	8,150	
I Ag		MgCl2 (gal)	4,777	
Table A.7. Annual Prewetting Agent Usage for Salt	-2013	CaCl2 CaCl2 NaCl Brine (ton) (gal) (gal)	1,874,631	
Prev	, 2012	CaCl2 (gal)	159,665	
ual	sports	CaCl2 (ton)	139	
Ann	orm Re	Salt (ton)	621,207	
e A.7.	From Winter Storm Reports, 2012-2013	County	e Total	
Tabl	From V	Region	Statewide Total	

es	
siv	
vbra	
or A	
je f	
rewetting Agent Usage for Abrasive	
nt L	
Age	
<pre>\brasives and Prewetting #</pre>	
/etti	
rew	
Ы Ч	
s ar	
ive	
oras	
I Ab	
nua	
An	
A.8.	
ble /	
Tat	
64	

2013	NaCI
2012-2	CaCl2 NaCl
ports, 2	Sand
rom Winter Storm Reports, 2012-2013	County
From W	Region

		•												
Region	County	Sand (CY)	CaCl2 (gal)	NaCl Brine	MgCl2 (gal)	IB-M80 (gal)	Freeze Guard	CaCl2 DOW	Arctic Clear Gold	MC95 ((gal)	Caliber M2000 (nal)	BioMe It64	Geo Melt	lce Bite (rail)
Ŭ	ADAMS	c	C		c	С			C	C				
2			, ,	, ,	, ,	, ,	,	, ,	, ,	, ,	, ,	, ,	, (, · ·
	FLORENCE	35	0	0	0	0	0	0	0	0	0	0	0	0
	FOREST	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN LAKE	0	0	0	0	0	0	0	0	0	0	0	0	0
	IRON	324	0	0	0	0	0	0	0	0	0	0	0	0
	LANGLADE	∞	0	0	0	0	0	0	0	0	0	0	0	0
	LINCOLN	557	0	5,352	0	0	0	0	0	0	0	0	0	0
	MARATHON	136	0	0	0	0	0	0	0	0	0	0	0	0
	MARQUETTE	0	0	0	0	0	0	0	0	0	0	0	0	0
	MENOMINEE	62	0	0	0	0	0	0	0	0	0	0	0	0
	ONEIDA	299	0	0	0	0	0	0	0	0	0	0	0	0
	PORTAGE	677	0	2,525	0	0	0	0	0	0	0	0	0	0
	PRICE	117	0	0	0	0	0	0	0	0	0	0	0	0
	SHAWANO	357	0	0	0	0	0	0	0	0	0	0	0	0
	VILAS	677	0	0	0	0	0	0	0	0	0	0	0	0
	WAUPACA	0	0	0	0	0	0	0	0	0	0	0	0	0
	WAUSHARA	0	0	0	0	0	0	0	0	0	0	0	0	0
	WOOD	135	0	0	0	0	0	0	0	0	0	0	0	0
Region Total	Total	3,384	0	7,877	0	0	0	0	0	0	0	0	0	0

Page 1 of 6

	lce Bite (gal)	0	0	0	0	0	0	0	0	0	0	0	0
	Geo Melt (gal)	0	0	0	0	0	0	0	0	0	0	0	0
	BioMe It64 (gal)	0	0	0	0	0	0	0	0	0	0	0	0
	MC95 Caliber (gal) M2000 (gal)	0	0	0	0	0	0	0	0	0	0	0	0
	MC95 (gal)	0	0	0	0	0	0	0	0	0	0	0	0
	CaCl2 Arctic DOW Clear (gal) Gold	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Freeze Guard (gal)	0	0	0	0	0	0	0	0	0	0	0	0
	MgCl2 IB-M80 (gal) (gal)	0	0	0	0	0	0	0	0	0	0	0	0
eports, 2012-2013	MgCl2 (gal)	0	0	0	0	0	0	0	0	0	0	0	0
	NaCI Brine (gal)	0	0	0	0	0	0	0	0	0	0	0	0
	Sand CaCl2 (CY) (gal)	0	0	0	0	0	0	0	0	0	0	0	0
	Sand (CY)	135	0	0	7	165	0	99	0	19	9	16	409
From Winter Storm Reports, 2012-20	County	BROWN	CALUMET	DOOR	FOND DU LAC	KEWAUNEE	MANITOWOC	MARINETTE	OCONTO	OUTAGAMIE	SHEBOYGAN	WINNEBAGO	r Total
From	Region	ШN											Region Total

Table A.8. Annual Abrasives and Prewetting Agent Usage for Abrasives

Page 2 of 6

ives		BioMe
Abras		Caliber
for A		MC95
age		Arctic
nt Us		CaCl2
l Ager		Freeze
etting		Sand CaCl2 NaCl MgCl2 IB-M80 Freeze CaCl2 Arctic MC95 Caliber BioMe
Prew		MgCI2
and	2013	NaCI
Ves	2012-2	Sand CaCl2 NaCl
Abrasi	ports, 2	Sand
Annual Abrasives and Prewetting Agent Usage for Abrasives	From Winter Storm Reports, 2012-2013	County
A.8.	Vinter	0
Table A.8. A	From V	Region
6		

Region	County		CaCl2	NaCI	MaC12	IB-M80	Freeze	CaCl2	Arctic	MC95 (Caliber	BioMe	Geo	Ce
		(cY)	(gal)	Brine (gal)	(gal)		Guard (gal)	DOW (gal)	Clear Gold		M2000 (gal)	lt64 (gal)	Melt (gal)	Bite (gal)
MN	ASHLAND	149	0	518	0	0	0	0	0	45	0	0	50	0
	BARRON	308	0	2,452	0	0	0	0	0	0	0	0	0	0
	BAYFIELD	227	0	0	0	0	0	0	0	0	0	0	0	0
	BUFFALO	102	0	0	0	0	0	0	0	0	0	0	0	0
	BURNETT	0	0	0	0	0	0	0	0	0	0	0	0	0
	CHIPPEWA	804	0	0	0	0	0	0	0	0	0	0	0	0
	CLARK	0	0	0	0	0	0	0	0	0	0	0	0	0
	DOUGLAS	34	0	0	0	0	0	0	0	0	0	0	0	0
	DUNN	с	0	0	0	0	0	0	0	0	0	0	0	0
	EAU CLAIRE	140	0	0	0	0	0	0	0	0	0	0	0	0
	JACKSON	25	0	0	0	500	0	0	0	0	0	0	0	0
	PEPIN	31	0	0	0	0	0	0	0	0	0	0	0	0
	PIERCE	229	0	0	0	0	0	0	0	0	0	0	0	0
	POLK	379	0	0	0	0	0	0	0	0	0	0	0	0
	RUSK	5	0	0	0	0	0	0	0	0	0	0	0	0
	SAINT CROIX	425	0	0	0	0	0	0	0	0	0	0	0	0
	SAWYER	0	0	0	0	0	0	0	0	0	0	0	0	0
	TAYLOR	106	0	0	0	0	0	0	0	0	0	0	0	0
	TREMPEALEAU	1,143	0	0	0	0	0	0	0	0	0	0	0	0
	WASHBURN	66	0	0	0	0	0	0	0	0	0	0	0	0
Region Total	ר Total	4,176	0	2,970	0	500	0	0	0	45	0	0	50	0

Final totals as of Tuesday, July 23, 2013

Page 3 of 6

	FreezeCaCl2ArcticMC95CaliberBioMeGeoIceGuardDOWClear(gal)M2000It64MeltBite(gal)(gal)Gold(gal)(gal)(gal)(gal)	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
	Arctic N Clear Gold	0	0	0	0	0	0	0
	CaCl2 Arctic DOW Clear (gal) Gold	0	0	0	0	0	0	0
	Freeze Guard (gal)	0	0	0	0	0	0	0
	MgCI2 IB-M80 (gal) (gal)	0	0	0	0	0	0	0
	MgCl2 (gal)	0	0	0	0	0	0	0
From Winter Storm Reports, 2012-2013	NaCl 3rine (gal)	0	0	0	0	0	0	0
	Sand CaCl2 (CY) (gal) E	0	0	0	0	0	0	0
	Sand (CY)	4	0	0	0	0	0	0
	County	KENOSHA	MILWAUKEE	OZAUKEE	RACINE	WALWORTH	WASHINGTON	WAUKESHA
From	Region	SE						

Region Total

((

Table A.8. Annual Abrasives and Prewetting Agent Usage for Abrasives

Page 4 of 6

$\overline{\mathbf{c}}$
201;
Ņ
2012-2
2012
\mathbf{O}
orts,
Ë
ō
ă
Ð
Reports
Ξ
torm
Z
5
$\overline{\mathbf{v}}$
Ð
Ŧ
>
>
F
ron
2
L

Region	County	Sand (CY)	CaCl2 (gal)	NaCI Brine (gal)	MgCl2 (gal)	IB-M80 (gal)	Freeze Guard (gal)	CaCl2 DOW (gal)	Arctic Clear Gold	MC95 ((gal)	Caliber M2000 (gal)	BioMe It64 (gal)	Geo Melt (gal)	lce Bite (gal)
SW	COLUMBIA	583	0	0	0	0	0	0	0	0	0	0	0	0
	CRAWFORD	1,110	0	1,350	0	0	0	0	0	0	0	0	0	0
	DANE	36	0	0	0	0	0	0	0	0	0	0	0	0
	DODGE	0	0	100	0	0	0	0	0	0	0	0	0	0
	GRANT	2,491	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN	187	0	0	0	0	0	0	0	0	0	0	0	0
	IOWA	с	0	0	0	0	0	0	0	0	0	0	0	0
	JEFFERSON	0	0	0	0	0	0	0	0	0	0	0	0	0
	JUNEAU	0	0	0	0	0	0	0	0	0	0	0	0	0
	LA CROSSE	428	0	0	0	0	0	0	0	0	0	0	0	0
	LAFAYETTE	2,485	0	0	0	0	0	0	0	0	0	0	0	0
	MONROE	156	0	0	0	0	0	0	0	0	0	0	0	0
	RICHLAND	310	0	0	0	0	0	0	0	0	0	0	0	0
	ROCK	6	0	0	0	0	0	0	0	0	0	0	0	0
	SAUK	29	0	0	0	0	0	0	0	0	0	0	0	0
_	VERNON	2,789	0	0	0	0	0	0	0	0	0	0	0	0
Region Total	Total	10,616	0	1,450	0	0	0	0	0	0	0	0	0	0

Final totals as of Tuesday, July 23, 2013

Page 5 of 6

		1	
	lce Bite (gal)	0	
	Geo Melt (gal)	50	
ves	BioMe It64 (gal)	0	
Drasi	Caliber M2000 (gal)	0	
	MC95 (gal)	45	
age	Arctic Clear Gold	0	
I US	CaCl2 / DOW (gal)	0	
Agen	Freeze Guard (gal)	0	
¢unus	IB-M80 (gal)	500	
	MgCl2 (gal)	0	
		12,297	
ives ar	CaCl2 (gal)	0	
	Sand (CY)	18,589	
I able A.8. Annual Abrasives and Prewetting Agent Usage for Abrasives	Region County Sand CaCl2 NaCl (CY) (gal) Brine (CY) (gal) (gal)	∋ Total	
	Region	Statewide Total	

Page 6 of 6

Table A-9. History of Salt Use on State Trunk Highways

From Salt Inventory Reporting System

Winter	Tons of Salt	Lane Miles	Tons/Lane Mile	Million Vehicle Miles Traveled STH System (Winter)
====== 1959/60	====== 93,673	====== 19,521	===== 4.8	===== 8,828
1960/61	54,805	19,948	2.7	9,254
1961/62	109,412	19,966	5.5	9,558
1962/63	77,719	19,756	3.9	9,782
1963/64	82,033	19,717	4.2	10,064
1964/65	149,329	19,911	7.5	10,566
1965/66	111,634	19,505	5.7	11,122
1966/67	181,230	20,137	8.0	11,933
1967/68	137,729	22,395	6.2	12,140
1968/69	193,004	22,675	8.5	12,870
1969/70	199,353	22,831	8.7	13,853
1970/71	273,010	23,120	11.8	15,133
1971/72	223,249	25,543	8.7	14,325
1972/73	256,571	25,673	10.0	15,301
1973/74	218,189	N/A	N/A	16,198
1974/75	237,916	N/A	N/A	15,807
1975/76	257,154	N/A	N/A	16,198
1976/77	188,011	N/A	N/A	18,556
1977/78	210,054	N/A	N/A	19,621
1978/79	235,193	N/A	N/A	21,053
1979/80	220,180	N/A	N/A	20,403
1980/81	151,021	N/A	N/A	19,360
1981/82	192,740	N/A	N/A	20,210
1982/83	234,529	27,407	8.6	20,056
1983/84	224,368	27,416	8.2	20,873
1984/85	217,136	27,598	7.9	21,214
1985/86	304,296	27,632	11.0	22,110
1986/87	196,035	27,613	7.1 8.1	23,176
1987/88 1988/89	224,573 230,403	27,743 27,872	8.3	24,346
1989/90	297,004	28,024	10.6	24,550 25,370
1990/91	364,174	28,006	13.0	26,247
1991/92	337,079*	28,104	12.0*	27,391
1992/93	416,594*	28,182	14.8*	28,252
1993/94	314,489*	28,221	11.1*	28,859
1994/95	295,479*	28,312	10.4*	29,210
1995/96	440,488*	28,374	15.5	30,077
1996/97	509,147*	28,545	17.8*	31,122
1997/98	413,824*	29,619	14.0*	32,083
1998/99	371,602	30,119	12.4	33,236
1999/00	346,963*	30,340	11.4*	33,825
2000/01	521,056	30,553	17.1	34,657
2001/02	308,954	30,909	10.0	34,076
2002/03	328,922	30,975	10.6	35,088
2003/04	390,664	31,429	12.4	35,662
2004/05	407,924	31,810	12.8	36,013
2005/06	410,570	33,022	12.4	35,642
2006/07	405,793	33,221	12.2	27,911
2007/08	644,484	33,297	19.4	27,931
2008/09	569,985	33,531	17.0	26,888
2009/10	408,523	33,532	12.2	26,109
2010/11	573,253	33,776	17.0	26,998
2011/12	355,519	33,944	10.5	25,669
2012/13	621,207	34,192	18.2	26,512

* Quantities adjusted